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Pattern formation on the surface of a bubble
driven by an acoustic field
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1Pacific Oceanological Institute, Far Eastern Branch of the Russian

Academy of Sciences, Vladivostok 690041, Russia
2Institute of Sound and Vibration Research, University of Southampton,

Highfield, Southampton SO17 1BJ, UK

The final stable shape taken by a fluid–fluid interface when it experiences a growing
instability can be important in determining features as diverse as weather patterns in
the atmosphere and oceans, the growth of cell structures and viruses, and the dynamics
of planets and stars. An example which is accessible to laboratory study is that of an
air bubble driven by ultrasound when it becomes shape-unstable through a parametric
instability. Above the critical driving pressure threshold for shape oscillations, which is
minimal at the resonance of the breathing mode, regular patterns of surface waves are
observed on the bubble wall. The existing theoretical models, which take account only of
the interaction between the breathing and distortion modes, cannot explain the selection
of the regular pattern on the bubble wall. This paper proposes an explanation which is
based on the consideration of a three-wave resonant interaction between the distortion
modes. Using a Hamiltonian approach to nonlinear bubble oscillation, corrections to
the dynamical equations governing the evolution of the amplitudes of interacting surface
modes have been derived. Steady-state solutions of these equations describe the formation
of a regular structure. Our predictions are confirmed by images of patterns observed on
the bubble wall.

Keywords: bubble; Faraday ripples; symmetry breaking; pattern formation

1. Introduction

The shape taken by a fluid–fluid interface (liquid drops in liquids or gases,
bubbles, interfaces between fluid layers) can influence a great many features in
the modern world. On the microscopic scale, these include the growth of viruses
and cell structures such as tumours (Chaplain et al. 2001), and the buckling of
ultrasonic echocontrast agents (Sijl et al. 2011). On a larger scale, the chosen
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58 A. O. Maksimov and T. G. Leighton

interface shape determines the production and motion of bubbles, droplets and
aerosols (industrial, medicinal and in the ocean, where they affect global climate)
and the formation of internal waves in the ocean and the atmosphere with their
commensurate effects on the environment and life (Brooks et al. 2009). On a
still larger scale, the growth of perturbations in the fluid shape of planetary
gas giants and distant stars determines their evolution, and the final oscillatory
shape can be used to interpret the forces at work (Brown & Kotak 1998; Reese
et al. 2006). All such perturbations grow from instabilities, often exhibiting
sudden growth after threshold conditions are exceeded, and have a tendency to
chaotic behaviour. How this process results in the choice of a final stable shape
is clearly key to the development and final form of a wide range of biologically
important structures. This paper addresses how that choice of stable final form
has been made. The predictions are tested against data obtained from air bubbles
in water.

If a gas bubble of radius R0 in a liquid of sound speed c is driven by an
acoustic wave of low circular ‘pump’ frequency u (such that uR0/c � 1), then, at
all amplitudes of that driving wave, the bubble undergoes spherically symmetric
wall oscillation (i.e. a breathing mode pulsation). However, if the amplitude of the
driving waves exceeds a well-defined threshold, then the nonlinear response of the
gas bubble results in parametrically generated shape oscillations, superimposed
upon the pulsation. This effect (the generation of surface waves under acceleration
normal to a liquid–gas interface) was first characterized 180 years ago by
Faraday (1831).

The surface mode parametrically excited will be the one whose own natural
frequency ul (where l is the order of the distortion mode) is closest to the
subharmonic of the pump frequency, i.e. the mode for which ul ≈ u/2. The driving
acoustic pressure which excites a surface mode will have a minimum (the U-
shaped threshold for the generation of surface waves) at a frequency close to the
breathing mode resonance u ≈ u0 (where u0(R0) is the natural frequency of the
breathing mode).

The threshold conditions to excite a mode, and its form in steady state,
have been discussed widely with studies (Longuet-Higgins 1989a,b, 1992; Mei &
Zhou 1991; Asaki et al. 1993; Trinh et al. 1998) and reviews (Leighton 1994,
2004; Feng & Leal 1997) of the near-resonant interactions between breathing
and distortion modes. To date, only selected applications have been realized for
testing the theories in the laboratory, including bubble sizing (Leighton et al.
1996), the measurement of rectified diffusion (Birkin et al. 2004), cleaning (Birkin
et al. 2011), the enhanced mixing in bioreactors or during electrodeposition
(Leighton 2004; Offin et al. 2007) clearly attributed to microstreaming (Birkin
et al. 2004; Leighton 2007a; Tho et al. 2007), and microbubble shape oscillations
excited through ultrasonic parametric driving (Doinikov 2004; Dangla & Poulen
2010; Versluis et al. 2010; Prabowo & Ohl 2011). However, in between the well-
established threshold condition and such studies of the effect of the shape chosen
by the bubble in steady state, there is little work performed on the transient
period between the two (Asaki & Marston 1997). In this regime, there exist
significant differences in the times from inception taken to establish the steady-
state pulsations and shape oscillations (Ramble et al. 1998). Near the threshold,
one of the eigenvalues of the linear stability problem is small, causing the transient
processes to be of very long duration (Maksimov & Leighton 2001). In particular,
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Pattern formation on bubble walls 59

the choice of which modes are chosen to grow to steady state, and which are
selected out, determines from this potentially chaotic process the shape of the
perturbation in steady state and hence the shape of a wide range of structures,
having influences from the global to the cellular levels. Previous theories have
covered the interaction between the breathing and distortion mode, but could
not address the choice of the final shape. One study (Maksimov et al. 2008)
considered interactions only between distortion modes (excluding the breathing
mode), producing a method that was capable of predicting one final shape only in
the form of wave packets consisting of many modes with different mode numbers
l and localized as a result of self-focusing. This approach cannot be extended
to predict the various final shapes that result from different insonification
conditions, which requires a different physical basis, as provided by the method of
this paper.

