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Abstract

In this report an element-based model is used to predictithetsral response and sound
radiation of two smart panels excited by (a) an acousticgleawve, (b) a stochastic acous-
tic diffuse field and (c) a turbulent boundary layer. The fpahel is made of aluminum,
while the second is a composite sandwich panel with equivattic stiffness but four
times lower mass per unit area. The panels are equipped wi#es decentralised veloc-
ity feedback control loops using idealized point force atbus. In contrast to previous
studies on smart panels, the analysis is extended to the apdeof the audio frequency
range. In this frequency region the response and soundiada the panels strongly de-
pend on the spatial characteristics of the excitation fiettithe sound radiation properties
with respect to the bending wavelength on the panels. Carditbereduction in struc-
tural response and sound radiation is predicted for the looafrequency range where
the panel response is dominated by well separated resanaifdew order structural
modes. It is also found that some reduction can be achiewethdracoustic and convec-
tive coincidence regions, where the coincidence freqesnfor the composite sandwich

panel are significantly lower than those for the homogenatusinium panel.
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Nomenclature

Symbol Description Unit

Latin Letters:

a Modal displacement

c Wave speed m/s

d Distance between the sandwich faceplate neutral axis

fi Frequency Hz

fo Force N

h Thickness (panel) m
Imaginary unit defined ag: = v/—1

k Wavenumber rad/m

[ length m

m Mode orderz-direction

n Mode ordery-direction

D Acoustic Pressure N/m?
Time S

w Transverse displacement m

x x-coordinate (plate axis) m

Y y-coordinate (plate axis) m

z z-coordinate (perpendicular to plate) m

A Area m?

D Flexural rigidity or bending stiffness N

E, Young'’s modulus of elasticity N/fn

Es Kinetic Energy J



QM3 > N <X @ v 2Ty

Greek Letters:

Ui

<

= £ 6 e

Subscripts
0

C1

(&)

C3

conv.

Modal force or generalised force
Control gain

Second moment of area
Correlation length

Mass (total / modal / elemental)
Total number (modes / elements)
Power

Distance between two points on the panel
Spectral density

Speed

Mobility

Impedance

Power transfer Matrix

Force Matrix (modal and elemental)

Mobility matrix including velocity feedback control

Damping loss factor

Angle of incidence angle relative to surface normal
Poisson’s ratio

Material density

Natural modes or modeshapes

Angle of incidence relative to axis

Rotational frequency

Matrix of modal resonant terms

Property of air

Control element

Critical

Specific to the sandwich core

Convection

m/s
m/(Ns)

Ns/m

rad g de

kg/m?

rad or deg

rad/s



e Plate element (element centre point)

f Specific to faceplate

i Index (plate elements)

j Index (plate elements)

n mode order

r Index (modes)

rad Radiation

S1 Index (modes)

S9 Corresponding to shear

ADF Specific to Acoustic diffuse field

TBL Specific Turbulent boundary layer

Mathematical:

X Real value X

X Complex Value X

Re{X} Real part of X

Im{X} Imaginary part of X

X Peak value X

X+ Conjugant of X

E [f(*f(} Expectation of[f(*f(] for infinite sampling length

var [X| variance ofX

X" X to the power of n

exp(X) e to the power ofX

X First derivative ofX in respect to time

X Matrix X

X1 Inverse of MatrixX

XT Non conjugate transpose of Matrik

XH Complex conjugate transpose (Hermitian transpose)
of Matrix X

I Identity matrix

Xi






Chapter 1

Introduction

Environmental and economic considerations increase thede for weight-optimized
structural design. This often conflicts with the requiretsdaor noise control and acous-
tical comfort. Various active control approaches have sewn to enhance the sound
attenuation through a panel at low frequencies where thetstial response is dominated
by discrete resonant modes with low modal overlap. Very ajipg approaches are those
of active structural acoustic control (ASAC) and active atiown control (AVC) where

actuators and sensors are integrated within the strudueate ‘smart panels’ [1 - 17]

For many practical vibro-acoustic problems, the excitai® not deterministic. Com-
mon examples of stochastic excitations are diffuse acosstind fields (ADF) [18] or
turbulent boundary layers (TBL) [19, 20], which are often@matered in transportation
vehicles such as aircraft, high speed trains and cars [41,T2&se disturbances can be
described by analytical formulations for the statisticedpgerties of the resulting exci-
tation field on a panel surface. An important characteristisuch disturbances is the
projection of periodic pressure fluctuations onto the paodhace. In the case of acoustic
disturbances this depends on the acoustic wavelength agid ahincidence [3]; for a
TBL disturbance this depends on the convective wavelengthtandirection of the flow
[19, 23]. Frequencies at which the convective or acoustielemgth are the same as the
transverse wavelength on a structure are known as coireedegguencies. Coupling be-
tween excitation wavelengths, transverse structural lgagéh and acoustic wavelength
have a significant influence on the sound transmission thraugartition. For thin alu-

minum panels, the acoustic coincidence frequency falts tiné upper end of the audio



frequency range. The convective coincidence frequencgypisdlly much lower and af-
fects the panel response in the mid audio frequency range.p@site sandwich panels
feature a high stiffness to mass ratio and therefore becanreasingly popular in the
design of lightweight vehicles. However, for stiff lightigét sandwich panels the con-
vective and acoustic coincidence shifts towards lowerdesgies and may cause noise

transmission problems.

The objective of this report is twofold. Firstly, to invegite and contrast the structural
response and the sound radiation in the audio frequency rnogiuced by homogeneous
and lightweight sandwich panels subject to deterministetstochastic distributed excita-
tions. Secondly, to study and compare the control effectdyred by an array of idealized

velocity feedback control loops on homogeneous and ligigitesandwich panels.

An element approach [4, 24, 25] is used to predict the strattesponse and sound ra-
diation of the two smart panels excited by (a) an acoustineplaave, (b) a stochastic
acoustic diffuse field and (c) a turbulent boundary layere Tirst panel is made of alu-
minum while the second is a composite sandwich panel witivabpnt static stiffness but
four times lower mass per unit area. The panels are equipfibcsixteen decentralised
velocity feedback control loops using idealized point éectuators and collocated ide-
alized velocity sensors so that the control loops are boarzetunconditionally stable.
[4, 26]. In this way the intrinsic characteristics of the eptalised feedback control sys-
tem are investigated independently from the stability tsnoif the control units due to the
electrodynamic responses of the sensor actuator pair@nimnast to previous studies on
smart panels, the analysis is extended to the upper end eaiuithe frequency range to

include the acoustic coincidence frequency region.

The first part of this report covers the element based modéh&ostructural response and
radiated sound power for a thin homogeneous panel and a g@nganel under deter-
ministic and stochastic excitations. The model is then usgutedict the panel kinetic
energy and radiated sound power for the two panels withauiralo Finally the results
for the structural response and radiated sound power ofth@anels with decentralised
velocity feedback control are presented. The derivatidh@stochastic excitation model

from first principles and resulting matrix formulations aiscussed in Appendix A.



Chapter 2

Panel model

The steady state flexural response and sound radiation odd alaminium panel and a
smart composite sandwich panel are modelled using an etatrepproach [4, 24, 25].
Figure 2.1 shows the geometry of the panels, which are sisyghported in an infinite
baffle. They are equipped with sixteen decentralized idekloity sensor and actuator
pairs to illustrate the effects of decentralized veloc#gdback control. On the source
side the panels are exposed to a surface pressure fluctiradioced by different types
of deterministic and stochastic disturbances. On thevecside the panels are radiating
into an infinite half space. The geometrical and physicahpeters of the panel models
are summarized in Table 2.1 and Table 2.2. The physical pagamof the surrounding
media on source and receiving side of the panel is chosenaaotlair with a mass
densityp = 1.21 kgn® and characteristic sound speed= 343 ms!. The model is
weakly coupled, fluid loading effects and radiation lossegehbeen neglected. This is a
reasonable assumption for excitation and radiation into&he effects of fluid loading

and flexible boundaries are discussed in Reference [27].

The steady state response is derived assuming time-harneanitation of the form
Re{exp (jwt)} wherew is the angular frequency anjd= /—1. For brevity the time-
harmonic term exp (jwt) will be omitted in the formulation which will be given in
complex form. Therefore, the time harmonic velocity)(t) = Re{w exp (jwt)} and
force F(t) = Re{F exp (jwt)} fluctuations will be replaced by the complex velocity
and force phasoi and F respectively. Throughout the reporwill be used to identify

complex, frequency dependent functions. As shown in Figuiéa), the panel is sub-
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Figure 2.1: Schematic of the panel model. (a) Panel in iefibéffle subdivided into a grid of elements,
(b) Panel with 16 direct velocity feedback loops, (c) "twatddlock diagram for panel model with decen-
tralised multi channel feedback control.

divided in a grid of elements so that the excitation forced aglocity response of the
panel are determined at the element centre coordinateshavensin Figure 2.1(b), the
decentralised feedback control system is formed by 4 grid of velocity feedback loops
using collocated and dual point velocity sensor and point€faactuators. The closed
loop response of the panel can be modelled with the two pdotkldiagram in Fig-
ure 2.1(c), which, assuming the system is linear, indictitasboth the response at the
elements centres and the control positions result fromitieat superposition of the vi-
bration induced by the primary excitation, produced by ttesgure field over the surface
on the source side of the panel, and the secondary excifaaluced by the control point
forces, which depends on the control velocities via thelfeel control gains. Thus the

velocity response at the centres of the panel elementseas diy

We - YeeFe + ?ecFm (21)

wherew, = [te,, te,, ..., ey, ]|* IS the [N, x 1] dimensional vector of complex ele-
ment velocitiesF, = [F.,, F.,,...,F., |7 is the [N, x 1] dimensional vector of ex-

citation forces due to the pressure field incident on the cuide of the elements,

F.=I[F,, F,,,.., FCNC]T is the [N, x 1] dimensional vector of feedback control forces,

Y.. is the[N, x N.| dimensional matrix of element centre point and transfer iliigis



andY,, is the [N, x N.| dimensional matrix of transfer mobilities from the contiol
cations to the panel element centres. The mobility funstiarthe matriced .. andY..

have been derived with the following modal summation formul

TN e @2
where ¢, is ther-th mass-normalised natural mode of the paneljs the r-th natural
frequency and is the observation frequency/ = [,[,ph is the total mass of the panel,
wherel, andl, are the panel dimensions,is the panel thickness ands the density of
the panel material. The coordinates, ;) and ;, y;) identify the centre positions of the
elements and; on the panel surface. As shown in the block diagram in Figutéc},

for direct velocity feedback control, the vector of contimices is given by

Fc - —I:IC\;VC, (23)

where H, is the [N. x N, dimensional diagonal matrix of control gains and

We = [y, Wey, -y ey, ] IS the [N, x 1] dimensional vector of velocity sensor outputs
at the control locations. According to the "two port” bloclagram in Figure 2.1(c), the

vector of control point velocities is given by

v‘Vc - YceFe + YccP1(:7 (24)

WhereYCC is the [V, x N.] dimensional matrix of point and transfer mobilities at the

control locations. Substituting Equation (2.3) into Eqoiat(2.4) gives

w,=Y.F. - Y. Hw.. (2.5)
An explicit formulation forw, can hence be derived as

- - —1
W, = <IC + YH) Y..F.. (2.6)

The control forceF, in Equation (2.3) can subsequently be reformulated to yield

5



- - - -1 _
F,— _H, (Ic n YH> Y, F.. 2.7)

Substituting Equation (2.7) into Equation (2.1) and reagiag for w, finally gives the

vector of element velocities as

~ ~ ~ ~ -1 ~ ~ ~
We - [Yee - Yech (Ic + chHc> Yce:| Fe - GeeFe7 (28)
whereG.. = Y. — Yo H.(I. + Y..H.)~'Y,. is the panel element mobility matrix with
active control.

