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A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then

linearized to determine the resonance frequency and the damping terms for linear radial oscillations.

The linear model is then used to predict the effects that such bubble pulsations will have on the sound

speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are com-

pared for monodisperse populations against the predictions of a model of Anderson and Hampton and,

furthermore, the additional abilities of the model introduced in this paper are discussed. These features

include the removal of the sign ambiguities in the expressions, the straightforward implementation for

acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size

distributions through a full acoustic inversion, and the capability to predict nonlinear effects.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4954753]

[NPC] Pages: 274–282

NOMENCLATURE

A attenuation in gassy sediment

cp speed of sound in host medium

cPb complex sound speed in gassy sediment

Dg thermal diffusivity of gas

G� complex sediment shear modulus

Gm solid matrix shear modulus

Gs real part of complex sediment shear modulus

Gs
0 imaginary part of complex sediment shear modulus

Gw water shear modulus

f frequency

i imaginary unit number

I0 incoming acoustic intensity

Is scattered acoustic intensity

Kg thermal conductivity of gas

Km solid matrix bulk modulus

Ks sediment bulk modulus

Kw water bulk modulus

meff effective bubble mass

nb bubble number density

p an attenuation exponent

p0 hydrostatic pressure

pg gas pressure inside the bubble

pv vapor pressure inside the bubble

pr;0 Laplace pressure when the bubble is at equilibrium radius

PA amplitude of acoustic driving pressure

Pb pressure radiated from a bubble

r spatial coordinate

R bubble radius

R0 equilibrium bubble radius
_R bubble wall velocity
€R bubble wall acceleration

x normalized bubble wall displacement

t time

Sv volume backscattering strength

V phase velocity

Greek

a attenuation in water saturated sediment

b dimensional damping coefficients

c gas polytropic exponent (adiabatic)

e strain

_e strain rate

C constant in an empirical relation

gs sediment shear viscosity

gth thermal viscosity

gw viscosity of water

j gas polytropic exponent

n porosity

qG density of the gas inside the bubble

qm density of the mineral grains

qs density of water-saturated sediment

qw density of the seawater

r surface tension

rs scattering cross-section

rv scattering cross-section for a bubble distribution

rv;ref reference volume cross-section

s stress tensor

U complex polytropic exponent

v thermal diffusion length

x angular frequency

x0 bubble resonance frequency

I. INTRODUCTION

Characterisation of the amount of gas in marine sedi-

ment is important for several reasons. First, for understand-

ing the stability of the sediment with respect to both natural

disturbances, such as undersea landslip, and manmadea)Electronic mail: T.G.Leighton@soton.ac.uk
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processes, such as piling for civil engineering projects.1–3

Second, for assessment of the gas reserves for fuel and cli-

mate risk.4–7 Such quantification of marine gas reserves

should also take into account that which could potentially

dissociate from hydrate. Third, for monitoring leakages into

sediment from buried manmade gas bodies, including buried

gas pipelines and carbon capture and storage facilities. 4,8–10

Fourth, the resonance of gas bubbles in sediment can pro-

foundly perturb the propagation and scattering of acoustic

waves. Accurate models of these effects are needed to pre-

dict the performance of the systems that might, in situ,

involve propagating waves through gassy sediments (e.g.,

for sending data to and from buried transponders, for sub-

bottom surveying11 and for in situ calibration12). Accurate

models are also needed if the measured attenuation and

sound speed are to be inverted to estimate the gas bubble

population present in the sediment. The current models for

bubble dynamics in sediments are insufficient for inverting

measured acoustical propagation and scattering in order to

estimate the bubble populations present in the seabed, unless

very specific conditions are assumed (e.g., all bubbles are

much smaller than the bubble size that resonates with the

sound field11). Furthermore, since the attenuation can be

high, the source levels used (to provide an adequate signal-

to-noise ratio at the receiver) might generate nonlinear bub-

ble oscillations for part of the propagation path, and indeed

some methods for measuring or exploiting sub-bottom bub-

bles might rely on such nonlinearities.13–18 Consequently,

the inclusion of bubble nonlinearities into such models

could, at times, be important.19,20

Acoustic propagation in marine sediments has been

extensively investigated. The forward models mainly fall

into the following categories: A large body of literature

assumed the existence of one compressional and one shear

wave, and explored ways to model the frequency depend-

ence of attenuation, a (dB/m), with the following empirical

relation:21

a ¼ C f p; (1)

where p is the attenuation exponent, f is the frequency and C
is a constant. There is a broad range of reported values cov-

ering a variety of marine sediments22–34 although the

reported values of p are not consistent between experiments,

most probably because of the different sediment types and

frequency ranges considered. The value of p is frequently

reported as representing a linear model of attenuation (e.g.,

Wood and Weston35 and Bowles36). However, there are also

a number of studies that report attenuation exponents which

exhibit nonlinear attenuation relationships (e.g., Stoll,37

Brunson and Johnson,38 and Turgut and Yamamoto33).

