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Abstract. An air bubble driven by ultrasound can become shape-unstable through a parametric
instability. Above the critical driven pressure threshold for shape oscillations, which is minimal at
the resonance of the breathing (radial) mode, regular patterns of surface waves are observed on the
bubble wall. The existing theoretical models for bubble dynamics cannot explain the selection in
the growth of the initial �uctuation distortions and the conditions for the realization of different
shape structures. The proposed explanation is based on the consideration of a three-wave resonant
interaction between the distortion modes. Corrections to the dynamical equations have been derived.
Steady-state solutions of these equations describe the formation of a regular structure. A basic
feature of pattern formation, which is applicable for the interpretation of preferred patterns of
parametrically unstable Faraday ripples on the sphere, is that these structures have symmetry of
point subgroups including the symmetries of Platonic solids. Our predictions are con�rmed by
images of patterns observed on the bubble wall.
Keywords: Bubble, Faraday ripples, symmetry breaking, pattern formation
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INTRODUCTION

The shape taken by an unstable �uid-�uid interface (liquid drops in liquids or gases,
bubbles, interfaces between �uid layers) often exhibits sudden growth after threshold
conditions are exceeded, and has a tendency to chaotic behaviour. This report addresses
how this process results in the choice of a �nal stable shape. The predictions are tested
against data obtained from air bubbles in water.
If a gas bubble of radius R0 in a liquid of sound speed c is driven by an acoustic

wave of low ’pump’ frequency ω (such that ωR0/c << 1), then, at all amplitudes of
that driving wave, the bubble undergoes spherically symmetric wall oscillation (i.e. a
breathing mode pulsation). However, if the amplitude of the driving waves exceeds a
well-de�ned threshold, then the nonlinear response of the gas bubble results in para-
metrically generated shape oscillations, superimposed upon the pulsation. The surface
mode parametrically excited will be the one whose own natural frequency ωl (where l
is the order of the distortion mode) is closest to the subharmonic of the pump frequency,
i.e. the mode for which ωl ≈ ω/2. The driving acoustic pressure which excites a sur-
face mode will have a minimum at a frequency close to the breathing mode resonance
ω ∼ ω0 (where ω0(R0) is the natural frequency of the breathing mode).
Experimental observations of patterns on the bubble wall have been reported in
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a number of publications (see review [1]), but elucidating the mechanisms for their
realization is still an unsolved problem. However, an approach for Faraday waves on
a plane surface has been derived [2]. The key element for the formation of a regular
pattern in the parametrically excited Faraday ripples is a three-wave resonant interaction
between the ripples. In this report, we present a systematic account of this three-wave
resonant interaction between the distortion modes [3].

AMPLITUDE EQUATIONS

To account for the three-wave resonant interaction of distortion modes, we use the
Hamiltonian formulation of the nonlinear bubble dynamics [4]. The slowly varying
complex amplitudes of the breathing and distortion modes satisfy the equations similar
to ones derived by [5], with accounting for the resonant triad interaction.
The occurrence of the three-wave resonance ωl1 +ωl2 ≈ ωl3 can be easily realized for

l>> 1, to give n′ ≈ 41/3l. For simplicity, we shall account for only one triad, speci�cally
the one which is nearest to the resonance condition.
The actual parametric instability occurs when one of the eigenvalues of the linear sta-

bility analysis [5] passes through zero at the threshold. If the conditions are suf�ciently
close to the threshold of this instability we can further reduce the description by eliminat-
ing “fast” variables [2]. The breathing mode and the high frequency (stable) distortion
mode n′ are fast phased to draw energy from the pumping and unstable modes l. The
linear combination of the amplitudes corresponding to the nonzero eigenvalue is also
fast. Thus, near the threshold it is possible to rewrite dynamical equations in terms of
the slowly varying standing-wave amplitude Blm corresponding to the zero eigenvalue.
This yields [3]
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The explicite form of constants Γn′ and Γ0 is given in [3] and the average of the spherical
harmonics over the sphere has been expressed in terms of the Wigner’s 3j-symbols.
Equation (1) is of gradient form and thus is covariant (i.e. it has the same structure/form
in different coordinate systems). Though obtained for the bubble parametric instability,
it has a general form describing bifurcation from spherical symmetry and can arise
naturally in a large number of physical (and even biological) applications.