2.1 Aluminium panel

The Aluminium panel has been modelled as a thin homogenaligsatropic plate with

all sides simply supported. The mass-normalised mode stapeagiven by [3]

or(z,y) = 2sin (m; 7m) sin (nr Wy), (2.9)

where andn, andn, are the the mode orders of modén the z- andy-direction of the

panel. The natural frequencies result from

e e] e

where ph is the panel mass per unit are®, = EI/(1 — v?) is the bending stiffness

I = h3/12 is the area moment of the cross section. Alsds the Young's modulus
of elasticity andv is the Poisson’s ratio of the panel material. The panel gégnaad

material properties are given in Table 2.1.



Table 2.1: Geometry and physical properties for a homogehatuminium panel.

Parameter Symbol Value Unit
x-Dimension . 278 mm
y-Dimension Ly 247 mm
Thickness h 1.6 mm
Mass density p 2720 kg nr3
Young’s Modulus E 70 GPa
Poisson’s ratio v 0.33 —
Modal loss factor n 0.02 —

2.2 Composite sandwich panel

The dynamic response of the composite sandwich panel isltaddesing a basic theory
[3, 28] which considers pure bending of the cross-sectiahtae faceplates and pure
transverse shear of the core. The panel is assumed to hasartteematerial properties
in z- and y-direction. The relationship between the transverse wavder% and the

wavenumbers corresponding to pure bending and to pure sii@asandwich panel is

given by

@@ e

wherek, is the shear wavenumber in the absence of transverse befiodoes, %, is the
overall cross-section bending wavenumber in the absenshezr distortion and,; is

the bending wavenumber for faceplate bending alone. Thaserwambers are given as

m//w2
2D,

(@) k2 = (b) &y = €) ki =

(2.12)
wherem” is the total mass of the panel per unit aréais the core shear modulus and,
as shown in Figure 2.2} is the distance between the faceplates neutral axis. Bisis
the bending stiffness of the cross-section dndis the bending stiffness of a individual

faceplate. These flexural stiffness terms are given by

Ed*h; Eh}

(@ Dy = m, (b) Dy = m

(2.13)



The physical parameters used to model the composite samghaitel are given in Table
2.2. The parameters are chosen to yield a panel with equial stiffness but a four times
lower mass per unit area than that of the homogeneous 1.6 mknaluminium panel.
Equation (2.11) has one real and two imaginary pairs of axisnsetric solutions. For
simplicity the sandwich panel is assumed to have the same stwapes as a correspond-
ing thin simply supported panel given in Equation (2.9) drat {a) the equivalent flexural

rigidity D, (b) wavenumbek, and (c) natural frequencies are given by

w2m// T o TT k D7+k‘ D2D1
(@D=—"——, (b)kr—\/< u >+< T ) (c)w,._\/’“m Gdm” = (2.14)
k4 Iy l 1+ k2 éi

where the wavenumbérin Equation (2.14)(a) corresponds to the real wavenumber so
tion of Equation (2.12), which corresponds to travellingres The imaginary wavenum-
ber solutions to Equation (2.11) correspond to decaying fiells waves, which are

neglected. The highest mode order of interest is calculasatg the equivalent flexu-

ral rigidity at the highest frequency of interest. The adimusoincidence frequency is

found by reformulating Equation (2.11) as an implicit fuonatin w,.. Settingw = w,. and

k = k. = w./co Equation (2.11) results in the following relationship

2D5D; D, D,
— —1=0. 2.15
We (de” 6) + (m”cé Gdcg) 0 ( )

This basic model captures the principal characteristiessaindwich panel and is thought

to be suitable for an initial comparison between the stmattesponse and radiated sound
power of thin homogeneous and sandwich active panels. A Rarglex model, consid-
ering near field waves and the cross-section dynamics ofahévech structure, may be
needed for further, more detailed investigations. In paldr, the near field wave effect
should play an important role in the stability of the feedbecntrol loops when realistic

sensor and actuator transducers are considered.



Table 2.2: Cross section geometry and physical propeuiethé composite sandwich panel.

Parameter Symbol Value Unit
Thickness of face plate hy 0.3 mm
Core depth d 3 mm
Mass density face plates pr 1000 kg nT3
Mass density core Pe 180 kg nT3
Panel mass per unit area m” 1.086 kg nr2
Young’s modulus face plates E 17.7 GPa
Poisson’s ratio v 0.33 —
Shear modulus core G 80 MPa
Loss factor n 0.02 -

L = thpf + (d — hf)pc

|

Figure 2.2: Sketch of sandwich panel cross section geometry







Chapter 3

Excitation models

3.1 Acoustic plane wave

Acoustic plane waves are an example of distributed, detestig disturbance. An acous-
tic plane wave excitation is characterised by its soundspresamplitude and its angels
of incidenced, measured from the z-axis, normal to the panel and the angie the
z-y-plane, measured from theaxis. Assuming time harmonic pressure fluctuations, the

incident sound pressure acting on the source side of thd [gagieen as

p(2,y,t) = Re {p(w)e! @ Fer=hun) (3.1)

wherep(w) is the pressure phasor of the incident wave. The wavenunibersandy

directions are given by

(@) kp(w) = ko(w) sin @ cos p, (b) ky(w) = ko(w) sinfsin g, (3.2)

wherek, = w/c, is the acoustic wavenumber angl is the speed of sound in air as
specified in Section 2. The pressure excitation on a singlelgdement is approximated

as a point force acting on the element centre,

E, (w) = 2 Ap(w)e? kazithyys) (3.3)

11



where A, is the area of an element and the factor two accounts for thengstion of
blocked forces on the panel surface which causes a doublipgessure. The incident
forces for all elements are cast intg/ée x 1] dimensional vector which is then used as

the excitation term in Equation (2.8).

3.1.1 Panel kinetic energy

The response of the panel is assessed in terms of it’s totati€ienergy, which gives an
indicator of the spatially averaged vibration and also efriear field sound radiation. For
harmonic excitations, the time-averaged kinetic energg tfin rectangular panel with

uniform mass per unit area is given by [3]

lr ly
E(w) = ph//}ﬁ)(aj,%w)f dx dy, (3.4)

o
0 0

where the additional factor 1/2 arises from the conversiomfpeak to RMS values. In

the elemental approach the surface integral in Equatia) {8 substituted by a sum over

the element velocities [3]. Utilizing matrix algebra thisismation can be calculated from

the inner Hermitian product of the element velocity vectarkis yields the total kinetic

energy as [see Appendix A Equations (A.21) to (A.32)]

Bw) = 1 W @) w) (3.5)

where’ denotes the Hermitian transpose avid is the mass of an individual panel ele-

ment.

3.1.2 Radiated sound power

The sound radiation by the panel is expressed in terms obthesound power radiation
which gives an indication of the far field, spatially averagsound radiation. The time

averaged far field total sound power radiated on one sideegbdimel is given by [3]

12



Iy Ly
Pw) = % Re {ﬁ}*(z,y,w)p(x,y?w)} dx dy, (3.6)
0 O
where * denotes the complex conjugate and the factor 1/2 arises tlhenconversion
from peak to RMS values. Considering radiation into free spfwean ideally planar
panel, the Rayleigh integral [3] is used to rewrite the adoysessure on the surface in
terms of the surface velocities and radiation impedancéizidy matrix algebra Equation

(3.6) can be cast in the form [see Appendix A Equations (AtB3A.42)]

T H

P(w) =W, (W) Ryaq(w)W(w), (3.7)

whereR,.q(w) is the[N,, N.] dimensional radiation matrix with the elements [see Ap-
pendix A Equations (A.43) to (A.46)]

R _ WQIO()AE sin (kQRiJ)
radi,j 471'00 ]{0 Ri,j .

(3.8)

In this equationk, is the acoustic wavenumber on the receiving side of the pame!

Rij = /(z; —zj)>+ (yi — y;)? s the distance between the centres of the elemeanid
j. The distanceRr; ; is zero, thus the radiation terr‘rﬂ%adi’i on the main diagonal of the

radiation matrix are undefined. However, using WBpital’s rule [29] it is found that

i S0 (koR) ~ lim ko cos (ko R)

=1. 3.9
R—0 ]{foR R—0 l{fo ( )

3.2 Stochastic excitation

For many practical vibro-acoustic problems, the excitai®onot deterministic. For in-
stance acoustic diffuse sound fields (ADF) or turbulent lolawy layer (TBL) pressure
fields produced by the interaction of a turbulent flow of flurtlaa structure, are often
encountered in transportation vehicles such as aircrigft, $peed trains and cars. Ana-
lytical formulations for the statistical properties of tévecitation fields produced by ADF

and TBL have been derived. These formulations describertietges in terms of power

13



spectral density and spatial correlation functions. Thspoese and sound radiation in-
duced by such random excitation fields are also expressestnmstof power spectral
densities. In particular the response is expressed in tefrtiee power spectral density
for the total kinetic energy, which for a panel structuregigen by [see Appendix A
Equations (A.47) to (A.49)]

lo ly

//hmE{ 0 (,y, w)i(x, y,w) | dedy, (3.10)

T—o0

Considering the formulation for the elemental approacheptesl in Section 2, Equation
(3.10) can be reformulated to give [compare Appendix A Eiguat(A.49) to (A.63)]

M U -
Sp(w) = 76 trace (Gi St 1. (w) Gee> : (3.11)

whereS;, ;. is the[N, x N,] dimensional matrix of cross spectral densities between the
centres of panel elements a6y, is the panel element point and transfer mobility matrix
with active control as defined in Equation (2.8). The matfigross spectral densities of

the elemental excitation due to a time and spatial stochdstiurbance has the form

Sy.p(w) = A2 U (w) Cee(w), (3.12)

where A, is the arear of an elemen¥(w) is the time averaged power spectrum of the
disturbance per unit area aftl, is the [N, x N.| dimensional spatial cross correlation
matrix of the excitation forces calculated at the elememitreelocations. The sound
radiation is expressed in terms of the power spectral deakthe radiated sound power

into an infinite half space on the receiving side of the pambich is given by

// lim E{ (2, w)p(x,y, 0,w) | dedy y . (3.13)

T—00

Considering the elemental formulation Equation (3.13) camdformulated to give [see

Appendix A Equations (A.64) to (A.72)]
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Spp(w) = 2trace [(éfe Sir. Gee> Rmd} , (3.14)

whereR, ., is the element radiation resistance matrix as defined in ttequés.8).