In water-saturated sediment, Biot39,40 showed the exis-

tence of two compressional waves and one shear wave; this

has been consistently validated through experimental

work.37,41,42 Although Biot’s work initially suggested negli-

gible dispersion of compressional waves, later studies have

reported significant dispersion in a wide range of excitation

frequencies, i.e., 1–100 kHz (Ref. 43) or 10 kHz–1 MHz

(Ref. 44). The majority of the studies which aimed to model

the inclusion of gas bubbles into porous sediment have

assumed that the bubbles are contained only in the pore fluid

spaces and they do not affect the sediment structure.45–47

This assumption implies that the contact between the gas

bubble and the sediment mineral grains is not taken into

account; hence, those models are not applicable to the

“sediment-replacing” type of bubble in the classification of

Anderson et al.48 To our knowledge, the work of Kargl

et al.49 is the only publication that takes into account the

effects of sediment rigidity on the pulsations of bubbles and

the presence of two compressional waves, and investigates

the double resonance behaviour of bubbles under the effect

of two compressional waves. However, their model leaves

out the formulation of damping, sound speed and attenuation

relevant to bubble pulsations and does not provide a route

for acoustic inversion. The notable contribution of Boyle

and Chotiros50,51 also formulated the propagation of two

compressional waves in sediment containing gas bubbles,

although the viscoelastic damping was attributed to the pore

water viscosity only, which may result in underestimation of

the attenuation caused by bubbles.

Anderson and Hampton52,53 presented the model that is

most frequently used for predictions of acoustic scattering,

sound speed and attenuation in gas-bearing marine sedi-

ments. The applicability of this model is limited to linear gas

bubble pulsations, and leaves ambiguities for the inverse

problem because of the plus/minus sign entering the expres-

sion of the complex sound speed [Eq. (49) of Ref. 52]. This

sign ambiguity may result in the presence of both positive

and negative bubble counts when inverting broadband acous-

tic data. For instance, Best et al.54 measured the attenuation

spectra between 600 and 3000 Hz and identified five peaks

which were attributed to bubble resonances. The attenuations

for these single bubble sizes were computed theoretically

[their Figs. 9(a) and 9(b)] in order to obtain the bubble num-

ber density, which were then weighted to estimate a continu-

ous bubble size distribution (their Fig. 10). However, the

weightings with best fit to the measured attenuation gave a

poor fit to the sound speed data [their Fig. 9(c) and 9(d)].

The method outlined in this paper, on the other hand, is suit-

able for a full acoustic inversion which satisfies both sound

speed and attenuation data simultaneously.55

Lyons et al.56 have also performed predictions of bubble

populations in gassy sediment using the linear scattering

cross section expressions [Eqs. (54)–(56)] of Anderson and

Hampton (equations that are not self-consistent57,58). The

model presented in Sec. II is suitable for implementation

with short high amplitude pulses (as required for range reso-

lution59), and for nonlinear inversions, e.g., when the high

amplitudes required to overcome sediment attenuation pro-

duce harmonics, ultraharmonics, and subharmonics in the

bubble wall displacements55 or produce nonlinear mixing of

two insonification frequencies,60–62 a technique which is

receiving increasing interest in sediment studies.16–18,63,64

In this work, it is assumed that the gas-free host medium

supports one compressional and one shear wave. Furthermore,

the dispersion of the first compressional wave and the dissipa-

tion due to internal friction are neglected. Whilst more com-

prehensive studies should address mismatches between such
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assumptions and observations, such an exercise is beyond

the scope of this article, which restricts itself to the regime

of assumptions about dispersion that were used in the model

of Anderson and Hampton, against which the predictions of

the new model are compared. Incorporation of the second

compressional wave and the other losses into the model

requires a more comprehensive treatise, i.e., by expanding

the formulation of Kargl et al.49 to a nonlinear setting.

