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Abstract

The most common nonlinear equation of motion for the damped pulsation of a spherical gas bubble in an infinite body of liquid is the
Rayleigh–Plesset equation, expressed in terms of the dependency of the bubble radius on the conditions pertaining in the gas and liquid
(the so-called ‘radius frame’). However over the past few decades several important analyses have been based on a heuristically derived
small-amplitude expansion of the Rayleigh–Plesset equation which considers the bubble volume, instead of the radius, as the parameter
of interest, and for which the dissipation term is not derived from first principles. So common is the use of this equation in some fields
that the inherent differences between it and the ‘radius frame’ Rayleigh–Plesset equation are not emphasised, and it is important in com-
paring the results of the two equations to understand that they differ both in terms of damping, and in the extent to which they neglect
higher order terms. This paper highlights these differences. Furthermore, it derives a ‘volume frame’ version of the Rayleigh–Plesset
equation which contains exactly the same basic physics for dissipation, and retains terms to the same high order, as does the ‘radius
frame’ Rayleigh–Plesset equation. Use of this equation will allow like-with-like comparisons between predictions in the two frames.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The most popular nonlinear equation for describing the
nonlinear response of a gas bubble in liquid to a driving
pressure field is the Rayleigh–Plesset equation. This can
be derived from first principles using the bubble radius R
as the dynamic parameter (which will here be termed the
‘radius frame’ approach):

R€Rþ 3 _R2

2
¼ 1

q0

pL �
4g _R

R
� p1

� �
ð1Þ

where q0 is the unperturbed liquid density, g is the shear
viscosity of the liquid, and p1 is the liquid pressure far
from the bubble, which is here assumed to consist of a sta-
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tic pressure p0 and an applied acoustic field P(t), such that
p1 = p0 + P(t) [1]. When a polytropic gas law is used to
evaluate the liquid pressure at the bubble wall (pL), and
the contributions of surface tension (r) and vapour pres-
sure (pv) are included, Eq. (1) becomes

R€Rþ 3 _R2

2
¼ 1

q0

p0 þ
2r
R0

� pv

� �
R0

R

� �3j

þ pv �
2r
R

 

� 4g _R
R
� p0 � PðtÞ

!
ð2Þ

where R0 is the unperturbed bubble radius. It is noted that
use of the polytropic index (j) adjusts the gas stiffness for
reversible heat flow across the bubble wall, but does not de-
scribe any net thermal losses. The only dissipation present
in (2) occurs through viscous losses.

However there exist heuristic formulations based on a
form of the Rayleigh–Plesset equation in which the bubble
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volume V is used as the dynamic parameter (which will be
termed the ‘volume frame’ approach), where the damping
is not derived from first principles. Furthermore, the ‘vol-
ume frame’ form of the damped Rayleigh–Plesset equation
which is commonly quoted neglects higher order terms
which are present in the ‘radius frame’ version (2). There-
fore the two equations are not equivalent on two counts.

The predictions of the two approaches do not always
agree, and before any differences can be attributed to
another factor, it is important to ensure that one is com-
paring ‘like-with-like’. It is not immediately apparent that
this is being done, given the differences in the way dissipa-
tion is formulated, and the manner in which higher order
terms are neglected in the ‘volume frame’ form which is
widely used [2]. Therefore this study was undertaken to
derive a ‘volume frame’ form of the Rayleigh–Plesset equa-
tion where the physics describing the dissipation is identical
to that used when the Rayleigh–Plesset equation is cited in
the radius frame (2), and where the higher order terms have
not been assumed to be negligible.

This paper will proceed by using the following common
assumptions: The bubble exists in an infinite medium. The
bubble stays spherical at all times during the pulsation.
Spatially uniform conditions exist within the bubble. The
bubble radius is much smaller than the wavelength of the
driving sound field. There are no body forces acting (e.g.
gravity). Bulk viscous effects can be ignored. The density
of the surrounding fluid is much greater than that of the
internal gas. The gas content is constant.

