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Abstract. Observations of surface waves on the wall of a bubble which is subjected to an 
acoustical field demonstrate differences in the transient processes, as well as a marked variation 
in steady state amplitudes, that depend on the insonification conditions. To clarify these 
observations, the stability analysis of the system has been carried out and the presence of the 
Hopf bifurcation was established. The appearance of the limiting  circle corresponds to the 
presence of periodic variations in the amplitudes of interacting breathing (volume) and distortion 
(surface) modes. Comparison between observation and modeling indicate qualitative similarities, 
for example in that the oscillations will be seen for sufficiently high pressure amplitudes and will 
be absent at the bottom of the threshold curve for the excitation of the ripples. 

Keywords: Bubble, Faraday ripples, Hopf bifurcation 

PACS: 43.25.Yw, 47.20.Ky, 47.55.dd  

INTRODUCTION 

The nonlinear response of a gas bubble to a low frequency ω  acoustic wave results 
in parametrically-generated shape oscillations above a well defined threshold. This 
effect (the generation of surface waves under the acceleration in the plane normal to a 
liquid\gas interface) was first characterized 177 years ago by Faraday [1]. More 
recently, Ramble et al. [2] have discovered that there exists a significant difference in 
the transient times taken to establish steady-state subharmonic and fundamental 
combination frequency signals (the so-called ‘ring-up’ times) which reflect the times 
taken to establish surface wave activity. The theory for the transient processes near the 
threshold has been derived in reference [3]. In this domain, one of the eigenvalues of 
the linear stability problem is small (it equals zero at the threshold). The growth of 
instability is very slow here, causing the transient processes to be of very long 
duration. Subsequent studies of this effect by an acoustoelectrochemical technique 
(see review [4]) indicated discrepancies between experimental observation and the 
theory, thus motivating the photographic current study to obtain a better insight into 
the phenomenon. 
                                                
†  The contribution made by Mr Winkels was undertaken whilst he worked as an intern at ISVR, University of Southampton. 
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INVESTIGATION OF THE RISE-TIME OF FARADAY RIPPLES 

Surface waves on a bubbles were photographed at framing rates of 12000 frames 
per second, using a Photron APX-RS camera (the shutter time and the maximum 
resolution for this recording speed were 1/12000 s and 512 384×  pixels respectively). 
A calibrated hydrophone (Brüel& Kjær type 8103), with a measuring frequency range 
from 0.1 Hz to 180 kHz and a receiving sensitivity of 1 V/ μ Pa, provided 
measurements of the sound field.  

 

FIGURE 1.  For of an air bubble of equilibrium radius 0 2.224 0.118 R = ± mm, the figure shows the 

points at which the high speed recordings were taken (�). Also the driving pressure threshold points (�) 
are shown for the onset of surface waves on a bubble wall for a given driving frequency / 2ω π . 

 

 

FIGURE 2 Showing the measured evolution of surface wave amplitudes on the bubble with 

0 2.224 0.118R = ±  mm (in black) and the fit of measured amplitude (in light). The driving pressure and 

frequency were: recording 1 – 42.6 Pa and 1329 Hz; recording 4 – 48.8.9 Pa and 1333 Hz.  
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Recordings of the growth of surface waves were taken for the insonification 
conditions labeled in Figure 1, and by subtracting the wall positions in the images, the 
normalized surface wave amplitude was generated (Figure 2). For tracking the bubble 
wall movement, the program follows a certain intensity level at particular points at the 
bubble interface and records its position in time (frame numbers). In some graphs 
there appears a clear ‘overshoot’ of the surface wave amplitude before reaching the 
steady state and subsequent variations in the steady state amplitude. The evolution of 
the distortion mode largely depends on the conditions relative to the threshold, 
affecting the characteristics as ring-up time and the steady-state amplitude. 

HOPF BIFURCATION 

To propose an explanation for the observed evolution of the distortion modes 
shown in the Figures 1 and 2, the approach derived in [3] has been used. If ( 0ω , 0γ ) 

and ( lω , lγ ) are the natural circular frequencies and damping of the breathing mode 

and the distortion mode of order l respectively, then the experimental conditions 
examine the following two near-resonant interactions: 0ω ω≈  and 0 2 lω ω≈ . In such 

circumstances, the slowly varying complex amplitudes of the breathing 00a  and 

distortion modes lma  (having the normalization of square root of action) satisfy the 

equations [3], which at the time scale 1ltγ >>  have the form: 
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Here the indexes correspond to the expansion of the bubble wall displacement in 

spherical harmonics lmY ; ( )
1/ 25 1/ 2 3 1

0 0 0 0 0(2 ) (4 1)  lQ l R Rπ ω ρ ω
−− −= −  is the coupling 

coefficient, S is the collective variable, mP  is the amplitude of the sound field and 0ρ  

is the equilibrium density of the liquid. The stationary states are realized when the 
right hand sides of equations (1) become zero. Stability analysis leads to the following 
equation for eigenvalues  
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The Routh–Hurwitz stability criterion: 
 ( ) 2

4 3 2 3 2 1 3 4 10,  0,  0,  0a a a a a a a a a> > > − − >  (3) 

is always satisfied for the second and third conditions. The vanishing of the first 
condition 4 0a =  ( 0λ = ) determines the transcritical bifurcation and has been 

analyzed in [3]. The vanishing of the last condition ( ) 2
3 2 1 3 4 1 0a a a a a a− − =  leads to 
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the Hopf bifurcation in which a fixed point of a dynamical system loses stability as a 
pair of complex conjugate eigenvalues of the linearization around the fixed point cross 
the imaginary axis of the complex plane. The Hopf bifurcation can occur if a slight 
phase mismatch is allowed, i.e. 2

0 0 0(2 ) /16 ( / 2)l lω ω γ γ γ− > + . This type of 

bifurcation was detected in numerical calculations of Mei and Zhou [5] for a 
simplified axi-symmetric model. Calculated with standard parameter values, the 
thresholds for transcritical (corresponding to the excitation of the distortion modes) 
and Hopf bifurcations are shown in Figure 3.  
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FIGURE 3.  The thresholds for transcritical (solid line) and Hopf (dashed line) bifurcations calculated 
with standard parameter values: 1.402 γ =  – polytropic exponent; 27.2 10  σ −= ⋅ Nm – surface tension 

(water/air 20°C), 5
0 1.02 10P = ⋅ Pa – ambient pressure; 0 998ρ = kg/m3 – equilibrium water density; 

-3
0 2.224 10R = ⋅ m – equilibrium bubble radius: 1484c = m/s – sound speed in water, -61.004 10ν = ⋅  m2/s 

– kinematic viscosity; 52 10  D = ⋅ m2/s – diffusion coefficient; 15l =  – mode number. 
 

The normal form for the transcritical and Hopf bifurcations, which govern the 
evolution of ‘the parameter of order’, are derived by central manifold reduction and 
subsequent nonlinear transformation of the initial system (1). Specifically, the solution 
for the transcritical bifurcation has two plateaus (at 0t →  and at t → ∞ ) separated by 
an S-curve, and thus qualitatively reproduces the main features seen in the evolution 
of the distortion mode amplitude shown in Figure 2. The appearance of the limit circle 
means periodic variation in the amplitudes of the parametrically interacting breathing 
(volume) and distortion (surface) modes. Comparison between observation and 
modeling indicates this qualitative similarity, for example in that the oscillations will 
be seen for sufficiently high pressure amplitudes and will be absent at the bottom of 
the threshold curve for the excitation of the distortion modes. 
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