3.2.1 Acoustic diffuse field

Acoustic diffuse field is a widely used model to describe tkatation produced by ran-
dom acoustic plane waves incident to a surface for all andikee cross spectral density
for an acoustic diffuse field excitation has been discusse8horter and Langley [30].

The power spectral density of an acoustic diffuse field iggily

Vapr(w) = 4B [55"] = 4(7) (3.15)

wherep denotes the complex acoustic pressure. The factor 4 ansesthe pressure
doubling across a rigid surface and from the relationshipréen the pressure magnitude
and mean square value. The spatial correlation functiomricacoustic diffuse field on

the surface of a rigid infinite plane is given by [30]

sin (ko R; ;
Capr,, (W) = % (3.16)
/Z’hj

wherek, is the acoustic wavenumber on the source side of the paneRands the
distance between the centres of the elemeérasd ;. It is interesting to note that the
correlation function for an ADF disturbance has the samdiapzharacteristics as the

Radiation matrix in Equation (3.8).

3.2.2 Turbulent Boundary Layer

Turbulent boundary layer disturbance models are widelyl isalescribe the excitation
produced on a surface by a turbulent fluid flow. Models for tpatial correlation of
turbulent boundary layer disturbances have been discusdeeferences [25] and [31].

The most common expression for TBL cross spectral densitywengoy Corcos [32].
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The parameters that define the model of the spatial comwalafi a fully developed TBL
on the smart panels considered in this study, are given iteTalh. The flow direction
is parallel to the y-axis. The spatial correlation functiork-direction (span wise) and

y-direction (stream wise) is given by

; R.., R,,, —jwR,,,
o B B ou ()
T Y c

where|R,, | = |v; — x| and|R,, ;| = |y; — y;| are the distance between the centres of

element and; in z- andy-direction andL, and L, are the correlation lengths inand

y, given by

« Uconv. ay Uconv.

(@) Lalw) = ==, (b) L,(w) = 2= (3.18)

wherea, ando, are empirical constants taken from [25, 31] dng,,. is the convection
velocity. The convection velocity is a function of frequgn82, 23], but can be approx-
imated as a fixed fraction of the free flow velocity. Since thssumes that the cross
correlation function is independent from the boundary tapekness, it overestimates
the correlation length at very low frequency. A comprehemnseview on TBL excita-
tion models is given by Cousin [23]. In general, the power spédensity of the surface
pressure fluctuations due to turbulent boundary layer dsesewith increasing frequency.
The results presented in this report do not reflect this diégery but only compare the

panel response to different disturbances with respectio fitequency dependent spatial

correlation.
Table 3.1: Parameters for the Turbulent boundary layeudiance.
Parameter Symbol Value Unit
Free-stream velocity Uso 225 m/s
Convection velocity Ueconn. 0.6 xUy m/s
Empirical constant Qi 1.2 -
Empirical constant vy 8 -

! taken from Ref. [25]
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3.3 Element Resolution

The required element grid density depends on (a) the destiedcharacteristics, (b) the
flexural response of the panel and (c) the radiation pragsedf the panels, which are
given by the radiation matrix. For frequencies below theveotive and acoustic coinci-
dence frequencies the bending wavelength is shorter tleaadbustic wavelength; thus
the required mesh density is determined by the bending vwength \, = ¢,(f)/f on
the panels. For frequencies above the acoustic coincideageency, it is the acoustic
wavelength that is shorter than the bending wavelength erpémel; therefore the ele-
ment density is determined by the acoustic wavelength ¢,/ f. For TBL disturbance,
the element density in the stream-wise direction for freqies above the convective
coincidence is determined by the convective wavelength, = U.on./f- In the span-
wise z-direction the correlation function in (3.17) is exponeiiyi decaying, thus a low
resolution of the elements grid in x-direction results aaeregtimation of the structural re-
sponse but does not change its general characteristicenbrg at least two elements per
shortest wavelength are required to avoid spatial aliagMigmerical convergence stud-
ies showed that 4 elements per shortest wavelength, atghedtifrequency of interest,
insure convergence at high frequencies and accurate pogdidor the entire observed
frequency range [27]. Element densities between two anddimments per wavelength
capture the response of the system correctly but lead tdgit serestimation of panel
kinetic energy and radiated sound power at the upper en@ aftiberved frequency range.
Table 3.2 summarizes the frequency range, element distrband applied criteria used

in the prediction models.

Table 3.2: Frequency range and element grid definition.

Excitation Frequency No. of elements Total No. Criterion

range X y of elements  x y
APW 20kHz 57 51 2907 Ay < Xo/35 Ay < A/35
ADF 12kHz 39 35 1365 Ay < \o/4 A, < Xo/4
TBL 12kHz 35 77 2695 Ay < XNo/35 Ay < Aeonw. /3.5
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Chapter 4

Structural response and sound

radiation

At first the structural response and sound radiation of tamadium panel and the com-
posite sandwich panel due to deterministic and stochagtarbances without active
control are investigated. Significant differences in thegh@aesponse and sound radiation
are observed for different types of disturbances. In the chsicoustic plane wave exci-
tation a good agreement between the predicted numericdtsesd asymptotic analytic
formula [3] are observed. Since radiation losses and fliadiltg effects have been ne-
glected, the spectrum of panel kinetic energy only depend$® characteristics of the
disturbance and the panel structural response. The sp#dina radiated sound power

also includes the radiation characteristics of the panels.

4.1 Dispersion curves and coincidence frequencies

Figure 4.1 shows the positive propagating bending wavereuada function of frequency
for (a) the aluminium panel and (b) the composite sandwictepal he circles represent
the modal wavenumber components alongthandy-axis. The wavenumber compo-
nents satisfy the relationship, = /2, + k2 . The convective and acoustic wavenum-

ber are given by thé. .., = w/Ucons. andky = w/cy respectively. The frequency at

which the bending wavenumber on the panel equals the acouatienumber in air is
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known as critical coincidence frequency. Potentially alanant modes with wavenum-
ber components close to the acoustic wavenumber are efficexcited by an acoustic
field. A convective coincidence occurs when the bending war®er in the direction
of the flow on the panel equals the convective wavenumber eturbulent boundary
layer. Resonant modes with modal wavenumber componentseianstwisey-direction
(white circles) that are close to the convection wavenumber may be efflgiertited

by the surface pressure fluctuation generated by the TBL.

At frequencies below 11 kHz the transverse wavenumber ofctimeposite sandwich
panel, shown in Figure 4.1(b), is lower than that for the aluom panel, shown in Fig-
ure 4.1(a). The bending wavenumber for a given frequencydpgstional to\/m” /D.
Both panels have equal static stiffness but the aluminiunelpaas a four times higher
mass per unit area. Thus, at low frequencies the bendingnuaveer for the aluminium
panel isy/2 higher than those for the composite sandwich panel. Theibgrstiffness
and modal density of the thin aluminium panel is constanhviréquency. The equiv-
alent bending stiffness of the sandwich panel is constalivafrequencies where it is
determined by the bending stiffness of the cross-sectioith Wcreasing frequency the
transverse shear distortion of the core layer causes atredws the equivalent bending
stiffness which results in an increase in the modal densityery high frequencies the
bending wavenumber is determined by the faceplate bendtifrtess and converges to a
constant value, which is much higher than that of the thintgemeous aluminium panel.
In summary, at about 11 kHz both panel models produce sitndading wavelength and
equal total mode count. Below 11 kHz the modal density of thenalium panel is higher
than that of the composite sandwich panel while above 11 kidariodal density of the

composite sandwich panel greatly exceeds that of the alumipanel.

The lower wavenumbers on the composite sandwich panel afremyuencies result in
lower coincidence frequencies than for the aluminium pae@r the aluminium panel
the acoustic coincidence occurs at about 7.5 kHz. For theposite sandwich panel
acoustic coincidence occurs at about 5.5 kHz. Efficientateah modes that resonate
around coincidence produce high structural response amtts@diation effects. Thus,
according to the wavenumber plots in Figure 4.1, the contpasindwich panel is likely
to radiate sound more efficiently than the aluminium panelafavider range of audio

frequencies.

20



(a)

(M)

e 10
3
<
9]
£ /
3 (0 0 0 e e aneed 3
g e 0 e e eaness 2
/
/0 o o O 0 0 0000000000 1
1 . e © o e s o0cvvcce
10 . /ﬁ
/
. /
A/ 1
10° 10° 10* 10° 10° 10*
Frequency [Hz] Frequency [Hz]

Figure 4.1: Propagating transverse wavenumbetid) of the (a) aluminium and (b) composite sand-
wich panel; acoustic wavenumbefashed) and convective wavenumbeddsh — dotted). Wavenumber
components of structural modes in span-wisdirection ¢plack circles) and in stream-wisg-direction
(white circles).

For thin aluminium panels, the effect of acoustic coincmenften is not a problem for

practical engineering applications since it occurs at fhygeu end of the audio frequency
range where the structural response has already rolledieffalthe mass effect and to ef-
fective passive treatments. For lightweight sandwichcstmes the coincidence frequency
potentially occurs in the mid audio frequency range wheegdisponse of the panel is still
controlled by clusters of modes. This might cause an unel@sircrease in sound radia-
tion, since at low and mid audio frequencies the struct@spponse of the the panel is not

rolled off by the mass effect and passive control measurgsnoiawork effectively.

The convective coincidence frequency for the aluminiumgbaccurs at 1169 Hz and at
609 Hz for the composite sandwich panel. Due to the low cdemte frequency and low
modal density, only a few structural modes of the compositela/ich panel resonate in
the vicinity of the convective coincidence frequency. Tihidicates a potential for active
structural control which tends to be particularly effeetiat controlling low frequency

resonances. The effect of the convective coincidence tsigsigs®d in more detail in a later
section of this report. The coincidence frequencies fotwepanels are summarised in
Table 4.1.
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Table 4.1: Coincidence frequencies.

