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The preceding paper in this series [Mantouka, Dogan, White, and Leighton, J. Acoust. Soc. Am.

140, 274–282 (2016)] presented a nonlinear model for acoustic propagation in gassy marine sedi-

ments, the baseline for which was established by Leighton [Geo. Res. Lett. 34, L17607 (2007)].

The current paper aims further advancement on those two studies by demonstrating the particular

effects of the sediment rheology, the dispersion and dissipation of the first compressional wave, and

the higher order re-scattering from other bubbles. Sediment rheology is included through the sedi-

ment porosity and the definition of the contact interfaces of bubbles with the solid grains and the

pore water. The intrinsic attenuation and the dispersion of the compressional wave are incorporated

using the effective fluid density model [Williams, J. Acoust. Soc. Am. 110, 2276–2281 (2001)] for

the far field (fully water-saturated sediment). The multiple scattering from other bubbles is included

using the method of Kargl [J. Acoust. Soc. Am. 11, 168–173 (2002)]. The overall nonlinear formu-

lation is then reduced to the linear limit in order to compare with the linear theory of Anderson and

Hampton [J. Acoust. Soc. Am. 67, 1890–1903 (1980)], and the results for the damping coefficients,

the sound speed, and the attenuation are presented. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4978926]

[APL] Pages: 2277–2288

I. INTRODUCTION

In 1980, Anderson and Hampton1,2 published what is

still the dominant theory for acoustic propagation in gassy

marine sediments. In 2007 Leighton3 described acoustic

propagation in gassy marine sediments where the bubbles

could in addition behave in a nonlinear non-stationary

manner—unlike the linear steady-state motions considered

by Anderson and Hampton (the latter is abbreviated as A&H

hereafter). Leighton further noted how the next stage would

be to include radiation losses in this model, which was done

by Mantouka et al.4 The current paper aims further advance-

ment on those two studies by demonstrating the particular

effects of the sediment rheology (i.e., the shear viscosity and

the rigidity), the dispersion and dissipation of the first com-

pressional wave, and the higher order re-scattering from

other bubbles.

Understanding the effect of gas on acoustic propagation

is important, because extensive distributions of seafloor

methane gas and hydrates have been detected at many loca-

tions around the world by geophysical surveys.5 The impor-

tance of two-way gas transfer (both natural6 and man-

made7) between atmosphere, ocean, and seabed is becoming

increasingly clear. The presence of gas affects the physical

properties of the marine sediment, which is of interest for

several applications including drilling operations, construc-

tion of seafloor structures, climate change, and the slope sta-

bility of sediments.8 Furthermore, as part of future Carbon

Capture and Storage (CCS) projects, the long term acoustic

monitoring for possible greenhouse gas seepage in sub-

seafloor reservoirs will be crucial.9,10

Biot11,12 presented a model for the acoustic propagation

in a porous two-phase medium. It has been validated for

laboratory samples using ultrasonic frequencies,13,14 and has

been applied to sediment acoustics.15–17 Many studies18–23

attempted to establish modified versions of Biot theory to

model the presence of gas bubbles in sediment pore spaces.

These works have limited applicability to practical gas-

bearing sediments because they assume the gas bubbles do

not affect the sediment structure. The current paper joins the

small canon of works1–4,24,25 that model “sediment-replacing”

bubbles,26 to predict how the presence of such bubbles affects

the mechanical strength and the structure of gassy marine

sediments. The complexity of the problem means that all

such theories will have limitations. The A&H theory contains

inconsistencies in the frequency dependence of the expres-

sions for the damping coefficients and scattering cross-

sections.27,28 It also involves a sign ambiguity in the sound

speed formula.4 Kargl et al.24 investigated the double mono-

pole resonance behavior of sediment-replacing gas bubbles,

though they do not formulate the viscoelastic, acoustic, and

thermal dissipation relevant to bubble pulsations. Leighton’s

theory for marine sediment bubble pulsations3 lacked acoustic

radiation losses, and he outlined the route for including them

which Mantouka et al.4 executed with, moreover, the formu-

lation of nonlinear scattering. However, the rheological model

for the sediment viscosity in Refs. 2 and 4 has some draw-

backs, as will be explained in Sec. II.

At low driving frequencies, the bubble’s response in a

medium is stiffness-controlled29 and the presence of bubblesa)Electronic mail: t.g.leighton@soton.ac.uk
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decreases the sound speed in that medium. In moving the

driving frequency through resonance, a Pi phase change

occurs in the bubble response. Consequently, at frequencies

greater than resonance, the bubbles increase the sound

speed.30 At very high frequencies, far from resonance, the

amplitude of bubble pulsation is small, and the sound speed

values converge to those in the host medium (in this context,

host medium refers to the fully water saturated sediment).3,31

Clearly, the overall sound speed and attenuation in the

medium depends on how the elastic moduli of the host

medium are calculated. To do this, Gassmann’s relations

were employed in Refs. 1 and 2, and Berryman’s self-

consistent approximations32,33 were used in Ref. 4. Both of

these methods are unable to predict the sound speed disper-

sion and the attenuation in the host medium, unless complex

coefficients are introduced for the elastic moduli. In the pre-

sent work, the effective density fluid model (EDFM), estab-

lished by Williams34 as an alternative to the Biot theory, is

employed to describe wave propagation in the host medium.

Its use allows incorporation of the dispersion and the dissipa-

tion of the first compressional wave in water-saturated

sediment. The classical derivations for the dynamics of a

pulsating bubble consider a single bubble fixed in space in

an infinite body of liquid-like material.3,31,35–37 However,

Kargl37 included the effect on the bubble in question of the

multiple scattering from surrounding bubbles, when deriving

the linear acoustics expressions. This paper includes multiple

scattering in the same way.