Experimental observations of patterns on the bubble wall have been reported in
a number of publications (Hullin 1977; Trinh et al. 1998; Birkin et al. 2001, 2002;
Watson et al. 2003; Leighton 2004; Dangla & Poulen 2010; Versluis et al. 2010),
but elucidating the mechanisms for their realization is still an unsolved problem.
Parametrical interaction between breathing and distortion modes cannot explain
the selection in the growth of the initial distortions and the conditions for the
realization of different final shapes. However, an approach for Faraday waves on a
plane surface has been derived (Milner 1991; Miles 1993; Cross & Hohenberg 1993;
Zhang & Vinals 1996). The key element for the formation of a regular pattern in
the parametrically excited Faraday ripples is a three-wave resonant interaction
between the ripples. The triad resonance appears to govern the selection of the
roll, square or hexagon patterns formed by ripples. In this paper, we present a
systematic account of this three-wave resonant interaction between the distortion
modes. Minimization of the associated Lyapunov function allows prediction of the
standing wave patterns for capillary waves.

2. Derivation of amplitude equations

To account for the three-wave resonant interaction of distortion modes, we use
the Hamiltonian formulation of the nonlinear bubble dynamics (Maksimov 2008).
The resulting canonical equations of motion are (Maksimov 2008)

vx

vt
= dH

dP
and

vP

vt
= −dH

dx
, (2.1)

where H is the Hamiltonian, and d/dx and d/dP denote functional derivatives.
We use the spherical coordinates (r , w, a) with the equation of the bubble
surface as r = R0 + x(w, a, t), where R0 is the equilibrium radius, x is the radial
displacement, and a and w are the azimuthal and polar angles. The Hamiltonian
formulation assumes that the motion of the liquid near the bubble wall is
irrotational and inviscid and can be described by the velocity potential 4.
The boundary value of 4 on the bubble wall is denoted by F. The variables
P = −r0(R0 + x)2F(w, a, t) and x are canonical (where r0 is the equilibrium
liquid density).
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Unfortunately, H cannot be written in closed form as a functional of P, x.
However, one can limit the Hamiltonian to the first few terms of an expansion
in powers of P and x. The explicit form of the first two terms of H ≈ H0 + H1 is
given by equation (A 1) in appendix A.

Expansion of the variables in a series of spherical harmonics Ylm can be
considered as a canonical transformation

x(w, a, t) =
∞∑
l=0

l∑
m=−l

xlm(t)Ylm(w, a)

and P(w, a, t) =
∞∑
l=0

l∑
m=−l

Plm(t)Ylm(w, a).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.2)

The transformations of the monopole (l = 0) and surface (l ≥ 2) components can
be used to diagonalize the quadratic Hamiltonian

H0 = u0a∗
00a00 +

1∑
m=−1

P∗
1mP1m

r0R3
0

+
∞∑
l=2

ul

l∑
m=−l

a∗
lmalm ,

Plm = − i√
2

(
2r0R3

0ul

(l + 1)

)1/2

(alm − (−1)ma∗
l−m),

xlm = 1√
2

(
r0R3

0ul

(l + 1)

)−1/2

(alm + (−1)ma∗
l−m)

and P00 =− i√
2
(2r0R3

0u0)1/2(a00 −a∗
00), x00 = 1√

2
(r0R3

0u0)−1/2(a00 +a∗
00).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

The quadratic Hamiltonian demonstrates the existence of the following modes:
the bulk modes (l = 0 and l = 1), i.e. the monopole pulsations (l = 0) at the

frequency u0 =
√

3g(P∞ + 2s/R0)/(r0R2
0); the dipole modes (l = 1) corresponding

to the translational motions; and the shape oscillations (l ≥ 2), which have the
form of surface capillary waves propagating over the surface of the bubble at the

frequency ul =
√

s(l + 1)(l + 2)(l − 1)/(r0R3
0).

The appearance of surface modes (l = 2 − 16) on inclusions of sizes ranging
from several micrometres to several millimetres has been observed in recent years.
The majority of the experiments have been performed with bubbles tethered to a
wall, a wire, a fibre or a glass rod (Howkins 1965; Hullin 1977; Gorskii et al. 1988;
Leighton et al. 1991, 1997; Phelps & Leighton 1996; Birkin et al. 2004; Bremond
et al. 2005a). The dynamics of a tethered bubble differ from the behaviour of
a free bubble (Blue 1967; Leighton 1994; Weninger et al. 1997; Bremond et al.
2005b; Maksimov 2005). Since the experimental observations reported here did
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not include significant translational motion (this will not necessarily be true for
all tethered bubbles (Tho et al. 2007; Birkin et al. in press)), if the contact area is
small compared with the total area of the bubble, the observed effect of tethering
can be relatively weak. The presence of a contact leads to the suppression of
translational motions, namely the dipole mode. Hence, the experimental results
can be interpreted with allowance made only for the monopole and surface
distortions in the Hamiltonian description.

