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The subject of acoustic radiation pressure on a gas bubble is important in many applications

because it controls how bubbles are moved by acoustic fields to target locations, and often how

they act upon the target. Previous theoretical treatments assume a spherical bubble undergoing lin-

ear pulsations, but some (such as cleaning using Faraday waves on the bubble wall) require that the

bubble be aspherical. Therefore, this paper derives ways to calculate the variation in the radiation

pressure due to the non-spherical bubble oscillations. The magnitude and direction of the radiation

force are determined by two factors: the amplitude of volume oscillations, Vm, and the phase rela-

tionship between those oscillations and the acoustic field which drives them. There are two key

findings that correct for the predictions of a model accounting for only linear pulsations. First, the

growth of the radiation force slows down as Vm ceases to increase linearly with increasing ampli-

tude of the acoustic wave above the threshold. Second, although both models show that the direc-

tion of the force relative of the standing wave antinode can be attractive or repulsive depending on

frequency, when distortion modes are included the frequency at which this force changes its sign is

shifted. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5020786

[MFH] Pages: 296–305

I. INTRODUCTION

The acoustic radiation force exerted by a plane or a

spherical wave on a compressible sphere in a non-viscous

fluid has been extensively investigated over the last 6 deca-

des. The effects of particle compressibility on the radiation

force were initially studied by Yosioka and Kawasima.1

Subsequently, Gor’kov2 used a fluid dynamics approach to

derive formulae for the general radiation force exerted on a

particle by a plane wave and any stationary acoustic wave.

Eller3 was the first to calculate the radiation force on a small

bubble. A refined version of Eller’s result has been obtained

by Lee and Wang.4 All of these studies were based on the

model of an ideal fluid that ignores the processes of viscosity

and thermal conductivity. In many situations, this idealiza-

tion is acceptable. Calculation of the radiation force in a real

fluid requires addressing not only the linearized equations of

motion for momentum, density, energy, and entropy, but

also the so-called equations of acoustic streaming, which

represent time-averaged equations of motion, taken up to the

quadratic terms in the amplitude of the perturbation.5 Since

streaming can cause a bubble or particle to change location,

it is particularly important to assess its potential to do this if

the acoustic field is being used to move bubbles/particles by

radiation forces. A complete solution to this problem was

given by Doinikov.5–8 Viscous and thermal effects become

important when the size of the bubble becomes comparable

to the acoustic boundary layers (thermal and viscous).9

If a gas bubble of radius R0 in a liquid of sound speed c0

is driven by an acoustic wave of low circular frequency x
(such that xR0=c0 � 1), then at all amplitudes of that driv-

ing wave the bubble undergoes a spherically-symmetric wall

oscillation (i.e., a breathing mode pulsation). However, if the

amplitude of the driving waves exceeds a well-defined

threshold, then the nonlinear response of the gas bubble

results in parametrically-generated shape oscillations, super-

imposed upon the pulsation. The study of the consequences

of parametrically excited bubble responses and associated

energy and gas flow began in the 1970s.10,11 Above the criti-

cal driving pressure threshold, which is minimal at the reso-

nance of the breathing mode, regular patterns of stationary

surface waves are observed on the bubble wall.12–21 The the-

ory for the pattern formation on the bubble wall has been

derived in recent studies.22–24

The acoustic radiation force is caused by the transfer-

ence of momentum flux from an imposed oscillatory pres-

sure field (which has zero amplitude at pressure nodes and

maximum amplitude at pressure antinodes) to a bubble (not-

ing that the term “bubble” consists not just of the ball of

gas—which provides this oscillatory system with stiffness—

but also the surrounding liquid, which provides the vast

majority of the inertia). The additional channel of energy

absorption due to the generation of surface modes alters the

transference of momentum flux and thus modifies the radia-

tion force. The influence of the parametric response on the

radiation force on a bubble was observed by Asaki and

Marston,25 but this effect was avoided for the purpose of

comparing the measured radiation force (by way ofa)Electronic mail: maksimov@poi.dvo.ru
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equilibrium location) with radiation force theory. The mea-

sured free decay of quadrupole oscillations of large bubbles

acoustically trapped in water26 demonstrated a standing

capillary wave roughening. Asaki and Marston26 also

described the associated energy flow “out of” a particular

bubble mode as a consequence of the roughening, and sug-

gested that the observed anomalous damping might result

from nonlinear coupling.27

Interest in Faraday waves has increased in recent years

because of a range of applications, including ultrasonic fog-

gers28 and, hypothetically, in the generation of the alligator

“water dance.”29 This theoretical study was designed to sup-

port a new ultrasonic cleaning technique, the Ultrasonically

Activated Stream (UAS).30,31 UAS achieves cleaning with

cold water streams at flow rates of �1 litre min–1, generating

zero-to-peak acoustic pressure at the surface to be cleaned of

less than 100 kPa. The basic principle is that water is fed into

a hollow horn that contains an ultrasonic transducer operating

in excess of 100 kHz. UAS systems clean by non-inertial cav-

itation, whereby the ultrasound stimulates surface waves on

the bubble wall. These in turn create shear flow and greatly

enhance the cleaning efficiency of water at the interface. The

ultrasound and microbubbles in the flow both travel down the

stream of water to the target that is to be cleaned. If the bub-

bles are ultrasonically activated when they are on the target,

the cleaning ability of the liquid is enhanced in three ways:

the bubbles are attracted to the surface to be cleaned by

Bjerknes radiation forces, and are not as rapidly washed

away by the flow as they would be in the absence of ultra-

sound; the bubbles are particularly attracted into crevices by

secondary Bjerknes radiation forces; such crevices are tradi-

tionally more difficult to clean by wiping or brushing; surface

waves on the walls of the bubble, excited by the ultrasound,

produce enhanced convection in the liquid, and enhanced

shear in the contaminant, causing its removal.

