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Abstract

In this report an element-based model is used to predict the structural response and sound

radiation of two smart panels excited by (a) an acoustic plane wave, (b) a stochastic acous-

tic diffuse field and (c) a turbulent boundary layer. The firstpanel is made of aluminum,

while the second is a composite sandwich panel with equivalent static stiffness but four

times lower mass per unit area. The panels are equipped with sixteen decentralised veloc-

ity feedback control loops using idealized point force actuators. In contrast to previous

studies on smart panels, the analysis is extended to the upper end of the audio frequency

range. In this frequency region the response and sound radiation of the panels strongly de-

pend on the spatial characteristics of the excitation field and the sound radiation properties

with respect to the bending wavelength on the panels. Considerable reduction in struc-

tural response and sound radiation is predicted for the low audio frequency range where

the panel response is dominated by well separated resonances of low order structural

modes. It is also found that some reduction can be achieved around acoustic and convec-

tive coincidence regions, where the coincidence frequencies for the composite sandwich

panel are significantly lower than those for the homogeneousaluminium panel.
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Nomenclature

Symbol Description Unit

Latin Letters:

a Modal displacement

c Wave speed m/s

d Distance between the sandwich faceplate neutral axis m

f1 Frequency Hz

f2 Force N

h Thickness (panel) m

j Imaginary unit defined as:j =
√
−1

k Wavenumber rad/m

l length m

m Mode orderx-direction

n Mode ordery-direction

p Acoustic Pressure N/m2

t Time s

w Transverse displacement m

x x-coordinate (plate axis) m

y y-coordinate (plate axis) m

z z-coordinate (perpendicular to plate) m

A Area m2

D Flexural rigidity or bending stiffness Nm2

E1 Young’s modulus of elasticity N/m2

E2 Kinetic Energy J
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F Modal force or generalised force N

H Control gain

I Second moment of area m4

L Correlation length m

M Mass (total / modal / elemental) Kg

N Total number (modes / elements)

P Power W

R Distance between two points on the panel

S Spectral density

U Speed m/s

Y Mobility m/(Ns)

Z Impedance Ns/m

A Power transfer Matrix

F Force Matrix (modal and elemental)

G Mobility matrix including velocity feedback control

Greek Letters:

η Damping loss factor

θ Angle of incidence angle relative to surface normal rad or deg

ν Poisson’s ratio

ρ Material density kg/m3

φ Natural modes or modeshapes

ϕ Angle of incidence relative tox axis rad or deg

ω Rotational frequency rad/s

Ω Matrix of modal resonant terms

Subscripts

0 Property of air

c1 Control element

c2 Critical

c3 Specific to the sandwich core

conv. Convection

x



e Plate element (element centre point)

f Specific to faceplate

i Index (plate elements)

j Index (plate elements)

n mode order

r Index (modes)

rad Radiation

s1 Index (modes)

s2 Corresponding to shear

ADF Specific to Acoustic diffuse field

TBL Specific Turbulent boundary layer

Mathematical:

X Real value X

X̃ Complex Value X

Re{X̃} Real part of X

Im{X̃} Imaginary part of X

X̂ Peak value X

X̃∗ Conjugant of X

E
[

X̃∗X̃
]

Expectation of
[

X̃∗X̃
]

for infinite sampling length

var [X] variance ofX

Xn X to the power of n

exp(X) e to the power ofX

Ẋ First derivative ofX in respect to time

X Matrix X

X
−1 Inverse of MatrixX

X
T Non conjugate transpose of MatrixX

X
H Complex conjugate transpose (Hermitian transpose)

of Matrix X

I Identity matrix

xi





Chapter 1

Introduction

Environmental and economic considerations increase the demand for weight-optimized

structural design. This often conflicts with the requirements for noise control and acous-

tical comfort. Various active control approaches have beenshown to enhance the sound

attenuation through a panel at low frequencies where the structural response is dominated

by discrete resonant modes with low modal overlap. Very appealing approaches are those

of active structural acoustic control (ASAC) and active vibration control (AVC) where

actuators and sensors are integrated within the structure to create ‘smart panels’ [1 - 17]

For many practical vibro-acoustic problems, the excitation is not deterministic. Com-

mon examples of stochastic excitations are diffuse acoustic sound fields (ADF) [18] or

turbulent boundary layers (TBL) [19, 20], which are often encountered in transportation

vehicles such as aircraft, high speed trains and cars [21, 22]. These disturbances can be

described by analytical formulations for the statistical properties of the resulting exci-

tation field on a panel surface. An important characteristicof such disturbances is the

projection of periodic pressure fluctuations onto the panelsurface. In the case of acoustic

disturbances this depends on the acoustic wavelength and angle of incidence [3]; for a

TBL disturbance this depends on the convective wavelength and the direction of the flow

[19, 23]. Frequencies at which the convective or acoustic wavelength are the same as the

transverse wavelength on a structure are known as coincidence frequencies. Coupling be-

tween excitation wavelengths, transverse structural wavelength and acoustic wavelength

have a significant influence on the sound transmission through a partition. For thin alu-

minum panels, the acoustic coincidence frequency falls into the upper end of the audio

1



frequency range. The convective coincidence frequency is typically much lower and af-

fects the panel response in the mid audio frequency range. Composite sandwich panels

feature a high stiffness to mass ratio and therefore become increasingly popular in the

design of lightweight vehicles. However, for stiff lightweight sandwich panels the con-

vective and acoustic coincidence shifts towards lower frequencies and may cause noise

transmission problems.

The objective of this report is twofold. Firstly, to investigate and contrast the structural

response and the sound radiation in the audio frequency range produced by homogeneous

and lightweight sandwich panels subject to deterministic and stochastic distributed excita-

tions. Secondly, to study and compare the control effects produced by an array of idealized

velocity feedback control loops on homogeneous and lightweight sandwich panels.

An element approach [4, 24, 25] is used to predict the structural response and sound ra-

diation of the two smart panels excited by (a) an acoustic plane wave, (b) a stochastic

acoustic diffuse field and (c) a turbulent boundary layer. The first panel is made of alu-

minum while the second is a composite sandwich panel with equivalent static stiffness but

four times lower mass per unit area. The panels are equipped with sixteen decentralised

velocity feedback control loops using idealized point force actuators and collocated ide-

alized velocity sensors so that the control loops are bound to be unconditionally stable.

[4, 26]. In this way the intrinsic characteristics of the decentralised feedback control sys-

tem are investigated independently from the stability limits of the control units due to the

electrodynamic responses of the sensor actuator pairs. In contrast to previous studies on

smart panels, the analysis is extended to the upper end of theaudio frequency range to

include the acoustic coincidence frequency region.

The first part of this report covers the element based model for the structural response and

radiated sound power for a thin homogeneous panel and a sandwich panel under deter-

ministic and stochastic excitations. The model is then usedto predict the panel kinetic

energy and radiated sound power for the two panels without control. Finally the results

for the structural response and radiated sound power of the two panels with decentralised

velocity feedback control are presented. The derivation ofthe stochastic excitation model

from first principles and resulting matrix formulations arediscussed in Appendix A.
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Chapter 2

Panel model

The steady state flexural response and sound radiation of a smart aluminium panel and a

smart composite sandwich panel are modelled using an elemental approach [4, 24, 25].

Figure 2.1 shows the geometry of the panels, which are simplysupported in an infinite

baffle. They are equipped with sixteen decentralized ideal velocity sensor and actuator

pairs to illustrate the effects of decentralized velocity feedback control. On the source

side the panels are exposed to a surface pressure fluctuationinduced by different types

of deterministic and stochastic disturbances. On the receiver side the panels are radiating

into an infinite half space. The geometrical and physical parameters of the panel models

are summarized in Table 2.1 and Table 2.2. The physical parameters of the surrounding

media on source and receiving side of the panel is chosen as that of air with a mass

densityρ = 1.21 kgm−3 and characteristic sound speedc0 = 343 ms−1. The model is

weakly coupled, fluid loading effects and radiation losses have been neglected. This is a

reasonable assumption for excitation and radiation into air. The effects of fluid loading

and flexible boundaries are discussed in Reference [27].

The steady state response is derived assuming time-harmonic excitation of the form

Re{exp (jωt)} whereω is the angular frequency andj =
√
−1. For brevity the time-

harmonic term exp (jωt) will be omitted in the formulation which will be given in

complex form. Therefore, the time harmonic velocitẏw(t) = Re{ ˜̇w exp (jωt)} and

force F (t) = Re{F̃ exp (jωt)} fluctuations will be replaced by the complex velocity

and force phasor̃̇w andF̃ respectively. Throughout the report˜ will be used to identify

complex, frequency dependent functions. As shown in Figure2.1(a), the panel is sub-
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Figure 2.1: Schematic of the panel model. (a) Panel in infinite baffle subdivided into a grid of elements,
(b) Panel with 16 direct velocity feedback loops, (c) ”two port” block diagram for panel model with decen-
tralised multi channel feedback control.

divided in a grid of elements so that the excitation forces and velocity response of the

panel are determined at the element centre coordinates. As shown in Figure 2.1(b), the

decentralised feedback control system is formed by a 4×4 grid of velocity feedback loops

using collocated and dual point velocity sensor and point force actuators. The closed

loop response of the panel can be modelled with the two ports block diagram in Fig-

ure 2.1(c), which, assuming the system is linear, indicatesthat both the response at the

elements centres and the control positions result from the linear superposition of the vi-

bration induced by the primary excitation, produced by the pressure field over the surface

on the source side of the panel, and the secondary excitationproduced by the control point

forces, which depends on the control velocities via the feedback control gains. Thus the

velocity response at the centres of the panel elements is given by

˜̇we = ỸeeF̃e + ỸecF̃c, (2.1)

where ˜̇we = [ ˜̇we1
, ˜̇we2

, ..., ˜̇weNe
]T is the [Ne × 1] dimensional vector of complex ele-

ment velocities,F̃e = [F̃e1
, F̃e2

, ..., F̃eNe
]T is the [Ne × 1] dimensional vector of ex-

citation forces due to the pressure field incident on the source side of the elements,

F̃c = [F̃c1 , F̃c2 , ..., F̃cNc
]T is the[Nc × 1] dimensional vector of feedback control forces,

Ỹee is the[Ne × Ne] dimensional matrix of element centre point and transfer mobilities

4



andỸec is the [Ne × Nc] dimensional matrix of transfer mobilities from the controllo-

cations to the panel element centres. The mobility functions in the matrices̃Yee andỸec

have been derived with the following modal summation formula

Ỹi,j = jω
N

∑

r=1

φr (xi, yi) φr (xj, yj)

M ω2
r (1 + jη) − ω2

, (2.2)

whereφr is ther-th mass-normalised natural mode of the panel,ωr is ther-th natural

frequency andω is the observation frequency.M = lxlyρh is the total mass of the panel,

wherelx andly are the panel dimensions,h is the panel thickness andρ is the density of

the panel material. The coordinates (xi, yi) and (xj, yj) identify the centre positions of the

elementsi andj on the panel surface. As shown in the block diagram in Figure 2.1(c),

for direct velocity feedback control, the vector of controlforces is given by

F̃c = −H̃c
˜̇wc, (2.3)

where H̃c is the [Nc × Nc] dimensional diagonal matrix of control gains and

˜̇wc = [ ˜̇wc1 , ˜̇wc2 , ..., ˜̇wcNc
]T is the[Nc × 1] dimensional vector of velocity sensor outputs

at the control locations. According to the ”two port” block diagram in Figure 2.1(c), the

vector of control point velocities is given by

˜̇wc = ỸceF̃e + ỸccF̃c, (2.4)

whereỸcc is the [Nc × Nc] dimensional matrix of point and transfer mobilities at the

control locations. Substituting Equation (2.3) into Equation (2.4) gives

˜̇wc = ỸceF̃e − ỸccH̃c
˜̇wc. (2.5)

An explicit formulation for ˙̃wc can hence be derived as

˜̇wc =
(

Ic + ỸccH̃c

)

−1

ỸceF̃e. (2.6)

The control forcẽFc in Equation (2.3) can subsequently be reformulated to yield

5



F̃c = −H̃c

(

Ic + ỸccH̃c

)

−1

ỸceF̃e. (2.7)

Substituting Equation (2.7) into Equation (2.1) and rearranging for ˜̇we finally gives the

vector of element velocities as

˜̇we =

[

Ỹee − ỸecH̃c

(

Ic + ỸccH̃c

)

−1

Ỹce

]

F̃e = G̃eeF̃e, (2.8)

whereG̃ee = Ỹee − ỸecH̃c(Ic + ỸccH̃c)
−1

Ỹce is the panel element mobility matrix with

active control.