The canonical equations in amplitude variables take the form:

dalm

dt
= −i

vH
va∗

lm
. (2.4)

The parametric generation of the Faraday ripples is a consequence of the
contribution of the third-order nonlinear terms Hmss in the expansion of the
Hamiltonian, describing the interaction between the breathing (monopole) mode
and the two distortion (surface) modes (Maksimov (2008); see equation (A 2)
for details of the structure of Hmss). The experimental conditions studied to date
have examined the following two near-resonant interactions: u ≈ u0 and u0 ≈ 2ul .

To account for the three-wave resonant interaction between the ripples, we
should consider the third-order nonlinear terms in the Hamiltonian which describe
the interaction between the three distortion modes Hsss (Maksimov (2008); the
explicit form of Hsss is given by equation (A 3)). By using the explicit form of the
Hamiltonian (A 2 and A 3), we can find the structure of the canonical equations
of motion (2.4) for amplitudes of the monopole mode a00, the parametrically
unstable distortion mode alm and the partner of the resonant triad an′m′ . The
resonant triad is formed by two unstable waves with the same frequencies ul
interacting to form a wave of higher frequency un′ ≈ 2ul . These equations are
obtained by differentiation of the Hamiltonian with respect to a∗

00, a∗
lm , a∗

n′m′ and
retaining only the resonant terms having the same time evolution as a00, alm ,
an′m′ .

In such circumstances, the slowly varying complex amplitudes of the
breathing â00 = a00 exp(iut) and distortion modes âlm = alm exp(i(u/2)t), ân′m′ =
an′m′ exp(iut) satisfy the equations similar to ones derived by Maksimov &
Leighton (2001), which have the form

dâ00

dt
= [i(u − u0) − g0]â00 − iCll0

l∑
m=−l

(−1)mâlmâl−m

+
√

pR2
0Pm

(2r0R3
0u0)1/2

, (2.5)

dâlm

dt
=

[
i

(u

2
− ul

)
− gl

]
âlm − 2iCll0(−1)mâ00â∗

l−m

+ 2iCn′ll
∑
n′

n′∑
m′=−n′

(−1)m′
Yn′m′Yl−mYlm−m′ ân′m′ â∗

lm−m′ (2.6)
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and
dân′m′

dt
= [i(u − un′) − gn′ ]ân′m′

+ 2iCn′ll

l∑
m1=−l

(−1)m1Yn′−m′Ylm1Ylm′−m1 âlm1 âln′−m1 , (2.7)

where Cll0 = (27p)−1/2(4l − 1)ul(r0R3
0u0)−1/2R−1

0 is the coupling coefficient in
the energy of interaction of the breathing and distortion modes. The coupling
coefficient in the energy of interaction of the distortion modes Cn′ll has
the form

Cn′ll = ul

(25r0R5
0un′)1/2

{
(n ′ + 1)1/2

(l + 1)

[
n ′(n ′ + 1)

2
− 3(l + 1) + 2

3
(l + 1)

(l + 2)(l − 1)

]

+ un′

ul(n ′ + 1)1/2

[
n ′(n ′ + 1) − 2(n ′ + 1)(l − 1) + 4(l + 1)

+ (n ′ + 1)(l + 1)u2
2

9un′ul

]}
.

Note that the canonical transformation (2.3) leads to a different normalization
factor in the definition of the amplitude alm from those used by Maksimov &
Leighton (2001).

The damping of the breathing mode g0 and the distortion modes of order
l and n ′ (i.e. gl and gn′) are included in the current model. We have so far
assumed the flow near the bubble to be inviscid and irrotational. In reality, the
presence of viscosity implies that at the surface of the bubble the two tangential
components of the stress must be continuous, while the normal component (which
includes a viscous term) has a given discontinuity owing to surface tension. To
accommodate these boundary conditions, solutions of the viscous equations of
motion are required. The introduction of viscous terms into the equation of
motion is characterized by a fundamental length d = (2n/u)1/2 (where n is the
kinematic viscosity), a scale which has proved useful in describing both shape
and breathing modes on bubble walls (Ainslie & Leighton in press). The viscous
dissipation in the fluid surrounding the bubble may be calculated as though
the flow were irrotational but only if the Stokes layers are relatively thin in
comparison with the wavelength of the distortion mode (Longuet-Higgins 1989b).
The damping factor evaluated by Longuet-Higgins (1989b) for this case leads
to the formula given by Lamb: gl = (l + 2)(2l + 1)n/R2

0. The damping factor
for the breathing mode g0 ≈ u2R0/2c + (

2n/R2
0

) + 3(g − 1)(u0/2R0)(D/2u)1/2

is the sum of radiation damping, viscous damping and damping owing to
thermal diffusion, as estimated by a linear analysis, where D is the diffusivity
coefficient.

