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A free-Lagrange numerical method is implemented to simulate the axisymmetric
jetting collapse of air bubbles in water. This is performed for both lithotripter
shock-induced collapses of initially stable bubbles, and for free-running cases where
the bubble initially contains an overpressure. The code is validated using two test
problems (shock-induced bubble collapse using a step shock, and shock–water column
interaction) and the results are compared to numerical and experimental results. For
the free-running cases, simulations are conducted for a bubble of initial radius
0.3 mm located near a rigid boundary and near an aluminium layer (planar and
notched surfaces). The simulations suggest that the boundary and its distance from
the bubble influence the flow dynamics, inducing bubble elongation and jetting. They
also indicate stress concentration in the aluminium and the likelihood of aluminium
deformation associated with bubble collapse events. For the shock-induced collapse,
a lithotripter shock, consisting of 56 MPa compressive and −10 MPa tensile waves,
interacts with a bubble of initial radius 0.04 mm located in a free field (case 1) and
near a rigid boundary (case 2). The interaction of the shock with the bubble causes
it to involute and a liquid jet is formed that achieves a velocity exceeding 1.2 km s−1

for case 1 and 2.6 km s−1 for case 2. The impact of the jet on the downstream wall
of the bubble generates a blast wave with peak overpressure exceeding 1 GPa and
1.75 GPa for cases 1 and 2, respectively. The results show that the simulation technique
retains sharply resolved gas/liquid interfaces regardless of the degree of geometric
deformation, and reveal details of the dynamics of bubble collapse. The effects of com-
pressibility are included for both liquid and gas phases, whereas stress distributions
can be predicted within elastic–plastic solid surfaces (both planar and notched) in
proximity to cavitation events. There is a movie with the online version of the paper.

1. Introduction
Cavitation bubble collapse has been associated with erosion for nearly 100 years, the

main mechanisms being liquid impact as the bubble involutes to form a jet (Plesset &
Prosperetti 1977), and the effect of pressure waves which radiate out from the bubble
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(Rayleigh 1917) and can concentrate as a result of cloud effects (Brunton 1967; Vyas &
Preece 1976; Hansson, Kendrinskii & Mørch 1982). Experimental work has progressed
to the stage where bubble involutions can be filmed at framing rates of several
thousand to 100 million frames per second (Lauterborn 1972; Vogel, Lauterborn &
Timm 1989; Field 1991; Ohl et al. 1999; Lindau & Lauterborn 2003). The recent
experiments performed by Lindau & Lauterborn (2003) are particularly impressive;
they observed the bubble jetting, shock wave emissions and the phenomenon of
counterjet formation with the observation taken mainly at an oblique angle of 45◦

as well as from the bottom view through the cuvette wall. Limitations of current
numerical models, however, place them some distance from the experimental scenario.

Perhaps the most widely reported numerical method used for treating asymmetrical
bubble collapse has been the boundary integral method (BIM) (see for example Blake
et al. 1997; Fong et al. 2006; Klaseboer et al. 2006; Turangan et al. 2006). However, the
model assumes that the liquid phase is incompressible, and that the scalar properties
of the gas are spatially uniform. The method is therefore limited in situations in which
shock waves play a key role within both phases, such as extracorporeal shock wave
lithotripsy (ESWL). Shock wave lithotripsy is a treatment for patients suffering renal,
ureteric, salivary duct and gall stone disease where shock waves generated outside the
patient’s body are used to break the stone to fragments small enough to be passed
naturally from the body during urination or dissolved by drugs.

Other numerical methods have also been applied to study cavitation problems. The
arbitrary Lagrangian Eulerian (ALE) simulations of Ding & Gracewski (1996) are
discussed in § 3. Bourne & Milne (2003) have used a two-dimensional multi-material
method to simulate the collapse of cylindrical gas cavities in liquid explosives by strong
shock waves. Their simulations incorporate dissociation of the compression-heated
cavity gas, and Arrhenius chemistry in the liquid.

In the present work, a free-Lagrange numerical method has been used to simulate
axisymmetric bubble collapses, both free-running (i.e. following expansion as a result
of an initial gas overpressure), and lithotripter shock-induced collapses of initially
stable bubbles. The lithotripter simulations were undertaken to support the design
of a device that is currently undergoing clinical trials (Leighton et al. 2008). For
the free-running cases, new simulation results presented here also include bubble
collapses close to metal surfaces in which the stress distribution and the likelihood
of deformation within the metal have been predicted. There is interest in these
cases because of various experiments to study the mechanisms of material damage
associated with cavitation erosion (e.g. Tomita & Shima 1986; Dear & Field 1988a;
Philipp & Lauterborn 1998).

2. Free-Lagrange numerical method
The Vucalm free-Lagrange numerical method introduced in two-dimensional form

by Ball (1996) solves the unsteady compressible Euler equations on an unstructured
Lagrangian finite-volume mesh. For the work in this paper, the axisymmetric form of
the code (Turangan 2004) has been developed and implemented. The flow solver is
based on a Godunov approach with nominal second-order accuracy in space, and first-
order in time. In contrast to conventional Lagrangian codes, in free-Lagrange schemes
the mesh connectivity is allowed to change freely in response to flow deformation.
As a consequence, the mesh is immune to tangling, regardless of the degree of
flow distortion. Furthermore, the absence of convective inter-cell fluxes results in
minimal numerical diffusion of convected flow structures, so that features such as
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Figure 1. (a) Typical Voronoi mesh used in Vucalm simulations. The dots indicate the
cell centre coordinates, and each cell represents a single fluid type. (b) Riemann solvers
(Godunov-type) compute the numerical fluxes (velocity u∗, pressure p∗) across cell boundaries
between the target and neighbour cells to update the values of density ρ, velocities (u, v),
pressure p and temperature T . (c) If the cell represents material with strength, edge-oriented
normal stress (snn) and shear stress (stt ) are computed to update the deviatoric stresses in the
x-direction (sxx) and in the radial r-direction (srr ) (see § 4.2).

material interfaces remain sharply resolved at all times. These characteristics make
free-Lagrange schemes well suited to cavitation simulation, in which highly deformed
gas/liquid interfaces must be accurately captured.