2.1 Aluminium panel

The Aluminium panel has been modelled as a thin homogenous and isotropic plate with

all sides simply supported. The mass-normalised mode shapes are given by [3]

φr(x, y) = 2 sin

(

mr πx

lx

)

sin

(

nr πy

ly

)

, (2.9)

where andmr andnr are the the mode orders of moder in thex- andy-direction of the

panel. The natural frequencies result from

ωr =

√

D

ρh

[

(

mr π

lx

)2

+

(

nr π

ly

)2
]

, (2.10)

whereρh is the panel mass per unit area,D = EI/(1 − ν2) is the bending stiffness

I = h3/12 is the area moment of the cross section. AlsoE is the Young’s modulus

of elasticity andν is the Poisson’s ratio of the panel material. The panel geometry and

material properties are given in Table 2.1.
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Table 2.1: Geometry and physical properties for a homogeneous aluminium panel.

Parameter Symbol Value Unit

x-Dimension lx 278 mm
y-Dimension ly 247 mm
Thickness h 1.6 mm
Mass density ρ 2720 kg m−3

Young’s Modulus E 70 GPa
Poisson’s ratio ν 0.33 –
Modal loss factor η 0.02 –

2.2 Composite sandwich panel

The dynamic response of the composite sandwich panel is modelled using a basic theory

[3, 28] which considers pure bending of the cross-section and the faceplates and pure

transverse shear of the core. The panel is assumed to have thesame material properties

in x- andy-direction. The relationship between the transverse wavenumberk and the

wavenumbers corresponding to pure bending and to pure shearof a sandwich panel is

given by

1 +

(

ks

kb

)2 (

k

kb

)2

−
(

k

kb

)4

−
(

kb

kbf

)4 (

ks

kb

)2 (

k

kb

)6

= 0, (2.11)

whereks is the shear wavenumber in the absence of transverse bendingforces,kb is the

overall cross-section bending wavenumber in the absence ofshear distortion andkbf is

the bending wavenumber for faceplate bending alone. These wavenumbers are given as

(a) k2
s =

m′′ω2

Gd
, (b) k4

b =
m′′ω2

D1

, (c) k4
bf =

m′′ω2

2 D2

, (2.12)

wherem′′ is the total mass of the panel per unit area,G is the core shear modulus and,

as shown in Figure 2.2,d is the distance between the faceplates neutral axis. AlsoD1 is

the bending stiffness of the cross-section andD2 is the bending stiffness of a individual

faceplate. These flexural stiffness terms are given by

(a) D1 =
Ed2hf

2 (1 − ν2)
, (b) D2 =

Eh3
f

12 (1 − ν2)
. (2.13)
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The physical parameters used to model the composite sandwich panel are given in Table

2.2. The parameters are chosen to yield a panel with equal static stiffness but a four times

lower mass per unit area than that of the homogeneous 1.6 mm thick aluminium panel.

Equation (2.11) has one real and two imaginary pairs of axis symmetric solutions. For

simplicity the sandwich panel is assumed to have the same mode shapes as a correspond-

ing thin simply supported panel given in Equation (2.9) and that (a) the equivalent flexural

rigidity D, (b) wavenumberkr and (c) natural frequenciesωr are given by

(a)D =
ω2 m′′

k4
, (b) kr =

√

(

mrπ

lx

)

+

(

nr π

ly

)

, (c) ωr =

√

k4
r

D1

m′′ + k6
r

2D2D1

G d m′′

1 + k2
r

D1

G d

, (2.14)

where the wavenumberk in Equation (2.14)(a) corresponds to the real wavenumber solu-

tion of Equation (2.12), which corresponds to travelling waves. The imaginary wavenum-

ber solutions to Equation (2.11) correspond to decaying near fields waves, which are

neglected. The highest mode order of interest is calculatedusing the equivalent flexu-

ral rigidity at the highest frequency of interest. The acoustic coincidence frequency is

found by reformulating Equation (2.11) as an implicit function in ωc. Settingω = ωc and

k = kc = ωc/c0 Equation (2.11) results in the following relationship

ω4
c

(

2D2D1

Gdm′′c6
0

)

+

(

D1

m′′c4
0

− D1

Gd c2
0

)

− 1 = 0. (2.15)

This basic model captures the principal characteristics ofa sandwich panel and is thought

to be suitable for an initial comparison between the structural response and radiated sound

power of thin homogeneous and sandwich active panels. A Morecomplex model, consid-

ering near field waves and the cross-section dynamics of the sandwich structure, may be

needed for further, more detailed investigations. In particular, the near field wave effect

should play an important role in the stability of the feedback control loops when realistic

sensor and actuator transducers are considered.
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Table 2.2: Cross section geometry and physical properties for the composite sandwich panel.

Parameter Symbol Value Unit

Thickness of face plate hf 0.3 mm
Core depth d 3 mm
Mass density face plates ρf 1000 kg m−3

Mass density core ρc 180 kg m−3

Panel mass per unit area1 m′′ 1.086 kg m−2

Young’s modulus face plates E 17.7 GPa
Poisson’s ratio ν 0.33 –
Shear modulus core G 80 MPa
Loss factor η 0.02 –
1 m′′ = 2hfρf + (d − hf )ρc

d

totalh fh

Figure 2.2: Sketch of sandwich panel cross section geometry.
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Chapter 3

Excitation models

3.1 Acoustic plane wave

Acoustic plane waves are an example of distributed, deterministic disturbance. An acous-

tic plane wave excitation is characterised by its sound pressure amplitude and its angels

of incidenceθ, measured from the z-axis, normal to the panel and the angleϕ, in the

x-y-plane, measured from thex-axis. Assuming time harmonic pressure fluctuations, the

incident sound pressure acting on the source side of the panel is given as

p(x, y, t) = Re
{

p̃(ω)ej(ωt−kxx−kyy)
}

, (3.1)

wherep̃(ω) is the pressure phasor of the incident wave. The wavenumbersin x andy

directions are given by

(a) kx(ω) = k0(ω) sin θ cos ϕ, (b) ky(ω) = k0(ω) sin θ sin ϕ, (3.2)

wherek0 = ω/c0 is the acoustic wavenumber andc0 is the speed of sound in air as

specified in Section 2. The pressure excitation on a single panel element is approximated

as a point force acting on the element centre,

F̃ei
(ω) = 2 Aep̂(ω)e−j(kxxi+kyyi), (3.3)
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whereAe is the area of an element and the factor two accounts for the assumption of

blocked forces on the panel surface which causes a doubling of pressure. The incident

forces for all elements are cast into a[Ne × 1] dimensional vector which is then used as

the excitation term in Equation (2.8).

3.1.1 Panel kinetic energy

The response of the panel is assessed in terms of it’s total kinetic energy, which gives an

indicator of the spatially averaged vibration and also of the near field sound radiation. For

harmonic excitations, the time-averaged kinetic energy ofa thin rectangular panel with

uniform mass per unit area is given by [3]

E(ω) =
ρh

4

lx
∫

0

ly
∫

0

∣

∣ ˜̇w(x, y, ω)
∣

∣

2
dx dy, (3.4)

where the additional factor 1/2 arises from the conversion from peak to RMS values. In

the elemental approach the surface integral in Equation (3.4) is substituted by a sum over

the element velocities [3]. Utilizing matrix algebra this summation can be calculated from

the inner Hermitian product of the element velocity vectors. This yields the total kinetic

energy as [see Appendix A Equations (A.21) to (A.32)]

E(ω) =
Me

4
˜̇w

H

e (ω) ˜̇we(ω), (3.5)

whereH denotes the Hermitian transpose andMe is the mass of an individual panel ele-

ment.

3.1.2 Radiated sound power

The sound radiation by the panel is expressed in terms of the total sound power radiation

which gives an indication of the far field, spatially averaged, sound radiation. The time

averaged far field total sound power radiated on one side of the panel is given by [3]
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P (ω) =
1

2

lx
∫

0

ly
∫

0

Re
{

˜̇w
∗

(x, y, ω) p(x, y, ω)
}

dx dy, (3.6)

where ∗ denotes the complex conjugate and the factor 1/2 arises fromthe conversion

from peak to RMS values. Considering radiation into free space, for an ideally planar

panel, the Rayleigh integral [3] is used to rewrite the acoustic pressure on the surface in

terms of the surface velocities and radiation impedance. Utilizing matrix algebra Equation

(3.6) can be cast in the form [see Appendix A Equations (A.33)to (A.42)]

P (ω) = ˜̇w
H

e (ω)Rrad(ω) ˜̇we(ω), (3.7)

whereRrad(ω) is the [Ne, Ne] dimensional radiation matrix with the elements [see Ap-

pendix A Equations (A.43) to (A.46)]

Rradi,j
=

ω2ρ0A
2
e

4πc0

sin (k0Ri,j)

k0Ri,j

. (3.8)

In this equationk0 is the acoustic wavenumber on the receiving side of the paneland

Ri,j =
√

(xi − xj)2 + (yi − yj)2 is the distance between the centres of the elementsi and

j. The distanceRi,i is zero, thus the radiation terms̃Rradi,i
on the main diagonal of the

radiation matrix are undefined. However, using L’ Hôpital’s rule [29] it is found that

lim
R→0

sin (k0R)

k0R
= lim

R→0

k0 cos (k0R)

k0

= 1. (3.9)