Panel Acoustic critical Excitation coincidence Convectiaencidence
frequency [Hz] frequency [Hz] frequency [Hz]
for APW =45 for TBL disturbance
Aluminium 7,544 15,087 1,169
Sandwich 5,489 190,663 609

4.2 Acoustic plane wave

Figure 4.2 shows the frequency spectrum of panel kineticggngeft hand side column)
and radiated sound power (right hand side column) of the ialum panel §olid line)
and composite sandwich panglgnt line) for a plane wave excitation. Three different
angles of incidence are considered. These angleg a® (normal incidence)d = 45

andd = 9@ (grazing incidence). The excitation angle= 45° for all cases.

APW with 6 = 0° (normal incidence): Figure 4.2(a) and (b) show the structural re-
sponse and radiated sound power for both panels due to ayéameexcitation at normal
incidence. Even structural modes are not excited. Thisgaulme the excitation field is
uniform over the surface of the panel. Odd modes howeverfaceeatly excited. Since
the plane wave is incident normal to the panel surface ndatiam coincidence effects
are present in the kinetic energy and radiated sound povestrsp Above the first few
resonances of the panel, the kinetic energy follows the tamsi3] and rolls off at a rate
of 6 dB per octave, i.e. 20 dB per decade. In this mass coettdiequency band the
panel kinetic energy of the composite sandwich panel is @éaB higher than that of
the aluminium panel. This is because the aluminium panebaHasr times higher mass
per unit area. Corresponding low order resonant modes fdr jpabels have a similar

response magnitude.

The radiated sound power for both panels is the same at fnegsewell below the first
panel resonance. This is because the radiated sound poiles frequency band is deter-
mined by static stiffness which is equal for both panels. VAbthe first panel resonance
the radiated sound powers are mass controlled up to aboutitioal frequencies [3] of
the two panels. In the mass controlled region, the radiatedd power of the compos-

ite sandwich panel is 12 dB higher than that of the four timeserheavy aluminium
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panel. The radiated sound power of the aluminium panelvdlthe mass law up to 5
kHz. Around the critical frequency at about 7.5 kHz the réetlasound power increases
because of the acoustic coincidence effect in the radigtroperties of the panel (The
radiation efficiencies of all modes peak at around the alifrequency [3]). The radiated
sound power of the composite sandwich panel follows the raag®nly up to 2 kHz.
Around the critical frequency at bout 5.5 kHz the the radlateund power increases be-
cause of the radiation acoustic coincidence effect. ArdbusdkHz the radiated sound
power spectra of the composite sandwich panel is more thaB20gher than that of the

aluminium panel.

The radiation acoustic coincidence frequency range foctimeposite sandwich panel is
wider than that for the thin homogeneous aluminium panels Ehdue to the transition
from bending to shear response which produces acousticidemce conditions over
an extended frequency band. This effect can be visualisélteinvavenumber plots of
Figure 4.1. The lines for the acoustic wavenumber and theriééxvavenumber for the
aluminium panel intersect at a rather wide angle at thecatifrequency. In contrast the
acoustic wavenumber and the transverse wavenumber lingésfa@omposite sandwich
panel intersect at a more narrow angle and remain quite ¢tosach other above the
critical frequency so that the radiation acoustic coinoaieeffect extends over a wider

frequency band.

However, this radiation characteristic is not necesséngysame for all sandwich panels.
In the shear-controlled transition region the transveraeamumber for a sandwich panel
tends tok = k, [3] where according to Equation (2.1R) = w+/m”/Gd. If k, is similar

to the acoustic wavenumbgg = w/cq then the radiation acoustic coincidence frequency
band is extremely wide. If howevér is much higher thak, radiation coincidence should
not occur until very high frequencies where the structurabenumber is dominated by
faceplate bending. Also &, is very low then radiation coincidence occurs at relatively
low frequencies where the structural wavenumber is domthétly the bending of the
overall sandwich cross-section. Thus the specific desidiglufveight sandwich panels

can significantly influence the radiation characteristics.

Itis also interesting to note that at low frequencies thespef the radiated sound power

of the aluminium panel are characterised by resonance andeannance effects. This
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occurs in between two resonances of structural modes tteatere destructively, causing

a cancellation of the modal contributions to the radiatachslgpower.

APW with 0 = 45: Figure 4.2(c) and (d) show the panel response and radiateaiso
power for a plane wave incident at an angle 45°. In this case all structural modes are
efficiently excited. Above the first resonance, the strutiesponse of the aluminium
panel follows the mass law up to about 10 kHz. Around thisdesgry the spectrum
of the panel kinetic energy shows a wide frequency band casposed by a series of
resonance peaks. This is because the projection of thetacexsitation wave onto the
panel surface for an anghe= 45° is /2 longer than the acoustic wavelength. Thus, since
the bending wavenumber is proportionakfgf an excitation coincidence effect occurs at
twice the critical frequency, that is about 15 kHz. Arounis ttpincidence frequency the
response of the panel is dominated by resonances of disefétgently excited modes
whose responses are controlled by structural damping. &thes coincidence frequency
the panel response is stiffness and mass controlled arsdofbliapidly at a rate of 36 dB

per octave.

The structural response of the composite sandwich pansl mateexhibit this excitation
coincidence effect, which occurs at 190 kHz and is theretmtside the observed fre-
guency range. This is because the structural wavenumbé&edandwich panel in the
shear transition region is higher than the projected wavdran of the acoustic excitation
w/(v2¢,). The response of the composite sandwich panel at high freipg exhibits

mass-controlled behaviour. However the roll off rate iséowhan 6 dB per octave.

The radiated sound power of the aluminium panel is massaitadrup to 5 kHz. Above 5
kHz the radiated sound power spectra of the aluminium pdmei's the combined effect
of the radiation acoustic coincidence around the criticadjfiency at 7.5 kHz, and the
excitation coincidence at 15 kHz. The radiated sound poywectsa of the composite
sandwich panel exhibits these radiation and excitationistaocoincidence effects in the
frequency range between 2 kHz and 10 kHz. At 5.5 kHz the radisbund power of the
composite sandwich panel is about 25 dB higher than thatodlimminium panel.

In comparison to the kinetic energy spectra, below thecaliirequency some resonant

peaks are significantly reduced in the spectrum of the radliabund power. This is
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because the surface pressure fluctuations caused by evess roodnteract each other

and are not efficiently radiated into the far field [3].

APW with ¢ =90°: Figure 4.2(e) and (f) show the panel response and radiatetiso
power for a plane wave incident at an angle 90° (grazing incidence). At this angle
the plane wave excites all structural modes. For grazinglémce both, the excitation
acoustic coincidence and the radiation acoustic coincielencur at the critical frequency.
This is because the wavelength of the acoustic excitatiojegis directly onto the panel
surface. The response of the panels around critical frexyusndominated by discrete
efficiently excited modes whose responses are controllestriogtural damping. Above
critical frequency the panel response is stiffness and e@#solled and rolls off rapidly.
The response of the aluminium panel rolls off at a rate off Bpdr octave. The response
of the composite sandwich panel rolls off at a lower rate aiali6 dB per octave. This
difference is caused by the shear distortion in the trassweavenumber of the sandwich
panel which results in a decrease in bending stiffness amgl résults in an increase in

modal density.

The spectra of the radiated sound power for frequencies Qyktéz are very similar to
those for the plane wave incidentéat 45°. For higher frequencies both panels show the
overlaying acoustic coincidence effect in the excitatiad ¢he radiation characteristics.
Around critical frequency the sound power spectra is doteshéy individual efficiently
radiating resonant modes. Above coincidence the radiateddspower of both panels
rolls off rapidly with frequency. Around the acoustic ccdi frequency of the composite
sandwich panel at 5.5 kHz the radiated sound power of thensahganel exceeds that
of the aluminium panel by about 30 dB. Also in this case, belatical frequencies the
amplitude of the resonance peak of even modes are rathel Isetaluse of their low

radiation efficiency.

4.3 Stochastic disturbances

Figure 4.3 shows the predicted panel kinetic energy (lafdh&de column) and radiated

sound power (right hand side column) of the aluminium pan@k{ /ine) and composite
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Figure 4.2: Panel kinetic energy and radiated sound powéneofl.6 mm aluminium panekglid) and
the composite sandwich panel with equivalent static bandtiffness (aint) for a acoustic plane wave
incident atd = 0°, 45° and 90. Vertical lines mark the acoustical critical frequency bé taluminium
panel 6olid), composite sandwich paneldshed) and thed = 45° excitation coincidence frequency for the
aluminium paneldash — dotted).
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sandwich panel flaint line) for acoustic diffuse field (top row) and turbulent boundary
layer (bottom row) disturbances. The spectra are nornthtiséhe power spectral densi-

ties of equivalent acoustic plane wave with a pressure amagiof 1 Pa at all frequencies.

4.3.1 Acoustic diffuse field

Figure 4.3(a) and (b) show the structural response andteadssund power of the alu-
minium panel and the composite sandwich panel for an aaodigfiise field disturbance.

As a comparison with Figure 4.2(c) and (d) shows, the lowdesgy structural response
and radiated sound power of both panels up to 1 kHz is veryaina the response to an

acoustic plane wave with incidence angles 45° andy = 45°.

Figure 4.3(a) shows that, at higher frequencies the stralctasponse of the aluminium
and composite sandwich panel are characterised by theaganitcoincidence effect,
which, for diffuse acoustic excitation, formed by acoustaves at arbitrary random an-
gles of incidence, occurs around the critical frequencieg®mkHz and 5.5 kHz respec-
tively. The panel response in coincidence region is charsetd by resonating modes, but
the response of individual modes is less pronounced thahdarases of APW excitation
shown in Figure 4.2. Above the coincidence region the kinetiergy spectrum of both
panels rolls off at a lower rate than for the cases of APW akoih. These differences in
the response spectra can also be explained by the fact thAIR excitation is formed
by acoustic waves at arbitrary random angles of incideniggir€ 4.3(b) shows the spec-
trum of the radiated sound power of the panels for an acod#ticse field disturbance.
As for the Acoustic plane wave excitation at grazing anglEigure 4.2(e), the spectrum
of radiated sound power in Figure 4.3(b) shows the combiffedteof acoustic excitation
coincidence and radiation coincidence, which cause a deradle increase of radiated

sound power around the acoustic critical frequency.

4.3.2 Turbulent boundary layer

Figure 4.3(c) and (d) show the structural response andteatismund power of both panels
for the TBL disturbance. In the frequency range below 2 kHz&sponse of both panels

is dominated by resonances of low order modes. For the alumipanel the convective
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coincidence occurs at 1169 Hz, while for the composite satdpanel it occurs at 609
Hz. The panel response therefore depends on how efficigmlgifsc modes are excited
by the TBL disturbance. Above the convective coincidencéoreghe response of the
aluminium panel drops off at a rate of 9 dB per octave. Theafbllate for the composite
sandwich panel is slightly lower. This is due to the incremsmodal density above 2
kHz.