However, this is not a straightforward task since the Biot

theory itself is inherently linear. The effective bulk and shear

moduli of the host medium, on the other hand, are calculated

in this work using a comprehensive model based on

Berryman’s self-consistent approximation.65,66

II. BUBBLE DYNAMICS

Leighton20 presented a nonlinear time-dependent model

for bubble dynamics in a viscoelastic medium, i.e., marine

sediments. It incorporated the shear properties of the host me-

dium, and that paper identified that the next stage in develop-

ing that formulation would be to replace the assumption of an

incompressible host medium with one that includes acoustic

radiation losses. This is the objective of the current paper,

which combines the general form of the Keller–Miksis equa-

tion with the linear Voigt viscoelastic model.

Consider the radial motion of a spherical gas bubble of

radius RðtÞ which is fixed in space and oscillates about some

equilibrium radius R0 with bubble wall velocity _RðtÞ.
Assuming the flow is irrotational (implying that the porosity

is a homogenous property of the host medium) yields the fol-

lowing equation for radial bubble dynamics which accounts

for the compressibility of the surrounding medium to first

order:67

qs 1�
_R

cp

 !
R €R þ 3

2
qs 1�

_R

3cp

 !
_R

2

¼ 1þ
_R

cp

þ R

cp

d

dt

 !
pg �

2r
R
� p0 þ PAg tð Þ

�

� 4gs
_R

R
� 4Gs

3R3
R3 � R3

0

� ��
: (2)

Equation (2) was first proposed by Yang and Church27 in

order to model the acoustic propagation in viscoelastic tis-

sues; it is also applicable to marine sediments provided that

the appropriate viscoelastic constitutive relation is

employed. It includes the acoustic radiation losses; several

routes for the incorporation of such losses into a Rayleigh—

Plesset-type equation were outlined in Ref. 20.

In Eq. (2), Gs is the shear modulus, gs denotes the shear

viscosity, p0 is the static pressure outside the bubble, pg is

the pressure within the bubble, and r denotes the surface ten-

sion at the bubble wall. The equilibrium gas pressure pg0
can

be expressed in terms of p0, the Laplace pressure when the

bubble is at equilibrium radius ðpr;0 ¼ 2r=R0Þ and vapour

pressure pv as:

pg0
¼ p0 þ

2r
R0

� pv: (3)

The compressional sound speed cP and the density qs refer to

that of water-saturated sediment which surrounds the gas

bubble and can be obtained from

cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks þ 4Gs=3

qs

s
(4)

and

qs ¼ n qw þ ð1� nÞqm; (5)

respectively, where Ks is the bulk modulus of the water-

saturated sediment, n is the porosity, qw is the water density,

and qm the grain mineral density.

Berryman65,66 suggested a self-consistent method to cal-

culate the effective bulk modulus of a composite medium,

which states (as applied to the present problem)

1

Ks þ 4Gs=3
¼ 1� n

Km þ 4Gs=3
þ n

Kw þ 4Gs=3
; (6)

1

Gs þ F
¼ 1� n

Gm þ F
þ n

Gw þ F
; (7)

where

F ¼ Gs

6

� �
9Ks þ 8Gs

Ks þ 2Gs

: (8)

In Eqs. (6) and (7), Km refers to the bulk modulus of the solid

matrix, Kw is the bulk modulus of pore water, Gm is the shear

modulus of the solid matrix, and Gw denotes the shear modu-

lus of pore water which is related to the shear viscosity of

water with Gw ¼ ixgw.

A. Thermal losses

The Yang and Church model formulated the thermal

processes within the bubble assuming an ideal gas with poly-

tropic index j:

pg ¼ pg0

R0

R

� �3j

: (9)

If the value of j is constant throughout the bubble pulsation,

the heat transfer across the bubble wall is reversible, and the

above model does not predict any irreversible heat transfer

(Leighton et al.55).