Another objective of the present work is to demonstrate

a general way of modeling the rheological effects near the

bubble wall. When gas bubbles pulsate in marine sediment,

shear (elastic) losses are induced outside of the gas-solid

boundary, and viscous losses occur near the gas-liquid inter-

face. In Ref. 2, an effective host medium (viscoelastic liquid)

was assumed, and the elastic and viscous damping were

combined into one by introducing a complex viscosity term.

In Mantouka et al.,4 the effective medium model was main-

tained. Although these two damping terms (elastic and vis-

cous) were expressed separately, the sediment viscosity was

deduced from the shear modulus, as in Ref. 2. The latter

approach has been used in several studies38–40 to model the

shear wave attenuation of water-saturated sediments.

However, it leads to some discrepancies regarding the bubble

resonance phenomenon when applied to gassy sediments (as

will be shown in Sec. III). The current paper therefore keeps

the general form of the constitutive equation in viscoelastic

media as in Refs. 36 and 41–44, while it formulates the vis-

cous and elastic losses separately by means of the porosity

and the contact interfaces of the gas with the surroundings.

Furthermore, the current paper proposes the use of sediment

viscosity values obtained from rheological experiments.45–49

We should also note that the model presented here (and

those in Refs. 3 and 4) for acoustic propagation (the forward

problem) can be used for the estimation of bubble void

fraction and bubble size distribution in marine sediments

(the inverse problem). The high attenuations exhibited by

gassy marine sediments mean that, while most propagation

theories are for steady-state low-amplitude pulsations, most

experiments use high amplitude signals at short ranges

(meaning that signals are often short pulses). The formula-

tions in Sec. II (and Refs. 3, 4, 50, and 51 on which they are

based) allow simulation of the nonlinear, transient, and/or

ring-down period of bubble oscillations when short high-

amplitude acoustic pulses are used. This has not been possi-

ble with the steady-state theories. Similarly, the large bubble

wall displacement and velocities during the high amplitude,

high frequency insonification can be calculated using the

methods described here (and in Refs. 3, 4, 50, and 51), as

well as the dynamics of bubbles driven with multiple fre-

quency acoustic signals. Neither would have been possible

using A&H theory.1,2 These predictions could then be used

to determine the time-dependent cloud response of bubbles,

the sound speed, and the scattering cross sections as outlined

in Refs. 50 and 51, which provides a general route for invert-

ing such signals to characterize the bubble populations in

marine sediments.

II. FORMULATIONS

Consider the radial motion of a spherical gas bubble of

radius RðtÞ which is fixed in space and oscillates about some

equilibrium radius R0 with bubble wall velocity _RðtÞ. Assuming

the flow is irrotational, the radial component of the equation for

the conservation of momentum36,52 can be written as

qs

@vr

@t
þ vr

@vr

@r

� �
¼ � @p

@r
þ @srr

@r
þ 2

r
srr � shh½ �; (1)

where qs is the density of the water-saturated sediment, vr is

the particle velocity in the sediment outside the bubble wall,

r denotes the distance from the centre of the bubble to an

arbitrary location, and srr and shh are the stress components

in r and h directions, respectively. Assuming for the moment

that the solid and liquid phases are both incompressible, the

velocity field in the vicinity of the bubble wall31 can be

found from

vr ¼ �
_R tð ÞR2 tð Þ

r2
: (2)

In Ref. 36, the medium surrounding the bubble was taken

to be an effective homogeneous medium such that the pres-

sure p and the stresses have some equivalent average values.

In the case of a porous medium (such as sediment), the

bubble’s surface has contact with the pore water and with

the solid mineral grains, for which we establish symbols

denoting the gas–liquid interface XL and the gas–solid inter-

face XS. Deresiewicz and Skalak53 have shown that, for

such an interface between a single phase (here, gas) and its

poro-elastic surroundings (here, water and solid grains), the

total area of XL is proportional to the porosity b, and the

area X S is proportional to 1�b. The following boundary

conditions on the bubble surface are then formulated

pL R; tð Þj@XL
� sL

rr R; tð Þj@XL
¼ pg �

2r
R

at r ¼ R; (3)

�sS
rrðR; tÞj@XS

¼ pg at r ¼ R; (4)
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where pg is the gas pressure inside the bubble, pL is the fluid

pressure, r indicates the surface tension, and sL
rr and sS

rr repre-

sent the shear stresses in the liquid and in the solid, respectively.

At an intermediate distance, i.e., in the pore space and

away from the bubble wall, the stress balance between the

liquid and the solid is given by

pLðr; tÞ � sL
rrðr; tÞ ¼ sS

rrðr; tÞ at r: (5)

The pressure in the far field limit is defined as

p ¼ p0 at r ¼ 1; (6)

and we assume that the bubble wall is initially stationary and

at the equilibrium position

R ¼ R0; _R ¼ 0 at t ¼ 0: (7)

The integration of Eq. (1) through the whole volume of the

sediment from the bubble wall at distance R to a location r
in the near field givesðr

R

qs

@vr

@t
þ vr

@vr

@r

� �
dr

¼ �
ðr

R

ð
XL

@p

@r
dX dr þ

ðr

R

ð
XL

@sL
rr

@r
dX dr

þ
ðr

R

ð
XL

3
sL

rr

r
dX dr þ

ðr

R

ð
XS

@sS
rr

@r
dX dr

þ
ðr

R

ð
XS

3
sS

rr

r
dX dr: (8)