The computational mesh in Vucalm simulations is of Voronoi type (figure 1) (for
details see Ball 1996; Howell & Ball 2002). The code makes use of an adaptive
mesh technique where each of the coarse fluid cells in the computational domain will
automatically be identified and split into two fluid cells of identical properties, but
with half the mass and volume (‘refinement’ procedure). In contrast, the regions with
excessive cell density will also be identified, in which adjacent pairs of fluid particles
of the same type are merged together (‘derefinement’ procedure). The Vucalm code
also uses an interface smoothing algorithm (Howell & Ball 2000), a form of artificial
surface tension, to remove the mesh-seeded Richtmyer–Meshkov instability associated
with free-Lagrange schemes. The code has been used previously to simulate the shock-
induced collapse of cylindrical cavities in water (Ball et al. 2000), while the addition
of a strength model has facilitated the representation of elastic–plastic solids in high
and hypervelocity impact problems (Howell & Ball 2002).

3. Free-Lagrange code validation
Validation of the free-Lagrange code, Vucalm, is presented here for multi-phase flow

problems in axisymmetric and planar two-dimensional geometries. The test problems
are: (a) shock-induced collapse of a spherical air bubble by a planar step shock (with
validation against the alternative numerical approach of Ding & Gracewski (1996));
and (b) the interaction of a shock with a water column (with validation against the
experiment of Igra & Takayama (1999)).

3.1. Shock-induced bubble collapse

Ding & Gracewski (1996) performed arbitrary Lagrangian Eulerian (ALE) simula-
tions of axisymmetric inviscid compressible flow for air bubble/shock interactions
with both weak shocks (P < 30 MPa) and strong shocks (0.5 <P < 2.0 GPa), where P

is the post-shock pressure. The shock wave is of a step shock type. The computational
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Figure 2. (a) The geometry of the axisymmetric Ding & Gracewski problem (figure not to
scale). A planar step shock propagates from the left and hits an air bubble with initial radius
R0. (b) Initial computational cell distribution inside and in the vicinity of the bubble.

domain is shown in figure 2. Ding & Gracewski (1996) simulated nine case studies,
but owing to space constraints we publish a comparison with only one of those
cases, i.e. the case with the initial bubble radius R0 = 1 mm and post-shock pressure
P = 0.528 GPa. All elapsed times are measured from the first shock/bubble contact.

To discretize the domain, Ding & Gracewski (1996) used 1.28 × 104 non-uniform
rectangular cells, in which 64 cells represented the bubble for the case studied here.
In our free-Lagrange simulation, approximately 1.9 × 104 polygonal cells are used in
the initial unperturbed domain with about 980 cells representing the bubble. From
a preliminary study using various numbers of cells (results not shown here), coupled
with the use of adaptive mesh ‘refinement’ and ‘derefinement’ procedures, we found
that this number of cells used in our free-Lagrange simulation is economical and
yet enough to capture the jetting collapse and blast wave emission phenomena of
shock-induced bubble collapse.

In the free-Lagrange simulation, boundary conditions on the left-hand boundary
are initially fixed at post-shock values in order to generate the incoming shock wave.
However, from time t = 1.5 µs, non-reflecting boundary conditions are applied in order
to allow the escape of left-running waves. The upper and right-hand boundaries are
non-reflecting at all times. The Tait equation of state (EOS) is used for water, and
the ideal gas EOS for air.

Referring to figure 3, as the incident water shock labelled by A strikes the upstream
bubble wall, a relatively weak shock is transmitted into the air cavity B, and a strong
expansion wave is produced in the water, running upwards and leftwards, C. The
particle velocity behind the expansion wave is large, causing the upstream bubble wall
to deform, D. Figures 3(a) and 3(b) show Mach contours for the numerical results
using ALE and free-Lagrange methods, respectively. Although the two simulations
are generally in good agreement, there are minor discrepancies. In particular, the
ALE simulation shows localized unphysical behaviour in that the air shock develops
a numerical precursor, E, at the bubble boundary which advances ahead of the
incident shock, F. Shock resolution is generally better in the free-Lagrange result,
particularly within the bubble where compression of the Lagrangian mesh provides a
finer mesh resolution.

A distinct water jet moving downstream along the axis of symmetry is formed as
a result of the spatially non-uniform deformation of the bubble wall. At t = 1.6 µs,
the bubble upstream wall that forms the jet tip has penetrated the bubble, isolating a
lobe of trapped and highly compressed gas which forms a toroid in three dimensions
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Figure 3. Plots of Mach contours. A bubble of R0 = 1 mm is collapsed by a P = 0.528 GPa
shock. Comparison between (a) Ding & Gracewski (1996), and (b) Vucalm. Labels A–F are
described in the text. (i) t = 0.4 µs, (ii) 0.8 µs, (iii) 1.6 µs.

(figure 3b(iii)). The jet velocity reaches its highest value near the time that the liquid jet
impacts on the downstream bubble wall; ALE: 2200 m s−1, free-Lagrange: 2250 m s−1.
Ding & Gracewski (1996) reported that their ALE calculation was halted at jet impact
owing to deteriorating mesh structure in the bubble, leading to an unacceptably small
time step. In our work, a ‘derefinement’ procedure automatically identifies and merges
adjacent pairs of fluid particles (of the same fluid type) in regions of excessive mesh
density and allows the simulation to run beyond jet impact, while maintaining an
acceptable time step (figure 4).