3.2 Stochastic excitation

For many practical vibro-acoustic problems, the excitation is not deterministic. For in-

stance acoustic diffuse sound fields (ADF) or turbulent boundary layer (TBL) pressure

fields produced by the interaction of a turbulent flow of fluid and a structure, are often

encountered in transportation vehicles such as aircraft, high speed trains and cars. Ana-

lytical formulations for the statistical properties of theexcitation fields produced by ADF

and TBL have been derived. These formulations describe disturbances in terms of power
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spectral density and spatial correlation functions. The response and sound radiation in-

duced by such random excitation fields are also expressed in terms of power spectral

densities. In particular the response is expressed in termsof the power spectral density

for the total kinetic energy, which for a panel structure, isgiven by [see Appendix A

Equations (A.47) to (A.49)]

SE(ω) =
ρh

2

lx
∫

0

ly
∫

0

lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω) ˜̇w(x, y, ω)

]

dx dy, (3.10)

Considering the formulation for the elemental approach presented in Section 2, Equation

(3.10) can be reformulated to give [compare Appendix A Equations (A.49) to (A.63)]

SE(ω) =
Me

2
trace

(

G̃
H
ee S̃fefe

(ω) G̃ee

)

. (3.11)

whereS̃fefe
is the[Ne × Ne] dimensional matrix of cross spectral densities between the

centres of panel elements andG̃ee is the panel element point and transfer mobility matrix

with active control as defined in Equation (2.8). The matrix of cross spectral densities of

the elemental excitation due to a time and spatial stochastic disturbance has the form

S̃fefe
(ω) = A2

e Ψ(ω) C̃ee(ω), (3.12)

whereAe is the arear of an element,Ψ(ω) is the time averaged power spectrum of the

disturbance per unit area and̃Cee is the[Ne × Ne] dimensional spatial cross correlation

matrix of the excitation forces calculated at the element centre locations. The sound

radiation is expressed in terms of the power spectral density of the radiated sound power

into an infinite half space on the receiving side of the panel,which is given by

SP (ω) = Re







lx
∫

0

ly
∫

0

lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω)p̃(x, y, 0, ω)

]

dx dy







. (3.13)

Considering the elemental formulation Equation (3.13) can be reformulated to give [see

Appendix A Equations (A.64) to (A.72)]
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SPP (ω) = 2 trace
[(

G̃
H
ee S̃fefe

G̃ee

)

Rrad

]

, (3.14)

whereRrad is the element radiation resistance matrix as defined in Equation (3.8).

3.2.1 Acoustic diffuse field

Acoustic diffuse field is a widely used model to describe the excitation produced by ran-

dom acoustic plane waves incident to a surface for all angles. The cross spectral density

for an acoustic diffuse field excitation has been discussed by Shorter and Langley [30].

The power spectral density of an acoustic diffuse field is given by

ΨADF (ω) = 4E [p̃ p̃∗] = 4〈p̃2〉 (3.15)

where p̃ denotes the complex acoustic pressure. The factor 4 arises from the pressure

doubling across a rigid surface and from the relationship between the pressure magnitude

and mean square value. The spatial correlation function foran acoustic diffuse field on

the surface of a rigid infinite plane is given by [30]

CADFi,j
(ω) =

sin (k0 Ri,j)

k0 Ri,j

, (3.16)

wherek0 is the acoustic wavenumber on the source side of the panel andRi,j is the

distance between the centres of the elementsi and j. It is interesting to note that the

correlation function for an ADF disturbance has the same spatial characteristics as the

Radiation matrix in Equation (3.8).

3.2.2 Turbulent Boundary Layer

Turbulent boundary layer disturbance models are widely used to describe the excitation

produced on a surface by a turbulent fluid flow. Models for the spatial correlation of

turbulent boundary layer disturbances have been discussedin References [25] and [31].

The most common expression for TBL cross spectral density is given by Corcos [32].
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The parameters that define the model of the spatial correlation of a fully developed TBL

on the smart panels considered in this study, are given in Table 3.1. The flow direction

is parallel to the y-axis. The spatial correlation functionin x-direction (span wise) and

y-direction (stream wise) is given by

C̃TBLi,j
(ω) = exp

(

−|Rxi,j
|

Lx(ω)

)

exp

(

−|Ryi,j
|

Ly(ω)

)

exp

(−jωRyi,j

Uc

)

, (3.17)

where|Rxi,j
| = |xi − xj| and|Ryi,j

| = |yi − yj| are the distance between the centres of

elementi andj in x- andy-direction andLx andLy are the correlation lengths inx and

y, given by

(a) Lx(ω) =
αxUconv.

ω
, (b) Ly(ω) =

αyUconv.

ω
, (3.18)

whereαx andαy are empirical constants taken from [25, 31] andUconv. is the convection

velocity. The convection velocity is a function of frequency [32, 23], but can be approx-

imated as a fixed fraction of the free flow velocity. Since thisassumes that the cross

correlation function is independent from the boundary layer thickness, it overestimates

the correlation length at very low frequency. A comprehensive review on TBL excita-

tion models is given by Cousin [23]. In general, the power spectral density of the surface

pressure fluctuations due to turbulent boundary layer decreases with increasing frequency.

The results presented in this report do not reflect this dependency but only compare the

panel response to different disturbances with respect to their frequency dependent spatial

correlation.

Table 3.1: Parameters for the Turbulent boundary layer disturbance.

Parameter Symbol Value Unit

Free-stream velocity U∞ 225 m/s
Convection velocity Uconv. 0.6×U∞ m/s
Empirical constant1 αx 1.2 –
Empirical constant1 αy 8 –
1 taken from Ref. [25]
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3.3 Element Resolution

The required element grid density depends on (a) the disturbance characteristics, (b) the

flexural response of the panel and (c) the radiation properties of the panels, which are

given by the radiation matrix. For frequencies below the convective and acoustic coinci-

dence frequencies the bending wavelength is shorter than the acoustic wavelength; thus

the required mesh density is determined by the bending wave lengthλb = cb(f)/f on

the panels. For frequencies above the acoustic coincidencefrequency, it is the acoustic

wavelength that is shorter than the bending wavelength on the panel; therefore the ele-

ment density is determined by the acoustic wavelengthλ0 = c0/f . For TBL disturbance,

the element density in the stream-wise direction for frequencies above the convective

coincidence is determined by the convective wavelengthλconv. = Uconv./f . In the span-

wisex-direction the correlation function in (3.17) is exponentially decaying, thus a low

resolution of the elements grid in x-direction results an overestimation of the structural re-

sponse but does not change its general characteristics. In general at least two elements per

shortest wavelength are required to avoid spatial aliasing. Numerical convergence stud-

ies showed that 4 elements per shortest wavelength, at the highest frequency of interest,

insure convergence at high frequencies and accurate predictions for the entire observed

frequency range [27]. Element densities between two and four elements per wavelength

capture the response of the system correctly but lead to an slight overestimation of panel

kinetic energy and radiated sound power at the upper end of the observed frequency range.

Table 3.2 summarizes the frequency range, element distribution and applied criteria used

in the prediction models.

Table 3.2: Frequency range and element grid definition.

Excitation Frequency No. of elements Total No. Criterion
range x y of elements x y

APW 20 kHz 57 51 2907 ∆x ≤ λ0/3.5 ∆y ≤ λ0/3.5
ADF 12 kHz 39 35 1365 ∆x ≤ λ0/4 ∆y ≤ λ0/4
TBL 12 kHz 35 77 2695 ∆x ≤ λ0/3.5 ∆y ≤ λconv./3.5
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Chapter 4

Structural response and sound

radiation

At first the structural response and sound radiation of the aluminium panel and the com-

posite sandwich panel due to deterministic and stochastic disturbances without active

control are investigated. Significant differences in the panel response and sound radiation

are observed for different types of disturbances. In the case of acoustic plane wave exci-

tation a good agreement between the predicted numerical results and asymptotic analytic

formula [3] are observed. Since radiation losses and fluid loading effects have been ne-

glected, the spectrum of panel kinetic energy only depends on the characteristics of the

disturbance and the panel structural response. The spectraof the radiated sound power

also includes the radiation characteristics of the panels.

4.1 Dispersion curves and coincidence frequencies

Figure 4.1 shows the positive propagating bending wavenumber as a function of frequency

for (a) the aluminium panel and (b) the composite sandwich panel. The circles represent

the modal wavenumber components along thex- andy-axis. The wavenumber compo-

nents satisfy the relationshipkn =
√

k2
x,n + k2

y,n. The convective and acoustic wavenum-

ber are given by thekconv. = ω/Uconv. andk0 = ω/c0 respectively. The frequency at

which the bending wavenumber on the panel equals the acoustic wavenumber in air is
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known as critical coincidence frequency. Potentially all resonant modes with wavenum-

ber components close to the acoustic wavenumber are efficiently excited by an acoustic

field. A convective coincidence occurs when the bending wavenumber in the direction

of the flow on the panel equals the convective wavenumber of the turbulent boundary

layer. Resonant modes with modal wavenumber components in stream wisey-direction

(white circles) that are close to the convection wavenumber may be efficiently excited

by the surface pressure fluctuation generated by the TBL.

At frequencies below 11 kHz the transverse wavenumber of thecomposite sandwich

panel, shown in Figure 4.1(b), is lower than that for the aluminium panel, shown in Fig-

ure 4.1(a). The bending wavenumber for a given frequency is proportional to 4

√

m′′/D.

Both panels have equal static stiffness but the aluminium panel has a four times higher

mass per unit area. Thus, at low frequencies the bending wavenumber for the aluminium

panel is
√

2 higher than those for the composite sandwich panel. The bending stiffness

and modal density of the thin aluminium panel is constant with frequency. The equiv-

alent bending stiffness of the sandwich panel is constant atlow frequencies where it is

determined by the bending stiffness of the cross-section. With increasing frequency the

transverse shear distortion of the core layer causes a reduction of the equivalent bending

stiffness which results in an increase in the modal density.At very high frequencies the

bending wavenumber is determined by the faceplate bending stiffness and converges to a

constant value, which is much higher than that of the thin homogeneous aluminium panel.

In summary, at about 11 kHz both panel models produce similarbending wavelength and

equal total mode count. Below 11 kHz the modal density of the aluminium panel is higher

than that of the composite sandwich panel while above 11 kHz the modal density of the

composite sandwich panel greatly exceeds that of the aluminium panel.

The lower wavenumbers on the composite sandwich panel at lowfrequencies result in

lower coincidence frequencies than for the aluminium panel. For the aluminium panel

the acoustic coincidence occurs at about 7.5 kHz. For the composite sandwich panel

acoustic coincidence occurs at about 5.5 kHz. Efficient radiation modes that resonate

around coincidence produce high structural response and sound radiation effects. Thus,

according to the wavenumber plots in Figure 4.1, the composite sandwich panel is likely

to radiate sound more efficiently than the aluminium panel for a wider range of audio

frequencies.
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Figure 4.1: Propagating transverse wavenumber (solid) of the (a) aluminium and (b) composite sand-
wich panel; acoustic wavenumber (dashed) and convective wavenumber (dash − dotted). Wavenumber
components of structural modes in span-wisex-direction (black circles) and in stream-wisey-direction
(white circles).