Using the aforementioned relationships from Deresiewicz

and Skalak,53 integration over XL results in terms propor-

tional to b, and the integration over XS results in terms pro-

portional to ð1� bÞ. Therefore, one can obtain

qs R €R þ 3

2
_R

2

� �
� qs

r
_f þ qs

2

f 2

r4

¼ �b pL Rð Þ � pL rð Þ
� �

þ b sL
rrj

r
R

þ b
ðr

R

3
sL

rr

r
dr þ 1� bð Þ sS

rrj
r
R

þ 1� bð Þ
ðr

R

3
sS

rr

r
dr : (9)

Here the short-hand f ¼ R2 _R has been introduced, and con-

sequently the term �qs
_f =r corresponds to the acoustic pres-

sure radiated by a pulsating bubble at a distance r. Using the

identity pin ¼ pLðrÞ � sL
rr ðrÞ, it follows that

qs R €R þ 3

2
_R

2

� �
� qs

r
_f þ qs

2

f 2

r4

¼ pin � b pL Rð Þ þ b sL
rr Rð Þ þ 1� bð Þ sS

rr Rð Þ

þ b
ð1

R

3
sL

rr

r
dr þ 1� bð Þ

ð1
R

3
sS

rr

r
dr: (10)

The far field acoustic propagation is modelled using the

EDFM (Ref. 34) which is derived from Biot theory. The lin-

ear acoustic equation of the EDFM can be written as

r2u� 1

c2
s

@2u
@t2
¼ 0; (11)

where u is the velocity potential, i.e., ~v ¼ ru, and c2
s

¼ H=qs (the explicit expressions are given in the Appendix).

The solution to Eq. (11) has the form

uex ¼
w1

r
eix t�r=csð Þ; (12)

which characterizes an outgoing spherical wave. The expres-

sion for the far field pressure54 is then given by

pex ¼ p0 � qs

@uex

@t
: (13)

A. Matching asymptotic solutions

In order to match the near field and far field solutions in

the intermediate zone, the volumetric flow and the pressure

matching conditions should be applied

4pr2vrðinÞjr!1 ¼ 4pr2vrðexÞjr!0; pinjr!1 ¼ pexjr!0:

(14)

As r !1, the bubble mediated acoustic pressure qs
_f ðtÞ=r

and the quadratic term qsf
2=2r4 in Eq. (10) vanish.36

Furthermore, the r ! 0 limit of the spherical wave in

Eq. (12) induces a time-dependent acoustic driving pulse at

the location of the bubble, i.e., @uex=@tjr!0 ¼ PAgðtÞ, with

PA being a positive real number that scales the driving

pressure. Hence, the matching solutions for the pressure

field give

1�
_R

cs

 !
R €R þ 3

2
1�

_R

3cs

 !
_R

2

¼ 1þ
_R

cs

 !
pL � p1

qs

þ R

qscs

d

dt
pL � p1ð Þ; (15)

where

pL � p1 ¼ pg � b
2r
R
� p0 þ PAg tð Þ

þ b
ð1

R

3 sL
rr=r dr þ 1� bð Þ

ð1
R

3 sS
rr=r dr:

(16)

B. Rheological constitutive relation

The Voigt model is appropriate for most marine

sediments.3,38,39,45 For a spherically symmetric flow, it is

given by

srr ¼ sS
rr þ sL

rr ¼ 2 G crr þ 2 l _c rr; (17)

where crr and _crr are the strain and the strain rate in the

radial direction, G is the shear modulus, and l denotes the
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shear viscosity. In Eq. (17), a linear rheological model

is imposed, i.e., the shear modulus and the viscosity are

independent of crr and _crr . The latter can be obtained using

Eq. (2) as crr ¼ �ð2=3r3ÞðR3 � R3
0Þ and _crr ¼ �ð2R2=r3Þ _R.

The integrals in Eq. (16) then can be calculated as

b
ð1

R

3 sL
rr=r dr þ 1� bð Þ

ð1
R

3 sS
rr=r dr

¼ �b
4l _R

R
� 1� bð Þ 4G

3R3
R3 � R3

0

� �
: (18)

Therefore, the Keller-Miksis type equation,55 which

describes the radial motion of a spherical bubble in an

unbounded viscoelastic medium, can be written as

qs 1�
_R

cs

 !
R €R þ 3

2
qs 1�

_R

3cs

 !
_R

2

¼ 1þ
_R

cs

þ R

cs

d

dt

 !
� pg � b

2r
R
� p0 þ PAg tð Þ

�

�b
4l _R

R
� 1� bð Þ 4G

3R3
R3 � R3

0

� ��
: (19)

In order to complete the set of equations given above, the

thermal physics related to the gas inside the bubble needs to

be identified. This can be done comprehensively by solving

the continuity and the energy conservation equations for a

gas, as was one in Refs. 51 and 56. A less complicated, but

often passably accurate alternative way of including the

thermal dynamics of nonlinear gas bubbles, is to modify the

polytropic law with an artificial thermal viscosity term

lth,56 i.e.,

pg ¼ pg0

R0

R

� �3j xð Þ
� 4lth

_R

R
; (20)

where pg0
is the bubble gas pressure at the

undisturbed state, jðxÞ ¼ ReðUÞ is the polytropic exponent,

lth ¼ ð3pg0
=4xÞImðUÞ is the thermal viscosity, and x is the

angular frequency. The variable U is given by

U ¼ c

1� 3 c� 1ð Þiv i

v

� �1=2

coth
i

v

� �1=2

� 1

" # ; (21)

where v ¼ D=xR2
0 represents the thermal diffusion length,

with D being the thermal diffusivity of the gas, and where c
indicates the adiabatic polytropic exponent.