2. Background

Of the various ‘volume frame’ equations for bubble
dynamics [3], the form given by Zabolotskaya and Soluyan
[2] has been most valuable and influential, and featured as
the starting point in several notable studies. These include
the bubble-mediated generation of difference frequencies
when bubbles are insonified by two acoustic frequencies
for a range of purposes, including bubble detection [4],
the use of bubbles to enhance parametric sonar [5,6], and
the acoustic characterization of gassy seabeds [7]. Biomed-
ical investigations which have used the ‘volume frame’
include studies of contrast agent [8] and HIFU [9]. If the
predictions of these important ‘volume frame’ studies are
to be reconciled with those obtained using the ‘radius
frame’ Rayleigh–Plesset Eq. (2), it is important to ensure
that the comparison is of ‘like-with-like’, specifically that
the equations of motion in each case contain the same
physics and the same degree of approximation. This is
the purpose of this paper.

The influential analysis of Zabolotskaya and Soluyan
[2], which underpins the majority of studies of nonlinear
bubble dynamics in the ‘volume frame’, begins with a state-
ment (not derived) of the Rayleigh equation in the volume
frame. The Rayleigh equation is the undamped form of the
Rayleigh–Plesset equation, and the volume frame descrip-
tion given by Zabolotskaya and Soluyan [2] is
€V

V 1=3
�

_V 2

6V 4=3

� �
¼ 4p

q0

3

4p

� �1=3

ðpg � p1Þ ð3Þ

where pg is the pressure in the bubble gas (assumed to be air
in [2]). Understandably for the time, given the limited com-
puting abilities then available, Zabolotskaya and Soluyan
do not calculate output from this equation directly, but
rather proceeded to generate a small amplitude expansion
based on volume perturbations Ve(t) about an equilibrium
bubble volume V0

V ¼ V 0 þ V eðtÞ V e � V 0 ð4Þ

with an adiabatic gas law

pg ¼ p0ðV 0=V Þc ð5Þ

where c is the ratio of the specific heat capacity of the gas at
constant pressure, to its value at constant volume. The ef-
fects of surface tension and vapour pressure are neglected.
This expansion generated the following expression

€V e þ x2
MV e � aZSV 2

e � bZSð2€V eV e þ _V 2
e Þ þ F ZS

_V e

¼ � 4pR0

q0

� �
P ðtÞ ð6Þ

where Ve(t) is the perturbation in bubble volume, and
where

xM ¼
ffiffiffiffiffiffiffiffiffiffi
3cp0

q0R2
0

s
ð7Þ

is the Minnaert frequency of the bubble and the parameters
aZS and bZS represent the following groupings

aZS ¼ 3bZSðcþ 1Þx2
M

bZS ¼ 1=ð8pR3
0Þ

ð8Þ

The term FZS was introduced in an ad hoc fashion to
include dissipation. It was assumed to be frequency
dependent.

The achievement of Zabolotskaya and Soluyan in gener-
ating this analysis should not be underestimated. Its timing
perceptively heralded and facilitated a wealth of investiga-
tions which employed their findings (ranging from biomed-
ical therapy to seabed exploration [4–9]), yet did so in a
way which provided equations that were appropriate not
only for the computing power of the day, but also over
the decades that followed. Furthermore, this analysis pro-
vided a framework in which the physical influences of the
various terms are transparent.

Over the thirty years and more since Eq. (6) was pub-
lished by Zabolotskaya and Soluyan, its popularity has
increased. It is now important to revisit the assumptions
inherent in the formulation, and ask whether the assump-
tions required for its derivation in 1973 are still necessary,
given increased computing power, and to highlight the
implications of the continued use of those assumptions.
This is particularly so in light of two issues, both of which
relate to the impression which can be given that Eq. (6) is
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an equivalent ‘volume frame’ expression to the familiar
‘radius frame’ Rayleigh–Plesset Eq. (2).