The liquid jet impact on the downstream bubble wall produces an intense blast
wave in the surrounding water with an initial peak overpressure exceeding 3.5 GPa.
The nature of the simulation confers axis-symmetric symmetry to the predicted blast
wave (figure 4a). The wave advances relatively slowly to the left because of the high
velocity of the liquid jet. At t = 4.65 µs (figure 4b), the cavity is drawn into a vortex
flow, created from the interaction of the high-velocity liquid jet and the relatively
static surrounding fluid. Note that the greatest pressure attained during the collapse
modelled in figures 3 and 4 occurs in figure 4, after the incompressible code ceases to
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Figure 4. Close-up views of the bubble collapse event beyond the high-speed jet impact
that occurs at t = 1.6 µs. The impact generates an intense blast wave, B, and the bubble
turns into a toroid that interacts with the blast wave as seen in (b). Contours are pressure:
�Pwater = 0.1 GPa, �Pair = 0.050GPa. (a) t = 4.58 µs, (b) 4.65 µs.

be able accurately to predict the pressures in the liquid. This illustrates the importance
of using a compressible code when assessing, for example, the acoustic emissions or
potential for damage associated with such collapses.

Dear & Field (1988b) monitored the collapse of a two-dimensional cavity
(R0 = 1.5 mm) in liquid gelatine induced by a 0.26 GPa shock. Their experiment
also showed that the high-speed jet forms a cusp-shaped tip when it penetrates the
bubble. Although the phenomenon of luminescence is not shown in the free-Lagrange
simulation presented here, the highly compressed gas in the bubble fragments
produced following the jet impact is likely to luminesce. Such luminescence was
observed using image intensification of the jetting collapse of air disks in gel by Dear,
Field & Walton (1988) and Bourne & Field (1991).

The interaction of a spherical bubble (R0 = 1 mm) with a 0.528 GPa shock was
also simulated by Klaseboer et al. (2006) using the boundary integral method (BIM)
where the liquid phase was assumed to be incompressible and the shock wave was
modelled as a step pulse function incorporated in the Bernoulli equation. Although
liquid compressibility effects were overlooked, the simulation captures a similar bubble
shape during collapse, and both the collapse time and high-speed jet velocity are in
good agreement with those of the ALE results of Ding & Gracewski (1996), and with
the free-Lagrange results presented in this paper. However, only the free-Lagrange
simulations presented here continue to model beyond the high-speed jet impact.

3.2. Interaction of an air shock with a water column

Further validation of the Vucalm code was obtained from the experimental
interferograms of Igra & Takayama (1999). They investigated the deformation and
breakup of a cylindrical water column on shock-wave loading. Figure 5 shows the
problem geometry. A cylindrical water column with an initial diameter of 6 mm in
air is exposed to a planar shock wave of Mach number M =1.47. The computational
domain is discretized using about 3.1 × 104 polygonal cells. For computational
convenience, the structure of the cell distribution inside and near the water column in
the initial unperturbed domain is as illustrated in figure 5(b). However, in the region
far from the water column, the cells are rectangular, and the cell density (number of
cells per unit area) is less than in the region near the water column.
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Figure 5. (a) The geometry of the two-dimensional Igra & Takayama validation problem
(figure not to scale). A planar shock propagates from the left and interacts with a water
column of 6 mm diameter. (b) Initial computational cell distribution inside and in the vicinity
of the water column.
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Figure 6. Interferogram images. Comparison between (a) Igra & Takayama (1999) and
(b) Vucalm for the interaction of a shock wave with a water column, 53 µs after shock impact.
Labels A–G are described in the text.

Figure 6(a) shows a double exposure holographic interferogram taken from the
experiment, while figure 6(b) is a numerical interferogram generated from Vucalm
data. The dark ring seen on the interferogram of figure 6(a) indicates the wetted area
where the water column contacted a glass surface. The incident shock wave (labelled
A) has traversed the water column. The comparison between the two interferogram
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Figure 7. (a) Schematic of the computational domain of an initially spherical air bubble with
R0 = 0.3 mm near a rigid boundary in water (figure not to scale). (b) Initial cell distribution
inside and in the vicinity of the bubble.

Case Initial distance d (mm) Rm (mm) Stand-off parameter ξ

a 1.44 1.79 0.8
b 2.14 1.80 1.2
c 2.88 1.81 1.6

Table 1. Three cases simulated for bubble expansion and collapse near a rigid boundary.

images shows that the general fringe pattern in air agrees well. In particular, it
correctly predicts both the vortex structure C on the downstream side of the column,
and the form and position of the fringe B that extends from the upstream of the
water column to the Mach stem. Furthermore, the predicted location of the reflected
wave D, Mach stem E, triple point F and secondary triple point G are in excellent
agreement with experiment.

4. Cavitation bubble collapse
4.1. Collapse near a rigid boundary

Simulations of single cavitation bubbles near a plane rigid boundary for various stand-
off parameters are presented here. The stand-off parameter is defined as ξ = d/Rm,
where d is the initial distance of the bubble centre from the boundary, and Rm is the
bubble maximum radius. The objective is to model the behaviour of a single cavitation
bubble which is initially at higher pressure than its surroundings. In practice,
such bubbles could be created by laser heating, or by an underwater explosion where
the bubbles undergo expansion followed by rapid collapse. Of particular interest are:
to observe the conditions in the early stage of the growth phase and those near the
maximum volume; and any bubble elongation, high-speed liquid jet formation, jet
impact and bubble rebound.