C. Analytical solutions

An analytical solution to Eq. (19) may be obtained

by assuming small perturbations of the bubble radius, i.e.,

R ¼ R0ð1þ xÞ where x � 1. The first order terms in x are

retained such that

_R ¼ R0 _x; (22a)

€R ¼ R0€x; (22b)

R�1 ¼ R�1
0 ð1� xÞ; (22c)

R�3j ¼ R�3j
0 ð1� 3jxÞ: (22d)

Note that the incident pressure term is, to first order,32,51

equivalent to the linear expression for the radiated pressure

wave, as in

PAg tð Þ ¼ qs
€RR0

1� ixR0

cs

� � : (23)

With this in mind, substitution of Eq. (22) into Eq. (19)

allows the linearization of Eq. (19) in the radius-pressure

frame of motion31 to give

€x þ 2btot _x þ x2
0x ¼ �PAeixt

m
; (24)

where btot is the total damping, and the effective mass is

m ¼ qsR
2
0 þ

4lR0

cs

: (25)

Eliminating eixt dependencies, Eq. (24) can be recast into a

Helmholtz equation with the complex wavenumber

k2
m ¼

x2

c2
s

þ 4px2

ð1
0

R0n R0ð Þ
x2

0 � x2 þ 2ibtotx
dR0; (26)

where nðR0Þ dR0 is the number of bubbles per unit volume

with radii between R0 and R0 þ dR0. The (viscous, thermal,

acoustic, interfacial, and elastic) damping coefficients and

the resonance frequency expression are obtained and take

the following form:

bvis ¼ 2bl=m; (27a)

bth ¼
3pg0

Im /ð Þ
2x

� ��
m; (27b)

bac ¼
kmR0

1þ kmR0ð Þ2
x
2
; (27c)

bint ¼ �
br
mcs

; (27d)

bel ¼
2G 1� bð ÞR0

mcs

; (27e)

x2
0¼

3pg0
Re /ð Þ�2rb

R0

þ4G 1�bð Þþ x2qR2
0

1þ xR0=csð Þ2

" #

m
:

(27f)

The last term in Eq. (26) represents the effects of bubbles on

the acoustic propagation, whereas the complex quantity

x2=c2
s is the contribution from the dispersion and the dissipa-

tion in the host medium. Note that Eq. (26) should be calcu-

lated iteratively as in Ref. 37, because bac is a function of
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km, in order to account for the higher order re-scattering

from other bubbles.37,57 The phase velocity V and the attenu-

ation A (dB/m) are then related to the real and imaginary

parts of the wavenumber, respectively, via

V ¼ x=Refkmg (28)

and

A ¼ 8:6859 jIm fkmg j: (29)

D. Linear expressions published previously

When modeling (gas-free) water-saturated sediments,

some studies58,59 have treated the medium as a lossy elastic

solid using a complex shear modulus

s ¼ G�c ¼ ðG� i G0Þc: (30)

Other approaches,2,40 which are based on a viscoelastic liq-

uid model, instead define a complex shear viscosity

s ¼ l� _c ¼ ðlþ i l0Þ _c: (31)

The use of the algebraic relation _c ¼ ixc, and the comparison

of Eqs. (30) and (31), led historically to wide use40,60,61 of

G� ¼ �ixl�; (32)

and to the use of l0 ¼ G=x and G0 ¼ xl. Therefore, the

complex viscosity in the equivalent liquid model is defined

as l� ¼ G0=xþ i l0. In Ref. 2, such a model was applied to

gassy sediments.

The nondimensional viscous damping in a homogeneous

liquid in the radius-force frame equation of motion31 is given

by

dvis ¼
4l

qsxR2
0

: (33)

By inserting into Eq. (33) the real part of the complex viscosity

term given in Eq. (31), A&H followed Andreeva62 to propose

that the viscoelastic damping takes the following form:

dAH
el ¼

4G0

qx2R2
0

: (34)

The imaginary part of the shear modulus in Eq. (34) is

deduced from the shear wave attenuation in fully water-

saturated sediment [e.g., some quasi-static values can be

found as G=G0 � 5 or G=G0 � 10 (Ref. 25)]. The acoustic

radiation damping dAH
ac given in Ref. 2 has been used by

Lyons et al.25 with the correction x2
0=x

2 to the radiation

damping, and Anderson (a co-author of Refs. 1, 2, and 25) is

cited as a 2001 personal communication in Ref. 8 as advising

Best et al.8 to use the radiation damping factor of Ref. 25 not

that of Ref. 2—this confusion was resolved by Ainslie and

Leighton27,28 who explained that Eqs. (55) and (56) of Ref. 1

are inconsistent with each other. A&H also neglect any

correction for the higher order scattering in the medium,

which is formulated in this work via Eq. (27c).

The thermal damping constant, dAH
th , of A&H is based

on the analysis of Eller.63 It will not be written explicitly

here for brevity, but can be found in Refs. 2, 8, and 25.

Eller’s derivation is based on solving the heat conduction

equation and is less comprehensive than formulas (20) and

(21) based on energy conservation, as used here.