Prosperetti et al.68 used nonlinear energy conservation

to provide a formulation for the thermal losses during the

expansion and compression of a spherical gas bubble. It was

shown that, in the linear limit, these irreversible heat losses

can be modelled with

pg ¼ pg0

R0

R

� �3j xð Þ
� 4gth

_R

R
; (10)

where gth ¼ ð3pg0
=4xÞImðUÞ is the “thermal viscosity” and

x is the angular frequency. According to Prosperetti et al.,68

the effective polytropic index jðxÞ is
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j xð Þ ¼ 1

3
Re Uð Þ; (11)

where the complex function

U ¼ 3c

1� 3 c� 1ð Þiv i
v

� �1=2
coth i

v

� �1=2
� 1

	 
 ; (12)

depends on the adiabatic polytropic exponent c and the ther-

mal diffusivity of the gas Dg through the thermal diffusion

length

v ¼ Dg

xR2
0

: (13)

Although the use of a thermal viscosity to capture thermal

losses remains approximate (there remains, for example, dis-

cussion as to the choice of frequency for use in the formula-

tion when the bubble pulsation is not monochromatic), it

gives a usefully simply analytical tool that avoids the com-

plexities of calculating thermal losses from, say, maps of the

time-dependent bubble volume response as a function of

driving pressure.55

B. Viscoelastic constitutive relation

The Voigt constitutive model used in the bubble dynam-

ics model Eq. (2) can be expressed as

s ¼ Gseþ gs _e; (14)

where e is the strain and _e is the strain rate. The Voigt model

is appropriate for most marine sediments since the acoustic

excitations induce small strains.20,69,70 This model indicates

that the total stress field in the medium will produce a super-

position of both elastic and viscous responses (see schematic

inset into Fig. 1). The common approach in terms of model-

ling the viscoelastic behaviour of marine sediments has been

to treat the medium as a lossy elastic solid by using a com-

plex shear modulus:71,72

G� ¼ Gs þ i G0s: (15)

The shear viscosity of the sediment is then deduced from the

imaginary part of the shear modulus (equivalently from

shear wave attenuation):53,54,70,73

gs ¼
G0s
2pf

: (16)

III. LINEARIZATION

To address the linear bubble dynamics problem, the res-

onance frequency and the linear damping terms will be

derived from Eq. (2). Solutions to the linear problem can be

found by assuming small amplitude pulsations x� 1 about

the bubble equilibrium radius R0, i.e., R ¼ R0ð1þ xÞ.
Grouping the terms x, _x, and €x generates the following line-

arized formulation:

€x þ 2btot _x þ x2
0x ¼ �PAeixt

meff

; (17)

where meff is the effective mass

meff ¼ qsR
2
0 þ

4gsR0

cp

: (18)

The terms in Eq. (17) include the resonance frequency for

the bubble wall displacement

x2
0 ¼ 3pg0

Re /ð Þ � 2r
R0

þ 4Gs

� ��
qsR

2
0 þ

4gsR0

cp

� �
;

(19)

and the term btot, which has units of (1/s) and is sum of the

following five damping terms, namely, the radiation, the vis-

cous, the thermal, the interfacial and the elastic:

bvis ¼ 2gs

.
qsR

2
0 þ

4gsR0

cp

� �
; (20a)

bP�th ¼
3pg0

Im /ð Þ
2x

� ��
qsR

2
0 þ

4gsR0

cp

� �
; (20b)

brad ¼
qsx

2R3
0

2cp

�
qsR

2
0 þ

4gsR0

cp

� �
; (20c)

bint ¼ �r=ðqscpR2
0 þ 4gsR0Þ; (20d)

bel ¼ 2Gs=ðqscpR0 þ 4gsÞ; (20e)

where

btot ¼ bvis þ bP�th þ bac þ bint þ bel: (20f)

Note the features that differentiate the model established

here from the one as applied to soft tissue by Yang and

FIG. 1. Bubble resonance frequency vs bubble size ðR0Þ. The solid line is cal-

culated by Eq. (19) and the dashed line is calculated from the same equation

by setting the shear modulus to zero. The input parameters for both cases are

shown in Table I. The inset shows a schematic of a mechanical spring-dashpot

analogue representing the responses of a rheological elementary model: the

Voigt model with constant parameters. The shear viscosity for sediments is

deduced from the imaginary part of the shear modulus, i.e., gs ¼ G0s=2pf .
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Church67 are (a) the interpretation of the viscoelastic model

representing the bubble surrounding medium (i.e., the model

parameters Gs and gs), (b) the interpretation of the parame-

ters that are related to the host medium such as density and

sound speed, and (c) the more comprehensive thermal damp-

ing which accounts for net heat losses.