The discussion on the response of low order structural mmdEBL disturbance requires
to recall the properties of the correlation function for 8L disturbance in Equation
(3.17). Since the correlation function for the TBL indirection (span wise) is charac-
terised by a monotonically decaying exponential functtbare are no coincidence effects
along thex-axis of the panels. Therefore only structural modes witliahavavenumber
component iny-direction which is close to the convective wavenumber aggacterised

by a coincidence effect.

Table 4.2 gives the panel modes that are efficiently exciyecbincidence with the TBL
downstream convective field. Bold mode orders indicate effity radiating modes,
modes in brackets indicate a group of modes that can not tieglisshed as individ-
ual resonance peaks in Figure 4.3(c) and (d) and the dashembm@l lines mark the
convective coincidence frequency. The comparison betwleetwo panels shows that,
for the aluminium panel more modes are efficiently excitedhgyTBL disturbance than
for the composite sandwich panel. A comparison of the resnolTable 4.2 with Fig-
ure 4.1 shows that efficiently excited modes indeed have &mavwber component in

y-direction (stream wise) that is close to the convectiveamannber.
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Table 4.2: Modes efficiently excited by TBL.

Aluminium panel

Composite sandwich panel

Mode number Frequency mode ordeMode number frequency mode order
[Hz] (Nay 1) [Hz] (122, 1)
1 114 (1,1) 1 225 (1,1)
2 266 (2,1) 3 588 (1,2)
3 306 a2 | ------- 609  -------
4 457 (2.2) 4 862 2,2)
6 626 (1,3) 6 1155 (1,3)
7 710 (3,2)
8 777 (2,3)
10 1029 (3,3)
11 1063 4,2)
12 1073 (1,4)
------- 1169 —e -
13 1224 (2,4)
16 1477 (3,4)
18 1648 (1,5)
19 1800 (2,5)
26 2351 (1,6)

The radiated sound power spectrum in Figure 4.3(d) shovw®tithorder modes in Table

4.2 radiate sound efficiently. Although even modes genetale a low radiation effi-

ciently, the even [2,4] mode of the aluminium panel and th2][dhode of the composite

sandwich panel also show high resonant peaks in the radsat@ald power spectra in

Figure 4.3(d). Comparison with Figure 4.1 shows that both esdthve a wavenumber

component inc-direction which is close to the acoustic wavenumber, whegults in a

high radiation efficiency.
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Figure 4.3: Panel kinetic energy and radiated sound powénéol.6 mm Aluminium panekolid) and the
composite sandwich panel with equivalent static bendiifipess (f aint) for ADF and TBL stochastic dis-
turbances. Vertical lines mark the acoustical criticatifrencies and aerodynamic coincidence frequencies
of the aluminium panelsplid) and the composite sandwich panét{hed).
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Chapter 5

Decentralised velocity feedback control

In this section the structural response and sound radiafitre aluminium panel and the
composite sandwich panel with active structural controldieterministic and stochastic
disturbances are considered. As shown in Figure 2.1(b) andd-5.1, the panels are
fitted with 16 decentralized ideal velocity feedback conhkbops. Figures 5.2 and 5.3
show the structural response and total radiated sound gowre aluminium panel (left
hand side column) and the composite panel (right hand sidenc) with feedback gains
in the range form 5 to 80. As discussed by Gardonio and E[Hgitvelocity feedback
control introduces active damping. This allows to contha tesponse of modes at res-
onance. At off resonance frequencies, active damping igffettive. For low feedback
gains, the resonant peaks are initially damped and antheemes in the radiated sound
power spectra disappear. For increasing feedback gainsesamance behaviour starts
to develop. For the composite sandwich panel this occurgdors above 20 and for the
aluminium panel for gains above 40. This difference rel&tdabe structural impedances
of the panels. Only with high feedback control gains the masces of low order modes
are completely cancelled by the sixteen feedback loop$dihigh frequency region the
control is limited by the large number of modes that contebio the response at each

frequency.

For all disturbances, the controllable frequency rangeHlercomposite sandwich panel
extends to higher frequencies than for the aluminium pabis is predominantly due
to the lower modal density [3] on the composite sandwich phoealso to the lower

convective and acoustic coincidence frequencies. At adémce, the response of the
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panels is dominated by the response of discrete resonardgnddhese resonances can
be effectively reduced by means of active velocity feedbagk shown in Figure 5.2
considerable reductions in the structural response ofitimeiaium panel can be achieved
up to about 1.5 kHz for the APWW£45°), up to 2 kHz for the ADF and up to 3 kHz
for TBL disturbance. For the composite sandwich panel camnalle reductions of the
response can be achieved for frequencies up to twice as Wglshown in Figure 5.3
considerable reductions in radiated sound power of theialum panel can be achieved
up to 1 kHz for the APW{=45") and ADF disturbances, while for the TBL disturbance
considerable reductions are achieved up to 3 kHz. Also m¢hse, for the composite
sandwich panel considerable reductions of the radiateddspawer can be obtained for

frequencies up to twice as high.

The predicted control performance for the structural respand radiated sound power
for the TBL disturbance is much higher then those for Acousticitations. This is be-
cause the kinetic energy and radiated sound power speetrdoaninated by a smaller
number of resonant modes for which thg structural wavenumber coincides with the
convective wavenumber of the TBL disturbance. The respondesaund power radia-
tion for APW and ADF disturbances is instead characterized large number of reso-
nant modes, for which either thig or £, structural wavenumbers components coincide
with the acoustic wavenumber. Thus a large number of feddtaatrol units would be

required to obtain the same bandwidth as for the TBL excitatio

Figure 5.4 shows the spectrum of the radiated sound powbkeaitiminium panel excited
by an ADF disturbance from Figure 5.3(c) on a linear freqyestale. The vertical line
marks the acoustical critical frequency at 7.5 kHz. It isvghdhat, in the coincidence
region around 7.5 kHz, with a feedback gain of 80 significadtictions of up to 7 dB can
be achieved. This is because the panel response and ragbaied power around acoustic
coincidence is dominated by the damping controlled respohdiscrete resonant modes.
At these high frequencies, the bending wavelength on thelgarmuch shorter than
the distance between the velocity sensor actuator paire ray therefore expect that
the control performance for single modes will depend on tredial distribution of the
control units with respect to the shape of the modes. Howéwestochastic disturbances
a wide range of structural modes is excited at coincidenadasome reductions may

be expected for even distributions of the control points. iRédns of the response and
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Figure 5.1: Spatial distribution of control loops across planel.

radiated sound power in the coincidence region of thin ahivma panels might not be of
practical interest because this effect occurs at the uppeogthe audio frequency range
and can be efficiently controlled by means of passive danmpaadments. For composite
sandwich panels the coincidence occurs at much lower freme® and affects low order
modes. In this case discrete velocity feedback is thougbéta promising and realisable

control approach.

Figure 5.5 shows the achievable reduction in panel kinetggy (left hand side column)
and radiated sound power (right hand side column) for bottelsefor a feedback gain of
20 on a wavenumber scale. Normalising the spectra scale teatienumber corresponds
to a normalisation of the stiffness to mass ratio of the twogtg The difference in the
response is then given by the square root of the mass ratioe $ie aluminium panel is
four times heavier than the composite panel, the controktefor similar reductions of
the response of equal order modes is twice as high. For alirience cases the control
reductions obtained for low order modes of the compositdwari panel are significantly
higher than those for corresponding modes of the aluminianmep As show in Figure
5.5(b) and (d), for the acoustic disturbances considetaglyer reductions in the radiated
sound power of the composite sandwich panel are achievedddes resonating around

the acoustic coincidence wavenumber of the composite sahgwanel at 100 rad/m.

Figure 5.6 shows the 20 Hz to 12 kHz averaged reduction ofiteeAtweighted panel
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(a) APW 6 = 45° Aluminium panel
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(b) APW 6 = 45° Composite sandwich panel
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Figure 5.2: Kinetic energy of a 1.6 mm aluminium panel (leftuenn) and a composite sandwich panel
with equivalent static bending stiffness (right column}wi6 discrete idealized velocity feedback loops
for APW (6=45°) excitation and ADF and TBL stochastic disturbances. Ragsanel §olid), feedback
gain of 5 dashed), 10 (dash — dotted), 20 (dotted), 40 (faint) and 80 (faint — dashed). Vertical lines
mark the acoustical critical frequenja(shed) and convective coincidence frequeneyi(d).
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(a) APW 6 = 45° Aluminium panel
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Figure 5.3: Radiated sound power from a 1.6 mm Aluminium péeft column) and the composite sand-
wich panel with equivalent static bending stiffness (rigblumn) with 16 discrete idealized velocity feed-
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(b) APW 6 = 45° Composite sandwich panel
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back loops for APW {=45°) excitation and ADF and TBL stochastic disturbances. Ragsanel §olid),
feedback gain of 5dashed), 10 (dash—dotted), 20 (dotted), 40 {aint) and 80 (faint —dashed). Vertical
lines mark the acoustical critical frequenel:éhed) and convective coincidence frequeneyl(d).
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Figure 5.4: Radiated sound power from the 1.6 mm aluminiumepeith 16 discrete idealized velocity
feedback loops for a ADF disturbance and with a feedback gt (dashed), 10 (dash — dotted), 20
(dotted), 40 (faint) and 80 (faint — dashed). The vertical line marks the acoustical critical frequgenc
(dashed).

kinetic energy (left hand side) and total sound power radidtight hand side). This is
thought to be a fair approach to assess the overall contrfdrpgance of the two panels.
The achieved reductions in the panel kinetic energy arergyaigher then those for the
radiated sound power. This is because the reductions iesdhant structural modes are
reflected in the overall reductions in panel kinetic enenglydmly reductions in efficiently

radiating modes affect the overall reduction in radiataghsiopower.

Considering the acoustic APW and ADF disturbance caseqviofdedback gains higher
reductions are achieved for the smart composite sandwicél phan for the smart ho-
mogeneous aluminium panel. Optimal control performancéhfe composite sandwich
panel is achieved for a feedback gain of 20. As shown in Fi§u2eand Figure 5.3, for
higher feedback gains new resonance behaviour starts &ogewhich diminishes the
overall control performance. For higher feedback gaingptieelicted reductions for the
aluminium panel are higher than those for the compositewg@hdpanel; for the kinetic
energy this is for gains above 40 and for the radiated sounepthis is for gains above
80. The highest reductions for the aluminium panel are aeldi¢or a feedback gain of
80. The better control performance for the composite satctdpanel, in terms of reduc-
tions in A-weighted radiated sound power for a wide rangeetiback gains is due to the

control of the efficiently radiating modes in the mid audieguency range.