It is important to quantify the radiation forces that steer

the bubbles toward the surface to be cleaned, and into crevices

and other structures which are traditionally difficult to clean

using brushes or wipes (which fail to penetrate crevices), or

chemical methods (where the penetration of the chemical into

the crevice is diffusion controlled). This not only because the

action of these radiation forces places the surface waves (and

the local shear they cause) in the proximity of the contaminant

in the crevice, so that the surface waves can physically

remove them. It is also because the translation of bubbles

(with convection-inducing surface waves) from the bulk liq-

uid into the crevice can enhance any chemical cleaning or dis-

infectant effects. If chemicals are added to the bulk liquid,

then the motion of the bubbles convects chemicals into the

crevice, causing greater concentrations there than would be

generated by diffusion alone.30,32 Consequently, the same

cleaning can be achieved in crevices using lower concentra-

tions of chemicals in the bulk liquid, which have environmen-

tal, cost, and safety implications. In this way, UAS has

successfully achieved, using cold water:

• the cleaning of brain tissue and prions from surgical steel,

the removal of contaminating material from bone

transplants;33

• the removal of biofilms of dental bacteria;33,34

• the cleaning of human skin30,32 and skin models;33,35

• the cleaning of marine biofoulant;36

• the cleaning of railway track;37

• the cleaning of hands, kitchen surfaces, tools, glue from

jar labels, contaminated tubes, grease, salad, and compo-

nents of railway locomotives.30,32,38

Clearly, the ability of radiation forces to resist buoyancy

and turbulence and so move the bubble to the surface that is

to be cleaned, and to enable it to penetrate crevices, is key to

the ability of UAS to clean. To design the device with the

ability to do this, it is important to be able to quantify the

effect of surface waves on the radiation forces in order to

calculate the parameters (frequency, bubble size, acoustic

amplitude, etc.) that will allow the radiation forces to over-

come buoyancy, flow, and turbulence. In this paper, we have

made a step in the description of the physical processes that

underlie this method. We have gained an understanding of

how the presence of surface waves modifies the radiation

pressure. The answer to the question of whether this change

in the radiation force might be optimized, if at all, to enhance

the cleaning results when a bubble hosting surface waves is

located close to the target surface to be cleaned is a topic for

future research.

II. PHYSICAL MODEL

Assume that the size of the bubble is much smaller than

the wavelength of sound, and then within this long wave-

length limit consider the case of weak dissipation. Dissipation

is considered to be low if the bubble radius R0 is large com-

pared with the viscous dv and thermal dth lengths. The bubble

is assumed to be centered in the origin of the coordinate sys-

tem. We will consider only time-harmonic acoustic waves

with an angular frequency x, whose potential u are of the

form uðrÞ exp ð�ixtÞ, uðrÞ ¼ uinðrÞ þ uscðrÞ, where subin-

dexes “in” and “sc” denote the contribution of the incident

and scattered waves. The space-time dependence of the veloc-

ities u of the incident and scattered waves are

uin;sc ¼ Re½ruin;sc exp ð�ixtÞ�. With regard to the externally

imposed oscillatory pressure field wave, we shall consider a

plane standing wave with the velocity potential given by

uin ¼ um cos ½iðk � r þ kdÞ� exp ð�ixtÞ, where k is the wave

vector, r is the position vector, and d is the shortest distance

between the equilibrium center of the bubble and the nearest

plane of the velocity node (or pressure antinode).

Acoustic waves give rise to a radiation-stress tensor2

Sij ¼ �ðP� P1Þdij � q0uiuj; (1)

where P is the pressure in the presence of the sound and P1
is the constant static pressure that would, if the bubble was

not present, exist in the liquid at the location currently occu-

pied by the center of the bubble, and where q0 is the constant

mean density of the liquid. The integral of �Sijnj over the

bubble surface Rb is the force Fi, acting on the inclusion

(here n is the normal). The static acoustic radiation force on

a bubble could be simply calculated from the far-field inte-

gral over any spherical surface R enclosing the bubble4
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Fi ¼ �
ð