A&H follow Andreeva62 in their expression for the reso-

nance frequency, here multiplied by 2p and written in the

polytropic limit

x0;AH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3jpg0

þ 4GÞ=qR2
0

q
: (35)

The equations used by A&H, listed above, have some draw-

backs mainly owing to the characteristics of their rheological

model (31). First, the damping expression (34) assumes a 1=x
dependence between the elastic and viscous responses of the

sediment, and combines both dissipation mechanisms into

one single term. In contrast, experimental studies39,45–49 that

have reported both the shear and the viscous properties (flow

curves) of sediments do not suggest a straightforward 1=x
dependence between the two. The elastic and the viscous

responses may vary individually, depending on the strain

amplitude and/or frequency ranges (in, for example, shear vis-

cosity58,59 and elastic modulus61). These may furthermore

depend on the salinity, the mineralogical composition, and the

concentration.46,48 Second, there exists a discrepancy because

of the use of ReðG�Þ in the resonance frequency expression

(35) and ImðG�Þ in the damping coefficient (34). This, in

turn, results in a mismatch between the resonance frequency

and the frequency at which minimum damping occurs, creat-

ing an inconsistency in terms of the resonance phenomenon.

III. RESULTS

The results obtained by applying the current theory to

the marine sediments are presented and compared to those

obtained by the A&H model, and with the predictions of

Mantouka et al.4 Figures 1 and 2 plot the damping coeffi-

cients, Fig. 3 the sound speeds, and Figs. 4 and 5 the attenua-

tion results. Two different sediment types, ocean silt and

harbor mud, are examined (to assist comparisons, the param-

eter values are the same as those used by A&H,2 as listed in

Table I). The value of bubble gas volume fraction (C) in

Figs. 3 and 4 is taken as 0.075% for harbor mud and as

0.068% for ocean silt, which were the void fractions used by

A&H, so that the two acoustical models can be compared.

The A&H model did not include viscosity, but values are

required for our model, and chosen here in order to resemble

an increasingly viscous behavior as the porosity increases. A

value of 2.52 MPa was reported for the shear modulus for

the sediment sample in Ref. 8, and 26 MPa for the sediment

sample in Ref. 34. Based on this range of values, we choose

1 and 26 MPa shear modulus values for mud and silt, respec-

tively. Also note that G0, q, and cs in Table I are the constant

values required by A&H, whereas the Appendix to this paper

shows how the frequency-dependent values of qs and cs are

calculated for the current theory. This nomenclature has
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been adopted to save introducing a new variable but accom-

modate the fact that when A&H theory is used, the density

and sound speed take constant values (here, given in Table

I). However, the theory of this paper calculates frequency-

dependent values for both (note that in each case, the theo-

ries of A&H and this paper refer to the same physical quan-

tity). Although A&H do not use the theory in the Appendix,

nevertheless Eq. (A4) requires use of Eq. (A5), and the val-

ues chosen in Table I for the density are consistent with Eq.

(A5).

A. Damping coefficients

Five different physical mechanisms contribute to the

damping (Sec. II C). The values of damping coefficients

given in Eq. (27) versus bubble radius for a fixed driving fre-

quency are shown in Fig. 1(a) for ocean silt. The predictions

of the A&H theory given by Eqs. (34) and (35) are also plot-

ted in Fig. 1(b). Note that the damping coefficient in Eq. (34)

is in non-dimensional form and b in the current formulation

is the dimensional damping coefficient, therefore for conver-

sion d values are multiplied by x=2.

Three significant ranges appear in Fig. 1(a), where dif-

ferent types of damping become the dominant loss mecha-

nism according to the current formulation. As in the case of

bubbles in water, viscous damping is the dominant loss

mechanism for small bubble sizes. The values obtained for

the viscous damping are a few orders of magnitude higher

than viscous dissipation in water (not shown in the figure),

as a consequence of the higher viscosities of mud- and clay-

like sediments. Both formulations demonstrate that acoustic

damping is the most effective loss mechanism for bubbles

over 1 mm in radius. For intermediate bubble radii

(�100 lm), the thermal damping based on Prosperetti’s for-

mulation [Fig. 1(a)] is about 2 orders of magnitude higher

FIG. 1. Damping coefficients vs equilibrium bubble radius in ocean silt at a

pulse frequency of 50 kHz by using (a) the current formulation and (b)

A&H formulation. In (a) the dimensional damping coefficients are given in

Eq. (27). In (b) the non-dimensional coefficients are multiplied by x=2 for

conversion. del is given in Eq. (34). The expressions for dth and dac can be

found in Ref. 2.

FIG. 2. Damping coefficients vs driving frequency for a 1 mm equilibrium

radius bubble in mud by using (a) the current formulation, (b) A&H formu-

lation and (c) Ref. 4. In (b), the arrow indicates the resonance frequency cal-

culated using Eq. (35).
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than the one predicted by Eller’s formulation [Fig. 1(b)].

One can show that thermal losses may be the most pro-

nounced dissipation for medium sized bubbles in more fluid-

like sediments such as mud.

At the largest bubble sizes shown, the radiation damping

coefficient increases with increasing bubble size in Fig. 1(b),

but not in Fig. 1(a) (which affects the behavior of the total

damping coefficient at large bubble sizes). This arises

because of the ðkR0Þ2 in Eq. (27c) that was originally derived

by Yang and Church.36 At the other end of the radius range,

for the smallest bubble sizes shown, the thermal damping

coefficient increases with decreasing bubble size in Fig. 1(a),

but not in Fig. 1(b). This is because of Eller’s simplifications

in describing thermal dissipation via the heat conduction

equation route63 [used in Fig. 1(b)] rather than basing it on

energy conservation56 [used in Fig. 1(a)].