The first is an issue of terminology. Over these thirty
years, Eq. (6) has colloquially come to be known as ‘the
Rayleigh–Plesset equation in terms of the bubble volume’;
or, if FZS is set equal to zero to produce the form without
dissipation, then it is sometimes referred to as ‘Rayleigh’s
equation in terms of the bubble volume’. Both descriptions
are imprecise: Eq. (6) has within it an implicit assumption
of small-amplitude perturbations, with an accompanying
neglect of some terms in the expansion, and in listing the
assumptions inherent in Eq. (6), this fact should not be
overlooked. Moreover, when such expansions are applied
to calculations based on input parameters given for spe-
cific sound fields and bubbles, either in the radius frame
or the volume frame, their validity should be addressed:
pulsation amplitudes may be great enough to make signif-
icant some of the terms neglected in small amplitude
expansions. Furthermore, the tolerances required when
computing output from the differential equations need to
be critically examined. This is particularly important when
calculations from the differential equation are made in the
volume frame, since the VaR3 relationship means that
dV � (3V/R)dR. As a result, unless normalised variables
are used, insufficient care with precision can lead to
numerical errors if, for example, pressures of 106 Pa and
volumes of 10�19 m3 are calculated together by a single
routine.

The second issue relates to the fact that the physics of
the dissipation in Eq. (6) is different from that in the
‘radius frame’ Rayleigh–Plesset equation. In Eq. (6), the
description of dissipation is not derived from the basic
physics, but rather must be fitted to experiment or some
other model in order to determine its form. This creates
particular difficulties. If for example the parameter is to
be fitted to another model, then both models must be com-
paring like-with-like, in that the dissipation in the second
model must be proportional to _V only, when expressed
in the form of Eq. (6). If instead the parameter is to be
determined by fitting to experiment, then it must be recog-
nised that there can be many forms of loss contributing to
damping in the experiment, and the fit will try to encom-
pass all of these, again with the assumption that they will
be proportional to _V when expressed in the form of Eq.
(6).

This paper derives a ‘volume frame’ form of the Ray-
leigh Plesset equation from first principles, using the same
dissipation physics as is present in the familiar ‘radius
frame’ form of the Rayleigh–Plesset Eq. (2). It should be
noted that a series of correspondence has addressed the dif-
ferent predictions for sound radiation by the bubble, as
generated by the Rayleigh–Plesset equation in the radius
and volume frames [10–14]. This is distinct from the cur-
rent paper, which addresses differences in the predictions
of the underlying bubble pulsation, and the importance
of appropriately describing the nonlinearities, before any
consideration of the resulting radiation.
3. Derivation of the Rayleigh–Plesset equation in terms of

the bubble volume

In the following derivation, the use of the dot notation
indicates the use of the material derivative [1, Section
2.2.2], i.e.,

D

Dt
¼ o

ot
þ ðu* �r

*

Þ ð9Þ

where u
*

is the liquid particle velocity. For the discussion of
the pulsation of a single bubble whose centre remains fixed
in space, as occurs in this paper, the convective term (the
second term on the right) is zero.

Consider a spherical gas bubble which pulsates in an
incompressible liquid as a result of an insonifying field
(the long wavelength limit being assumed). The fluid veloc-
ity u(r,t) falls off as an inverse square law with range r as a
result of the assumption of liquid incompressibility. The
mass of liquid which moves at the bubble wall, in time
Dt, is q0

_V ðtÞDt, whilst that at range r is q04pr2u(t)Dt, which
implies that:

uðr; tÞ ¼
_V ðtÞ
4pr2

ð10Þ

where the bubble has volume V(t) and wall volume velocity
_V ðtÞ.