A. Sound speed and attenuation

The complex sound speed in sediment containing gas

bubbles can be derived from the linearized equation of

bubble pulsations following the method outlined by

Commander and Prosperetti.74 Applicable to the problem

considered here, the complex speed of sound in a gassy sedi-

ment, cPb, is expressed as

cp
2

cPb
2
¼ 1þ 4pcp

2

ð1
0

R0n R0ð Þ
x2

0 � x2 þ 2ibtotx
dR0; (21)

where nðR0ÞdR0 is the number of bubbles per unit volume

with radii between R0 and R0 þ dR0. Note that btot includes

the elastic damping and the interfacial damping in addition

to the other damping mechanisms for bubbles in water.

Setting cp=cPb ¼ u� iv yields the expressions for phase

velocity V (Ref. 74)

V ¼ cp=u; (22)

and attenuation A in dB/m

A ¼ 8:6859 ðxv=cpÞ: (23)

IV. APPLICATION OF THE MODEL TO GASSY
SEDIMENTS

In this section, the model established in Secs. II and III

will be applied to gassy sediments by defining appropriate

model input parameters. In shallow marine sediments, the

gases that are most likely to be encountered are: oxygen

(O2), carbon dioxide (CO2), nitrogen (N2), ammonia (NH3),

hydrogen sulphide (H2S), and methane (CH4). Their produc-

tion is mainly controlled by biogeochemical processes asso-

ciated with the bacterial remineralisation of labile organic

matter.75 Although in the top sediment layer more than one

gas may exist, the dominant ones are oxygen and aerobic res-

piration products in the aerobic zone, sulphate (and sulphur

compounds) in the sulphate-reducing zone and methane in the

carbonate reducing zone. Nitrogen is not a major gas in these

zones; hence, O2 is assumed to be the predominant gas.

The density of pore water of seafloor sediments is nearly

constant in marine environments and takes values between

1000 and 1030 kg m�3 (Ref. 41). The mineral density

depends on the sediment type. Sands typically comprise

quartz minerals with density equal to 2650 kg m�3, whereas

muds are comprised of various minerals (kaolinite, illite,

etc.) having densities from 2600 to 2800 kg m�3 (Mavko

et al.76). In marine sediments, the porosity varies between

0.35 and 0.90 and is generally inversely proportional to the

mean grain size.27

The model values in line with these considerations are

given in Table I. The value of the surface tension is difficult

to determine and not available in literature; it is assumed to

take the value for a bubble in salty water (no allowance

being made for the level of dirtiness in seawater).

The bubble linear frequency is dominated by the shear

modulus. In Fig. 1, the bubble resonance frequency is plotted

against the bubble size using Eq. (19) (solid line), where it is

shown that it varies with the square root of the shear modulus.

On the same figure, the resonance frequency for the same bub-

ble sizes in water (dotted line) is plotted for comparison.

Next, the results for the damping terms are presented in

Fig. 2. The results indicate that the acoustic radiation damp-

ing is the dominant loss mechanism at high frequencies, jus-

tifying the extension suggested in Ref. 20 to include these.

An equally important loss mechanism appears to be the vis-

cous damping as formulated by Eq. (20a). The elastic damp-

ing, which was not identified in the Anderson and Hampton

theory but is formulated here owing to the complete form of

the Voigt constitutive model used, is also a significant damp-

ing mechanism as can be seen. The effects of the thermal

damping are relatively less pronounced and the interfacial

damping can be regarded as negligible. However, we should

remark that the thermal damping may be a dominant loss

mechanism at medium frequencies (according to the range

in the figure) depending on the sediment type investigated

and the gas content of the medium (e.g., in muddy sediments

where rigidity values are much lower and the sediment

resembles more fluid-like behaviour). Note that the thermal

damping based on the formulation of Prosperetti et al.68

(labelled as P-thermal) shows qualitatively different behav-

iour as the frequency changes. The thermal damping accord-

ing to ideal gas law Eq. (9) does not show frequency

dependent behaviour and does not predict any net thermal

losses over a cycle if the polytropic exponent is taken as con-

stant.55 Overall, the damping characteristics stemming from

the elastic properties of the host medium are very significant,

indicating that models which have treated the host sediment

as water will underestimate the damping.

Using Eqs. (22) and (23), the sound speed and attenua-

tion of an acoustic wave has been computed for monodio-

sperse bubble populations of radii 80, 120, 160, and 200 lm,

assuming the input parameters of Table I. The results are

shown in Fig. 3 (solid line). On the same figure the sound

speed and attenuation are plotted (dotted line) using Eqs.