R
hP� P1ini þ q0huiujinj

� �
dR; (2)

where n ¼ �er on R and n ¼ er on Rb; the time averaging

over a wave cycle is denoted by h� � �i. The mean momentum

change in the surrounding fluid vanishes, since an ideal fluid

cannot absorb momentum (no dissipation). The size of the

bubble is assumed to be smaller than the acoustic wave-

length, thus, there is, effectively, an “inner” region around

the bubble, which may be regarded as incompressible. Far

from the bubble, where nonlinear terms are small, the linear

wave equation for the potential should be used. It is clear

that “far from the bubble” means at distances r � c0T ¼ k
(T ¼ 2p=x), whereas “near the bubble” means at distances

on the order of 0 � ðr � R0Þ=R0 	 1 or less. At distances

large compared with R0, though still small compared with

the characteristic wavelength k, one can find a general form

of the solution for the scattered potential usc by using the

fact that usc must decrease with increasing distance39

uscðr; tÞ ¼ �
_V tð Þ
4pr

; (3)

where V(t) is the volume of the bubble. In general, the total

long-wave solution contains the contribution of the dipole

term. For a gas bubble near the resonance, however, this

dipole term is small.8 At distances r 
 k (i.e., in the “wave

region”), usc must represent an outgoing wave, i.e., must

have the form5

uscðr; tÞ ¼ �
_V t� r=c0ð Þ

4pr
: (4)

The pressure of a time-harmonic wave of angular fre-

quency x is given in terms of the potential function by

PðrÞ ¼ iq0xuðrÞ. To second order, hP� P1i in Eq. (2) is

finite and given by4

hP� P1i ¼
1

2

q0

c2
0

@u
@t

� �2
* +

� 1

2
q0hjruj2i; (5)

which is the minus time-average of the Lagrangian density.

The radiation force [Eq. (2)] is a bi-linear combination

of two components: a spherically symmetric component

uscðrÞ, describing the scattered field [Eq. (4)] and the plane

standing wave uinðr; tÞ. The terms only associated with the

incident field may be omitted since the radiation force van-

ishes in the absence of the bubble. The radiation force for an

arbitrary sound field, in terms of momentum transport in the

far field which involves the interaction of the incident and

scattered fields and the flux associated with the scattered

field, has the form40

F ¼ q0k2r2

2

ð
Re

i

k

@uin

@r
u�sc

� �
� uscu

�
sc

� �
ndX; (6)

where dX is the solid angle element (dR ¼ r2dX).

For the plane standing wave uin, the interference terms

between the external field and the scattered wave are domi-

nant and we have

F ¼ �k
q0xumVm sin aV

2
sinð2kdÞ; (7)

where Vm is the amplitude and aV is the phase of the compo-

nent of the volume, oscillating with the frequency x:

V 	 Vm cos ðxtþ aVÞ. Note that because we consider non-

linear effects, other components will be present in the spec-

trum of the volume oscillations, but these components will

have a relatively small magnitude. The expression for the

radiation force on an air bubble [Eq. (7)] coincides with the

commonly used form.3,41,42

In the case of standing waves, when the wavelength

exceeds the size of the bubbles and scattering is weak, the

radiation force exerted by the standing wave is larger than

that for the plane traveling wave.2 In this case, in the qua-

dratic expression for the force [Eq. (2)] the interference

terms between the standing and scattered waves are signifi-

cant, while for the traveling wave the transference of

momentum by the wave is determined only by the scattered

sound.

III. VARIATION OF THE BUBBLE VOLUME ABOVE THE
THRESHOLD FOR INSTABILITY OF THE DISTORTION
MODES

Within the framework of the adopted approximations,

the radiation force on a bubble [Eq. (7)] depends on its vol-

ume pulsations. Above the threshold of parametric instabil-

ity, volume pulsations and surface modes form a system of

coupled oscillations. In our case, the problem is reduced to

the analysis of the behavior of the bubble in a domain which

is small compared with the wavelength where the liquid is

incompressible and the amplitude of the imposed pressure

field is constant.

The surface mode parametrically excited will be the one

whose own natural frequency xl (where l is the order of the

distortion mode) is closest to the subharmonic of the pump

frequency, i.e., the mode for which xl 	 x=2. The driving

acoustic pressure which excites a surface mode will have a

minimum (at the base of the U-shaped graph of acoustic pres-

sure against frequency that maps out the threshold for the gen-

eration of surface waves15,43) at a frequency close to the

breathing mode resonance x 	 x0 [where x0ðR0Þ is the natu-

ral frequency of the breathing mode]. The threshold condi-

tions to excite a mode, and its form in steady state, have been

discussed widely at the end of the past century.16,17,44–48

In describing the regular patterns of surface waves

which are observed on the bubble wall above the driving

pressure threshold for shape oscillations, we follow the

results of our earlier study.24 We use the spherical coordi-

nates ðr; #; aÞ where r is the radial displacement, and # and a
are the polar and azimuthal angles. The origin coincides

with the center of the bubble. The equation of the bubble sur-

face is r ¼ R0 þ nð#; a; tÞ.
An analysis of the behavior of the unsteady potential

flows of the liquid in a spatial region G with a free surface S
can be reduced to a treatment of the surface dynamics.