For thin aluminium panels, the effect of acoustic coincidence often is not a problem for

practical engineering applications since it occurs at the upper end of the audio frequency

range where the structural response has already rolled off due to the mass effect and to ef-

fective passive treatments. For lightweight sandwich structures the coincidence frequency

potentially occurs in the mid audio frequency range where the response of the panel is still

controlled by clusters of modes. This might cause an undesired increase in sound radia-

tion, since at low and mid audio frequencies the structural response of the the panel is not

rolled off by the mass effect and passive control measures may not work effectively.

The convective coincidence frequency for the aluminium panel occurs at 1169 Hz and at

609 Hz for the composite sandwich panel. Due to the low coincidence frequency and low

modal density, only a few structural modes of the composite sandwich panel resonate in

the vicinity of the convective coincidence frequency. Thisindicates a potential for active

structural control which tends to be particularly effective at controlling low frequency

resonances. The effect of the convective coincidence is discussed in more detail in a later

section of this report. The coincidence frequencies for thetwo panels are summarised in

Table 4.1.

21



Table 4.1: Coincidence frequencies.

Panel Acoustic critical Excitation coincidence Convectivecoincidence
frequency [Hz] frequency [Hz] frequency [Hz]

for APW θ=45◦ for TBL disturbance

Aluminium 7,544 15,087 1,169
Sandwich 5,489 190,663 609

4.2 Acoustic plane wave

Figure 4.2 shows the frequency spectrum of panel kinetic energy (left hand side column)

and radiated sound power (right hand side column) of the aluminium panel (solid line)

and composite sandwich panel (faint line) for a plane wave excitation. Three different

angles of incidence are considered. These angles areθ = 0◦ (normal incidence),θ = 45◦

andθ = 90◦ (grazing incidence). The excitation angleϕ = 45◦ for all cases.

APW with θ = 0◦ (normal incidence): Figure 4.2(a) and (b) show the structural re-

sponse and radiated sound power for both panels due to a planewave excitation at normal

incidence. Even structural modes are not excited. This is because the excitation field is

uniform over the surface of the panel. Odd modes however are efficiently excited. Since

the plane wave is incident normal to the panel surface no excitation coincidence effects

are present in the kinetic energy and radiated sound power spectra. Above the first few

resonances of the panel, the kinetic energy follows the masslaw [3] and rolls off at a rate

of 6 dB per octave, i.e. 20 dB per decade. In this mass controlled frequency band the

panel kinetic energy of the composite sandwich panel is about 6 dB higher than that of

the aluminium panel. This is because the aluminium panel hasa four times higher mass

per unit area. Corresponding low order resonant modes for both panels have a similar

response magnitude.

The radiated sound power for both panels is the same at frequencies well below the first

panel resonance. This is because the radiated sound power inthis frequency band is deter-

mined by static stiffness which is equal for both panels. Above the first panel resonance

the radiated sound powers are mass controlled up to about thecritical frequencies [3] of

the two panels. In the mass controlled region, the radiated sound power of the compos-

ite sandwich panel is 12 dB higher than that of the four times more heavy aluminium
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panel. The radiated sound power of the aluminium panel follows the mass law up to 5

kHz. Around the critical frequency at about 7.5 kHz the radiated sound power increases

because of the acoustic coincidence effect in the radiationproperties of the panel (The

radiation efficiencies of all modes peak at around the critical frequency [3]). The radiated

sound power of the composite sandwich panel follows the masslaw only up to 2 kHz.

Around the critical frequency at bout 5.5 kHz the the radiated sound power increases be-

cause of the radiation acoustic coincidence effect. Around5.5 kHz the radiated sound

power spectra of the composite sandwich panel is more than 20dB higher than that of the

aluminium panel.

The radiation acoustic coincidence frequency range for thecomposite sandwich panel is

wider than that for the thin homogeneous aluminium panel. This is due to the transition

from bending to shear response which produces acoustic coincidence conditions over

an extended frequency band. This effect can be visualised inthe wavenumber plots of

Figure 4.1. The lines for the acoustic wavenumber and the flexural wavenumber for the

aluminium panel intersect at a rather wide angle at the critical frequency. In contrast the

acoustic wavenumber and the transverse wavenumber lines for the composite sandwich

panel intersect at a more narrow angle and remain quite closeto each other above the

critical frequency so that the radiation acoustic coincidence effect extends over a wider

frequency band.

However, this radiation characteristic is not necessarilythe same for all sandwich panels.

In the shear-controlled transition region the transverse wavenumber for a sandwich panel

tends tok = ks [3] where according to Equation (2.12)ks = ω
√

m′′/Gd. If ks is similar

to the acoustic wavenumberk0 = ω/c0 then the radiation acoustic coincidence frequency

band is extremely wide. If howeverks is much higher thank0 radiation coincidence should

not occur until very high frequencies where the structural wavenumber is dominated by

faceplate bending. Also ifks is very low then radiation coincidence occurs at relatively

low frequencies where the structural wavenumber is dominated by the bending of the

overall sandwich cross-section. Thus the specific design oflightweight sandwich panels

can significantly influence the radiation characteristics.

It is also interesting to note that at low frequencies the spectra of the radiated sound power

of the aluminium panel are characterised by resonance and anti-resonance effects. This
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occurs in between two resonances of structural modes that interfere destructively, causing

a cancellation of the modal contributions to the radiated sound power.

APW with θ = 45◦: Figure 4.2(c) and (d) show the panel response and radiated sound

power for a plane wave incident at an angleθ = 45◦. In this case all structural modes are

efficiently excited. Above the first resonance, the structural response of the aluminium

panel follows the mass law up to about 10 kHz. Around this frequency the spectrum

of the panel kinetic energy shows a wide frequency band crestcomposed by a series of

resonance peaks. This is because the projection of the acoustic excitation wave onto the

panel surface for an angleθ = 45◦ is
√

2 longer than the acoustic wavelength. Thus, since

the bending wavenumber is proportional to
√

f an excitation coincidence effect occurs at

twice the critical frequency, that is about 15 kHz. Around this coincidence frequency the

response of the panel is dominated by resonances of discrete, efficiently excited modes

whose responses are controlled by structural damping. Above this coincidence frequency

the panel response is stiffness and mass controlled and rolls off rapidly at a rate of 36 dB

per octave.

The structural response of the composite sandwich panel does not exhibit this excitation

coincidence effect, which occurs at 190 kHz and is thereforeoutside the observed fre-

quency range. This is because the structural wavenumber of the sandwich panel in the

shear transition region is higher than the projected wavenumber of the acoustic excitation

ω/(
√

2c0). The response of the composite sandwich panel at high frequencies exhibits

mass-controlled behaviour. However the roll off rate is lower than 6 dB per octave.

The radiated sound power of the aluminium panel is mass controlled up to 5 kHz. Above 5

kHz the radiated sound power spectra of the aluminium panel shows the combined effect

of the radiation acoustic coincidence around the critical frequency at 7.5 kHz, and the

excitation coincidence at 15 kHz. The radiated sound power spectra of the composite

sandwich panel exhibits these radiation and excitation acoustic coincidence effects in the

frequency range between 2 kHz and 10 kHz. At 5.5 kHz the radiated sound power of the

composite sandwich panel is about 25 dB higher than that of the aluminium panel.

In comparison to the kinetic energy spectra, below the critical frequency some resonant

peaks are significantly reduced in the spectrum of the radiated sound power. This is

24



because the surface pressure fluctuations caused by even modes counteract each other

and are not efficiently radiated into the far field [3].

APW with θ = 90◦: Figure 4.2(e) and (f) show the panel response and radiated sound

power for a plane wave incident at an angleθ = 90◦ (grazing incidence). At this angle

the plane wave excites all structural modes. For grazing incidence both, the excitation

acoustic coincidence and the radiation acoustic coincidence occur at the critical frequency.

This is because the wavelength of the acoustic excitation projects directly onto the panel

surface. The response of the panels around critical frequency is dominated by discrete

efficiently excited modes whose responses are controlled bystructural damping. Above

critical frequency the panel response is stiffness and masscontrolled and rolls off rapidly.

The response of the aluminium panel rolls off at a rate off 36 dB per octave. The response

of the composite sandwich panel rolls off at a lower rate of about 16 dB per octave. This

difference is caused by the shear distortion in the transverse wavenumber of the sandwich

panel which results in a decrease in bending stiffness and thus results in an increase in

modal density.

The spectra of the radiated sound power for frequencies up to1 kHz are very similar to

those for the plane wave incident atθ = 45◦. For higher frequencies both panels show the

overlaying acoustic coincidence effect in the excitation and the radiation characteristics.

Around critical frequency the sound power spectra is dominated by individual efficiently

radiating resonant modes. Above coincidence the radiated sound power of both panels

rolls off rapidly with frequency. Around the acoustic critical frequency of the composite

sandwich panel at 5.5 kHz the radiated sound power of the sandwich panel exceeds that

of the aluminium panel by about 30 dB. Also in this case, below critical frequencies the

amplitude of the resonance peak of even modes are rather small because of their low

radiation efficiency.

4.3 Stochastic disturbances

Figure 4.3 shows the predicted panel kinetic energy (left hand side column) and radiated

sound power (right hand side column) of the aluminium panel (solid line) and composite
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Figure 4.2: Panel kinetic energy and radiated sound power ofthe 1.6 mm aluminium panel (solid) and
the composite sandwich panel with equivalent static bending stiffness (faint) for a acoustic plane wave
incident atθ = 0◦, 45◦ and 90◦. Vertical lines mark the acoustical critical frequency of the aluminium
panel (solid), composite sandwich panel (dashed) and theθ = 45◦ excitation coincidence frequency for the
aluminium panel (dash − dotted).

26



sandwich panel (faint line) for acoustic diffuse field (top row) and turbulent boundary

layer (bottom row) disturbances. The spectra are normalised to the power spectral densi-

ties of equivalent acoustic plane wave with a pressure amplitude of 1 Pa at all frequencies.

4.3.1 Acoustic diffuse field

Figure 4.3(a) and (b) show the structural response and radiated sound power of the alu-

minium panel and the composite sandwich panel for an acoustic diffuse field disturbance.

As a comparison with Figure 4.2(c) and (d) shows, the low frequency structural response

and radiated sound power of both panels up to 1 kHz is very similar to the response to an

acoustic plane wave with incidence anglesθ = 45◦ andϕ = 45◦.

Figure 4.3(a) shows that, at higher frequencies the structural response of the aluminium

and composite sandwich panel are characterised by the excitation coincidence effect,

which, for diffuse acoustic excitation, formed by acousticwaves at arbitrary random an-

gles of incidence, occurs around the critical frequencies at 7.5 kHz and 5.5 kHz respec-

tively. The panel response in coincidence region is characterised by resonating modes, but

the response of individual modes is less pronounced than forthe cases of APW excitation

shown in Figure 4.2. Above the coincidence region the kinetic energy spectrum of both

panels rolls off at a lower rate than for the cases of APW excitation. These differences in

the response spectra can also be explained by the fact that the ADF excitation is formed

by acoustic waves at arbitrary random angles of incidence. Figure 4.3(b) shows the spec-

trum of the radiated sound power of the panels for an acousticdiffuse field disturbance.