TABLE I. Model input parameters.

Property Value Property Value

Water depth 1 m Km 5� 1010 Pa

Sediment depth 1 m Gm 1.2� 107 Pa

p0 101325 Pa G0s 0.16 MPa

qw 998 kg/m3 j 1.4

qs 1640 kg/m3 r 0.036 N/m

cp 1465 m/s qg 1.202 kg/m3

Kw 2.3 GPa Kg 0.0241 W/mK

gw 0.0018 Pa s Cpg 1001.73 J/kgK

n 0.68 Dg 1.9� 10�5 m2/s
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(49) and (53) of the Anderson and Hampton model.53 The

difference in the predictions of these two models is attributed

to the differences in the damping terms and the linearization

of the fundamental equation used [Eq. (2)]. The results point

out similarities at low frequencies and at high frequencies: in

the former case, the propagation velocities in the medium is

largely determined by the gas void fraction and the bulk

modulus of the gas, and in the latter case the sound speed

converges to that of water saturated medium. The near reso-

nance regime behaviour of the models, on the other hand, is

significantly different. Given that each line in Fig. 3 repre-

sents data from a single bubble size, it is anticipated that the

discrepancies over a wide frequency range will be significant

when attempts are made to model/invert acoustic data from a

bubble size distribution. As already discussed, the main

advantage of Eq. (22) is that it does not contain sign ambigu-

ity and it can be used in an inversion model which requires

simultaneous information on both sound speed and attenua-

tion data, as in Duraiswami et al.77 In line with the near reso-

nance sound speed results, the attenuation data [Fig. 3(b)]

shows that the present model predicts higher attenuation for

single bubble sizes considered.

V. NONLINEAR SCATTERING

The scattering cross section may be defined in the long

wavelength limit as the ratio of the total acoustic power scat-

tered by an object at a given frequency to the incoming plane

wave acoustic intensity I0:

rs ¼
4pr2Is

I0

; (24)

where I0 ¼ jPAj2=2qscp and IS ¼ jPbj2=2qscp. To calculate

the nonlinear scattering, the pressure Pb radiated from a sin-

gle bubble is obtained from59

Pb r; tð Þ ¼
qs

r
2R _R

2 þ R2 €R
� �

: (25)

If linear pulsations of bubbles are considered, the above

equations reduce to

rs ¼
4pR2

0

x2=x2
0 � 1

� �2 þ 4b2
tot=x

2
: (26)

Furthermore, applicable to both linear and nonlinear scatter-

ing, when a bubble distribution is present, the scattering

cross section per unit volume is

rv ¼
1

4p

ð1
0

nb R0ð Þrs dR0; (27)

where nbðR0Þ is the bubble number density (as defined in

Sec. III A), which is typically expressed in terms of discrete

radius bins, e.g., with 1 lm width. In practice, the limits of

the integration are determined by the minimum and maxi-

mum detectable bubble size, which are deduced from the

excitation frequency range through the use of Eq. (19). The

volume backscattering strength ðSvÞ of a bubble population

FIG. 2. Dimensional damping con-

stants vs frequency for a bubble with

equilibrium radius (a) 50 lm and (b)

200 lm for the parameters listed in

Table I.

FIG. 3. (Color online) (a) Sound speed and (b) Attenuation as function of

frequency for a series of monodisperse bubble populations, all having a void

fraction of 10�5 (the bubble radius for each being labelled on the figure).

The dashed line shows the predictions of the Anderson and Hampton model

(Ref. 53) (A&H), and the solid line shows the results of the current

formulation.
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is defined with the reference volume cross section rv ref

¼ 1 m2=m3:

Sv ¼ 10 log10ðrv=rv refÞ: (28)

The difference between the present model and Anderson and

Hampton’s theory is demonstrated by means of applying

Eqs. (24)–(26), respectively. The results are shown in Fig. 4,

the input bubble size distribution for the calculation being

shown in the inset. The present model predicts lower values

of the backscattering strength owing to the fundamental dif-

ferences of the formulations. Although the steady-state

responses are shown in Fig. 4, the current model is capable

of modelling transient behaviour such as ring-up and ring-

down periods during the insonification.