The elastic damping given in Eq. (27e) decays linearly

with the equilibrium bubble radius R0. The viscoelastic dissi-

pation predicted in Fig. 1(b) is about 2 orders of magnitude

higher at the 10–100 lm range where elastic damping is

the most effective. This may be attributed to the combined

viscoelastic damping term dAH
el . The interfacial damping,

FIG. 4. Attenuation of an acoustic wave through a mono-disperse bubble

population with R0¼ 1 mm in harbor mud plotted by using the current for-

mulation, Ref. 4, and the A&H theory for bubble gas fraction of 0.075%.

The dimensionless wavenumber kR0 is 0.1 at 23.8 kHz, however the x axis

is extended to 400 kHz in order to display the evolution of the curves.

FIG. 3. Speed of sound through a mono-disperse bubble population

R0¼ 1 mm in (a) harbor mud for C¼ 0.075%, and (b) ocean silt for

C¼ 0.068%. They are plotted using the current formulation, Ref. 4, and the

A&H theory. The dimensionless wavenumber kR0 is plotted on the top axis

in order to place the data in the context of the long wavelength assumption

used in linear theories.

FIG. 5. Attenuation of acoustic wave through a mono-disperse bubble popu-

lation in ocean silt plotted by using the current formulation for bubble gas

fraction 0.1%. The solid black line shows the results from the EDFM for gas

free sediment. The dimensionless wavenumber kR0 is shown along the top

axis for 500 lm and 2 mm bubbles.

TABLE I. Model input parameters for harbor mud and ocean silt. To allow

direct comparison, the values to be used in Figs. 1–4 were chosen to be the

same as in Ref. 2. Note that A&H did not include sediment viscosities,

which for our model are selected from the range stated in Refs. 47 and 49,

choosing values that allow the mud under consideration to be more fluid-

like than the silt.

Harbor mud Ocean silt

Porosity 0.75 0.68

Shear modulus (G) 1 MPa 26 MPa (Ref. 34)

G0 (Imaginary part of G�) 0.2 MPa 5.2 MPa

Bubble void fraction (C) 0.00075 (0.075%)

for Figs. 3(a) and 4

0.00068 (0.068%) for

Fig. 3(b); 0.001 (0.1%)

for Fig. 5

Total mass density (q) 1410 kg/m3 1530 kg/m3

Speed of sound (cs) 1480 m/s 1552 m/s

Viscosity (l)

(Refs. 47 and 49)

1 Pa s 0.1 Pa s
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Eq. (27d), has a negligible contribution to the total damp-

ing,4 and hence it is omitted from the plots for clarity.

The formulations of Mantouka et al.4 would give ther-

mal coefficient identical to those in Fig. 1(a), and the visco-

elastic coefficient identical to that in Fig. 1(b).

The results for the damping coefficients as a function of

insonifying frequency are shown in Fig. 2 for a bubble of

1 mm radius in mud. The major causes of the losses are ther-

mal and acoustic damping, the former being the most impor-

tant at frequencies below resonance, and the latter being

more effective above the resonance frequency of the bubble.

The viscous and the elastic damping terms are independent

of frequency in the size range plotted for the present formu-

lation [Eqs. (27a) and (27e)]. The dAH
el values are high in the

0.1–10 kHz range, and are inversely proportional (1=x) to

the drive frequency. Consequently, the A&H model predicts

very high attenuation in the low seismic frequency range

(�1–100 Hz) (which will be shown in Fig. 4), but this is not

observed in practical applications.15,16,64 The arrow shown

in Fig. 2(b) identifies the bubble resonance frequency

expressed in Eq. (35). The indication is that the resonance

frequency does not coincide with the frequency at which the

minimum damping occurs.

In Fig. 2(c), the damping coefficients are also compared

with the ones derived in Mantouka et al.4 [Eqs. (20a)–(20f) of

that paper]. The viscoelastic damping in Ref. 4 and in Ref. 2

are identical (after the multiplication of the latter by x=2),

because the complex shear modulus approach was also

employed in Ref. 4, citing the viscoelastic model in Ref. 2.

The thermal damping [Eq. (20b)] in Ref. 4 is identical with

the one presented in the current paper [Eq. (27b)]. The elastic

damping Eq. (20e) in Ref. 4 is multiplied by a factor of 1� b
in Eq. (27e) to account for poroelastic boundary conditions

between the gas, the solid, and the liquid. Similarly, the inter-

facial damping in the present text [Eq. (27d)] has a correction

factor b compared to the one derived in Ref. 4, owing to the

poroelastic boundary conditions used instead of the homoge-

neous medium approach. Furthermore, the acoustic radiation

damping in the present work is re-expressed to account for

the multiple scattering, the effects of which will now be dem-

onstrated in Figs. 3 and 4.