In the case of the TBL excitation significant reductions in steictural response and
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Figure 5.5: Reductions in panel kinetic energy and radiamohd power plotted over the structural
wavenumber, for a 1.6 mm aluminium panel wfgedback gain of 20(solid) and the composite sand-
wich panel withfeedback gain of 20(faint) with 16 discrete idealized velocity feedback loops for APW
(¢ = 45°) ADF and TBL disturbance. Vertical lines mark the acoustardical (dashed) and convective
coincidence frequencyglid).
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radiated sound power are predicted for both panels. Thisdalse the TBL excitation
excites predominantly low order structural modes whoseewamnber in iny-direction
coincides with that of the stream wise convective field. Ehe®des can be efficiently
controlled by means of discrete velocity feedback. The hgglponse of low order modes
shifts the optimal control gain for both panels towards kigbalues. For low feedback
gains the predicted reductions for the composite sandwacielpare up to 10 dB higher
than those of the aluminium panel. This is partly becausg ardmall number of low
order structural modes of the composite sandwich paneféceatly excited by the TBL
(see Table 4.2), and because for equal feedback gains p@nsesof low order structural
modes of the composite sandwich panel are controlled méetkly than those of the

aluminium panel (see Figure 5.5).

In practice it is difficult realise high feedback gains besmgontrol systems are often
only conditionally stable and can also cause control spir@ffects at low or high fre-
guencies, depending on the type of actuator. The lower @ptieedback gain for the
composite sandwich panel may therefore be beneficial fastiped applications. Cur-
rently active control systems are mainly considered forfi@guency noise applications
up to 1 kHz. The results of this study indicate that it mightdmssible to extend the
operative frequency range of active control systems up tbamidio frequencies when
lightweight sandwich panels are used. In this case the lieméfactive control systems

could offset the additional costs and additional instaftexbs.

At mid frequencies at which the modal overlap is in the vityiruf unity, the response of
the panels is mass controlled. Thus parts of the responsectdore controlled by means
of active damping. An ideal control system would thereforetkesise active damping
at low frequencies where the response of the structure isalted by well separated
resonances of low order modes an distributed mass, i.eibdistd acceleration feedback,
at higher frequencies where the modal overlap exceeds andytherefore the response

of the panel is controlled by the distributed mass of theifo@mt
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Chapter 6

Conclusions

In this report two active panels under deterministic and@lsstic excitation have been
considered. The first panel is a homogeneous 1.6 mm thickiium while the sec-
ond is a composite sandwich panel with equivalent statitness but four times lower
mass per unit area. Firstly, the panels structural respandeadiated sound power due
to (a) acoustic plane wave, (b) stochastic acoustic diffiede and (c) turbulent boundary
layer disturbances have been investigated and contraSembndly, the response of the
panels with sixteen decentralised velocity feedback cbimdops using idealized point
force actuators and collocated idealized velocity sensassstudied to compare the con-
trol effects on both panels and to investigate the intrifigids of decentralised velocity
feedback control. In contrast to previous studies on agtaseels, the analysis has been
extended to the upper end of the audio frequency range. Dtieetlow modal density
and lower convective and acoustic coincidence frequeneyrésponse of the compos-
ite sandwich panel is dominated by discrete resonate mogsgsaovide range of audio
frequencies. This indicates a high potential for the apgili;y of damping treatment to
reduce the panel kinetic energy and radiated sound powessivieatreatments are not
effective at low frequencies and might add high amount ofsnaiich is diminishing
the initial benefits of lightweight design. It has been destated that for low feedback
gains discrete active velocity feedback shows a betteralgmrformance for lightweight
sandwich panel then for a homogeneous aluminium panel.i§ particularly the case for
TBL excitation where the structural response is dominatelbwwyorder resonant modes.

Discrete velocity feedback is efficient in controlling thesonant response of low order
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resonant modes and also in controlling the response ofithdiV modes resonating at
acoustic coincidence in the mid and high audio frequeneiege.The results of this sim-
ulation study suggests that decentralised velocity fegldbantrol is efficient in reducing

the structural response and radiated sound power of a le@ghtvsandwich panel up to
the mid and high audio frequencies. In this case the bendfstive control systems

could offset the additional costs and additional instaffeaks. In this report basic struc-
tural models and ideal velocity sensor actuator pairs haea lsonsidered. Further work
is required to evaluate the control performance consigdhie dynamic response of the

panels and actuator units in more detail.

42



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

C. R. Fuller, S. J. Elliott and P. A. NelsoActive Control of Vibration Academic
Press, London, 1st edition, 1996.

R. L. Clark, W. R. Saunders and G. P. GibBslaptive Structures, Dynamics and
Control. Wiley-Intersience, New York, NY, 1st edition, 1998.

F. J. Fahy and P. Gardoni®ound and Structural Vibration, radiation, transmission

and resoponseAcademic Press, Oxford, 2nd edition, 2007.

P. Gardonio and S. J. Elliott Smart panels for active &tral acoustic control.
Smart Materials and Structure$3(6):1314 — 36, 2004.

C. R. Fuller Active control of sound transmission/radiatifrom elastic plates by
vibration inputs. i. analysislournal of Sound and Vibratiori36(1):1 — 15, 1990.

C. R. Fuller, C. H. Hansen and S. D. Snyder Active control afrebradiation from
a vibrating rectangular panel by sound sources and vibratjoputs. an experimental
comparisonJournal of Sound and Vibratiori45(2):195 — 215, 1991.

C. R. Fuller and R. A. Burdisso A wavenumber domain approacth¢oactive
control of structure-borne soundournal of Sound and Vibratigri48(2):355 — 60,
1991.

C. R. Fuller, C. A. Rogers and H. H. Robertshaw Control of soumibtaon with
active/adaptive structuredournal of Sound and Vibratigri57(1):19 — 39, 1992.

C. R. Fuller and R. J. Silcox. Active structural acoustic ttroh Journal of the
Acoustical Society of Americ81(1):519, 1992.

43



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B.-T. Wang, C. R. Fuller and E. K. Dimitriadis Active contrmaf noise transmis-
sion through rectangular plates using multiple piezoedkeot point force actuators.
Journal of the Acoustical Society of Ameri€®(5):2820-2830, 1991.

R. L. Clark and C. R. Fuller. A model reference approach fqulementing active
structural acoustic contralournal of the Acoustical Society of Amerj@&(3):1534

—44,1992.

R. L. Clark and C. R. Fuller Experiments on active control tofisturally radiated
sound using multiple piezoceramic actuatodsurnal of the Acoustical Society of

Americg 91(6):3313 — 20, 1992.

R. L. Clark and C. R. Fuller. Active structural acoustic cohtvith adaptive struc-
tures including wavenumber consideratiodsurnal of Intelligent Material Systems
and Structures3(2):296 — 315, 1992.

W. T. Baumann, W. R. Saunders and H. H. Robertshaw Activpraggion of acous-
tic radiation from impulsively excited structuregournal of the Acoustical Society

of America 90(6):3202 — 8, 1991.

W. T. Baumann, F.-S. Ho and H. H. Robertshaw Active stmattaicoustic control of
broadband disturbancedournal of the Acoustical Society of Ameri@2(4):1998
— 2005, 1992.

S. J. Elliott and M. E. Johnson. Radiation modes and thigeacontrol of sound
power. Journal of the Acoustical Society of Ameri@#(4):2194 — 204, 1993.

S. D. Snyder, N. Tanaka and Y. Kikushima The use of optyrehaped piezo-
electric film sensors in the active control of free field stawal radiation. part 1.
feedforward controlTransactions of the ASME. Journal of Vibration and Acosstic
117(3A):311 — 22, 1995.

A. D. Pierce.Acoustics: An introduction to its physical principles anpéications

Acoustical Society of America, Woodbury, New York, 1989.

W. K. Blake.Mechanics of flow-induced sound and vibratigalume Il of Complex

flow-structure interactionsAcademic press, Orlando, Florida, 1986.

44



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. S. Howe.Acoustics of fluid-structure interaction€ambridge University Press,
Cambridge, 1998.

D. J. Thompson and J. Dixon; edited by F. J. Fahy and J. &k&k Vehicle Noise,
Chapter 6 in Advanced Applications in Acoustics, Noise andhYidn. Spon Press,
London and New York, 2004.

J. S. Mixson and J. S. Wilby edited by H. H. Hubbameroacoustics of Flight
Vehicles, Theory and Practice, Chapter: Interior NoiF§ASA langley Research
Center, Hampton, Virginia, 1995.

G. Cousin. Sound from tbl induced vibrations, trita-1@99:35. Technical report,
Royal Institute of Technology KTH, Stockholm. DepartmenMehicle Engineer-
ing, The Marcus Wallenberg Laboratory for Sound and VilmratResearch MWL,
1999.

M. E. Johnson and S. J. Elliott. Active control of souradiiation using volume
velocity cancellation.Journal of the Acoustical Society of Ameri&@8(4):2174 —
86, 1995.

C. Maury, S. J. Elliott and P. Gardonio Turbulent bourydiayer simulation with an
array of loudspeaker®\lAA Journa) 42(4):706 — 13, 2004.

S. J. Elliott, P. Gardonio, T. C. Sors and M. J. Brennanivctibroacoustic control
with multiple local feedback loopsJournal of the Acoustical Society of Amerjca
111(2):908 — 15, 2002.

J. Rohlfing and P. Gardonio. Active control of sound traission through panels
with flexible boundaries under detreministic and stocleaskicitation. Technical
report, University of Southampton, Institute of Sound artat&tion Research, ISVR
Technical Memorandum No. 977, 2007.

G. Kurtze and B. G. Watters. New wall design for high trarssion loss or high
damping.Journal of the Acoustical Society of Ameri&i.(6):739-748, 1959.

J. J. Tuma and R. A. WalslEngeneering Mathematics HandbodcGraw-Hill, 4
edition, 1997.

45



[30] P. J. Shorter and R. S. Langley. On the reciprocity retehip between direct field
radiation and diffuse reverberant loadidgurnal of the Acoustical Society of Amer-

ica, 117(1):85 — 95, 2005.

[31] S. J. Elliott, C. Maury and P. Gardonio The synthesis aitisly correlated random
pressure fieldsJournal of the Acoustical Society of Ameridd7(3):1186 — 201,
2005.

[32] G. M. Corcos. The resolution of pressures in turbulerdoeirnal of the Acoustical

Society of Americe35:192-199, 1963.

[33] S. H. Crandall and W. D. MarkRandom Vibration in Mechanical Systen&ca-

demic Press Inc. New York and London, 1963.