The correction terms which describe the interaction of the three modes are
those which are proportional to ân′m′ â∗

lm−m′ in equation (2.6) and which, in
equation (2.7), describe the evolution of the amplitude of the high-frequency
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partner of the resonant triad. Some couplings, such as that between the breathing
and n ′ modes, would require a fourth-order Hamiltonian H2: currently, the
algebraic sum of the natural frequencies (2un′ − u0) ≈ u0 (un′ ≈ u0) cannot
vanish for such interactions n ′ + n ′ ←→ 0, n ′ + 0 ←→ n ′, and so no resonant
synchronization is possible. For this reason, we neglect the correction terms
ân′m′ ân′−m′ in equation (2.5) and â00ân′m′ in equation (2.7).

The occurrence of the three-wave resonance ul1 + ul2 ≈ ul3 has been analysed
by Maksimov (2008) numerically for each value of l3 from 3 to 15. The resonance
condition for the processes considered there is simpler and can be easily realized
for l � 1, to give n ′ ≈ 41/3l . The relative detuning for the resonant triads |2ul −
un′ |/ul can be very small. For simplicity, we shall account for only one triad,
specifically the one which is nearest to the resonance condition. An important
peculiarity of the three-wave resonance is the restriction imposed by the law
of conservation of parity: the sum of the mode numbers 2l + n ′ should be an
even number.

3. Analysis of amplitude equations

The system of equations (2.5–2.7) can be significantly simplified using the
master–slave principle known in applied mathematics as centre-manifold
reduction (Wiggins 1996). The actual parametric instability occurs when one
of the eigenvalues of the linear stability analysis (Maksimov & Leighton 2001)

l1,2 = −gl ±
{

P2
m(4l − 1)2

162r2
0R

4
0D0

−
(

ul − u

2

)2
}1/2

(3.1)

passes through zero at

P2
m =

[
16r0R2

0

(4l − 1)

]2

D0Dl ,

D0 = [(u0 − u)2 + g2
0], Dl =

[(
ul − u

2

)2 + g2
l

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

If the conditions are sufficiently close to the threshold of this instability, then
we can further reduce the description by eliminating ‘fast’ variables (Cross &
Hohenberg 1993; Maksimov & Leighton 2001). The breathing mode and the
high-frequency (stable) distortion mode n ′ are fast-phased to draw energy from
the pumping and unstable modes l . The linear combination of âlm and â∗

l−m
corresponding to the eigenvalue l2 is also fast. Thus, near the threshold, it
is possible to rewrite equations (2.5)–(2.7) in terms of the slowly varying
standing-wave amplitude Blm

Blm = 1
2i

[âlm ei(f2−f1) − (−1)mâ∗
l−m e−i(f2−f1)],

sin f1 =
(

ul − u

2

)
D

−1/2
l and sin f2 = −g0D

−1/2
0 .

⎫⎪⎬
⎪⎭ (3.3)
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This yields

dBlm

dt
= l1Blm − v

vB∗
lm

[G0I 4
0 (l) + Gn′I 4

n′(l)],

I 4
k (l) = 1

4

k∑
m′=−k

k∑
m′′=−k

l∑
m1=−l

l∑
m2=−l

l∑
s1=−l

l∑
s2=−l

(
k k 0
m′ m′′ 0

)

×
(

l l k
m1 m2 −m′

) (
l l k
s1 s2 −m′′

)
Blm1Blm2Bls1Bls2 ,

G0 = (Cll0)2
[
g0gl − (u0 − u)

(
ul − u

2

)]
Dlg

−3
l D−1

0

and Gn′ = 2(Cn′ll)2
[
gn′gl − (un′ − u)

(
ul − u

2

)]
Dl

× g−3
l D−1

n′

(
l l n ′
0 0 0

)2

(2l + 1)2(2n ′ + 1)(4p)−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Equation (3.4) is of gradient form

vBlm

vt
= − vF

vB∗
lm

, where F = −l1I 2
0 (l) + G0I 4

0 (l) + Gn′I 4
n′(l), (3.5)

and thus is covariant (i.e. it has the same structure/form in different coordinate
systems). The possibility of representing the m-linear covariant as the gradient of
a (m + 1)-linear invariant is restricted to m ≤ 3 (Gaeta 1985). This complicates
the analysis for the case when the resonant triads are not effective and one
should then account for the next approximation. Note that, in the current form,
the theory cannot describe the patterns for the first mode numbers, as resonant
interaction for these modes is not effective and it is necessary to account for higher
nonlinear terms (corresponding to accounting for the fourth-order Hamiltonian
H2; Maksimov (2008)). The symmetry of the preferred pattern is that for which
the Lyapunov functional F is lowest (Cross & Hohenberg 1993).

A number of far-from-equilibrium systems exhibit instabilities leading to the
formation of spatial patterns. A basic feature of the non-equilibrium phase
transition is the spontaneous breakdown of symmetry: as the control parameter
is changed, the stable steady state of the system, which is invariant under a
symmetry group G, loses its stability and a new steady state appears which
is invariant only under a subgroup of G (Rácz & Tél 1982). The set of Blm
forms the multi-component order parameter for the transition corresponding
to the broken spherical symmetry. The number of components of the order
parameter 2l + 1 is given by the dimension of the irreducible representation of
the symmetry group.