Within this formalism, the shape of the surface S and the

boundary potential at this surface U are the dynamical
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variables determining the state of the system.49 The transi-

tion to the canonical variables nð#; a; tÞ; Pð#; a; tÞ
¼ �q0ðR0 þ nð#; a; tÞÞUð#; a; tÞ provides the simplest way

to describe the nonlinear bubble dynamics.49 Expansion of

the variables in a series of spherical harmonics Ylm,

nð#; a; tÞ ¼
X1
l¼0

Xl

m¼�l

nlmðtÞYlmð#; aÞ;

Pð#; a; tÞ ¼
X1
l¼0

Xl

m¼�l

PlmðtÞYlmð#; aÞ; (8)

can be used to diagonalize the quadratic Hamiltonian49

H0 ¼ x0a�00a00 þ
X1

m¼�1

P�1mP1m

q0R3
0

þ
X1
l¼2

xl

Xl

m¼�l

a�lmalm;

Plm ¼ �
iffiffiffi
2
p q0R3

0xl

lþ 1ð Þ

 !1=2

alm � �1ð Þma�lm
	 


;

nlm ¼
1ffiffiffi
2
p q0R3

0xl

lþ 1ð Þ

 !�1=2

alm þ �1ð Þma�lm
	 


;

P00 ¼ �
iffiffiffi
2
p 2q0R3

0x0

	 
1=2
a00 � a�00

	 

;

n00 ¼
1ffiffiffi
2
p q0R3

0x0

	 
�1=2
a00 þ a�00

	 

; (9)

where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cðP1 þ 2r=R0Þðq0R2

0Þ
�1

q
is the frequency of

the monopole pulsations ðl ¼ 0Þ, c is the polytropic expo-

nent, and r is the surface tension. The quadratic Hamiltonian

[Eq. (9)] also demonstrates the existence of the dipole modes

ðl ¼ 1Þ corresponding to the translational motions, and the

shape oscillations ðl � 2Þ, which have the form of surface

capillary waves propagating over the surface of the bubble at

the frequency xl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðlþ 1Þðlþ 2Þðl� 1Þðq0R3

0Þ
�1

q
.

The slowly varying complex amplitudes of the

breathing ~a00 ¼ a00 exp ðix0tÞ and distortion modes ~alm

¼ alm exp ðixltÞ satisfy the equations that have the form24

d~a00

dt
¼ i x� x0ð Þ � c0

� �
~a00 � iCll0

Xl

m¼�l

�1ð Þm~a�lm ~al�m

þ
ffiffiffi
p
p

R2
0Pm

2q0R3
0x0

	 
1=2
;

d~alm

dt
¼ i x=2� xlð Þ � cl½ �~alm � 2iCll0 �1ð Þm~a00~a�l�m

þ 2Cn0ll

Xn0

m0¼�n0
�1ð Þm

0
Yn0m0Yl�mYlm�m0 ~an0m0 ~a

�
lm�m0 ;

Cll0 ¼ 27pð Þ�1=2
4l� 1ð Þxl q0x0R3

0

	 
�1=2
R�1

0 ; (10)

where, in general, any symbol with a bar above it is defined

via �A ¼ ð4pÞ�1 Ð A sin# d# da and Pm ¼ q0xum cosðkdÞ
(Pinjr¼0 ¼ q0xum cosðkdÞ sinðxtÞ). The damping of the

breathing mode, c0, and of the distortion modes of order l, cl,

are included in the current model. It is assumed that thermal

and viscous lengths are smaller than the bubble radius which

is an evident restriction for the selected model. A detailed

study of the damping mechanisms for surface modes in the

general case (accounting for the presence of a viscous

boundary layer) has been presented in Ref. 26, one of the

few (if not only) places where such damping is directly mea-

sured for the l¼ 2 distortion mode of bubble oscillations.

In this study, we consider the simplest pattern—

rolls.24 This pattern is formed by two waves (ll) and (l � l)
(see Fig. 1) which form a sectoral harmonic. The shape of

the surface oscillations on the sphere, described by sector

harmonics, is a direct analogy of the roll structure observed

on a parametrically distorted flat surface. This type of pattern

has been well studied, so using a name that emphasizes the

analogy with a well-known object seems justified. The reso-

nant triads ðlþ l� n0) determine the type of pattern that

manifests itself. These triads are formed by two unstable sur-

face waves having the same frequency xl interacting to gen-

erate a wave of higher frequency xn0 	 2xl. For the selected

pattern (rolls), resonance triads, forming this state, have

a negligible effect on the standing-wave amplitude of the

rolls.24 For this reason, we do not present the cumbersome

expression for the coupling coefficient in the energy of inter-

action of the distortion modes Cn0ll or the equation for the

amplitude of the high-frequency partner of the unstable

mode ~an0m0 in the resonant triad. The complete system of

canonical equations for the amplitudes and the description of

the individual terms are contained in the supplementary

material.50

FIG. 1. (Color online) Schematic of a parametrically distorted bubble in the

field of a standing acoustical wave uin of the frequency x with d being the

distance between the equilibrium center of the bubble and the nearest plane

of the velocity nodes (or potential antinodes). The size of the bubble is

assumed to be smaller than the acoustic wavelength k, thus, there is a region

around the bubble, which may be regarded as incompressible.
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The system of Eqs. (10) can be significantly simplified

near the threshold of parametric instability which occurs

when one of the eigenvalues of the linear stability analysis

k6 ¼ �cl6
P2

m 4l� 1ð Þ2

162q2
0R4

0D0

� xl � x=2ð Þ2
( )1=2

; (11)

passes through zero at

Pth ¼
16q0R2

0

4l� 1ð Þ
ffiffiffiffiffiffiffiffiffiffi
D0Dl

p
; D0 ¼ x0 � xð Þ2 þ c2

0

h i
;

Dl ¼ xl � x=2ð Þ2 þ c2
l

h i
: (12)

Above the threshold

Pm ¼ Pth þ DP; Pth 
 DPth � 0;

kþ 	
DP

Pth

Dl

cl

; k� 	 �2cl �
DP

Pth

Dl

cl

; (13)

we can reduce the description by eliminating the “fast” varia-

bles.22,51 From the mathematical point of view, we study the

local bifurcations of vector field y ¼ ð~a00; ~all; ~al�lÞ occurring

in the neighborhood of a fixed point. The stationary states

(fixed points) occur when the right-hand sides (RHSs) of Eqs.