[34] D. E. Newland.Random vibrations, spectral and wavelet analydisngman Sin-

gapore Publishers Pte Ltd, 1993.

[35] P. A. Nelson and S. J. ElliotActive Control of SoundAcademic Press London and
San Diego, 1993.

46



Appendix A

Formulations for kinetic energy and

radiated sound power

In this appendix the formulations for a) the panel kinetiergry and radiated sound power
due to harmonic deterministic excitations and b) the spedensity of panel kinetic en-

ergy and radiated sound power due to stochastic disturbaregresented.

A.1 Notations for the time harmonic response of the panel

At first the notation for the time harmonic excitation andraitoon velocity response of
a rectangular panel, as shown in Figure 2.1 are introducéuks fotation is then used
to derive the formulations for the panel structural respogsd sound radiation for time
harmonic and stochastic disturbances. Assuming time haoiehaviour, of the form
Re{exp(jwt)}, wherew is the angular frequency and= /-1, the transverse force

excitation and the transverse velocity response of a pamebe expressed as

f(z,y,t) = Re {f(x, Yy, w)el! } , (A.1)

i(e,y,t) = Re {ib(z,y,w)e™" } (A.2)

where f andw are frequency-dependent complex phasors of the excititior per unit

a7



area and the velocity response.

A.1.1 Modal formulation

The time-dependent velocity response, can be expresserds bf the following infinite

modal summation [3]

(z,y.t {Z Or(2, )i ()™ } (A-3)

whereg, (x,y) is ther-th natural mode and, (w) is the complex modal velocity. Thus

the complex frequency-dependent velocity response isidiye

w(z,y,w Z¢T )l (w (A.4)

The frequency-dependent complex modal velociii¢s)) can be expressed as the product

of a resonant term and a modal or generalised excitationdéthe form

in(w) = . Fy(w). (A5)

Considering a hysteresis damping model, the resonant tegiveis by

= jw
= MR+ ) — (A0)

wherew, is ther-th natural frequency, is the modal damping loss factor aid. is the

modal mass for the-th natural mode, which is given by

—phj/ 6,2, y)]? d dy, (A.7)

wherep is the panel mass density ands the panel thickness. If the panel is simply

supported, the mass-normalised natural magés, y) are given by
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¢r(x,y) = 2sin (m;m:) sin (n,;ry) (A.8)

T Y

where,m, is the modal order in-direction andn, is the modal order iny-direction for
ther-th mode. In this casé/, = phl,l, = M, wherel is the total mass of the panel.

The corresponding modal excitation term is given by

Fyw) = / / b0 (2, y) Flay, ) de dy, (A.9)

0 O
wheref(z, y,w) is the exciation force per unit area.
Mode truncation

If the modal summation in Equation (A.4) is truncated to tamver the firstV modal

terms, so that

N

W, y,w) = dp(w,y)in(w), (A.10)

r=1

after substituting Equation (A.5), the velocity at an adoiy point of the panel can be cast

into the following matrix formulation

w(z,y,w) =®a=>dQF, (A.11)

where

Q= (A.12)
is a diagonal matrix with the firs¥ resonant terms in Equation (A.6) and

®=| Gi(r.y) dolwy) o onlay) | (A.13)
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S A A T (A.14)

~ 5 5 ~ T
FZ[Fl Py FN} , (A.15)

are respectively a row vector with the firStnatural modes, a column vector with the first
N modal velocities and a column vector with the filstmodal excitations. Note that the
modal excitation terms in Equation (A.15) involves the dation of the spatial integrals

in Equation (A.9).

A.1.2 Elemental approach

In the elemental approach the panel surface is subdivideduniform grid of N, el-
ements. The excitation and response is defined at the elarantries. This allows to
replacing the integration over the panel dimensions in EqugA.9) by a finite sum over

element contributions to give

Ne
Fr(w) ~ Z@(%Jh) Ae f(xi,yi,(d), (A16)
i=1

whereg, (x;, y;) is the mass-normalised natural mode evaluated at the cefindétement
i, A is the area of a single element aﬁ@lci, y;,w) is the force per unit area at the centre
of the element, so that the produdt f(a;i, y;,w) approximates the total force over the

element surface. The vector with the elemental velocities

~ B B _ T
We = | We, Wey -+ Wey, (A.17)
can be derived from equation (A.11) as follows
We(w) = ®.a=8.Q0F, (A.18)

where®, is a [V, x N] dimensional matrix ofV, rows with the firstV natural modes at
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the the centres of the panel elements

d1(z1,90) - on (71, 91)
o, = : : (A.19)

o1(zn.,YN.) o on(TN., UN,)

andF., is the N,-dimensional vector of discrete egivalent excitation é&srat the centres

of the panel elements

F.=| F, F, (A.20)

The approximation of the surface integrals in Equation {4 the sum over element
contributions allows to consider complex natural mode fioms, due to arbitrary bound-

ary conditions and arbitrary spatial excitation fields.

A.2 Time-averaged total panel kinetic energy

The instantaneous total kinetic energy of the panel is gimethe product of the panel

density per unit area and the squared panel velocity integi@/er the panel surface [3]:

lz ly
1
E(t) = 5//phw2(:c,y,t)dxdy, (A.21)
0 O
wherel, andl, are the dimensions of a rectangular papéljs the panel mass per unit
area andi(z, y, t) is the transverse panel velocity. Assuming the panel massyiearea

Is constant, Equation (A.21) can be rewritten as

lx ly

E(t) = —//w2($,y7t)dx dy, (A.22)
0 0

The time averaged total panel energy is given by [33, 34]:
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Iy ly T
E= %// / (z,y, t)dt dz dy (A.23)
0 0

whereT' is a suitable period of time over which the mean square wglaestimated; e.g.
for time harmonic vibration7" is the period. Assuming time harmonic vibration as given
in Equation (A.2), the time average integral can be rewritteterms of the magnitude of

the complex panel velocity(z, y, w) to give

T
1 1, -
—/MQ(I,y,t)dt: —‘u')(x,y,w) 27 (A24)
T 2
0
which yields the time averaged total kinetic energy of thegbas
E:E(w):%//’ w(z,y,w ’ dz dy. (A.25)
0 O

A.2.1 Modal formulation

Using the vector notation for the truncated modal summatfdhe transverse velocity of
the panel given in Section A.1.1, the total panel kineticgynén Equation (A.25) can be

rewritten as

xl’y

BEw) = // w) ®T ® a(w) dz dy,
- %QH(W)ZJ@ ® du dy a(w), (A.26)

where? denotes the hermitian transpose. Considering mass noedatindes, the or-

thogonality property gives
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or(2,y) ds(x,y) drdy =0 (A.27)
0 0
and
l. ly
[ o ionte oy = L, (A.28)
0 0

Thus the integration over the panel surface in Equation@Ar@sults in

- [[oon - [ [don a
Bw) = 2 E 6 a0 ;
| [ [ondr o [ [onon | | an
[ 1,1, i
_ %[gg G e ] ] (A.29)
_ Li, || an

i
phlly [ - .
Bw) = =26 -
iy
M - _
= 23" w)aw), (A.30)

whereM represents the total mass of the panel.

A.2.2 Elemental approach

In the elemental approach the spatial integral in Equa#oRR) is replaced by a summa-

tion over a grid of elements to give
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Ne
ph SOA i
E(w) = Z Ae‘w<xi7yi7w>|2
=1

N,

M, ~~, -

= == (s, i, W) (A.31)
i=1

4

whereA, and M, the area and mass of a single panel element. Using the matation

for the element approach in Section A.1.2 this can be wrdten

by
Me T Tk .
Bw = [wl wNe]
iy,
_ f‘j W () Wo (). (A.32)

A.3 Time-averaged total radiated sound power

The instantaneous total sound power radiated is given byih@uct of panel velocity

and acoustic pressure on the panel surface, integratedlmelimensions of the panel

[3]:

P(t) ://zb(:v,y,t)p(x,y,O,t)dxdy, (A.33)

wherew(z,y,t) is the panel velocity ang(x,y,0,t) is the surface sound pressure on
the radiating side of the panel. The time-averaged totahted sound power is given by
[33, 34]

T

la: ly

— 1

P = // /w(:c,y,t)p(x,y,o,t) dt dx dy (A.34)
00

0

N

whereT' is a suitable period of time over which to estimate the meamatad sound

54



power. Assuming time harmonic vibration the time averagegral can be rewritten in

terms of the complex panel velocity(z, y, w) and complex surface pressure fluctuations

ﬁ(mﬁ y? 07 w)

la: ly
1 -
— 5//}2@ {w (x,y,w)ﬁ(x,y,o,w)} dzx dy. (A.35)
0 0

The complex surface pressuysér, y, 0,w) for time harmonic vibrations of a planar sur-

face is given by the Rayleigh integral [3]

e—jkOR

. ! /
21 R

dx' dy (A.36)

whereR = /(x — 2/)2 + (y — y/)? is the distance between two points on the pahel,

is the acoustic wavenumber in the surrounding media/nd the mass density of the
surrounding media on the radiating side of the panel. Thhstguting Equation (A.36)

into Equation (A.35) gives

1 - 1 N —jkoR
Plw) = §Re //w(fﬁayaw)*jwpo//’Lb(xl,y/,w)e 7 dx dy dx’ dy

_ %Re ////9;7’:0 {COS(kR) %jsm(m)] (2, y,w) (@, w) dr dy da’ dyf

- wpo////smisR 0 (@, y,w) w(, Y, w) de dy do’ dy’
0

lz ly lz ly

(k
= ////Sm R xy, w)w(z',y,w) de dy dz' dy (A.37)
471'00

where* is the complex conjugate operator.
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A.3.1 Modal formulation

Substituting the modal expression for the transverse itglotEquation (A.4) into Equa-

tion (A.37) gives

lz ly lz ly

Pl) = P / / / / Sin(k mey = sy

4reg

lm ly

k‘
[ ot )P o, o dy o’y (A.38)
0

0

le

ly

Cyyain)
4meg

0 0

7”181

Considering the vector notation for modal truncation to tret ¥ terms in Section A.1.1,

Equation (A.38) can be casted in the the following matrixafatation [3]

- a"AA, (A.39)

whereA is the power transfer matrix with the elements, given by
lz ZU lz ll
A= / / / / ou(e.) U oty dwayaray. (a40)
A.3.2 Elemental approach

In the elemental approach the spatial integrals in Equd#o87) are replaced by sum-
mations over the uniform grid of panel elements. Accordmghe notations defined in

Section A.1.2, this gives
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w w”po sin k:R” -, )
‘ Y A.41
 Areg 2; ER; ; i (i, sy ) w(h, yj,' w), ( )

which can be casted in the following matrix expression

Rrad171 o RradLNe w1
Tk Tk
P(W) = wl .« .. wNe
RradNe,l e RradNe,Ne wNe

= W Rygq We. (A.42)