What does it mean for a system (3.4) to be symmetrical under a group action?
The group element g ∈ G is a symmetry of a system written in the form of ẋ =
f (x) if, for every solution x(t) = (Blmi ), gx(t) is also a solution. A condition
for g to be a symmetry is f (gx) = gf (x). If this holds, one says that f is g-
equivariant (Golubitsky et al. 1988). Thus, an important property of system (3.4)
is that it is equivariant under the action of the original symmetry group of the
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sphere O(3). (O(n) notation is used for the orthogonal group of degree n; O(3)
is the group of 3 × 3 orthogonal matrices with the group operation of matrix
multiplication.)

4. Solutions

The next task is to formulate the notation of the symmetry of a solution to
an equivariant equation (3.4). Equilibria of equation (3.4) are the solutions of
f (x) = 0. We can express the symmetries of the solution of the system (as opposed
to the symmetry of the system) as follows (Golubitsky et al. 1988): a symmetry h
of x is an element of G that leaves x invariant. The set of all such h is a subgroup
of G, known as the ‘isotropy subgroup’. The isotropy subgroup of a solution of an
equivariant system of ordinary differential equations provides useful information
about the form of that solution.

Apart from the trivial solution of Blm = 0 for m = 0, 1, 2, . . . l (note that
according to the adopted normalization (3.3) Bl−m = (−1)mB∗

lm), there is a family
of solutions differing in the total number of standing waves N for which Blm �= 0.
The search for stationary solutions to the 2l + 1 equations (3.4) is significantly
simplified by restricting the consideration to solutions with a particular symmetry
corresponding to subgroups of the original symmetry group of the sphere O(3).
These subgroups include O(2), I (icosahedron), O (cube), T (tetrahedron),
Dn (regular n-gon) and Cn (directed n-gon). We use traditional (Scheonflies)
notations (e.g. Landau & Lifshitz 1977). Note that the rolls, squares and hexagons
observed on the plane surface correspond to subgroups of the circle O(2). We
consider here the simplest cases (N = 1, 2), and full consideration based on
analysis of all point groups (Golubitsky et al. 1988) will be the subject of future
research.

For N = 1, there is only one standing wave Blm and the steady-state solution
of (4.3) has the form

B∗
lmBlm =

(
l1

G0

) [
(2 − dm,0) +

(
Gn′

G0

)
g(m)

]−1

,

g(m) = 2
(

l l n ′
−m m 0

)2

+
(

l l n ′
−m −m 2m

)2

Q(n ′ − 2m), m �= 0

and g(0) =
(

l l n ′
0 0 0

)2

, m = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

where Q is the Heaviside step function. Evaluation of the Lyapunov function
F(m) at the local minima corresponding to the steady-state solutions (4.1) gives

F(m) = − l2
1

2G0

[
(2 − dm,0) +

(
Gn′

G0

)
g(m)

]−1

. (4.2)

Direct calculations of the Wigner 3j symbols for mode numbers l ≥ 9
corresponding to the domain of applicability of equation (3.4) shows that g(l)
is negligibly small in comparison with the other coefficients g(m), indicating that
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(a) (b) (c)

Figure 1. The images show a bubble as the amplitude of excitation increases: (a) 24 Pa, (b)
44 Pa (zero-to-peak). The mean radius of the bubble is approximately 2.1 mm and the driving
field has frequency of 1.500 kHz. (c) The shape of rolls which are described by equation (4.8)
with the same input data as conditions for the image shown in (a). The glass rod visible
above the bubble in (a,b) prevents its buoyant rise (Birkin et al. 2002) (see also video
at http://www.isvr.soton.ac.uk/fdag/Faraday.htm). Its effect is not included in the analysis.
Photographs taken by Birkin & Watson.

the deepest minimum of the Lyapunov function is achieved at m = l . This is
consistent with the physical idea that the triad-interaction should be least for
the realized structure. Thus, we have

B∗
llBll = l1

2G0
. (4.3)

The pattern on the bubble wall is described by

r = R0 + x00Y00 +
l∑

m=−l

xlmYlm +
n′∑

m′=−n′
xn′m′Yn′m′ ≈ R0 +

(
l + 1

2r0R3
0ul

)1/2

×
(

l

2G0

)1/2
√

2l + 1
4p

(2l)!
22l−4(l !)2

sinl w cos(la + bl)
cos 2f1

× sin
[(u

2

)
t + (f1 + f2)

]
, (4.4)

where bl is the phase of Bll . The spherical harmonic corresponding to this state
Yll ∼ sinl w has no oscillations along the meridian. The pattern corresponding to
this solution is shown in figure 1c and can be named by analogy with structures
observed on a plane surface: rolls. The steady-state amplitude of the n ′ mode is
small as it is proportional to l and the negligibly small factor

√
g(l). The smallness

of the radial amplitude in comparison with the amplitude of the distortion mode
is discussed in detail by Maksimov & Leighton (2001). The isotropy group of this
solution is Dlh of order 4l : prismatic symmetry. It has l-fold rotational symmetry,
the twofold rotation axes being perpendicular to the primary rotation axis and
the horizontal reflection plane.
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For patterns formed by two standing waves N = 2, we have

B∗
lm1

Blm1 =
(

l1

G0

)
[g(m1, m2) − g(m2)]

×
{
(2 − dm2,0)[g(m2, m1) − g(m1)] + (2 − dm1,0)[g(m1, m2) − g(m2)]

+
(

Gn′

G0

)
[g(m1, m2)g(m2, m1) − g(m1)g(m2)]