(10) become zero. The dynamical system for the rolls is of

fifth-order and there are three fixed points.22 Figure 1 of Ref.

22 demonstrates the characteristics of the bifurcation diagram

in the plane of the control parameters ðx=2p;PmÞ.
The solution to the system of Eqs. (10) is based on the

use of the master-slave principle known in applied mathe-

matics as center-manifold reduction.52 Near the point where

the dynamical system of Eqs. (10) loses its linear stability

(in our case this occurs at the threshold), one can reduce the

dimensionality of the system and exclude the stable variables

(i.e., those that decay to the central manifold on time scales

determined by the corresponding eigenvalues). Thus, if we

are interested in long-time behavior, we need only to investi-

gate the system restricted to the central manifold which is

determined by a relatively simple equation.

The breathing mode and the high-frequency (stable) dis-

tortion mode n0 are fast-phased in order to draw energy from

the pumping and unstable modes l,

~a00 ¼
2i �1ð ÞlCll0

i x� x0ð Þ � c0

� � ~all~al�l

�
ffiffiffi
p
p

R2
0 Pth þ DPð Þ

2q0R3
0x0

	 
1=2
i x� x0ð Þ � c0

� � ;
d~all

dt
¼ i x=2� xlð Þ � cl½ �~all � 2iCll0 �1ð Þl~a00~a�l�l;

d~a�l�l

dt
¼ �i x=2� xlð Þ � cl½ �~a�l�l þ 2iCll0 �1ð Þl ~a�00~all:

(14)

We can ignore the contribution of the high-frequency distor-

tion mode n0 for the rolls patterns.24 The linear combination

of ~all and ~a�l�l corresponding to the eigenvalue k� also rap-

idly relaxes onto the central manifold, which leads to the

formation of a standing wave in the azimuthal angle.

Components, spreading in both clockwise and anti-

clockwise directions, have equal absolute complex

amplitudes,

~a�l7l ¼�ð�1Þleið/1þ/2Þ~al6l; sin/1 ¼ ðxl�x=2ÞD�1=2
l ;

sin/2 ¼�c0D
�1=2
0 : (15)

Thus, near the threshold, it is possible to rewrite the system

of Eqs. (10) in terms of the slowly varying standing-wave

amplitude24

dBll

dt
¼ kþBll � 2C0 B�llBll

	 

Bll;

Bll ¼
1

2i
~alle

i /2�/1ð Þ=2 � �1ð Þl ~a�l�le
�i /2�/1ð Þ=2

h i
¼ �i

clffiffiffiffiffi
Dl

p ei /1þ/2ð Þ=2~all;

C0 ¼
2Dl

D0c3
l

C2
ll0 c0cl � x=2� xlð Þ x� x0ð Þ
� �

: (16)

The stationary solution, which we are interested in, has the

form

B�llBll ¼
kþ
2C0

¼ DP

Pth

D0c2
l

4C2
ll0 c0cl � x=2� xlð Þ x� x0ð Þ
� � :

(17)

The next step is to calculate the variation of the bubble

volume

V�V0 ¼
ð

dX
R0þ nð Þ3

3
�R3

0

3

� �
¼ V0 3

�n
R0

þ 3
n2

R2
0

þ n3

R3
0

" #

	3V0

1ffiffiffiffiffiffi
8p
p

q0R5
0x0

	 
1=2
a00þ a�00

	 
"

þ 1

8pq0R5
0x0

a00þ a�00

	 
2þ lþ 1ð Þ
8pq0R5

0xl

�
Xl

m¼�l

almþ �1ð Þma�l�m

	 

a�lmþ �1ð Þmal�m

	 
#
:

(18)

The term describing the volume pulsations at the frequency

x, which contributes to the radiation force after averaging

over time, has the following form:

V�V0ð Þx ¼ Vm cos xtþ aVð Þ

¼ 3V0

1ffiffiffiffiffiffi
8p
p

q0R5
0x0

	 
1=2
~a00e�ixtþ ~a�00eixt
	 
"

þ lþ 1ð Þ �1ð Þl

4pq0R5
0xl

~all~al�le
�ixtþ ~a�lla

�
l�le

ixt
	 
#

:

(19)

Substituting in this equation the explicit form of ~a00 [see Eq.