A schematic of the computational domain is shown in figure 7(a). The number of
cells used to discretize the domain is approximately 8.1 × 103, 8.45 × 103 and 8.7 × 103

for cases a, b and c, respectively, as given in table 1, i.e. based on the stand-off
parameter. About 2173 cells of those in the domain are used to represent the bubble.
Thus, the larger the stand-off parameter (the larger the initial distance d), the higher
the number of cells inside the domain. These numbers of cells were chosen following a
grid convergence study, in which three test cases (coarse, intermediate and fine grids)
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Figure 8. Bubbles during expansion with pressure contour plots �P = 1.5 MPa (a, c, e), and
near maximum volume with velocity vectors plotted (b, d , f ) for various ξ . The initial location
of the bubble centre is indicated by a black dot; the black solid line represents the bubble
wall.

based on the stand-off parameter and conditions of case b were run. The number of
cells in coarse, intermediate and fine grids was 6.55 × 103, 8.45 × 103 and 11.06 × 103,
respectively. The intermediate and fine-grid cases produced similar results, including
the plot of bubble volume–time history, which was used as a measure of comparison.
Thus, the intermediate grid structure was adopted for case a and case c simulations.

The initial cell distribution in the domain (figure 7b) is arranged in a ‘circular’
structure throughout the domain and in such a way that the cell density is highest in
the bubble to accommodate the bubble initial expansion. The cell size representing
the water then gradually decreases as the radial distance from the bubble centre
increases. This cell arrangement is adopted because the bubble collapse phenomena
take place inside and near the bubble.

For computational convenience, the top and right-hand boundaries are reflecting
boundaries, and a pressure recording point is located at the intersection of the rigid
boundary and the axis of symmetry. The initial pressure and temperature of the
bubble, which is modelled to contain air, are 81.06 MPa and 1252 K, respectively. The
initial pressure, temperature and density of the water are, respectively, 101.325 kPa,
288.15 K and 1000 kgm−3. The initial radius of the bubble is 0.3 mm. Three cases have
been simulated based on the initial distance d of the bubble centre from the rigid
boundary (table 1). As the bubble is not truly spherical when it reaches its maximum
volume, Rm is taken as the radius of a sphere of the same volume.

Following flow initialization, a spherical water shock wave is emitted into the
surrounding water and an expansion wave propagates in air towards the centre of
the bubble as shown in figure 8(a, c, e). After the air shock passes through the bubble
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Figure 9. Plots of bubble wall and velocity vectors. The bubble elongates (a, c, e) and forms
a high-speed jet during the collapse stage (b, d , f ).

centre, it generates an expansion wave which propagates outwards away from it.
On meeting the bubble wall, this outwardly propagating wave inside the bubble
was found to be partly transmitted from the air into the surrounding water, and
partly reflected back into the bubble (this event is not shown here for reasons of
space). The initial water shock is reflected back into the domain from the rigid
boundary on the left-hand side (figure 8a). As ξ increases, the magnitude of the
resulting pressure peak registered at the recording point decreases, i.e. Pmax = 29 MPa
for ξ = 0.8, Pmax = 18 MPa for ξ =1.2 and Pmax = 13 MPa for ξ =1.6.

The bubble evolution for three different ξ (table 1) is shown in figures 8 to 10. The
velocity vector scaling has been selected in each figure to highlight the flow structure,
and is not the same at each stage. In all cases, the bubbles undergo a rapid expansion
in the first 20 µs. The presence of the rigid boundary clearly distorts the flow as it
redirects the water outwards along the rigid boundary, away from the ‘recording
point’. For ξ = 0.8, the bubble is flattened against the boundary at maximum volume
(figure 8b), and as ξ increases, the bubbles expand in a more symmetrical pattern.
In these simulations, bubble maximum volume is reached at around t = 60 µs after
the start of bubble growth. At this time, the bubble has over-expanded owing to the
inertia of the water. The pressure of the air inside the bubble varies spatially between
0.38 bar and 0.48 bar in all cases, and is well below that of the surrounding water.

The velocity vectors in figure 8(b, d, f ) show that at t = 60 µs, the water on the
right-hand side of the bubble has started to accelerate towards the rigid boundary.
This is caused by a local high-pressure region that develops on the right-hand side of
the bubble. Meanwhile, the water layer between the bubble and the rigid boundary
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Figure 10. The high-speed jet is directed towards the rigid boundary and impacts on the
bubble’s opposite wall creating a toroidal bubble. After collapse, the bubble rebounds. The
microbubbles seen in (c) and (d) are resolved over several cells, and resemble bubble fragments
observed experimentally (see text).

continues to flow towards the wall, and then outwards along the rigid boundary. As
the bubble evolution proceeds, the movement of this water layer reverses direction,
as seen in figure 9(c, e).

During the collapse stage, the bubbles elongate. Bubble elongation is a secondary
phenomenon of asymmetrical bubble collapse, which has been claimed by Philipp &
Lauterborn (1998) to enhance cavitation erosion indirectly. Their experimental
observations of the collapse of laser-generated bubbles show that bubble elongation
occurs when 1 <ξ < 2.2. In the current simulations, this event is shown in figure 9(c, e)
where t = 104 µs. To characterize the bubble elongation, an aspect ratio φ, given as
φ = Dx/

3
√

(6V/π), can be calculated, where Dx is the axial diameter of the bubble
and V is the bubble volume, φ = 1 for a spherical bubble and φ > 1 on elongation.
At t = 104 µs, the aspect ratios are 0.907, 1.0497 and 1.0505 for ξ = 0.8, ξ =1.2 and
ξ = 1.6, respectively.

The right-hand bubble wall accelerates and later involutes to form a high-speed
liquid jet, which penetrates the bubble in the direction of the rigid boundary.
Figure 9(b, d, f ) shows high-speed jets penetrating the bubbles at t =124 µs. The
jet eventually impacts on the opposite bubble wall (liquid–liquid impact) and the
event emits a blast wave. The maximum liquid jet velocity is found to increase with
increasing ξ , the jet velocities are 168 m s−1, 198 m s−1 and 224 m s−1 for ξ =0.8, ξ = 1.2
and ξ = 1.6, respectively. Immediately prior to impact, the jet tip is slowed down by
the trapped air layer between the tip and the opposite bubble wall. The simulations
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suggest that, on impact, some of the trapped air is encapsulated in micro-bubbles.
These micro-bubbles, shown in figure 10(c) where bubble fragments are seen as dark
specks located below and to the left of the main bubble after jet impact, are resolved
using several cells. They are eventually scattered by the toroidal flow created by the
momentum of the high-speed jet and their size decreases as they move away from the
axis of symmetry. Although such micro-bubbles were also observed experimentally
by Tomita & Shima (1986), simulations may require much finer cells than are used
in figure 10(c) to represent their size, evolution and existence.