}−1

. (4.5)

The square of the amplitude of the second standing wave B∗
lm2

Blm2 is obtained from
equation (4.5) by permutation of indexes m1 and m2. The coupling coefficients
are symmetrical g(m1, m2) = g(m2, m1). As the system tries to avoid the modes
that participate in a triad-resonant interaction, it is reasonable to assume that
one of the partners in the formation of these structures will be the mode m1 = l ,
as its self-interaction is negligibly small. Thus, letting g(l) = 0 in the evaluation
of the Lyapunov function, we have

F(l , m2) = − l1

2G0
[g(m2) − 2g(l , m2)] ×

{
(2 − dm2,0)g(m2)

− (4 − dm2,0)g(l , m2) −
(

Gn′

G0

)
g(l , m2)2

}−1

,

g(l , 0) =
(

l l n ′
0 0 0

) (
l l n ′

−l l 0

)
+ 2

(
l l n ′

−l 0 l

)2

and g(l , m2) = 2
(

l l n ′
−l m2 l − m2

)2

+ 2
(

l l n ′
−m2 m2 0

) (
l l n ′

−l l 0

)

+ Q(n ′ − 2m2)
(

l l n ′
−l −m2 l + m2

)2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

The positive nature of B∗B imposes restrictions on the possible partners: mode
numbers m2, as the denominator of equation (4.5), and [g(m2) − 2g(l , m2)] should
be negative. Thus, only m2 � l can form this type of pattern. The final step
requires numerical evaluation of the Wigner 3j symbols and we do this for the
particular case corresponding to the specific pattern observed by Watson et al.
(2003) and shown in figure 2a.

For an l = 15 mode unstable on the wall of the bubble (of radius approx.
2.5 mm) which was driven at 1.297 kHz, with 83.5 Pa acoustic pressure, the
most effective resonant triad is formed with the n ′ = 24 mode. For these
modes, the pre-factor entering into the ratio G24/G0 which does not depend
on the driving frequency u has been calculated for the following values
of the determining parameters: g = 1.4 (polytropic exponent: air), s = 7.2 ×
10−2 Nm (surface tension: clean water–air, 20◦C), P0 = 105 Pa (ambient pressure),
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Figure 2. (a) View from below an air bubble, restrained against buoyant rise by a glass rod, visible
as the white circle ‘behind’ the bubble. The bubble (of radius approx. 2.5 mm) was driven at
1.297 kHz, with 83.5 Pa zero-to-peak acoustic pressure amplitude. The bubble shape corresponding
to a square pattern for these experimental conditions is shown in two-dimensional projections: (b)
a view from below, (c) a top view, and (d) a side view. The photographic image in (a) is from
Birkin et al. (2001) and Watson et al. (2003). (a) Scale bar, 2 mm.

r0 = 988 kg m−3 (equilibrium density liquid: water), c = 1484 m s−1 (speed of
sound in the liquid: water), n = 10−6 m2 s−1 (kinematic viscosity liquid: water),
D = 2 × 10−5 m2 s−1 (diffusion coefficient). The result is

G24

G0
≈ 21

g24g15 − (u − u24)(u/2 − u15)
g0g15 − (u − u0)(u/2 − u15)

. (4.7)

This allows evaluation of the governing parameter G24/G0 along the threshold
curve and comparison of conditions for the realization of different patterns.

Calculations of g(m2) and g(15, m2) have been performed for 0 ≤ m2 ≤ 15.
Substitution of these coefficients into equation (4.9) and evaluation of the
Lyapunov function F(15, m2) demonstrate that it has a minimum value for
m2 = 0. In this case, the squared amplitudes (4.5) have the form

B∗
15 15B15 15 = l1

G0

g(15, 0) − g(0)
3g(15, 0) − 2g(0) + (G24/G0)g(15, 0)2

and B∗
15 0B15 0 = l1

G0

g(15, 0)
3g(15, 0) − 2g(0) + (G24/G0)g(15, 0)2

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.8)
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Numerical evaluation of the Wigner 3j symbols gives

B∗
15 15B15 15 = l1

2G0

1
1.855 + (G24/G0) 0.00558

and B∗
15 0B15 0 = l1

2G0

1
1.082 + (G24/G0) 0.00334

.

⎫⎪⎪⎬
⎪⎪⎭ (4.9)

The pattern on the bubble wall is described by

r = R0 +
(

1
r0R3

0u15

)1/2 (
l

2G0

)1/2 2.4 sin[(u/2)t + (f1 + f2)]
cos 2f1

×
{

sin15 w cos(15a + b15)
[1.855 + (G24/G0)0.00558]1/2

+ 1.85
P15(cos w)

[1.082 + (G24/G0)0.00334]1/2

}
.

(4.10)

By analogy with the structures formed by orthogonal standing waves on a
plane surface, it is reasonable to name this type of pattern as ‘squares’.
Figure 2 illustrates the shape of this ‘square’ pattern calculated on the basis
of equation (4.10). The presence of the Legendre polynomial P15 (which is
antisymmetric relative to reflection in the horizontal plane for odd l) changes
the symmetry of this pattern in comparison with that of the ‘rolls’. The isotropy
group of this solution is C15v of order 30, which has pyramidal symmetry: it has
15-fold rotational symmetry and a set of 15 mirror planes containing the axis.