Note that the nonlinearity referred to in this section

manifests itself in two distinct fashions. The first one is the

nonlinear pulsations of gas bubbles as demonstrated above,

and the second one is the nonlinear mixing of frequency

components when dual frequency excitation techniques

are employed. The majority of the studies which used dual fre-

quency techniques derived analytical expressions for the scat-

tered pressure spectral component at the difference-frequency,

e.g., see Refs. 16, 17, 63, and 64. An alternative approach78

suggests that the cumbersome scattering cross-section expres-

sions encountered in dual frequency excitation can be avoided

by numerically calculating the time history of the bubble ra-

dius Eq. (2), inserting these values into Eq. (25) to obtain the

scattered pressure field, and applying a Fourier transform to

determine the spectral components of the scattered pressure.

The pressure spectral amplitudes are then compared to the

recorded experimental data at each frequency, which yields

the determination of the number of bubbles per unit volume.

This numerical approach has been applied for bubble sizing in

water tank experiments by Leighton et al.78 and in sediments

by Mantouka.79

An example numerical computation of the spectral

amplitude is shown in Fig. 5. The nonlinear volume back-

scattering strength at twice the insonification frequency is

plotted vs the insonification frequency for the bubble

distribution shown in the inset of Fig. 4. First, R, _R; and €R
were computed from Eq. (2) assuming a monochromatic

incident wave PAeixt, and substituted into Eq. (25) to calcu-

late the scattered pressure PbðtÞ. The power spectra of the

time series of Pb were calculated using a Fourier transform,

and the spectral component nearest twice the insonification

frequency is then used in Eq. (28) (using normalized values).

Only bubbles resonant at the insonification frequency give

strong nonlinear scattering at twice the frequency. Hence the

beginning of the curve corresponds to the first frequency

where the bubbles of 50 lm are resonant (which is the

assumed small-bubble limit of the bubble distribution in the

simulation).

VI. DISCUSSION AND CONCLUSIONS

This paper has presented a nonlinear model for gas bub-

ble pulsations in marine sediments. The expressions are

linearized to determine the resonance frequency and the

damping terms for linear bubble pulsations, and then used to

predict the effects that such bubble pulsations will have on

the sound speed and attenuation of acoustic waves propagat-

ing in gassy marine sediment. The results between the cur-

rent model and an existing theory (Anderson and Hampton)

show significant differences at near resonance regimes. One

major advantage of the present model is that, without user

intervention to overcome the sign ambiguity, it can auto-

matically produce objective prediction of sound speed and

attenuation, and invert measurements of these parameters to

infer the bubble population. Furthermore, the bubble pulsa-

tion model Eq. (2) can be used to predict the amplitudes of

the scattered pressure field at the nonlinearly generated fre-

quency components, i.e., the second harmonics, and combi-

nation and difference frequencies. Moreover, it can be

included into a scheme to predict the effect on the sound

speed and attenuation when the bubbles pulsate in a nonlin-

ear manner (Leighton et al.55). In this work, the formulation

is proposed as a forward model and an improved alternative

to the existing theory for gassy soft marine sediments. The

inversion of real acoustic experimental data and the obtained

bubble population results will be subject of a follow-up

article.

FIG. 4. Volume backscattering strength (defined with the reference volume

cross section rv ref ¼ 1 m2/m3) vs the frequency, corresponding to the bubble

size distribution (BSD) shown in the inset. The scattering cross-section

expressions are used according to the Anderson and Hampton formulation

(dotted line) and the present model (solid line). The inset BSD has a void

fraction of 2.26� 10�4.

FIG. 5. The nonlinear volume backscattering strength at twice the insonifi-

cation frequency (defined with the reference volume cross section

rv ref ¼ 1 m2/m3).
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As a preliminary analysis, the present formulation

assumed the propagation of one compressional wave in the

host medium (the far field pressure in existing theories is

modelled with a single velocity potential without losses).

Note that the work of Mantouka79 heuristically accounted

for the attenuation of the compressional wave, by assuming

the forward model as in the present article but adding the

corrections from the internal dissipation at the inversion

stage (for bubble populations). A more comprehensive

approach is required to incorporate the complex characteris-

tics of the acoustic propagation in porous medium, i.e., the

propagation of the second mode (slow wave), and the attenu-

ation of the longitudinal modes due to internal dissipation,

squirt flow and shear drag.80 The addition of gas bubbles

into the problem thereafter can be done by either modifying

the radial dynamics Eq. (2) or extending the formulation in

Kargl et al.49
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