In this equationv. denotes the vector of element velocities given in Equattom?) and

R..q denotes the element radiation matrix with the eleméhts, . (w) given by [3]:

wzpoAg sin (k(]RZ'J)

Ryoa. (W) = , A.43
dig (W) 471'60 kORiJ ( )
where the diagonal terms of the radiation matkix (w) reduce to
2 A2
Rradii(w) - i . (A44)
: 4dmey

Note that the radiation matrix is proportional to the reatt g the radiation resistance

matrix, i.e proportional to the real part of the radiatiorpedance matrix

A, ~
R, uwi(w) = 7R6 {Zrad} 7 (A.45)
where the terms in the elemental radiation impedance mAfrixare given by

JwpoA, e IR0l

A.46
2w Ri,j ( )

Zradi,j (O)) =
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A.4 Power spectral density of total kinetic energy

It can be demonstrated [35] (page 58), that the power speemnsity ofx(¢) is given by

1
Spe(w) = lim F {— i*(w)j(w)} , (A.47)
wherez(w) is the finite Fourier transform af(t):

T

~ 1 —jwt
T(w) = %/x(t)e dt (A.48)

and E| | denotes the expectation for and infinite sample length. Tonsidering the
general formulation for the instantaneous total kinetiergg in Equation (A.21), the
power spectral density of the total kinetic energy, due to a time and spatial stochastic

disturbance over the panel surface, can be written as [33]:

l:v l/
//ph lim E{ W (x,y, w)(z, y,w) | ddy. (A.49)

T—o00

A.4.1 Modal formulation

Substituting the modal expression for the transverse itglotEquation (A.4), into Equa-

tion (A.49) gives

lz ly

1
Sp(w) = 2//pthimE
0 0

= ;]I/yph S5 6 p)bla) lim B [T H(w)a (w)] da dy. (A.50)
0

Zﬁbrl‘y Z?bsxyas ]dl‘dy

r=1s=1

Assumingph=constant and considering the orthogonality conditioriSgoations (A.27)
and (A.28), Equation (A.50) results in
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lz l’U

Z//cb 2, Y)$s (2, Y) Sa,a.dr dy
0 0

NE

Sg(w) = =ph

N | —

r=1 s=1

ly

I
= a h Z//(bT(x? y)dedySarar
=19 0

M [eS)
= 725‘”“” (A51)
r=1

N | —

wheresS, .. is the power spectral density of modal velocities ddds the mass of the
panel. According to Equation (A.47) the power spectral dgrmd modal velocities can

be expressed as

Su0) = in | L5000 = tm B[ 7 0@ @s2

T—o00

Substituting Equation (A.5) into this expression gives

@) = I B | LB F 0 () 0)]

T—o0

1
= lim E{—

T—o0

o (w)|

T [% I (w)wa)} (A.53)

Substituting the formulation for the modal excitation terim Equation (A.9) then gives

lm ly lJ

ilro/o/cbr( y) [ (2,0 dwdyg]g/aﬁr 2’y w) da’ dy}

//@@@@@W@E&E[
0 0

Sapa (w) = |Q(w)| lim E

(@, yw) f(2, y’,w)] dx dy dz' dy'

Nl

or(z,y) dr(2',y) Sff(x, y, 2’y w)dr dy dz’ dy, (A.54)

59



whereS‘f f(z,y, 2.y, w) is the cross spectral density of the stochastic disturbpercenit
area between positionis, y) and(z’,y’), which can be expressed as the product of the
power spectral density (w) and the spatial correlation functidii(z, y, ', y/,w) of the

disturbance so that

Sir(z,y, 2y, w) = U(w) Clz,y, 2",y ,w). (A.55)

Both power spectral density(w) and spatial correlation functiofi(z, y, z’,y/,w) are
specific properties of the disturbance. Formulations tlkeatdbe the the spatial correla-
tion functions for ADF and TBL excitation are given in sect®@. Substituting Equation
(A.54) back into Equation (A.50) gives the final expressionthe power spectral density

of total kinetic energy due to a time and spatial stochassitichance as

lac ly lm ly

~ 2
Q ’ ////¢rx Z/ <Z5rl' y)Sff(xayax,ay/7w)d$dydx/dy’_
0 0 0 O
(A.56)

r=1

A.4.2 Elemental approach

According to the notations in section A.1.2, the spatiagnal in Equation (A.49) can be
replaced by a summation of element contributions, so treptwer spectral density of

the total kinetic energy due to time and spatial stochasstticbances is given by

1 s -
Sg(w thA hmElT (i, ys, w) W(x;, yi, w) (A.57)

T—o00

where A, denotes the area of a single panel element@nd, y;,w) is the transverse
velocity of thei-th element. Using the vector formulation for the elementdbcities

given in Equation (A.18) the expression for the power spédensity becomes

60



M, & 1
Sp(w) = 26 ZThm E [T w;k(w) ZDZ(CU):|
i=1 17>
Wy
= Strace | lim E | = [ UN)T u}j\] }
T—o0 ¢
W,
M .
= —trace ( lim F { [WveH)
2 T—o0
M .
= —trace ( lim E [ [@ aaH(IJTH)
2 T—o0
M
= —etrace( lim E [ [aaHH <I>6T>
2 T—o0
= 26 trace < > (A.58)

whereS;,(w) is the [V x N] dimensional matrix of power and cross spectral densities
of the modal velocities. According to Equation (A.18) thetee of modal velocities is

given by

a=Q&'F,, (A.59)

thusS,.(w) can be written as

Sua(w) = lim EH [aaHH

T—o0

1 - . -
= lim E{? QHQZFechbeQ}

T—o0

- 1 ~ - ~
= Q& lim F [— FFH] & .01
T—o00 T

= Q&S (w) 2.0, (A.60)

whereS;, ;. (w) is the [N, x N,] dimensional matrix with the power and cross spectral

densities of the element excitation forces, which has tha fo
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thfl thfNe
St.p. = : : (A.61)

SfNe:fl sz\re,fzve

with the elements

szf]<w) = Ag Sff (Iiyyivxjayjaw)v (A62)

where A, is the surface of a single element aﬁ;:} (wi,yi, ©;,yj,w) IS the cross spectral
density of the stochastic disturbance in Equation (A.5%)|wated for the centres of ele-
ment; and;. Substituting the final expression in Equation (A.60) battk the Equation
(A.58) gives

M, ~ - -
Sp(w) = - trace (‘I>e Qd'S;  (w) 2. Q" D, )

M o B
= Sftrace (Yeesfefe(w)Yg), (A.63)

whereY,, = @eQ@Z is the [V, x N,] dimensional matrix of element point and transfer

mobilities.

A.5 Power spectral density of total sound power radiated

Considering the general formulation for the instantaneotsl radiated sound power
given in Equation (A.33) and considering the relationsbiptiie spectral density given in
Equation (A.47), the power spectral density of the totalhsbpower radiated due to time

and spatial stochastic disturbances given by

Sp( {//TIEI;E [1 ~* (x y,w)ﬁ(x,y,(),w)} dmdy}. (A.64)
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Substituting the Rayleigh integral expressionjat, y, 0, w) from Equation (A.36) gives

l‘l} l?/ lT l:‘/
- y —JjkoR 1 -
Sp(w)Re{j;po////e 7 lim E T W (z,y,w)i(z, Y w)} dxdydx’dy’}. (A.65)
a0 T—o0
0000

A.5.1 Modal formulation

Substituting the modal expression for the transverse itglotEquation (A.4) into Equa-

tion (A.65) gives

Zgbrxy Zgb 'y d:z:dyd:c'dy'}

. z Y 50 oo _jkoR 3 ) .
j;:fo ///ZZ@(%ZJ)G jR (,259( ) lim F |:71_‘ T(w)as(w)7_ diﬂdydl‘/ dy'}
0 0 O

0
o s Iy by L 1y .
1 —Jko -
= SR B [ [onten) S5 6.6 /) Suadndy ' dy (A66)
™
" 0000

Whereﬁws Is the spectral density of the the modal velocities. Sulggt the formula-

tion for the modal velocities of Equation (A.5) gives
. I oss, (5
Sapas(w) = lim FE [—a (w)as(w)l

= (W) (w) lim E [% F:(w)ﬁ’s(w)} : (A.67)

Substituting the formulation for the modal excitation terim Equation (A.9) then gives
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lm l!/ l:c I’U

[ [oen iy [ [ o) 'y @ dy’]

0 0 0 0

Nl

Or(2,y) 6s(2'y) lim B [; F(@y,w) f(xcy’,w)] da dy da’ dyf

T—o0

/ o (2,y) (2, y") gff(x, y, o'y w)dx dy da’ dy'. (A.68)
0

Finally, substituting this formulation for spectral deysof the the modal velocities back

in to Equation (A.66) gives

N N )
ZZQT(W)Q w

r=1 s=1

00 —jkoR
////Qﬁr(ﬂf, ¢s(2',y") dx dy da’ dy’
s
00 0 O

lz ly lz l'y

x / / / / o (2,y) b(as o) Sy p (o sw) de dy da’ dy S . (A.69)
0 0 O o

A.5.2 Elemental approach

Substituting the spatial integrals in Equation (A.65) byreté summation over all panel
elements gives the following expression for the power spedensity of the total sound

power radiated due to time and spatial stochastic distadsan
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. N, :
JwpoAZ S e~ e IR J - >
SP(W) = Re — lim £ | w (xi7yi7w)w(xi7yi7w)
27 ; = ij T—oo T
1 Rrad1,1 Rradl’Ne ule
T AR
| RradNeJ RT’adNe,NE J)Ne
S .
— 2 lim E Tv'vf R, o w} , (A.70)
T—o00 L

whereR, .4 is the elemental radiation impedance matrix as defined irafmpus (A.43)

to (A.46). Equation (A.70) can be rewritten to give

Sp((,u)

lim F

T—o00

1 - -
2trace ( {? W, Wf R'r'ad:| )

1 -
2trace ( [T P, a4 o7 RmdD

2trace (<I>e Sadcbf R w > ;

lim F

T—o00

(A.71)

where the [V x N] dimentional matrix of power and cross spectral densitide@modal

velocitiesS,,, is derived in Equation (A.60), so that:

Sp(w)

2 trace ([tI)e Q@’S, , &, 0 @ZT} Rmd>

2trace ( [?ee Sfefg ?g} Rmd> , (A.72)

whereY.,. is the [N, x N.] dimensional matrix of the element point and transfer nitied

andS;, ;, is the matrix with the power and cross spectral densitiels@étement excitation

forces given in Equation (A.61).
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