5. Discussion

In order to validate the predications of this work, the experimental observations of
patterns on the bubble wall have been processed. Figure 1a,b shows the patterns
observed on the bubble wall when the driving pressure increased slightly from
the near threshold value. The pattern corresponding to figure 1a is frequently
observed in experiments (Birkin et al. 2002; Dangla & Poulain 2010). Transition to
the polyhedral symmetry structure demonstrated by figure 2b corresponds to the
case when insonification conditions differ significantly from those at threshold (the
driving pressure is much greater than the threshold one, or the frequency differs
significantly from that at threshold for this mode) and cannot be analysed with
a simplified model equation (3.4). Nevertheless, it can be shown that any steady-
state solution of equation (3.4) is a steady-state solution of equations (2.5)–(2.7).
Far from the threshold, the amplitude equations (2.5)–(2.7) have no gradient
form and the Lyapunov function cannot be determined, while the classification of
solutions on the basis of point groups symmetry can be applied for all these states.

Of particular interest are patterns with the symmetry groups of the Platonic
solids: the tetrahedron, the cube (or octahedron) containing T and the
icosahedron (or dodecahedron) also containing T. An important relation between
subgroups is that of containment (Golubitsky et al. 1988)—whether or not
one subgroup is contained in another. Undertaking such an examination over
the subgroups, one can define a partial ordering on the set. It classifies the possible
ways for equilibrium to break the symmetry, and arranges them in a hierarchy
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with the property that smaller isotropy subgroups tend to break more symmetries
and thus are less probable. The icosahedral and cubic subgroups are maximal
ones (a subgroup H ≤ G is called maximal if H �= G and the only subgroups of
G which contain H are H and G), but their realization depends on the degree of
the spherical harmonic (the mode number). For the range of interest, I can be
realized for l = 8, 10, 12, 15 (Golubitsky et al. 1988). Consequently, the pattern
presented in figure 1b should correspond to the cubic symmetry, as, for the given
radius of the bubble (2.1 mm) and the driving field frequency (1500 Hz), the mode
numbers required for the realization of I cannot be excited. Note that hexagons
observed on the plane surface correspond to the largest subgroup of the circle
group O(2). For O(3), the subgroups of icosahedral and octahedral symmetry are
maximal, thus providing an example of an analogue of the hexagon.

Figure 2 suggests a further advance in pattern classification, specifically by
indicating the importance of the ‘view from below’ which uniquely determines
the order of the axis for cyclic and dihedral symmetries. Note that, for high
frequencies and intense driving pressures, ‘square’ patterns on the bubble wall
have been observed by Trinh et al. (1998).

The influence of surface tension on the growth of instabilities near the threshold
has been studied by Birkin et al. (2001, 2002, 2004) and Watson et al. (2003) for
aqueous solutions of potassium ferricyanide and surfactant (Triton X-100) added
to the liquid, which significantly modifies the surface tension. For a given bubble,
the threshold for Faraday wave generation varies with the amount of surfactant
(Triton X-100) added to the liquid. The effective surface tension affects bubble
dynamics, not least through controlling the mode number which corresponds
to Faraday waves. However, it modifies the ring up time history—the transient
process of establishing the steady state—which is governed by the interactions
between modes. As the same interactions select the preferred pattern realized
on the bubble wall, one can expect that the variation of the surface tension
will lead to a change in the observed pattern. This could be used to measure
the actual surface tension on the dynamic bubble wall (Watson 2003; Leighton
2007b). Such measurements would provide a better value for consideration of, say,
the generation of bubbles, droplets and aerosols from the real ocean environment
(with its range of contaminants) than would application of an ideal value, or
one measured on a flat gas/liquid interface using a Langmuir trough technique
(which can differ from the value on the bubble because the dynamic interface
can collect and redistribute surface active agents). This difference could have
considerable effect on weather and climate and the global distribution of organic
materials.

Equation (3.4), though obtained for the bubble parametric instability, has
a general form describing bifurcation from spherical symmetry and can arise
naturally in a large number of physical (and even biological) applications.
The selection of a set of invariants I 4

k (l) and weights Gk is dictated by
the specific constraints of the problem and in our case is reduced to the
set {G0, I 4

0 (l); Gn′ , I 4
n′(l)}. The most evident applications are the formation of

‘stardrops’ (Brunet & Snoeijer 2011), and the buckling and dynamics of
biomedical ultrasonic contrast agents (Versluis et al. 2010; Sijl et al. 2011). Of
course, the breathing mode has no effect on the dynamics of the incompressible
drop, which in practice is closely realized by liquid drops in air, where the
important role is played by an oscillating substrate or by an acoustic radiation
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force (in the case of the levitating drop). However, smaller differences in
compressibility occur for drops of one liquid in another, as commonly found in the
petrochemical harvesting and transport, pharmaceutical and food production, or
in the ocean when petrochemical, chemical or biological agents are dispersed as
layers or droplets in the seawater, and here the selection of particle shape can
play an important role in the dispersion of one liquid medium in another.