Within the body of the liquid, Bernoulli’s equation fol-
lows from the integration of a suitably reduced form of
the Navier Stokes equation [1, Section 4.2.1b] to relate
the pressure at a boundary within the fluid (p0) to the veloc-
ity potential (U) and velocity:

p0

q0

¼ p1
q0

� oU
ot
� u2

2
ð11Þ

An appropriate velocity potential can be calculated from
(10) using the relevant boundary conditions and the defini-
tion u

* ¼ r
*

U:

Uðr; tÞ ¼ �
_V ðtÞ
4pr

ð12Þ

When this is substituted with (10) into (11), the latter can
be evaluated at the bubble wall (r = R):

p0

q0

¼ p1
q0

� oUðr; tÞ
ot

����
r¼R

� 1

2

_V ðtÞ
4pr2

����
r¼R

� �2

)

p0

q0

¼ p1
q0

þ
€V

4pR
�

_V 2

2ð4pR2Þ2

ð13Þ

Elimination of p
0
can be achieved by neglecting all forms of

loss except viscous losses (an assumption which is often not
valid). An expression for the liquid pressure can be ob-
tained by dynamically matching normal stresses across at
the bubble wall [1, Section 4.2.1b, 15]. Finite shear modifies
the liquid pressure at the bubble wall (pL) such that it dif-
fers from the pressure at a boundary within the fluid (p0) by
an amount proportional to the principle rate of strain in
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the radial direction ðe0r ¼ ou=orÞ as follows [1, Section
4.2.1b, Eq. (4.73)]:

pL ¼ p0 � 2ge0r ¼ p0 � 2g
ou
or

ð14Þ

This can readily be converted into a form relevant to the
volume frame, using the incompressibility relation (10):

ouðr; tÞ
or

¼ �
_V

2pr3
ð15Þ

Substitution of (15) into (14) gives the pressure in the liquid
at the bubble wall

pL ¼ p0 þ g _V

pR3
ð16Þ

By combining this expression with (13), it is possible to de-
rive a ‘volume frame’ description that is equivalent (in
terms of the physics of dissipation and the content at high-
er order) to the ‘radius frame’ Rayleigh–Plesset Eq. (2).

€V
4pR
�

_V 2

2ð4pR2Þ2
¼ 1

q0

pL � p1 �
4g _V
3V

� �
)

1

4p
4p
3V

� �1=3

€V �
_V 2

6V

� �
¼ 1

q0

pL � p1 �
4g _V
3V

� � ð17Þ

Evaluation of pL for use in the equations of motion then
becomes a question of calculating pi, the pressure inside
the bubble. This can be expressed in terms of the sum of
the gas (pg) and vapour (pv) pressures, correcting for the
Laplace pressure introduced through the effect of surface
tension (pr):

pi ¼ pg þ pv ¼ pL þ pr )

pL ¼ pg þ pv � pr

ð18Þ

where

pr ¼ 2r
4p
3V

� �1=3

ð19Þ

Evaluation of (18) when the bubble is at equilibrium size,
and the pressures take values appropriate for that size in
the absence of any driving pressure (R = R0; V = V0;
pi = pi,e; pg = pg,e; see [1, Section 2.1]), gives

pi;e ¼ pg;e þ pv ¼ p0 þ 2r
4p

3V 0

� �1=3

ð20Þ

By far the most common way of calculating pg is to appeal
to a polytropic law. It involves calculating the pressure in
the gas at a given bubble size by comparing it with the
pressure at equilibrium. In this way, when the bubble has
volume V, then from (20) the pressure in the gas will be

pg ¼ pg;e

V 0

V

� �j

¼ p0 þ 2r
4p

3V 0

� �1=3

� pv

 !
V 0

V

� �j

ð21Þ
Substitution of (21) into (18) gives

pL ¼ pg þ pv � pr

¼ p0 þ 2r
4p

3V 0

� �1=3

� pv

 !
V 0

V

� �j

þ pv � 2r
4p
3V

� �1=3

ð22Þ
Substitution of this expression for pL into (17) gives
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3V
4p
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ð23Þ

which is the Rayleigh–Plesset equation in terms of the bub-
ble volume, including viscous damping.