B. Speed of sound

The speed of sound in gassy sediments is plotted in

Fig. 3(a) for bubbles in harbor mud. Note that the gas void

fraction C is not formulated in terms of an implicit percent-

age in Ref. 2, i.e., a value of C ¼ 0:01 in Ref. 2 refers to 1%

bubble void fraction. Typical values of C observed in prac-

tice are in the range �1%–2%25,65 (see Leighton and Robb66

for a detailed list). The dashed-dotted line in Fig. 3 reprodu-

ces the result obtained by the current formulation for harbor

mud with the gas void fraction value C ¼ 0:075%. The solid

line gives the results of A&H theory and the dotted line

presents the result from the formulation in Mantouka et al.4

At the high frequency limit, the predictions of A&H and

Mantouka et al.4 converge to the sound speed value in satu-

rated sediment (1480 m/s), whereas the current model pre-

dicts 1540 m/s owing to the phase velocity dispersion

observed in the fast wave. Similarly, at low frequencies

the previous theories2,4 converge to a value such that, as the

decreasing frequency takes the pulsation further from the

bubble resonance, the sound speed becomes primarily a

function of the bulk modulus of the host medium and bulk

modulus of the gas.66 These effects, and those associated

with the transition from below-resonance to above-

resonance, are markedly different between the current for-

mulation and its predecessors. The reasons for this are the

corrections to the damping coefficients and the resonance

frequency (the multiplication of G with 1� b), and the

velocity dispersion caused by the incorporation of the

EDFM. The effects of the multiple scattering are also evi-

dent through the increased phase velocity values, as were

also seen in water.37 The dimensionless wavenumber kR0 is

shown along the top axis in Fig. 3 in order to assess the long

wavelength assumption (kR0 � 1) used in Sec. II, and in the

previous studies.2,4 The value of kR0 is 0.1 at 23.8 kHz and

here the high frequency asymptotic behavior is reached at

about 30 kHz. However, in the following it will be shown

that this criterion is not always met, especially in sediments

with higher shear modulus. The implications of that will be

discussed below.

Wave propagation through a monodisperse bubble cloud

in ocean silt is also examined for a gas void fraction of

0.068% [Fig. 3(b)]. Although previous formulations1,2,4

show a small effect due to this bubble population, Eq. (28)

shows additional dispersion in the low frequency limit and

through-resonance regime, because of the movement of the

pore fluid.15–17,34 Even so, the effects on sound speed caused

by gas bubble pulsations are relatively small in a sediment

with such a high rigidity [see Fig. 3(a) in Ref. 4], compared

to the effects observed in a more fluid-like sediment such as

mud in Fig. 3(a). The reason may be attributed to the rela-

tively small bulk modulus of the gas in this case, so that the

bubbles are acoustically less effective in altering the sound

speed. The low frequency limit of the sound speed (cLF
s ) in

Figs. 3(a) and 3(b) can indeed be closely predicted by the

Mallock-Wood equation67 for the sound speed in

suspensions

cLF
s ¼ qg Cþ qs 1�C½ �


 ��1=2 C
Bg

þ 1�C
qsc

2
s

� ��1=2

; (36)

where qg is the density of the gas. The bulk modulus of the

gas Bg can be calculated for low frequency–low amplitude

pulsations as68

Bg � �qs R2
0 x2

0=3; (37)

with x2
0 being given in Eq. (27f) of this paper. For instance,

the sound speed value at 100 Hz for muddy sediment is

calculated in this way as 597 m/s compared to the value of

635 m/s in Fig. 3(a), and the sound speed value at 100 Hz for

silt example is calculated as 1325 m/s compared to the value

1344 m/s in Fig. 3(b). These calculations and the low and

high frequency limits of the sound speed can be observed in

more detail in the supplementary material69 that accompa-

nies this paper (see Figs. E1 and E2 therein).
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C. Attenuation

The values of attenuation in gassy sediments are plotted

in Figs. 4 and 5 for bubbles in harbor mud and ocean silt,

respectively. The gas void fraction is taken as 0.075% for

harbor mud. The dashed line in Fig. 4 gives the result

obtained by Eq. (29) for harbor mud. The current formula-

tion predicts lower attenuation in harbor mud for pulse fre-

quencies less than 3 kHz, though the attenuation peak is

higher than those of A&H and Mantouka et al.4 in the near-

resonance regime for the current mono-disperse bubble pop-

ulation. The current formulation suggests that a significant

correction is required (compared to the theories of Refs. 2

and 4) when predicting the resonance frequency, primarily

because of the multiplication factor 1� b in Eq. (27f).

Moreover, the broader nature of the curve obtained with

Eq. (29) is due to the multiple scattering from other

bubbles. A similar effect has been observed in gassy water.37

Although, at the highest frequencies in Fig. 4, the present

and previous2,4 formulations appear to disagree qualitatively,

in this range kR0 is no longer�1 and so inferences drawn in

this regime are of limited value. However, the trend is for

Eq. (29) to follow the attenuation for water-saturated sedi-

ment above resonance (a liquid viscosity effect that is not

captured by the existing formulations2,4). This can be attrib-

uted to the incorporation of the EDFM.

Figure 5 shows the computed values of attenuation for

different bubble radii in ocean silt assuming a gas void

fraction value of C¼ 0.1%. This is higher than that used in

Figs. 3 and 4 and Ref. 2, in order to emphasize the bubble-

induced effects in ocean silt. The solid black line indicates

the results from the EDFM, which corresponds to the attenu-

ation in saturated sediment (without gas bubbles). The dotted

line shows the attenuation in gassy sediment with monodis-

perse bubble population with R0¼ 2 mm, and the dashed line

with R0¼ 500 lm. The peaks coincide with the correspond-

ing resonance frequencies for these bubble radii. As with

Fig. 4, above resonance the EDFM ensures that the gassy

sediment attenuation curve follows that for water-saturated

sediment, and Refs. 2 and 4 lack this feature.

The formulation presented here can readily be extended

to polydisperse bubble populations. Such characteristic

curves will aid the planning of experiments to measure the

bubble size distribution and the total bubble void fraction

using acoustic inversion methods.

The kR0 values are shown along the top axis in Fig. 5

for the given bubbles sizes. The long wavelength assumption

inherent in the linear theory begins to break down at around

the resonance frequency for each bubble size in Fig. 5. This

shows that, while the theories can be used to make predic-

tions outside of the long wavelength limit, they must be

treated with care. This is particularly germane for ocean

sediments if, say, one attempts to invert acoustic information

to estimate the bubble population present. Prior to a mea-

surement, the experimenter does not know the maximum

size of a bubble in his acoustic field that the sediment has

stabilized. It is unrealistic to select some large R0 a priori
and restrict the acoustic frequencies to the kR0� 1 range.