Note that pattern formation on a sphere for the invariants with the lower
(cubic) dimension has been analysed earlier (Busse 1975; Sattinger 1980;
Matthews 2003). When l is odd, the cubic invariant should be zero (owing to the
conservation of parity). For even l , there is a unique invariant that is independent
of the specific physical model used. The I 3 set has been used to study convective
patterns in a spherical shell, which are relevant to continental drift driven by the
fluid motion within the Earth’s mantle (Busse 1975), and the growth of tumours,
where a growing ball of cells may remain spherical or bifurcate to a non-spherical
shape (Chaplain et al. 2001). For physical conditions suppressing instability of the
even modes, the cubic invariant vanishes and equations (4.3) should be used to
describe these phenomena, which illustrates the generality of the model proposed
in this paper.

6. Conclusions

To summarize, we have developed an asymptotic weak nonlinear theory (based on
the third-order Hamiltonian) for pattern formation on a bubble wall driven near
threshold by an acoustic field. The simplest solutions of the derived equations
can explain the experimentally observed structures: rolls and squares.

The contribution of A.O.M. was supported by MES SS-3641.2010.5 and RFBR no. 11-05-0212a.

Appendix A. Hamiltonian of a bubble

Consider a gas bubble of radius R0 in a liquid of density r0 driven by an acoustic
wave of ‘pump’ frequency u and amplitude of Pm . The first terms of an expansion
of the Hamiltonian H = H0 + H1 + H2 + · · · in powers of canonical variables P,
and x have the following analytical representations (Maksimov 2008):

H0 = 1
2r0R3

0

∫
PD̂(P) sin w dw da − sR2

0

2

∫
s(V2

s s) sin w dw da

− 4psR2
0s2 + 4pPmR3

0 s̄ + 6pg

(
P∞ + 2s

R0

)
R3

0s2

and H1 = 1
2r0R3

0

∫
s[(D̂P)2 − (VsP)2 −4PD̂(P)] sin w dw da− 8psR2

0

3
s3

+ 4pPmR3
0s2 + 12pg

(
P∞ + 2s

R0

)
R3

0 s̄
[
s2 − 1

2
(g + 1)s̄2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)
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where s ≡ x/R0, Ā ≡ (4p)−1
∫

A sin w dw da, Vs ≡ ewv/vw + ea sin−1 wv/va is the

surface gradient, D̂ =
[
(1/2) + √−V2

s + (1/4)
]

is a linear operator and s is the
coefficient of the surface tension. We adopt a polytropic law for the gas bubble
with the polytropic exponent g, where P∞ is the external pressure in the liquid
far from the bubble.

The cubic Hamiltonian H1 is responsible for the interaction of the monopole
and two surface modes (the term Hmss),

Hmss =
∞∑
l=2

l∑
m=−l

u0

8
√

2p(r0R3
0u0)1/2R0

{
(−1)m(a00almal−m + a∗

00a
∗
lma∗

l−m)

×
[
3

ul

u0
+ (2l + 6) + 2(l + 1)

u0

ul

(
1 − u2

2

6u2
0

)]
+ (a00alma∗

lm + a∗
00alma∗

lm)

×
[
−6

ul

u0
+ 4(l + 1)

u0

ul

(
1 − u2

2

6u2
0

)]
+ (a00a∗

lma∗
l−m + a∗

00almal−m)

×
[
3

ul

u0
− (2l + 6) + 2(l + 1)

u0

ul

(
1 − u2

2

6u2
0

)]}
, (A 2)

and the interaction of the surface modes (the term Hsss),

Hsss = −
∞∑

l1=2

l1∑
m1=−l1

∞∑
l2=2

l2∑
m2=−l2

∞∑
l3=2

l3∑
m3=−l3

Yl1m1Yl2m2Yl2m3

4
√

2R0

×
(

ul2ul3(l1 + 1)
r0R3

0ul1(l2 + 1)(l3 + 1)

)1/2 {
[(al1m1al2m2al3m3 + a∗

l1−m1
a∗

l2−m2
a∗

l3−m3
)

+ (−1)m1(al1m1a
∗
l2−m2

a∗
l3−m3

+ a∗
l1−m1

al2m2al3m3)]

×
[
(l2 + 1)(l3 + 1) − [(l2 + 1)l2 + (l3 + 1)l3]

2

+ (l1 + 1)l1
2

− 2(l2 + 1) − 2(l3 + 1) + (l2 + 1)(l3 + 1)
18

u2
2

ul2ul3

]

− [(−1)m2(al1m1a
∗
l2−m2

al3m3 + a∗
l1−m1

al2m2a
∗
l3−m3

)

+ (−1)m3(al1m1al2m2a
∗
l3−m3

+ a∗
l1−m1

a∗
l2−m2

al3m3)]

×
[
(l2 + 1)(l3 + 1) − [(l2 + 1)l2 + (l3 + 1)l3]

2

+ (l1 + 1)l1
2

− 2(l2 + 1) − 2(l3 + 1) − (l2 + 1)(l3 + 1)
18

u2
2

ul2ul3

]}
. (A 3)

Proc. R. Soc. A (2012)

 on July 26, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Pattern formation on bubble walls 73

The average of the spherical harmonics over the sphere can be expressed in terms
of the Wigner 3j symbols

Yl1m1Yl2m2Yl3m3 = [(2l1 + 1)(2l2 + 1)(2l3 + 1)(4p)−1]1/2

×
(

l1 l2 l3
m1 m2 m3

) (
l1 l2 l3
0 0 0

)
. (A 4)
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