4. Discussion

It has been possible to derive a form of the Rayleigh–
Plesset equation from first principles in the volume frame
which incorporates viscous damping. This has been done
using the Navier Stokes approach to generate Eq. (23).
Other approaches are possible [16].

However the form of Eq. (23) creates a dilemma. If the
viscosity term in Eq. (23) is neglected, then the undamped
result is the Rayleigh equation in the ‘volume frame’, and
this agrees with Eq. (3). However (noting that €V e ¼ €V
and _V e ¼ _V Þ, the form with viscous damping given in
(23) differs from the small-amplitude expansion of Zablots-
kaya and Soluyan [2] (Eq. (6)) which has since sometimes
been taken to represent the damped form (the Rayleigh–
Plesset equation) in the volume frame. When the equation
of motion is expressed in the form €V þ . . . as in Eq. (23),
the relevant damping term (the final bracketed term) is pro-
portional to _V V �2=3, not _V . Of course it may be argued that
the parameter FZS can incorporate a V �2=3

0 dependency, but
this is not exactly the same as having a time-varying V�2/3

dependency, and amounts to the use of a small-amplitude
expansion (i.e. V �2=3 � V �2=3

0 ) with the corresponding
assumption that certain terms may be neglected. Such
assumptions have physical implications (for example, if in
place of _V ¼ dð4pR3=3Þdt the approximation _V � 4pR2

0
_R

is used, the bubble will be modelled as a rigid pulsator [1,
Section 3.3.1] and the contribution to radiation of the oscil-
lating gas pressure within the bubble will be ignored). Such
assumptions, though they may be transparent in the origi-
nal derivation, are sometimes understated and untested
when the equations are used years later to calculate numer-
ical output by other authors. In this study, Eq. (23) will
allow the quantification of such effects when the traditional
volume frame Eq. (6) is used.

Of course the Rayleigh–Plesset equation in either frame
((2) or (23)) only incorporates shear losses from first prin-
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ciples. There have been attempts artificially to enhance the
viscosity to include radiation and thermal losses [17–20].
However these cannot give results that are as satisfactory
as the inclusion of radiation losses by deriving the equation
of motion to first-order Mach number in terms of the speed
of the bubble wall [21–26]; and the inclusion of thermal
effects by combining the continuity and energy relations
for a perfect gas with spatially uniform pressure to provide
an exact expression for the velocity field in terms of the
temperature gradient [18,27–33]. The ad hoc manner of
including dissipation as an adjustable parameter offers a
way of incorporating all mechanisms of loss that are appar-
ent in the data to which the fit is being made, but there is a
limitation which must be borne in mind. The term which
incorporates damping in this heuristic approach, if the
equation of motion is expressed in the form €V þ . . ., varies
as F ZS

_V . The ad hoc approach would only produce a truly
valid fit if all the significant forms of damping varied as
F ZS

_V . As Eq. (23) shows, the shear component alone is
proportional to _V V �2=3.
5. Conclusions

By providing a form of the Rayleigh–Plesset equation in
the volume frame (23) which encompasses exactly the same
physics as the familiar form in the radius frame (2), it is
possible to make like-with-like comparison of the predic-
tions of these two equations. Any discrepancy between
the two sets of predictions can then be attributed to factors
other than differences in the damping, such as the require-
ment for greater numerical precision when perturbations
are expressed in the volume frame (because V a R3) or, if
asymptotic expansions of these two equations are com-
pared, to differences in truncating series expansions of
V 2; _V ; €V and R2; _R; €R and any cross-terms etc.

Whilst Eq. (6) has provided the foundation for many
important studies over the last decade, from acoustical
oceanography to biomedical ultrasonics, the inherent
small amplitude assumption within it means that terms
are neglected which may become important. Whilst small
amplitude expansions can give physical insight into the
importance of terms, their validity needs to be critically
examined in each case. Such examination is now possible
with current computing facilities for nonlinear bubble
dynamics, and schemes for translating the outputs of
these calculations into nonlinear propagation models
[34] provide alternative routes if greater accuracy is
required.
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