(14)] and expressing ~al6l in terms of Bll, we obtain
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V � V0ð Þx ¼ 3V0 �
Pth þ DPð Þ

2q0R2
0x0

ffiffiffiffiffiffi
D0

p sin xtþ /2ð Þ
"

þ 4l� 1ð ÞxlDlB
�
llBll

8pq0R5
0x0

ffiffiffiffiffiffi
D0

p
c2

l

cos xtþ /1 þ 2/2ð Þ

þ lþ 1ð Þ
2pq0R5

0xl

DlB
�
llBll

c2
l

cos xtþ /1 þ /2ð Þ
�
:

(20)

The expressions in the second and third lines of Eq. (20)

have a similar structure, but vary considerably in magnitude

near the resonance size
ffiffiffiffiffiffi
D0

p
� x0. The term in the second

line is due to the resonance coupling between the distortion

and monopole modes and contains a large resonant factor

x0=
ffiffiffiffiffiffi
D0

p

 1. By contrast, the term in the third line

describes a simple quadratic effect on the amplitude of the

distortion modes and can be neglected. Substituting the

explicit expression for the B�llBll [Eq. (17)], we obtain

V � V0ð Þx ¼ 3V0

8
ffiffiffiffiffi
Dl

p

4l� 1ð Þx0

cos xtþ /2 þ p=2

�

�DP

Pth
cot /1 þ /2ð Þ

�
;

Vm ¼ V0

24
ffiffiffiffiffi
Dl

p

4l� 1ð Þx0

;

aV ¼ /2 þ p=2� DP

Pth

cot /1 þ /2ð Þ: (21)

Therefore it follows from this equation that, close to the

threshold of the parametric instability, the amplitude of the

volume oscillation, Vm, remains constant despite increases in

the driving pressure and remains equal to the value it took at

the threshold. The interaction of this mode with the paramet-

rically unstable surface waves leads only to variations in the

phase relationship between the bubble pulsations and the

phase of the driving field.

Such behavior is experimentally confirmed by a series

of studies13–15 in which the two-frequency method has been

used for high-resolution bubble sizing. In this technique, in

addition to a pumping wave the bubble is insonified by a

high frequency imaging wave. For applications with

millimeter-sized bubbles, the pumping frequency is of kilo-

hertz order, while the imaging frequency is usually around a

megahertz. Because of the great difference between the time

scales associated with these two fields, the slow oscillations

of the bubble wall, having frequency x0, xl (x0 	 2xl), will

modulate the scattering imaging wave. Ramble et al.15 have

discovered that there exists a significant difference in the

transient times taken to establish steady-state subharmonic

and fundamental combination frequency signals (the so-

called “ring-up” times). The signal corresponding to the

excitation of the fundamental combinative components

remains constant during the (long) transition period during

which the parametrically unstable surface modes grow to

attain their stationary amplitudes. This indicates that the

interaction with the surface modes does not change the

amplitude of the radial pulsations and causes only a phase

shift.

To take a deeper view at the manifestations of the

derived solution, one needs to consider an approach based

on the use of partial wave scattering functions,

sl ¼ expðglÞ; gl ¼ dl þ icl,
53,54 in terms of which the scatter-

ing amplitude is expressed (here l denotes the index of the

spherical harmonic in the expansion of the scattering ampli-

tude). Consider Eq. (28b) of Ref. 53, where the left-hand

side (LHS) are terms in the standard standing-wave radiation

force series while the RHS shows that the effect of modal

damping (gamma) is not limited to that specific mode: thus,

for example, the combined damping of the l¼ 0 and l¼ 1

modes (monopole and dipole modes) alter the radiation force

contribution of the l¼ 0 mode. As an illustration of this

approach, we evaluated the s-partial wave scattering func-

tion.50 However, since only the first term l¼ 0 of this expan-

sion (s-scattering) is taken into account in this paper, the

simplifications that this approach provides will be used in

the subsequent development of the results presented: this is

relevant for a more complex structure of the external field,

beyond the resonance condition of the driving field and for

the bubble located close to the boundary where there is an

effective coupling between monopole and higher multipole

modes.53,54

IV. DISCUSSIONS

The influence of the bubble dynamics above the thresh-

old of parametric instability on the magnitude and direction

of the radiation force [Eq. (7)] depends on two factors: Vm

and sin aV . As shown above, the first difference in the behav-

ior of the radiation force above the threshold (compared to

its behavior below the threshold) is that the amplitude of vol-

ume oscillations, Vm, ceases to increase linearly with

increasing amplitude of the acoustic wave and has a constant

value.

Let us describe the impact of the second factor, sin aV ,

that can be presented in the following form:

sinaV

¼ sin /2þp=2�DP

Pth

cot /1þ/2ð Þ
� �

¼ 1ffiffiffiffiffiffi
D0

p x0�xð Þþc0

DP

Pth

x�x0ð Þclþ x=2�xlð Þc0

c0cl� x�x0ð Þ x=2�xlð Þ

" #
:

(22)

Below the threshold, the direction of radiation force is

toward the nearest pressure antinode, if the bubble is driven

below the resonance x < x0, and toward a pressure node, if

driven above resonance x > x0. In order to assess the influ-

ence of the correction term [the second term in Eq. (22)]

above the threshold, we note that the denominator of this

expression can vanish at x ¼ x6,

x6 ¼ xl þ x0=26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl � x0=2Þ2 þ 2c0cl

q
: (23)