SOLUTIONS

A basic feature of the non-equilibrium phase transition is the spontaneous breakdown
of symmetry: as the control parameter is changed, the stable steady state of the system,
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FIGURE 1. View from below an air bubble (a), restrained against buoyant rise by a glass rod, visible
as the white circle ”behind” the bubble (scale bar: 2mm). The bubble (of radius ∼2.5 mm) was driven
at 1.297 kHz, with 83.5 Pa zero-to-peak acoustic pressure amplitude. The bubble shape corresponding to
square pattern for these experimental conditions is shown in 2D projections: (b) - a view from below, (c)
- a top view, (d) - a side view. Image from reference [6]. Photographs taken by P. Birkin and Y. Watson.

which is invariant under a symmetry group G, loses its stability and a new steady state
appears which is invariant only under a subgroup of G. The set of Blm forms the multi-
component order parameter for the transition corresponding to the broken spherical
symmetry. The number of components of the order parameter 2l + 1 is given by the
dimension of the irreducible representation of the symmetry group. Thus, an important
property of system (1) is that it is equivariant under the action of the original symmetry
group of the sphere O(3). O(n) notation is used for the orthogonal group of degree
n; O(3) is the group of 3× 3 orthogonal matrices with the group operation of matrix
multiplication.
The symmetry of the preferred pattern is that for which the Lyapunov functional

F = −λ I20 (l) + Γ0I40 (l) + Γn′I4n′(l) is lowest [2, 3]. Apart from the trivial solution of
Blm = 0 for m= 0,1,2, ...l, there is a family of solutions differing in the total number of
standing wavesN for which Blm �= 0. ForN= 1, there is only one standing wave Blm. The
deepest minimum of the Lyapunov function is achieved at m = l. By analogy with the
structures formed by standing waves on a plane surface it is reasonable to name this type
of pattern as “rolls”. The isotropy group of this solution is Dlh of order 4l – prismatic
symmetry. It has l-fold rotational symmetry, the 2-fold rotation axes perpendicular to
the primary rotation axis and horizontal re�ection plane.
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For patterns formed by two standing waves N = 2 it is reasonable to assume that one
of the partners in the formation of these structures will be mode m1 = l, since its self-
interaction is negligibly small. The system tries to avoid the modes that participate in a
triad resonant interaction. The �nal step requires numerical evaluation of the Wigner’s
3j-symbols and we have done this for the particular cases corresponding to the speci�c
patterns observed by [6, 7]. For an l = 15 mode unstable on the wall of the bubble (of
radius ∼2.5 mm) which was driven at 1.297 kHz, with 83.5 Pa acoustic pressure, the
most effective resonant triad is formed with the n′ = 24 mode. Calculations demonstrate
that the deepest minimum of the Lyapunov function is realized for m2 = 0. By analogy
with the structures formed by orthogonal standing waves on a plane surface it is rea-
sonable to name this type of pattern as “squares”. Figure 1 illustrates the shape of this
“square” pattern. The isotropy group of this solution is Clv of order 2l which has pyra-
midal symmetry: it has l-fold rotational symmetry and a set of l mirror planes containing
the axis. Finally, the pattern observed by [7] for an l = 4 mode has the symmetry of the
orthohedron.
The derivation of angular dependence of scattering amplitude for combination com-

ponents in the method of two frequency insoni�cation, when the applied sound �eld
contains two frequencies: one an imaging signal at ωi which is set much higher than
the resonant frequencies of any bubbles; and the other, the pump signal ωp, tuned to
the resonance frequencies is the �nal subject of this report. This provides prediction of
the intensity of the combinative components for for typical structures corresponding to
"rolls", "squares" and polyhedral patterns observed on the bubble wall.

CONCLUSIONS

To summarize, we have developed an asymptotic weak nonlinear theory (based on the
third-order Hamiltonian) for pattern formation on a bubble wall driven near threshold
by an acoustic �eld. The simplest solutions of the derived equations can explain the
experimentally observed structures: rolls, squares, and octahedrons.
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