Following the jet impact, the bubbles turn into toroids and the flow creates a ring
vortex (figure 10b–f ). The momentum of the jet causes the bubbles to migrate towards
the rigid boundary. The bubble wall continues to contract until the pressure inside
is much higher than that of the surrounding water, which initiates bubble rebound
(figure 10d, f ). The combined effect of both the high-speed liquid-jet impact and the
bubble rebound are believed to be associated with surface erosion (Shima 1997).

4.2. Collapse near an aluminium layer

Various experimental investigations have explored the growth and collapse of spark-
or laser-generated bubbles in the vicinity of a strong material to study the mechanism
of cavitation erosion (Philipp & Lauterborn 1998; Tomita & Shima 1986). Aluminium
is the most commonly used boundary specimen. Because of aluminium’s low yield
strength, it is easier to observe the indentation caused by the collapse of bubbles
on aluminium than on other materials such as steel or indium. Nevertheless, it is
reported that around 100 laser shots are normally required to produce significant
plastic deformation on an aluminium surface (Philipp & Lauterborn 1998).

In the present work, the simulations are limited to single bubble collapse events
close to aluminium surfaces. The aims are to observe the stress loading in planar
and ‘notched’ aluminium targets during the initial shock loading and blast loading
from the jet impact at which the stresses are maximum. The behaviour of a strong
material under loading is represented using an elastic–perfectly plastic material model,
implemented using the method of radial return (Howell & Ball 2002).

To assess the conditions in which the aluminium model deforms, the yield criterion
in axisymmetric geometry given by the inequality

s2
xx + s2

yy + s2
θθ + 2s2

xy � 2
3
(Y0)

2 (4.1)

is considered, where sxx and syy are the deviatoric normal stresses in the x- and y-
directions, respectively, sθθ is the hoop stress, sxy is the deviatoric shear stress and Y0

is the yield strength of the corresponding material. The deviatoric stress is the stress
associated with the resistance of the material to shear distortion. This inequality is the
von Mises yield condition stated in axisymmetric fixed deviatoric space (Wilkins 1999).
In the scheme employed here, the quantity � =2J2 = s2

xx + s2
yy + s2

θθ +2s2
xy is calculated

to determine the elastic–plastic yield where J2 refers to the second invariant of stress.
The computational domains are illustrated in figure 11. The initial number of

computational cells inside the domain was 1.44 × 104, of which about 5.6 × 103

were assigned as aluminium and the rest as water and air for the bubble. The cell
distribution is similar to that shown in figure 7(b). The initial conditions of the water
and bubble and the initial bubble radius are the same as in the rigid boundary
cases (§ 4.1). The maximum radius is Rm ≈ 1.8mm and ξ = 0.8. For the aluminium,
which is represented by the Osborne equation of state (Howell & Ball 2002), the
initial conditions are: ambient pressure p = 101.325 kPa, density ρ =2785 kgm−3 and
specific internal energy ε =15.84 J kg−1. The shear modulus, µ, and yield strength, Y0,
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Figure 11. Schematic of the computational domains for simulations of an initially spherical
air bubble with R0 = 0.3 mm that expands and collapses near an aluminium layer in water.
d = 1.44 mm (figure not to scale). (a) Planar aluminium; (b) notched aluminium.
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Figure 12. Plots of pressure contours in water, bubble and aluminium with pressure interval
�p = 1 MPa, and stresses σxx and σyy in aluminium in early bubble expansion (t = 1.5 µs).

of the aluminium are 26.5 GPa and 0.3 GPa, respectively. Thus, to undergo yielding,
the value of � of the aluminium should exceed 6 × 1016 Pa2.

Following the start of bubble growth, the shock front that impacts on the aluminium
surface is partly transmitted into the aluminium and is partly reflected back into the
surrounding water. As shown by pressure contours in figure 12(a, b), the wave
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Figure 13. Shading plot of quantity � in aluminium (in Pa2) and pressure (in Pa) elsewhere
at t = 1.5 µs. (a) Planar boundary, (b) notched boundary.

propagation inside the aluminium is faster than in the water. Figure 12(c–f ) depicts
the plots of total stress contours in the x- and y-directions in aluminium (σxx and σyy ,
where e.g. σxx = −p+ sxx) at t =1.5 µs for the two cases simulated here. The geometry
of the notch causes a shock focusing in the water trapped in the notch that gives
rise to steep pressure and total stresses (σxx and σyy) gradients inside the aluminium
along the notch. This also results in the concentration of negative σxx (compression)
and positive σyy (tension) in small regions around the notch tip, as opposed to the
planar aluminium case where the associated regions are wider (figure 12c–f ). In both
cases, however, the shock loading resulting from the flow initialization is not strong
enough to produce plastic deformation in the aluminium.

In figure 13, the shading plots of � in aluminium for the two cases at t =1.5 µs are
compared. In the planar case, moderately high values of � of up to 1.97 × 1014 Pa2

are produced behind the initial shock inside the aluminium layer. In the notch case,
a stress concentration at the tip of the notch creates a localized high � region with
maximum value of 8.4 × 1014 Pa2, which correlates with a high-pressure region in
the water inside the notch. The region in the aluminium with the high value of
� indicates the location with the closest condition to yield. The phenomenon of
stress concentration resulting from shock focusing during bubble collapse has been
investigated experimentally by Dear & Field (1988a).