The fixed points of the dynamic system [Eq. (10)] are critical

when the control parameters take the values x ¼ x6; P
¼ Pthðx6Þ (neglecting the interaction in resonant triads).
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Here the confluence of all fixed points of this system takes

place.22 In the vicinity of these states the proposed approach

is not applicable, and one should take into account the non-

linear terms of higher order. The considered approach will

be valid for the frequency interval, located not too close to

the critical values xþ > x > x�. In this region, the denomi-

nator has a positive value. The numerator of the correction

term vanishes at x ¼ x� ¼ ðx0cl þ xlc0Þðcl þ c0=2Þ�1
. If

x0 ¼ 2xl, the reversal of the force direction (from attractive

to repulsive and vice versa) occurs at exactly the same

frequency at which it takes place below the threshold

x ¼ x0. If x0 > 2xl, the change in the sign of the radiation

force occurs at a greater frequency than x0, and for x0

< 2xl the change occurs at lower frequency than x0.

For a fixed frequency, the variation of the radiation

force when one ignores the influence of the surface modes

can be presented in the following form: Fð0Þz ¼ Fth
z ½1

þðDP=PthÞ�2 	 Fth
z ½1þ 2ðDP=PthÞ�, where Fth

z is the value

of the force at the threshold. Comparing this expression with

the exact equation for the radiation force

Fz ¼ Fth
z 1þ DP

Pth

� �� �
sin aV

sin ath
V

¼ Fth
z 1þ DP

Pth

1þ c0

x0 � x

x� x0ð Þcl þ x=2� xlð Þc0

c0cl � x� x0ð Þ x=2� xlð Þ

 !" #
; (24)

one can see that, for x0 ¼ 2xl, accounting for the influence

of the surface modes leads to a decrease in the magnitude

of the force Fz ¼ Fth
z f1þ ðDP=PthÞ½1� c0ðcl þ c0=2Þ½c0cl

�ðx� x0Þðx=2� xlÞ��1�g in the entire frequency interval

x� < x < xþ. For x0 < 2xl (or x0 > 2xl), the change in

the sign of the force occurs at frequencies that do not coin-

cide with x0. In the vicinity of these frequencies, the force

can be less than in the hypothetical case, but the com-

parison itself does not make sense in these frequency

domains.

Unfortunately there is currently no complete understand-

ing of the implementation of various structures on the surface

of the bubble. Only a few types of possible patterns have been

observed at the specific values of the defining parame-

ters.17,55–57 The roll patterns were observed by Birkin et al.56

at the pressure amplitude of 24 Pa (zero-to-peak). The mean

radius of the bubble was approximately 2.1 mm and the driv-

ing field had a frequency of 1.500 kHz. The bubble was not in

an infinite body of liquid, as the above theory assumes, but

held under and against the end of a 6 mm diameter glass rod,

which contained a small concave dimple to keep the bubble in

place, which can in principle affect the bubble dynamics.24 For

this case, the characteristics of the bubble dynamics can be

evaluated for the following values of the determining parame-

ters: c ¼ 1:4 (polytropic exponent: air), r ¼ 7:2� 10�2 N m–1

(surface tension: clean aqueous solution of salts in air, 20 C),

P0 ¼ 105 Pa (ambient pressure), q0 ¼ 988 kg m�3 (equilib-

rium density liquid: water), c ¼ 1484 m s–1 (speed of sound in

the liquid: water), � ¼ 10�6 m2 s�1 (kinematic viscosity liquid:

water), D ¼ 2� 10�5 m2 s�1 (thermal diffusivity: air).

The frequency of monopole pulsations x0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cðP1 þ 2r=R0Þðq0R2

0Þ
�1

q
is set to x0=2p ¼ f0 ¼ 1563

Hz. The condition of the parametric resonance x0 	 2xl

is satisfied for l¼ 14 mode: xl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðlþ 1Þðlþ 2Þðl� 1Þðq0R3

0Þ
�1

q
; x14=2p ¼ f14 ¼ 789 Hz.

For comparison, the natural frequency of the nearest mode

equals x13=2p ¼ 709 Hz. The damping factor for the breathing

mode c0 ¼ x2R0=2c þ ð2�=R2
0Þ þ 3ðc � 1Þðx0=2R0ÞðD=

2xÞ1=2
is the sum of radiation damping, viscous damping,

and damping owing to thermal diffusion, as estimated by a

linear analysis. This factor is set to c0 ¼ ð94:27þ 0:45

þ 91:39Þ ¼ 186:11 s�1. The viscous damping of the lth
distortion mode, as estimated by a linear analysis, cl ¼ ðl
þ2Þ ð2lþ 1Þ�=R2

0, is set to c14 ¼ 105:21 s�1.

Figure 2 illustrates the excitation threshold for the gener-

ation of the l¼ 14 surface mode on the bubble wall and the

location of the characteristic frequencies: f�, f0, 2f14, and fþ.

The most likely candidate explanation for the discrepancy

between this and the results of a laboratory experiment56 (rolls

pattern observed under driving with frequency of 1500 Hz

and an amplitude of the acoustic signal 24 Pa) is the fact that

the bubble was not free in the discussed experiment—the

glass rod prevented its buoyant rise. The natural frequency of

FIG. 2. (Color online) The control space for the acoustic pressure amplitude

(Pm) and frequency (f ¼ x=2p) of the pump field, as relating to an air bub-

ble of equilibrium radius 2.1 mm in water under 1 atm. The threshold curve

for parametrically driven shape oscillations (l¼ 14, dashed curve) is shown.