That policy would restrict the available acoustic frequency

range so much that it would severely compromise the infor-

mation that can be taken. This illustrates the conflict inherent

in gassy ocean sediment acoustics, in that the possible pres-

ence of large stabilized bubbles means that the experimental

frequency range and long-wavelength theoretical limitations

must be critically assessed.

IV. CONCLUSIONS

A method for acoustic propagation in gassy marine sedi-

ments is presented. The formulation incorporates the EDFM

for the host medium. Not surprisingly, it predicts that such a

medium exhibits high attenuation near the bubble resonance

frequencies. However, in the high frequency limit, the attenua-

tion also increases to values that resemble those observed in

gas-free sediments, owing to the viscous dissipation in the pore

fluid. The latter phenomenon has not been captured by previous

formulations written for this class of work, i.e., sediment-

replacing gas bubbles. The phase velocity shows significant

dispersion caused by the presence of both the pore fluid and the

gas bubbles. It has been shown that the high frequency sound

speed limit of the formulation in the present paper approaches

that of EDFM. Furthermore, the low frequency sound speed

limit of the present paper can be closely predicted by the

Mallock-Wood equation for suspensions, provided that the low

frequency sound speed value of the EDFM and the expressions

in the current paper for the bulk modulus of the gas are used in

the calculations. Supplementary material69 with two additional

figures (see Figs. E1 and E2 therein), which validate these cal-

culations, accompanies this paper.

The paper further focused on the constitutive effects

observed near the bubble interface. The rheological model

used here accounts for the contact surfaces between the phases

individually, rather than assuming an effective homogeneous

host medium. Consequently, new expressions are derived for

the viscous [Eq. (27a)], interfacial [Eq. (27d)], and elastic

damping [Eq. (27e)] and for the resonance frequency [Eq.

(27f)]. These differ from those of Mantouka et al.4 {the

expressions of Yang and Church [Eqs. (23) and (24) in Ref.

36] were for soft tissue and lacked porosity terms}. Moreover,

the effects of the multiple scattering are included through Eq.

(27c). The general conclusions are that the viscous and elastic

losses dominate at small bubble radii, and the effect of the sur-

face tension at the gas-liquid interface is negligible. A thermal

damping formulation, based on energy conservation, is pro-

vided. This may be an important loss mechanism at intermedi-

ate bubble sizes in mud- and clay-like sediments. The acoustic

radiation damping clearly becomes very effective with increas-

ing driving frequencies and larger bubble radii. Multiple scat-

tering from other bubbles broadens the attenuation peaks and

elevates the phase velocity near the bubble resonance, resem-

bling the effects they cause in gassy water.37

The current work assumed that the stress was linearly

related to the strain, in keeping with the assumption of

a Voigt relationship. While this is an adequate assumption

for sediments with low gas void fractions driven by low

amplitude acoustic pulses, real sediments may exhibit a

frequency-dependent viscous and/or elastic behavior.58,59,61

This effect could be readily included in the current
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formulation, because the incorporation of a frequency-

dependent shear modulus and viscosity is straightforward

through Eq. (17). It should also be noted that in the case of

high amplitude pulses, alternative constitutive equations (e.g.,

as in Refs. 58, 70, and 71) may be required. These would

allow the stress-strain variables to scale with cn and _cn (the

exponent n being not necessarily equal to 1). These rheologi-

cal models can be formulated within the framework presented

here with modifications to the integrals in Eq. (18).
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APPENDIX

The wave equation of the EDFM (Ref. 34) is given by

k2
eff H u ¼ x2qs u; (A1)

where H is related to the bulk modulus of sand grains Kr and

the bulk modulus of the pore fluid Kf with

H ¼ 1� b
Kr
þ b

Kf

� ��1

: (A2)

The complex sound speed in the sediment is then

cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
H=qs

p
; (A3)

where

qs ¼
a 1�bð Þqmþb 1� að Þqf þ i

bqFlf

qf jx

b 1�bð Þqmþ a� 2bþb2
� �

qf þ i
bFlf

xj

0
BBB@

1
CCCA: (A4)

In Eq. (A4), a is the tortuosity, lf denotes the viscosity of

the pore fluid, qm is the density of the mineral grains, qf is

the density of the pore fluid, and the total mass density is

given by

q ¼ ð1� bÞqm þ bqf : (A5)

The pore size parameter a is defined as

a ¼
ffiffiffiffiffiffiffiffi
8aj
b

s
; (A6)

with j being the permeability. The parameter F represents

the viscous shear dissipation in the pore fluid during the high

frequency oscillations and can be found from

F �ð Þ ¼
�

T �ð Þ
4

1� 2i
T �ð Þ
�

; (A7)

with

T �ð Þ ¼ �
ffiffi
i
p

J1 �
ffiffi
i
p� �

J0 �
ffiffi
i
p� � ; (A8)

where J1 and J0 are cylindrical Bessel functions and

� ¼
ffiffiffiffiffiffiffiffiffi
x qf

lf

r
: (A9)

The following values were used when calculating the EDFM

equations: Kr¼5�1010 Pa, Kf ¼2.3�109 Pa, qm ¼2650 kg/

m3, qf¼1000 kg/m3, lf¼0.001 Pa s, j¼1.0�10�10 m2, and

a¼1.25.
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