The evolution of the bubbles in both cases is similar to the rigid boundary cases
previously described. Maximum jet velocities are 168 m s−1 for the planar case and
158 m s−1 for the notched case. For the notched case, the jet impact is slightly delayed
by about 0.5 µs because the left-hand bubble wall is free to deform leftward into the
notch. The late stage of the bubble evolution is depicted in figure 14. Momentum
supply by the jet creates a stagnation point on the aluminium surface near the axis
of symmetry, where upon impact the flow is redirected outwards away from the axis
of symmetry (figure 14a, b).

Figure 15 shows the distribution of � induced by the blast wave following the jet
impact. For clarity, the dynamic ranges of the greyscales used in figure 15 differ from
those used for figure 13. The region with high � value inside the notched aluminium
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Figure 14. Late-stage bubble evolution near planar (a, c) and notched (b, d) aluminium
surfaces. Parts of the bubble fragment to form micro-bubbles following the jet impact. Here
these micro-bubbles are resolved using several to tens of cells depending on their size. (a)
t =134 µs, (b) 134 µs (c) 150 µs, (d) 150 µs.
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Figure 15. Grey-scale plot of � in aluminium (in Pa2) and pressure (in Pa) elsewhere following
jet impact, t = 134 µs. The black dot on the symmetry axis indicates the initial location of the
bubble centre. (a) Planar boundary, (b) notched boundary.

is wider than that in the planar aluminium. In the planar case, however, a region
of high � is also obvious near the bubble roll-up. This location forms a circular
region of high �, which may correspond to the circular indentation pattern observed
experimentally (Philipp & Lauterborn 1998). For the notched aluminium case, the
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Figure 16. Schematic of the lithotripter shock wave–bubble interaction problems (not to
scale). The shock propagates from the left towards the bubble with initial radius R0. For case
1, the bubble is in free field, and for case 2, the bubble is located at a distance d from a rigid
boundary. The domain is initially filled with a total of 4 × 104 cells for the free-field case and
3.5 × 104 cells for the rigid-boundary case, respectively. The cell distribution is similar to that
in figure 2(b), but with a finer mesh in the water surrounding the bubble. A typical animation
for a lithotripter-induced bubble collapse (based on the free field case modelled by Jamaluddin
et al. 2002) is available with the online version of this paper.

location of high � concentrates around the tip of the notch as shown in figure 15(b).
Although in these simulations the aluminium layers are still in the elastic regime,
locations of high � are likely to experience plastic deformation should the impulse
pressure produced by the jet impact and the shock wave of the rebound be more
powerful.

5. Lithotripter shock-induced collapse of an initially stable bubble
Extracorporeal Shock Wave Lithotripsy is the clinical procedure by which

thousands of shock waves, emitted at roughly one per second, are focused onto
kidney stones in order to break them up to a size small enough to be passed naturally
from the body, or dissolved with drugs. The incident shock wave interacts with the
stone in many ways, including spallation and cavitation (Zeman et al. 1990; Kuwahara
et al. 1991; Coleman et al. 1992; Lush et al. 1992; Philipp et al. 1993; Tomita et al.
1994; Sapozhnikov et al. 2001; Bailey et al. 2003; Leighton 2004).

Here, we consider two problems involving the interaction of a single spherical
air bubble, immersed in water, with a lithotripter shock wave (figure 16). Case 1
comprises a bubble in free field, while in case 2 the bubble is adjacent to a rigid
boundary, positioned at distance d from the initial centre of the air bubble. The
initial air bubble radius, R0, is 0.04 mm (Cunningham et al. 2001), which was chosen
to be typical of a secondary stable bubble, i.e. a bubble which has been formed as a
result of the interaction of a preceding lithotripter pulse with a cavitation nucleus,
and which has reached a state of mechanical equilibrium with the surrounding fluid.
In case 2, the distance of the initial bubble centre to the boundary, d , is 0.0425 mm.

The lithotripter pulse is introduced by mapping the pulse profile within the
computational domain and a corresponding time-dependent pressure boundary
condition is imposed on the left-hand boundary. An idealized planar lithotripter pulse
(Church 1989) with P + = 56 MPa and P − = −10 MPa (figure 17) is set to propagate



Free-Lagrange simulations of expansion and collapse of air bubbles 17

0 2 4 6 8
–20

0

20

40

60

Time (µs)

P
re

ss
ur

e 
(M

P
a)

Figure 17. The idealized profile of a lithotripter pulse. The compressive wave pressure is
P + = 56 MPa and tensile wave pressure is P − = −10 MPa.
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Figure 18. (a) Free field, case 1; (b) near rigid boundary, case 2. Time t =0.0247 µs after
shock impact against the upstream wall of the bubble. Horizontal arrows indicate the initial
position and size of bubble: the two arrows meet at the initial postion of the bubble centre,
and extend a distance R0 in each direction. The thicker line indicates the position of the bubble
wall at t = 0.0247 µs. The symbols �Pwater and �Pair indicate the increments between contours
in the water and air, respectively. Units are in MPa.

through the water from left to right. A non-reflecting boundary condition is applied to
the top boundary. All elapsed times are measured from the first shock/bubble impact.

Figure 18 shows the pressure field 0.0247 µs after shock impact. As a result of
the profound acoustic impedance mismatch, a relatively weak shock is transmitted
into the air bubble when the lithotripter shock meets the left-hand bubble wall,
whilst a strong expansion fan is produced in the water, running leftwards and
upwards. The interaction between the shock and expansion waves originating at the
bubble wall results in weakening and curvature of the incident shock, whilst the high
particle velocity behind the shock causes the bubble wall to deform to the right. At
t = 0.0919 µs, the incident shock has traversed the full bubble width (figure 19).