As for the Acoustic plane wave excitation at grazing angle inFigure 4.2(e), the spectrum

of radiated sound power in Figure 4.3(b) shows the combined effect of acoustic excitation

coincidence and radiation coincidence, which cause a considerable increase of radiated

sound power around the acoustic critical frequency.

4.3.2 Turbulent boundary layer

Figure 4.3(c) and (d) show the structural response and radiated sound power of both panels

for the TBL disturbance. In the frequency range below 2 kHz theresponse of both panels

is dominated by resonances of low order modes. For the aluminium panel the convective
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coincidence occurs at 1169 Hz, while for the composite sandwich panel it occurs at 609

Hz. The panel response therefore depends on how efficiently specific modes are excited

by the TBL disturbance. Above the convective coincidence region, the response of the

aluminium panel drops off at a rate of 9 dB per octave. The rolloff rate for the composite

sandwich panel is slightly lower. This is due to the increasein modal density above 2

kHz.

The discussion on the response of low order structural modesto TBL disturbance requires

to recall the properties of the correlation function for theTBL disturbance in Equation

(3.17). Since the correlation function for the TBL inx-direction (span wise) is charac-

terised by a monotonically decaying exponential function,there are no coincidence effects

along thex-axis of the panels. Therefore only structural modes with modal wavenumber

component iny-direction which is close to the convective wavenumber are characterised

by a coincidence effect.

Table 4.2 gives the panel modes that are efficiently excited by coincidence with the TBL

downstream convective field. Bold mode orders indicate efficiently radiating modes,

modes in brackets indicate a group of modes that can not be distinguished as individ-

ual resonance peaks in Figure 4.3(c) and (d) and the dashed horizontal lines mark the

convective coincidence frequency. The comparison betweenthe two panels shows that,

for the aluminium panel more modes are efficiently excited bythe TBL disturbance than

for the composite sandwich panel. A comparison of the results in Table 4.2 with Fig-

ure 4.1 shows that efficiently excited modes indeed have a wavenumber component in

y-direction (stream wise) that is close to the convective wavenumber.
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Table 4.2: Modes efficiently excited by TBL.

Aluminium panel Composite sandwich panel
Mode number Frequency mode orderMode number frequency mode order

[Hz] (nx, ny) [Hz] (nx, ny)

1 114 (1,1) 1 225 (1,1)
2 266 (2,1) 3 588 (1,2)
3 306 (1,2) - - - - - - - 609 - - - - - - -
4 457 (2,2) 4 862 (2,2)
6 626 (1,3) 6 1155 (1,3)
7 710 (3,2)
8 777 (2,3)





10
11
12









1029
1063
1073









(3,3)
(4,2)
(1,4)





- - - - - - - 1169 - - - - - - -
13 1224 (2,4)
16 1477 (3,4)
18 1648 (1,5)
19 1800 (2,5)
26 2351 (1,6)

The radiated sound power spectrum in Figure 4.3(d) shows that odd order modes in Table

4.2 radiate sound efficiently. Although even modes generally have a low radiation effi-

ciently, the even [2,4] mode of the aluminium panel and the [1,2] mode of the composite

sandwich panel also show high resonant peaks in the radiatedsound power spectra in

Figure 4.3(d). Comparison with Figure 4.1 shows that both modes have a wavenumber

component inx-direction which is close to the acoustic wavenumber, whichresults in a

high radiation efficiency.
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Figure 4.3: Panel kinetic energy and radiated sound power for the 1.6 mm Aluminium panel (solid) and the
composite sandwich panel with equivalent static bending stiffness (faint) for ADF and TBL stochastic dis-
turbances. Vertical lines mark the acoustical critical frequencies and aerodynamic coincidence frequencies
of the aluminium panel (solid) and the composite sandwich panel (dashed).
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Chapter 5

Decentralised velocity feedback control

In this section the structural response and sound radiationof the aluminium panel and the

composite sandwich panel with active structural control for deterministic and stochastic

disturbances are considered. As shown in Figure 2.1(b) and Figure 5.1, the panels are

fitted with 16 decentralized ideal velocity feedback control loops. Figures 5.2 and 5.3

show the structural response and total radiated sound powerfor the aluminium panel (left

hand side column) and the composite panel (right hand side column) with feedback gains

in the range form 5 to 80. As discussed by Gardonio and Elliott[4], velocity feedback

control introduces active damping. This allows to control the response of modes at res-

onance. At off resonance frequencies, active damping is noteffective. For low feedback

gains, the resonant peaks are initially damped and anti resonances in the radiated sound

power spectra disappear. For increasing feedback gains newresonance behaviour starts

to develop. For the composite sandwich panel this occurs forgains above 20 and for the

aluminium panel for gains above 40. This difference relatesto the structural impedances

of the panels. Only with high feedback control gains the resonances of low order modes

are completely cancelled by the sixteen feedback loops. In the high frequency region the

control is limited by the large number of modes that contribute to the response at each

frequency.

For all disturbances, the controllable frequency range forthe composite sandwich panel

extends to higher frequencies than for the aluminium panel.This is predominantly due

to the lower modal density [3] on the composite sandwich panel but also to the lower

convective and acoustic coincidence frequencies. At coincidence, the response of the
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panels is dominated by the response of discrete resonant modes. These resonances can

be effectively reduced by means of active velocity feedback. As shown in Figure 5.2

considerable reductions in the structural response of the aluminium panel can be achieved

up to about 1.5 kHz for the APW (θ=45◦), up to 2 kHz for the ADF and up to 3 kHz

for TBL disturbance. For the composite sandwich panel considerable reductions of the

response can be achieved for frequencies up to twice as high.As shown in Figure 5.3

considerable reductions in radiated sound power of the aluminium panel can be achieved

up to 1 kHz for the APW (θ=45◦) and ADF disturbances, while for the TBL disturbance

considerable reductions are achieved up to 3 kHz. Also in this case, for the composite

sandwich panel considerable reductions of the radiated sound power can be obtained for

frequencies up to twice as high.

The predicted control performance for the structural response and radiated sound power

for the TBL disturbance is much higher then those for Acousticexcitations. This is be-

cause the kinetic energy and radiated sound power spectra are dominated by a smaller

number of resonant modes for which theky structural wavenumber coincides with the

convective wavenumber of the TBL disturbance. The response and sound power radia-

tion for APW and ADF disturbances is instead characterized by a large number of reso-

nant modes, for which either thekx or ky structural wavenumbers components coincide

with the acoustic wavenumber. Thus a large number of feedback control units would be

required to obtain the same bandwidth as for the TBL excitation.

Figure 5.4 shows the spectrum of the radiated sound power of the aluminium panel excited

by an ADF disturbance from Figure 5.3(c) on a linear frequency scale. The vertical line

marks the acoustical critical frequency at 7.5 kHz. It is shown that, in the coincidence

region around 7.5 kHz, with a feedback gain of 80 significant reductions of up to 7 dB can

be achieved. This is because the panel response and radiatedsound power around acoustic

coincidence is dominated by the damping controlled response of discrete resonant modes.

At these high frequencies, the bending wavelength on the panel is much shorter than

the distance between the velocity sensor actuator pairs. One may therefore expect that

the control performance for single modes will depend on the spatial distribution of the

control units with respect to the shape of the modes. However, for stochastic disturbances

a wide range of structural modes is excited at coincidence sothat some reductions may

be expected for even distributions of the control points. Reductions of the response and
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Figure 5.1: Spatial distribution of control loops across the panel.

radiated sound power in the coincidence region of thin aluminium panels might not be of

practical interest because this effect occurs at the upper end of the audio frequency range

and can be efficiently controlled by means of passive dampingtreatments. For composite

sandwich panels the coincidence occurs at much lower frequencies and affects low order

modes. In this case discrete velocity feedback is thought tobe a promising and realisable

control approach.

Figure 5.5 shows the achievable reduction in panel kinetic energy (left hand side column)

and radiated sound power (right hand side column) for both panels for a feedback gain of

20 on a wavenumber scale. Normalising the spectra scale to the wavenumber corresponds

to a normalisation of the stiffness to mass ratio of the two panels. The difference in the

response is then given by the square root of the mass ratio. Since the aluminium panel is

four times heavier than the composite panel, the control effort for similar reductions of

the response of equal order modes is twice as high. For all disturbance cases the control

reductions obtained for low order modes of the composite sandwich panel are significantly

higher than those for corresponding modes of the aluminium panel. As show in Figure

5.5(b) and (d), for the acoustic disturbances considerablyhigher reductions in the radiated

sound power of the composite sandwich panel are achieved formodes resonating around

the acoustic coincidence wavenumber of the composite sandwich panel at 100 rad/m.

Figure 5.6 shows the 20 Hz to 12 kHz averaged reduction of the the A-weighted panel
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Figure 5.2: Kinetic energy of a 1.6 mm aluminium panel (left column) and a composite sandwich panel
with equivalent static bending stiffness (right column) with 16 discrete idealized velocity feedback loops
for APW (θ=45◦) excitation and ADF and TBL stochastic disturbances. Passive panel (solid), feedback
gain of 5 (dashed), 10 (dash − dotted), 20 (dotted), 40 (faint) and 80 (faint − dashed). Vertical lines
mark the acoustical critical frequency (dashed) and convective coincidence frequency (solid).
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Figure 5.3: Radiated sound power from a 1.6 mm Aluminium panel (left column) and the composite sand-
wich panel with equivalent static bending stiffness (rightcolumn) with 16 discrete idealized velocity feed-
back loops for APW (θ=45◦) excitation and ADF and TBL stochastic disturbances. Passive panel (solid),
feedback gain of 5 (dashed), 10 (dash−dotted), 20 (dotted), 40 (faint) and 80 (faint−dashed). Vertical
lines mark the acoustical critical frequency (dashed) and convective coincidence frequency (solid).
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Figure 5.4: Radiated sound power from the 1.6 mm aluminium panel with 16 discrete idealized velocity
feedback loops for a ADF disturbance and with a feedback gainof 5 (dashed), 10 (dash − dotted), 20
(dotted), 40 (faint) and 80 (faint − dashed). The vertical line marks the acoustical critical frequency
(dashed).

kinetic energy (left hand side) and total sound power radiated (right hand side). This is

thought to be a fair approach to assess the overall control performance of the two panels.

The achieved reductions in the panel kinetic energy are generally higher then those for the

radiated sound power. This is because the reductions in all resonant structural modes are

reflected in the overall reductions in panel kinetic energy but only reductions in efficiently

radiating modes affect the overall reduction in radiated sound power.