A horizontal line indicates a minimum of the threshold (minPth¼ 26.2 Pa).

Location of the characteristic frequencies illustrates the closeness of para-

metric resonance f0 	 2f14 and the range of applicability of the current

approach f� < f < fþ.
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the tethered bubble is lower than that of a free bubble.58

Moreover, the acoustic pressure near the rigid wall (glass) is

higher than that measured by a hydrophone in the volume of

liquid before insertion of the glass rod.

The behavior of the normalized volume amplitude,

Vm=V0, and sin aV versus frequency, f ¼ x=2p, and pressure

acting at the place of location of the bubble, Pm

¼ q0xum cosðkdÞ are illustrated in Figs. 3(a) and 3(b). The

presence of the threshold appears as a break (a discontinuity

in gradient indicated by a white line) on the surfaces shown

in Figs. 3(a) and 3(b). The dashed line at panel (b) shows the

contour where sin aV vanishes. The radiation force changes

its sign at the corresponding values of the determining

parameters f ¼ x=2p and Pm. Since for the case considered

here we know that x0 < 2x14 (1563 < 2� 789), the fre-

quency at which the sign changes decreases as the driving

pressure increases above the threshold.

In the current study we have restricted ourselves to con-

sideration of the simplest pattern which can be generated on

the bubble wall (rolls). Extrapolation from these findings to

the circumstances in which other patterns occur requires

cumbersome calculations. The form of the surface wave is

important for a number of areas (e.g., the changes made dur-

ing electrodeposition when bubbles with acoustically-

activated surface waves are present on the electrode59).

However this paper also focuses on the effect these surface

waves have on the radiation force that determines the bub-

ble’s location. Acoustic fields have been used to levitate

bubbles for decades.3,60–63 However the empirical observa-

tion that the bubble can “dance” and “shimmer”64,65 can be

approached by understanding the effect that surface waves

have on the radiation force. Because of this, and the applica-

tions that are facilitated by being able to use radiation forces

to direct a bubble to a target area where the surface waves

can perform a useful task (such as cleaning in crevices66), it

is important to evaluate the static acoustic radiation tor-

que67,68 on a parametrically distorted bubble (see the supple-

mentary material50).

A review of existing experiments (see the supplemen-

tary material50) has not identified any experimental setup

from the past when observations were taken under condi-

tions, where variations in the strength of the radiation pres-

sure above the threshold for parametric instability could

occur. From our point of view, it is very easy to check the

existence of these variations in determining the levitation

position of the bubble in the conditions of the experiment

described by Crum and Prosperetti,69 but using plain water

instead of glycerol solution.

In an acoustic standing wave, bubbles can be levitated

against the gravitation force of buoyancy by Bjerknes forces.

Measurements of the pulsation amplitude of an individual

gas bubble were made by acoustically levitating the air bub-

ble near an antinode of an acoustic stationary wave.61,69 A

bubble can be stably levitated if the Bjerknes and average

buoyancy forces are equal. Thus,

q0g

T

ðT

0

VðtÞdt 	 q0gV0 ¼ ð1=2ÞkPmVm sin aV sinð2kdÞ:

(25)

A simple expression for the equilibrium levitation position

of the bubble can be obtained provided one assumes the bub-

ble is near the pressure antinode which usually implies that

the size of the bubble is smaller than resonance. Under such

circumstances, sinðkdÞ 	 kd and

d ¼ 2q0gV0

k2PmVm sin aV
: (26)

For small driving pressures, the equilibrium position of the

bubble is nearly inversely related to the square of drive pres-

sure. However, as the driving pressures increased above the

threshold for instability of the first distortion mode, the slope

of the curve dðPmÞ will be changed according to the results

presented in the current paper. Moreover, as soon as the

amplitude of the external oscillating pressure exceeds the

threshold for the excitation of the surface mode that has a

FIG. 3. (Color online) A surface plot of the normalized amplitude of the vol-

ume oscillations, Vm=V0, (a). The two horizontal axes represent frequency, f,
and the amplitude of the external pressure field, Pm, acting in the place of

bubble location. The variation of sin aV determining the direction of the

radiation force is shown at panel (b). The dashed line illustrates the location

of the contour where radiation force changes its direction.
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driving pressure threshold that is higher than, but closest to,

that of the Faraday wave mode (this is usually the one that

has a mode number that is one integer higher than the mode

number of the Faraday wave), it will become difficult to

determine the levitation position since the bubbles demon-

strate the erratic “dancing” motion. This translation instabil-

ity is caused by shape oscillations.

V. CONCLUSION

The variations in the acoustic radiation pressure exerted

by a standing sound wave on a gas bubble above the thresh-

old for the generation of surface modes have been studied

theoretically. In the framework of a simple model, we were

able to reveal how the nonlinear interactions between breath-

ing and distortion modes affect the magnitude and direction

of the radiation force. It has been shown that the growth of

the radiation force with increasing amplitude of the acoustic

wave above the threshold slows down and the frequency at

which this force changes its sign is shifted.
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