In case 2 (figure 19b), the incident shock is reflected off the nearby rigid boundary
and further interacts with the expansion wave and the collapsing bubble, weakening
the former. In both cases, the air shock propagates more slowly and decouples from
the incident shock. Figure 20 shows the motion and velocity of the bubble wall. The
graph shows two sets of curves, each set representing the upstream and downstream
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Figure 19. (a) Free field, case 1; (b) Near rigid boundary, case 2. Time t =0.0919 µs after
shock impact. The incident shock has traversed the full bubble width. In case 2, the incident
shock has been reflected from the rigid boundary. In each frame two arrows, each of length
R0, meet at the initial position of the bubble centre. The thick line indicates the bubble wall
at t = 0.0919 µs.

wall in cases 1 and 2. Both sets of curves in figure 20(a), for cases 1 and 2 show
similar trends in that the upstream wall undergoes much more rapid deformation
than the downstream wall. The downstream bubble wall remains stationary up to
t ≈ 0.08 µs for case 1 and t ≈ 0.15 µs for case 2.

The initially weak air shock propagating within the bubble strengthens owing to the
focusing effect arising from the curvature of the bubble interface (figure 19). The shock
within the bubble converges as it moves towards the bubble downstream wall. The
intricate shape of the air shock is a consequence of the geometry of the bubble wall
(which confines the shock), and the variation of the geometry with time. Moreover, the
spatially non-uniform deformation of the bubble wall yields a higher water velocity
on the bubble centreline. This, in turn, generates additional compression waves in the
air near the upstream bubble wall, which further strengthens the air shock.

After the incident shock has swept over the bubble, the whole bubble is enclosed
by higher pressure and collapses from all sides, yet asymmetrically owing to the
non-uniform momentum transfer and pressure distribution. In case 2, interaction
between the water shock reflected from the rigid wall, and the expansion wave
increases the amplitude of the high-pressure region adjacent to the upstream bubble
wall (figure 21). The impact of the reflected shock on the top side of the bubble also
induces the contraction of the bubble wall. Consequently, at t = 0.1675 µs, the top
interface of the collapsing bubble in case 2 is more flattened than that in case 1.

At this stage, the bubble undergoes rapid deformation, with the formation of a
liquid jet running to the right along the symmetry axis. This occurs in both cases.
However, for the bubble near a rigid boundary, the jet tip has a concave curvature
(figure 21b). It is postulated that this results from recirculating flow at the tip of the
jet, induced near the upstream bubble wall by the interaction of the reflected incident
shock with the strong expansion wave originating from the bubble wall. Furthermore,
as the jet deforms the upstream bubble wall, compression waves are produced in the
air. In case 2, the intense high-pressure region close to the tip of the jet (max 750 MPa)
induces a secondary air shock with magnitude of over 90 MPa, which propagates to
the right inside the bubble.
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The jet impact for the two cases occurs at the point where the two lines representing
the upstream and downstream walls in figure 20(a) meet, at t = 0.1890 µs and
t = 0.1789 µs for cases 1 and 2, respectively. Although the downstream wall in case 1
has a greater acceleration than in case 2, the higher jet velocity and collapse rate in
the latter means that the jet impact occurs earlier in time in case 2 compared to case 1.

The liquid jet impact isolates a lobe of trapped and highly compressed gas which
forms a toroid in three dimensions (figure 22). The geometry of the bubble on impact
differs between cases: in case 2 it is more elongated and has a relatively sharper
jet compared to case 1, where the liquid jet is much broader. The jet accelerates as
it pierces the bubble, reaching a maximum of over 1200 m s−1 and 2600 m s−1 for
cases 1 and 2, respectively. Figure 20(b) shows that, after t =0.1 µs, the jet experiences
much higher acceleration in case 2. This increased acceleration correlates with the
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Figure 21. (a) Free field, case 1; (b) near rigid boundary, case 2. Time t = 0.1675 µs after the
shock impacts on the bubble upstream wall, inducing a formation of a high-speed jet from
the involution of the bubble upstream wall when the shock interacts with the bubble. For the
bubble near a rigid boundary, the jet tip has a distinct concave curvature and the bubble wall
at the tip meets the axis of symmetry at 90◦. A portion of the arrow pair from figure 18 is
visible.
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Figure 22. (a) Case 1, t =0.191 µs; (b) case 2, t = 0.179 µs. The liquid jet pierces through
the bubble and impacts on the downstream wall, generating an intense blast wave into the
surrounding water. The bubble in case 2 is more elongated in the horizontal direction than
that in case 1 owing to the disturbance of the flow field caused by the presence of the rigid
boundary. A portion of the arrow pair from figure 18 is visible.

development of the enhanced high pressure that reaches 1.26 GPa in the region near
the throat formed by the bubble torus as seen in figure 22(b).

On impact, the jet generates a blast wave in the surrounding water (figure 22).
It also leads to the creation of bubble fragments, originating from the air layer
trapped between the jet tip and the downstream interface prior to impact. Such
tiny isolated islands of gas may coalesce (Leighton et al. 2000) with the main cavity
as the flow evolves or during the subsequent expansion phase, or act as nuclei for
further cavitation events. The interaction of these nuclei with the tensile part of the
lithotripter shock wave will cause them to expand and collapse, either spherically
or asymmetrically, depending on the nature of the flow around the bubble and the
degree of influence of the nearby solid boundary. These bubble fragments could also
be collapsed by shock waves emitted from the collapse of neighbouring bubbles.

The maximum effect of the blast wave is localized at the point of liquid–liquid
impact, and the peak overpressure decays rapidly with distance from the jet impact
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Figure 23. (a) Case l, t = 0.2025 µs; (b) case 2, t = 0.1938 µs. The blast wave propagates
into the surrounding fluid while the cavity is drawn into the vortex core. In case 2, the cavity
remains close to the boundary. The blast velocity is in excess of 2000 m s−1. The cell containing
the maximum pressure (2100 MPa) is indicated by an arrow. A portion of the arrow pair from
figure 18 is visible.

point. The peak overpressure exceeds 1 GPa in case 1 and over 1.75 GPa in case 2
owing to the higher jet velocity and more violent collapse.