Considering the acoustic APW and ADF disturbance cases, for low feedback gains higher

reductions are achieved for the smart composite sandwich panel than for the smart ho-

mogeneous aluminium panel. Optimal control performance for the composite sandwich

panel is achieved for a feedback gain of 20. As shown in Figure5.2 and Figure 5.3, for

higher feedback gains new resonance behaviour starts to develop which diminishes the

overall control performance. For higher feedback gains thepredicted reductions for the

aluminium panel are higher than those for the composite sandwich panel; for the kinetic

energy this is for gains above 40 and for the radiated sound power this is for gains above

80. The highest reductions for the aluminium panel are achieved for a feedback gain of

80. The better control performance for the composite sandwich panel, in terms of reduc-

tions in A-weighted radiated sound power for a wide range of feedback gains is due to the

control of the efficiently radiating modes in the mid audio frequency range.

In the case of the TBL excitation significant reductions in thestructural response and
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Figure 5.5: Reductions in panel kinetic energy and radiatedsound power plotted over the structural
wavenumber, for a 1.6 mm aluminium panel withfeedback gain of 20(solid) and the composite sand-
wich panel withfeedback gain of 20(faint) with 16 discrete idealized velocity feedback loops for APW
(θ = 45◦) ADF and TBL disturbance. Vertical lines mark the acoustical critical (dashed) and convective
coincidence frequency (solid).
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radiated sound power are predicted for both panels. This is because the TBL excitation

excites predominantly low order structural modes whose wavenumber in iny-direction

coincides with that of the stream wise convective field. These modes can be efficiently

controlled by means of discrete velocity feedback. The highresponse of low order modes

shifts the optimal control gain for both panels towards higher values. For low feedback

gains the predicted reductions for the composite sandwich panel are up to 10 dB higher

than those of the aluminium panel. This is partly because only a small number of low

order structural modes of the composite sandwich panel are efficiently excited by the TBL

(see Table 4.2), and because for equal feedback gains the response of low order structural

modes of the composite sandwich panel are controlled more effectively than those of the

aluminium panel (see Figure 5.5).

In practice it is difficult realise high feedback gains because control systems are often

only conditionally stable and can also cause control spill over effects at low or high fre-

quencies, depending on the type of actuator. The lower optimal feedback gain for the

composite sandwich panel may therefore be beneficial for practical applications. Cur-

rently active control systems are mainly considered for lowfrequency noise applications

up to 1 kHz. The results of this study indicate that it might bepossible to extend the

operative frequency range of active control systems up to mid audio frequencies when

lightweight sandwich panels are used. In this case the benefits of active control systems

could offset the additional costs and additional installedmass.

At mid frequencies at which the modal overlap is in the vicinity of unity, the response of

the panels is mass controlled. Thus parts of the response cannot be controlled by means

of active damping. An ideal control system would therefore synthesise active damping

at low frequencies where the response of the structure is controlled by well separated

resonances of low order modes an distributed mass, i.e. distributed acceleration feedback,

at higher frequencies where the modal overlap exceeds unityand therefore the response

of the panel is controlled by the distributed mass of the partition.
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Figure 5.6: Overall reductions in A-weighted panel kineticenergy and radiated sound power for the panels
with 16 discrete idealized velocity feedback loops. Aluminium panel (solid line / blanc sqares), compos-
ite sandwich panel (faint line / black circles) for a APW (θ = 45◦), ADF and TBL disturbance.

39





Chapter 6

Conclusions

In this report two active panels under deterministic and stochastic excitation have been

considered. The first panel is a homogeneous 1.6 mm thick aluminium while the sec-

ond is a composite sandwich panel with equivalent static stiffness but four times lower

mass per unit area. Firstly, the panels structural responseand radiated sound power due

to (a) acoustic plane wave, (b) stochastic acoustic diffusefield and (c) turbulent boundary

layer disturbances have been investigated and contrasted.Secondly, the response of the

panels with sixteen decentralised velocity feedback control loops using idealized point

force actuators and collocated idealized velocity sensorswas studied to compare the con-

trol effects on both panels and to investigate the intrinsiclimits of decentralised velocity

feedback control. In contrast to previous studies on activepanels, the analysis has been

extended to the upper end of the audio frequency range. Due tothe low modal density

and lower convective and acoustic coincidence frequency the response of the compos-

ite sandwich panel is dominated by discrete resonate modes over a wide range of audio

frequencies. This indicates a high potential for the application of damping treatment to

reduce the panel kinetic energy and radiated sound power. Passive treatments are not

effective at low frequencies and might add high amount of mass which is diminishing

the initial benefits of lightweight design. It has been demonstrated that for low feedback

gains discrete active velocity feedback shows a better control performance for lightweight

sandwich panel then for a homogeneous aluminium panel. Thisis particularly the case for

TBL excitation where the structural response is dominated bylow order resonant modes.

Discrete velocity feedback is efficient in controlling the resonant response of low order

41



resonant modes and also in controlling the response of individual modes resonating at

acoustic coincidence in the mid and high audio frequencies range.The results of this sim-

ulation study suggests that decentralised velocity feedback control is efficient in reducing

the structural response and radiated sound power of a lightweight sandwich panel up to

the mid and high audio frequencies. In this case the benefits of Active control systems

could offset the additional costs and additional installedmass. In this report basic struc-

tural models and ideal velocity sensor actuator pairs have been considered. Further work

is required to evaluate the control performance considering the dynamic response of the

panels and actuator units in more detail.
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Appendix A

Formulations for kinetic energy and

radiated sound power

In this appendix the formulations for a) the panel kinetic energy and radiated sound power

due to harmonic deterministic excitations and b) the spectral density of panel kinetic en-

ergy and radiated sound power due to stochastic disturbances are presented.

A.1 Notations for the time harmonic response of the panel

At first the notation for the time harmonic excitation and vibration velocity response of

a rectangular panel, as shown in Figure 2.1 are introduced. This notation is then used

to derive the formulations for the panel structural response and sound radiation for time

harmonic and stochastic disturbances. Assuming time harmonic behaviour, of the form

Re{exp(jωt)}, whereω is the angular frequency andj =
√
−1, the transverse force

excitation and the transverse velocity response of a panel can be expressed as

f(x, y, t) = Re
{

f̃(x, y, ω)ejωt
}

, (A.1)

ẇ(x, y, t) = Re
{

˜̇w(x, y, ω)ejωt
}

, (A.2)

wheref̃ and ˜̇w are frequency-dependent complex phasors of the excitationforce per unit
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area and the velocity response.

A.1.1 Modal formulation

The time-dependent velocity response, can be expressed in terms of the following infinite

modal summation [3]

ẇ(x, y, t) = Re

{

∞
∑

r=1

φr(x, y)ȧr(t)e
jωt

}

, (A.3)

whereφr(x, y) is ther-th natural mode anḋ̃ar(ω) is the complex modal velocity. Thus

the complex frequency-dependent velocity response is given by

˜̇w(x, y, ω) =
∞

∑

r=1

φr(x, y)˜̇ar(ω). (A.4)

The frequency-dependent complex modal velocities˜̇ar(ω) can be expressed as the product

of a resonant term and a modal or generalised excitation termof the form

˜̇ar(ω) = Ω̃r F̃r(ω). (A.5)

Considering a hysteresis damping model, the resonant term isgiven by

Ω̃r =
jω

Mr [ω2
r(1 + jη) − ω2]

(A.6)

whereωr is ther-th natural frequency,η is the modal damping loss factor andMr is the

modal mass for ther-th natural mode, which is given by

Mr = ρh

lx
∫

0

ly
∫

0

[φr(x, y)]2 dx dy, (A.7)

whereρ is the panel mass density andh is the panel thickness. If the panel is simply

supported, the mass-normalised natural modesφr(x, y) are given by
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φr(x, y) = 2 sin

(

mrπx

lx

)

sin

(

nrπy

ly

)

(A.8)

where,mr is the modal order inx-direction andnr is the modal order iny-direction for

ther-th mode. In this caseMr = ρh lx ly = M , whereM is the total mass of the panel.

The corresponding modal excitation term is given by

F̃r(ω) =

lx
∫

0

ly
∫

0

φr(x, y) f̃(x, y, ω) dx dy, (A.9)

wheref̃(x, y, ω) is the exciation force per unit area.

Mode truncation

If the modal summation in Equation (A.4) is truncated to the sum over the firstN modal

terms, so that

˜̇w(x, y, ω) ≈
N

∑

r=1

φr(x, y)˜̇ar(ω), (A.10)

after substituting Equation (A.5), the velocity at an arbitrary point of the panel can be cast

into the following matrix formulation

˜̇w(x, y, ω) = Φ ˜̇a = ΦΩ̃ F̃, (A.11)

where

Ω̃ =











Ω̃1

. . .

Ω̃N











(A.12)

is a diagonal matrix with the firstN resonant terms in Equation (A.6) and

Φ =
[

φ1(x, y) φ2(x, y) · · · φN(x, y)
]

, (A.13)
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˜̇a =
[

˜̇a1
˜̇a2 · · · ˜̇aN

]T

, (A.14)

F̃ =
[

F̃1 F̃2 · · · F̃N

]T

, (A.15)

are respectively a row vector with the firstN natural modes, a column vector with the first

N modal velocities and a column vector with the firstN modal excitations. Note that the

modal excitation terms in Equation (A.15) involves the derivation of the spatial integrals

in Equation (A.9).

A.1.2 Elemental approach

In the elemental approach the panel surface is subdivided ina uniform grid ofNe el-

ements. The excitation and response is defined at the elementcentres. This allows to

replacing the integration over the panel dimensions in Equation (A.9) by a finite sum over

element contributions to give

F̃r(w) ≈
Ne
∑

i=1

φr(xi, yi) Ae f̃(xi, yi, ω), (A.16)

whereφr(xi, yi) is the mass-normalised natural mode evaluated at the centreof element

i, Ae is the area of a single element andf̃(xi, yi, ω) is the force per unit area at the centre

of the element, so that the productAe f̃(xi, yi, ω) approximates the total force over the

element surface. The vector with the elemental velocities

˜̇we =
[

˜̇we1

˜̇we2
· · · ˜̇weNe

]T

(A.17)

can be derived from equation (A.11) as follows

˜̇we(ω) = Φe
˜̇a = ΦeΩ̃Φ

T
e F̃e (A.18)

whereΦe is a [Ne × N ] dimensional matrix ofNe rows with the firstN natural modes at
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the the centres of the panel elements

Φe =











φ1(x1, y1) · · · φN(x1, y1)
...

. . .
...

φ1(xNe
, yNe

) · · · φN(xNe
, yNe

)











(A.19)

andF̃e is theNe-dimensional vector of discrete eqivalent excitation forces at the centres

of the panel elements

F̃e =
[

F̃e1
F̃e2

· · · F̃eNe

]T

. (A.20)

The approximation of the surface integrals in Equation (A.9) by the sum over element

contributions allows to consider complex natural mode functions, due to arbitrary bound-

ary conditions and arbitrary spatial excitation fields.