In case 2, the blast wave impacts on the rigid boundary and is reflected back into the
surrounding fluid. Part of this wave interacts with the remaining cavity (figure 23b). In
addition, the flow is also redirected outwards along the rigid boundary, which brings
the bubble and its fragments even closer to the boundary. As a result of the high
velocity of the jet fluid, the blast wave advances relatively slowly to the left below
the bubble. Consequently, the blast front is asymmetric. Furthermore, the interaction
between the high-momentum liquid jet and the downstream low-momentum water
produces a strong vortex flow. In figure 23(a) (case 1), the air cavity is drawn into the
vortex core, while the blast wave continues to propagate outwards from the bubble.
The momentum supply of the liquid jet creates a stagnation point, resulting in a
high-pressure region near the boundary.

Figure 24 shows the time history of the bubble volume ratio. Both cases show a
similar trend, in that the volume reduces with time from shock–bubble impact until
the first minimum at t =0.1937 µs and t = 0.1845 µs for cases 1 and 2, respectively
(see inset of figure 24). The time of minimum volume does not coincide with the time
of liquid jet impact (case 1: t = 0.1889 µs, case 2: t = 0.1787 µs, from figure 20a). The
volume of the remaining cavity continues to decrease beyond the point of jet impact,
although with a slower rate as the higher pressure of the compressed gas in the bubble
decelerates the movement of the bubble wall. The two curves follow a very similar
path up to about t = 0.1 µs. After this time, the two lines begin to diverge, because
the reduction in bubble volume in case 2 is higher than in the free-field problem.
Figure 20(b) shows that the time t = 0.1 µs also corresponds to the moment when the
upstream wall velocities in the two cases diverge.

In both cases, at the point of minimum volume, the internal pressure greatly
exceeds that of the surrounding water, and therefore the bubble begins to expand.
It is well-known that, on a gross scale, this expansion leads to a prolonged period
where the bubble expands to many times its original size. This phase persists for
tens of microseconds or longer before the bubble undergoes a second major collapse
(Church 1989). This time scale is longer than that for which the free-Lagrange code
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can be run with current computational facilities. However, figure 24 does show the
early stages of the expansion. It also shows that, rather than having a monotonic
expansion, the bubble undergoes a micro-expansion and micro-collapse. It is clear
from figure 24 that the volume attained during this first micro-expansion of the
bubble, and also the time to the first micro-collapse, in case 1 are much greater that
of case 2. In case 1, the remaining toroidal cavity is allowed to propagate downstream
where the surrounding pressure is relatively low. This therefore allows for a larger
expansion of the bubble. In case 2, the surrounding pressure remains relatively high
owing to the confining effect of the boundary.

Use of the Gilmore model has for many years dominated modelling studies of the
cavitation generated by lithotripsy, and indeed is responsible for the ‘gross’ impression
of a monotonic expansion phase described above. Indeed, one reason for the current
study was to support the design of a clinical device, the early stages of which had been
based on interpretations using the Gilmore model (Leighton et al. 2008). An example
of the way the current CFD simulations allowed new assessment of the predictions of
the Gilmore model can be found in figure 25. This shows the dynamics of an air bubble
of initial radius 0.04 mm in water subjected to the lithotripter pulse (figure 17) as pre-
dicted using the Gilmore model, in which the dynamics of the bubble are represented
by the plot of bubble radius versus time. The assumptions of the Gilmore model are
significantly different from those of the free-Lagrange code used here. Differences
include the assumptions of the Gilmore model that the bubble exists in an infinite
homogeneous body of fluid, the bubble remains spherical at all times, and the pressure
field around the bubble is spherically symmetric (and therefore uniform over the
bubble wall). As shown in the inset of figure 25, upon interacting with the lithotripter
pulse, the bubble undergoes multiple micro-collapses and micro-expansions prior
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Figure 25. The plot of the bubble radius R versus time of the interaction of a spherical
bubble (initial radius 0.04mm) with the lithotripter pulse shown in figure 17 as predicted by
the Gilmore model. The solid line and dashed line represent models with and without mass
flux across the bubble interface, respectively. Inset is the magnification of the bubble initial
oscillations that occur when the bubble is in the compressive regime of the lithotripter pulse.

to entering the phase of prolonged expansion caused by the tensile portion of the
lithotripter pulse, followed by a second major collapse and then a series of oscillations,
the amplitudes of which gradually decay as the bubble returns to a near-linear
pulsation about a mean radius (Church 1989). These multiple micro-collapses and
micro-expansions have not previously been reported in lithotripsy modelling.

Incompressible simulations could cover the range of the prolonged expansion
before the bubble starts to have multiple collapses and rebounds (figure 25). Indeed,
the coupling between the free-Lagrange simulation and that of an incompressible
code (e.g. based on the boundary integral method) was originally thought by the
authors to be one of potential solutions to the inability of current computational
facilities to run the free-Lagrange code over the >100 µs time scales of figure 25.
However, time and funding constraints prevented us from pursuing this course.

6. Conclusions
The free-Lagrange method has been shown to offer a powerful and flexible tool

for the study of the dynamics of cavitation events, both two-dimensional and
axisymmetric, for free-running cases where the bubble starts with expansion due to
overpressure, and for lithotripter shock-induced bubble collapse applicable to studies
of shock-bubble interaction in extracorporeal shock wave lithotripsy. The addition
of a strength model has allowed us to visualize dynamic stress loading in adjacent
solid materials of arbitrary surface profile, a facility that could be exploited in future
studies of cavitation damage mechanisms. The method might also be applicable to
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axisymmetric liquid jet impacts of other types such as the impact of a droplet of
water on a plane surface of brittle materials (Jackson & Field 2000).
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