A.2 Time-averaged total panel kinetic energy

The instantaneous total kinetic energy of the panel is givenby the product of the panel

density per unit area and the squared panel velocity integrated over the panel surface [3]:

E(t) =
1

2

lx
∫

0

ly
∫

0

ρh ẇ2(x, y, t)dx dy, (A.21)

wherelx andly are the dimensions of a rectangular panel,ρh is the panel mass per unit

area andẇ(x, y, t) is the transverse panel velocity. Assuming the panel mass per unit area

is constant, Equation (A.21) can be rewritten as

E(t) =
ρh

2

lx
∫

0

ly
∫

0

ẇ2(x, y, t)dx dy, (A.22)

The time averaged total panel energy is given by [33, 34]:
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E =
ρh

2

lx
∫

0

ly
∫

0

1

T

T
∫

0

ẇ2(x, y, t)dt dx dy (A.23)

whereT is a suitable period of time over which the mean square velocity is estimated; e.g.

for time harmonic vibration ,T is the period. Assuming time harmonic vibration as given

in Equation (A.2), the time average integral can be rewritten in terms of the magnitude of

the complex panel velocitẏ̃w(x, y, ω) to give

1

T

T
∫

0

ẇ2(x, y, t)dt =
1

2

∣

∣ ˜̇w(x, y, ω)
∣

∣

2
, (A.24)

which yields the time averaged total kinetic energy of the panel as

E = E(ω) =
ρh

4

lx
∫

0

ly
∫

0

∣

∣ ˜̇w(x, y, ω)
∣

∣

2
dx dy. (A.25)

A.2.1 Modal formulation

Using the vector notation for the truncated modal summationof the transverse velocity of

the panel given in Section A.1.1, the total panel kinetic energy in Equation (A.25) can be

rewritten as

E(ω) =
ρh

4

lx
∫

0

ly
∫

0

˜̇a
H

(ω)ΦT
Φ ˜̇a(ω) dx dy,

=
ρh

4
˜̇a

H
(ω)

lx
∫

0

ly
∫

0

Φ
T
Φ dx dy ˜̇a(ω), (A.26)

whereH denotes the hermitian transpose. Considering mass normalized modes, the or-

thogonality property gives

52



lx
∫

0

ly
∫

0

φr(x, y) φs(x, y) dx dy = 0 (A.27)

and

lx
∫

0

ly
∫

0

φr(x, y)φr(x, y)dx dy = lxly. (A.28)

Thus the integration over the panel surface in Equation (A.26) results in

E(ω) =
ρh

4

[

˜̇a
∗

1
˜̇a
∗

2 · · · ˜̇a
∗

N

]











∫ ∫

φ1φ1 · · ·
∫ ∫

φ1φN

...
. . .

...
∫ ∫

φNφ1 · · ·
∫ ∫

φNφN





















˜̇a1

...

˜̇aN











=
ρh

4

[

˜̇a
∗

1
˜̇a
∗

2 · · · ˜̇a
∗

N

]











lxly
. . .

lxly





















˜̇a1

...

˜̇aN











, (A.29)

which can be expressed in terms of the modal velocities vector defined in Equation (A.14):

E(ω) =
ρh lxly

4

[

˜̇a
∗

1 · · · ˜̇a
∗

N

]











˜̇a1

...

˜̇aN











=
M

4
˜̇a

H
(ω) ˜̇a(ω), (A.30)

whereM represents the total mass of the panel.

A.2.2 Elemental approach

In the elemental approach the spatial integral in Equation (A.25) is replaced by a summa-

tion over a grid of elements to give
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E(ω) =
ρh

4

Ne
∑

i=1

Ae | ˜̇w(xi, yi, ω)|2

=
Me

4

Ne
∑

i=1

| ˜̇w(xi, yi, ω)|2. (A.31)

whereAe andMe the area and mass of a single panel element. Using the matrix notation

for the element approach in Section A.1.2 this can be writtenas

E(ω) =
Me

4

[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]











˜̇w1

...

˜̇wNe











=
Me

4
˜̇w

H

e (ω) ˜̇we(ω). (A.32)

A.3 Time-averaged total radiated sound power

The instantaneous total sound power radiated is given by theproduct of panel velocity

and acoustic pressure on the panel surface, integrated overthe dimensions of the panel

[3]:

P (t) =

lx
∫

0

ly
∫

0

ẇ(x, y, t) p(x, y, 0, t)dx dy, (A.33)

whereẇ(x, y, t) is the panel velocity andp(x, y, 0, t) is the surface sound pressure on

the radiating side of the panel. The time-averaged total radiated sound power is given by

[33, 34]

P =

lx
∫

0

ly
∫

0

1

T

T
∫

0

ẇ(x, y, t) p(x, y, 0, t) dt dx dy (A.34)

whereT is a suitable period of time over which to estimate the mean radiated sound
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power. Assuming time harmonic vibration the time average integral can be rewritten in

terms of the complex panel velocitẏ̃w(x, y, ω) and complex surface pressure fluctuations

p̃(x, y, 0, ω)

P = P (ω) =
1

2

lx
∫

0

ly
∫

0

Re
{

˜̇w
∗

(x, y, ω) p̃(x, y, 0, ω)
}

dx dy. (A.35)

The complex surface pressurep̃(x, y, 0, ω) for time harmonic vibrations of a planar sur-

face is given by the Rayleigh integral [3]

p̃(x, y, 0, ω) =
jωρ0

2π

lx
∫

0

ly
∫

0

˜̇w(x′, y′, ω)
e−jk0R

R
dx′ dy′ (A.36)

whereR =
√

(x − x′)2 + (y − y′)2 is the distance between two points on the panel,k0

is the acoustic wavenumber in the surrounding media andρ0 is the mass density of the

surrounding media on the radiating side of the panel. Thus substituting Equation (A.36)

into Equation (A.35) gives

P (ω) =
1

2
Re











lx
∫

0

ly
∫

0

˜̇w(x, y, ω)∗
jωρ0

2π

lx
∫

0

ly
∫

0

˜̇w(x′, y′, ω)
e−jk0R

R
dx dy dx′ dy′











=
1

2
Re











lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

jωρ0

2π

[

cos(kR) − j sin(kR)

R

]

˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω) dx dy dx′ dy′











=
ωρ0

4π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

sin(kR)

R
˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω) dx dy dx′ dy′

=
ω2ρ0

4πc0

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

sin(kR)

kR
˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω) dx dy dx′ dy′, (A.37)

where∗ is the complex conjugate operator.
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A.3.1 Modal formulation

Substituting the modal expression for the transverse velocity of Equation (A.4) into Equa-

tion (A.37) gives

P (ω) =
ω2ρ0

4πc0

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

sin(kR)

kR

∑

r=1

φr(x, y)˜̇a
∗

r

∑

s=1

φs(x
′, y′)˜̇as dx dy dx′ dy′

=
∑

r=1

∑

s=1

˜̇a
∗

r
˜̇as

ω2ρ0

4πc0

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
sin(kR)

kR
φs(x

′, y′)dx dy dx′ dy′ (A.38)

Considering the vector notation for modal truncation to the firstN terms in Section A.1.1,

Equation (A.38) can be casted in the the following matrix formulation [3]

P (ω) =
[

˜̇a
∗

1 · · · ˜̇a
∗

N

]











A1,1 · · · A1,N

...
.. .

...

AN,1 · · · AN,N





















˜̇a1

· · ·
˜̇aN











= ˜̇a
H

A ˜̇a, (A.39)

whereA is the power transfer matrix with the elementsAr,s given by

Ar,s =
ωρ0

4π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
sin (k0R)

R
φs(x

′, y′) dx dy dx′ dy′. (A.40)

A.3.2 Elemental approach

In the elemental approach the spatial integrals in Equation(A.37) are replaced by sum-

mations over the uniform grid of panel elements. According to the notations defined in

Section A.1.2, this gives
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P (ω) =
ω2ρ0

4πc0

Ne
∑

i=1

Ne
∑

j=1

sin(kRi,j)

kRi,j

˜̇w
∗

(xi, yi, ω) ˜̇w(x′

j, yj,
′ ω), (A.41)

which can be casted in the following matrix expression

P (ω) =
[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]











Rrad1,1
· · · Rrad1,Ne

...
.. .

...

RradNe,1
· · · RradNe,Ne





















˜̇w1

...

˜̇wNe











= ˜̇w
H

e Rrad
˜̇we. (A.42)

In this equatioñẇe denotes the vector of element velocities given in Equation (A.17) and

Rrad denotes the element radiation matrix with the elementsRradi,j
(ω) given by [3]:

Rradi,j
(ω) =

ω2ρ0A
2
e

4πc0

sin (k0Ri,j)

k0Ri,j

, (A.43)

where the diagonal terms of the radiation matrixRi,i(ω) reduce to

Rradi,i
(ω) =

ω2ρ0A
2
e

4πc0

. (A.44)

Note that the radiation matrix is proportional to the real part of the radiation resistance

matrix, i.e proportional to the real part of the radiation impedance matrix

Rrad(ω) =
Ae

2
Re

{

Z̃rad

}

, (A.45)

where the terms in the elemental radiation impedance matrixZ̃rad are given by

Z̃radi,j
(ω) =

jωρ0Ae

2π

e−jk0Ri,j

Ri,j

. (A.46)
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A.4 Power spectral density of total kinetic energy

It can be demonstrated [35] (page 58), that the power spectral density ofx(t) is given by

Sxx(ω) = lim
T→∞

E

[

1

T
x̃∗(ω)x̃(ω)

]

, (A.47)

wherex̃(ω) is the finite Fourier transform ofx(t):

x̃(ω) =
1

2π

T
∫

0

x(t)e−jωt dt (A.48)

andE[ ] denotes the expectation for and infinite sample length. Thusconsidering the

general formulation for the instantaneous total kinetic energy in Equation (A.21), the

power spectral density of the total kinetic energySE, due to a time and spatial stochastic

disturbance over the panel surface, can be written as [33]:

SE(ω) =
1

2

lx
∫

0

ly
∫

0

ρh lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω) ˜̇w(x, y, ω)

]

dx dy. (A.49)

A.4.1 Modal formulation

Substituting the modal expression for the transverse velocity of Equation (A.4), into Equa-

tion (A.49) gives

SE(ω) =
1

2

lx
∫

0

ly
∫

0

ρh lim
T→∞

E

[

1

T

∞
∑

r=1

φr(x, y)˜̇a
∗

r(ω)
∞

∑

s=1

φs(x, y)˜̇as(ω)

]

dx dy

=
1

2

lx
∫

0

ly
∫

0

ρh
∞

∑

r=1

∞
∑

s=1

φr(x, y)φs(x, y) lim
T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇as(ω)

]

dx dy. (A.50)

Assumingρh=constant and considering the orthogonality conditions inEquations (A.27)

and (A.28), Equation (A.50) results in
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SE(ω) =
1

2
ρh

∞
∑

r=1

∞
∑

s=1

lx
∫

0

ly
∫

0

φr(x, y)φs(x, y)Saras
dx dy

=
1

2
ρh

∞
∑

r=1

lx
∫

0

ly
∫

0

φr(x, y)2dx dy Sarar

=
M

2

∞
∑

r=1

Sarar
, (A.51)

whereSarar
is the power spectral density of modal velocities andM is the mass of the

panel. According to Equation (A.47) the power spectral density of modal velocities can

be expressed as

Sarar
(ω) = lim

T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇ar(ω)

]

= lim
T→∞

E

[

1

T

∣

∣˜̇ar(ω)
∣

∣

2
]

. (A.52)

Substituting Equation (A.5) into this expression gives

Sarar
(ω) = lim

T→∞

E

[

1

T
Ω̃∗

r(ω)F̃ ∗

r (ω)Ω̃r(ω)F̃r(ω)

]

= lim
T→∞

E

[

1

T

∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2

F̃ ∗

r (ω)F̃r(ω)

]

=
∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2

lim
T→∞

E

[

1

T
F̃ ∗

r (ω)F̃r(ω)

]

(A.53)

.

Substituting the formulation for the modal excitation terms in Equation (A.9) then gives

Sarar
(ω) =

∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2

lim
T→∞

E







1

T

lx
∫

0

ly
∫

0

φr(x, y) f̃∗(x, y, ω) dx dy

lx
∫

0

ly
∫

0

φr(x
′, y′) f̃(x′, y′, ω) dx′ dy′







=
∣

∣

∣Ω̃r(ω)
∣

∣

∣

2

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φr(x
′, y′) lim

T→∞

E

[

1

T
f̃∗(x, y, ω) f̃(x′, y′, ω)

]

dx dy dx′ dy′

=
∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φr(x
′, y′) S̃ff (x, y, x′, y′, ω)dx dy dx′ dy′, (A.54)
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whereS̃ff (x, y, x′, y′, ω) is the cross spectral density of the stochastic disturbanceper unit

area between positions(x, y) and(x′, y′), which can be expressed as the product of the

power spectral densityΨ(ω) and the spatial correlation functioñC(x, y, x′, y′, ω) of the

disturbance so that

S̃ff (x, y, x′, y′, ω) = Ψ(ω) C̃(x, y, x′, y′, ω). (A.55)

Both power spectral densityΨ(ω) and spatial correlation functioñC(x, y, x′, y′, ω) are

specific properties of the disturbance. Formulations that describe the the spatial correla-

tion functions for ADF and TBL excitation are given in section3.2. Substituting Equation

(A.54) back into Equation (A.50) gives the final expression for the power spectral density

of total kinetic energy due to a time and spatial stochastic disturbance as

SE(ω) =
M

2

∞
∑

r=1

∣

∣

∣Ω̃r(ω)
∣

∣

∣

2
lx

∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φr(x
′, y′) S̃ff (x, y, x′, y′, ω)dx dy dx′ dy′.

(A.56)

A.4.2 Elemental approach

According to the notations in section A.1.2, the spatial integral in Equation (A.49) can be

replaced by a summation of element contributions, so that the power spectral density of

the total kinetic energy due to time and spatial stochastic disturbances is given by

SE(ω) =
1

2

Ne
∑

i=1

ρh Ae lim
T→∞

E

[

1

T
˜̇w
∗

(xi, yi, ω) ˜̇w(xi, yi, ω)

]

(A.57)

whereAe denotes the area of a single panel element and˜̇w(xi, yi, ω) is the transverse

velocity of thei-th element. Using the vector formulation for the elementalvelocities

given in Equation (A.18) the expression for the power spectral density becomes
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SE(ω) =
Me

2

Ne
∑

i=1

lim
T→∞

E

[

1

T
ˆ̇w
∗

i (ω) ˆ̇wi(ω)

]

=
Me

2
trace











lim
T→∞

E











1

T











˜̇w1

...

˜̇wNe











[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]





















=
Me

2
trace

(

lim
T→∞

E

[

1

T

[

˜̇we
˜̇w

H

e

]

])

=
Me

2
trace

(

lim
T→∞

E

[

1

T

[

Φe
˜̇a ˜̇a

H
Φ

T
e

]

])

=
Me

2
trace

(

Φe lim
T→∞

E

[

1

T

[

˜̇a ˜̇a
H

]

]

Φ
T
e

)

=
Me

2
trace

(

ΦeS̃ȧȧ(ω)ΦT
e

)

, (A.58)

whereS̃ȧȧ(ω) is the [N × N ] dimensional matrix of power and cross spectral densities

of the modal velocities. According to Equation (A.18) the vector of modal velocities is

given by

˜̇a = Ω̃Φ
T
e F̃e, (A.59)

thusS̃ȧȧ(ω) can be written as

S̃ȧȧ(ω) = lim
T→∞

E

[

1

T

[

˜̇a ˜̇a
H

]

]

= lim
T→∞

E

[

1

T
Ω̃

H
Φ

T
e F̃eF̃

H
e ΦeΩ̃

]

= Ω̃Φ
T
e lim

T→∞

E

[

1

T
F̃eF̃

H
e

]

ΦeΩ̃
H

= Ω̃Φ
T
e S̃fefe

(ω)Φe Ω̃
H , (A.60)

whereS̃fefe
(ω) is the [Ne × Ne] dimensional matrix with the power and cross spectral

densities of the element excitation forces, which has the form
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S̃fefe
=











Sf1,f1
· · · S̃f1,fNe

...
.. .

...

S̃fNe ,f1
· · · SfNe ,fNe











(A.61)

with the elements

S̃fifj
(ω) = A2

e S̃ff (xi, yi, xj, yj, ω) , (A.62)

whereAe is the surface of a single element andS̃ff (xi, yi, xj, yj, ω) is the cross spectral

density of the stochastic disturbance in Equation (A.55), evaluated for the centres of ele-

menti andj. Substituting the final expression in Equation (A.60) back into the Equation

(A.58) gives

SE(ω) =
Me

2
trace

(

Φe Ω̃Φ
T
e S̃fefe

(ω)Φe Ω̃
H

Φe

)

=
Me

2
trace

(

ỸeeS̃fefe
(ω)ỸH

ee

)

, (A.63)

whereỸee = ΦeΩ̃Φ
T
e is the [Ne × Ne] dimensional matrix of element point and transfer

mobilities.

A.5 Power spectral density of total sound power radiated

Considering the general formulation for the instantaneous total radiated sound power

given in Equation (A.33) and considering the relationship for the spectral density given in

Equation (A.47), the power spectral density of the total sound power radiated due to time

and spatial stochastic disturbances given by

SP (ω) = Re







lx
∫

0

ly
∫

0

lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω)p̃(x, y, 0, ω)

]

dx dy







. (A.64)
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Substituting the Rayleigh integral expression forp̃(x, y, 0, ω) from Equation (A.36) gives

SP (ω) = Re











jωρ0

2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

e−jk0R

R
lim

T→∞

E

[

1

T
˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω)

]

dx dy dx′ dy′











. (A.65)

A.5.1 Modal formulation

Substituting the modal expression for the transverse velocity of Equation (A.4) into Equa-

tion (A.65) gives

SP (ω) = Re











jωρ0

2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

e−jk0R

R
lim

T→∞

E

[

1

T

∞
∑

r=1

φr(x, y)˜̇a
∗

r(ω)

∞
∑

s=1

φs(x
′, y′)˜̇as(ω)

]

dx dy dx′ dy′











= Re











jωρ0

2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

∞
∑

r=1

∞
∑

s=1

φr(x, y)
e−jk0R

R
φs(x

′, y′) lim
T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇as(ω),

]

dx dy dx′ dy′











=
∞
∑

r=1

∞
∑

s=1

Re











jωρ0

2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
e−jk0R

R
φs(x

′, y′) S̃aras
dx dy dx′ dy′











, (A.66)

whereS̃aras
is the spectral density of the the modal velocities. Substituting the formula-

tion for the modal velocities of Equation (A.5) gives

Saras
(ω) = lim

T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇as(ω)

]

= lim
T→∞

E

[

1

T
Ω̃∗

r(ω)F̃ ∗

r (ω)Ω̃s(ω)F̃s(ω)

]

= Ω̃r(ω)Ω̃∗

s(ω) lim
T→∞

E

[

1

T
F̃ ∗

r (ω)F̃s(ω)

]

. (A.67)

Substituting the formulation for the modal excitation terms in Equation (A.9) then gives
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Saras
(ω) = Ω̃r(ω)Ω̃∗

s(ω) lim
T→∞

E







1

T

lx
∫

0

ly
∫

0

φr(x, y) f̃∗(x, y, ω) dx dy

lx
∫

0

ly
∫

0

φs(x
′, y′) f̃(x′, y′, ω) dx′ dy′







= Ω̃r(ω)Ω̃∗

s(ω)

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φs(x
′, y′) lim

T→∞

E

[

1

T
f̃∗(x, y, ω) f̃(x′, y′, ω)

]

dx dy dx′ dy′

= Ω̃r(ω)Ω̃∗

s(ω)

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φs(x
′, y′) S̃ff (x, y, x′, y′, ω)dx dy dx′ dy′. (A.68)

Finally, substituting this formulation for spectral density of the the modal velocities back

in to Equation (A.66) gives

SP (ω) =
N

∑

r=1

N
∑

s=1

Ω̃r(ω)Ω̃∗

s(ω)

×Re











jωρ0

2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
e−jk0R

R
φs(x

′, y′) dx dy dx′ dy′

×
lx

∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φs(x
′, y′) S̃ff (x, y, x′, y′, ω) dx dy dx′ dy′











. (A.69)

A.5.2 Elemental approach

Substituting the spatial integrals in Equation (A.65) by a finite summation over all panel

elements gives the following expression for the power spectral density of the total sound

power radiated due to time and spatial stochastic disturbances:
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SP (ω) = Re

{

jωρ0A
2
e

2π

Ne
∑

i=1

Ne
∑

j=1

e−jkRi,j

Ri,j

lim
T→∞

E

[

1

T
˜̇w
∗

(xi, yi, ω) ˜̇w(xi, yi, ω)

]

}

= 2 lim
T→∞

E











1

T

[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]











Rrad1,1
· · · Rrad1,Ne

...
.. .

...

RradNe,1
· · · RradNe,Ne





















˜̇w1

...

˜̇wNe





















= 2 lim
T→∞

E

[

1

T
˜̇w

H

e Rrad
˜̇we

]

, (A.70)

whereRrad is the elemental radiation impedance matrix as defined in Equations (A.43)

to (A.46). Equation (A.70) can be rewritten to give

SP (ω) = 2 trace

(

lim
T→∞

E

[

1

T
˜̇we

˜̇w
H

e Rrad

])

= 2 trace

(

lim
T→∞

E

[

1

T
Φe

˜̇a˜̇a
H
Φ

T
e Rrad

])

= 2 trace
(

Φe S̃ȧȧΦ
T
e Rrad

)

, (A.71)

where the [N ×N ] dimentional matrix of power and cross spectral densities of the modal

velocitiesS̃ȧȧ is derived in Equation (A.60), so that:

SP (ω) = 2 trace
([

Φe Ω̃Φ
T
e S̃fefe

Φe Ω̃
H

Φ
T
e,r

]

Rrad

)

= 2 trace
([

Ỹee S̃fefe
Ỹ

H
ee

]

Rrad

)

, (A.72)

whereỸee is the [Ne×Ne] dimensional matrix of the element point and transfer mobilities

andS̃fefe
is the matrix with the power and cross spectral densities of the element excitation

forces given in Equation (A.61).
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