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ABSTRACT 
 
To evaluate the vibrational behaviour of spot welded structures, finite element (FE) models 

can be used. In modelling the structure, a model of the spot weld which is connected to the 

substructures by multipoint constraints (MPCs) has clear advantages. It can be located 

anywhere in the model and it is not necessary to re-mesh surfaces to assemble them together. 

However, analytical validation is needed. In this paper the results from FE models with MPCs 

are compared to analytical solutions to evaluate the accuracy of these connections and to 

analyze the influence of the size and the type of element for which these MPCs are applied. 

Two different models are analyzed: two infinite beams and two simply supported plates. In all 

models there is a single elastic connection with translational and rotational stiffnesses. 

Finally, component mode synthesis (CMS) is used in combination with an MPC spot weld 

model in order to reduce the size of the model and to facilitate the assembly of components. 

The results show that the MPC connection is not accurate when thin plate elements are used, 

due to the non-conforming formulation. In contrast, when a heterosis element was used the 

results show that the MPC connection is as accurate as a node-to-node connection. Finally, it 

is seen that when the MPC models are used in combination with CMS, the response of the 

system can be evaluated for any spot weld location in an accurate and numerically efficient 

manner.  
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1 INTRODUCTION 

 

Structural elements such as beams, plates, rods, etc, are typically assembled together using 

elements called structural joints in order to build more complex structures. In the automotive 

industry one of the most important structural joints is the spot welded joint. A vehicle body 

contains several thousands of spot-welds. The properties and characteristics of these 

connecting elements contribute significantly to the overall dynamic behaviour of the structure, 

e.g. natural frequencies, mode shapes and frequency response functions (FRFs).  

 

To perform the dynamic analysis of mechanical structures, the finite element (FE) method is 

typically used [1]. In order to include the participation of the joints it is necessary to use a 

model able to represent the dynamic characteristics of the spot welds. Modelling spot welds is 

a difficult task, mainly because there are many local effects such as geometrical irregularities, 

residual stresses, material inhomogeneities and defects due to the welding process that very 

difficult to take into account. Furthermore it is necessary to use models with as few DOFs as 

possible, since real spot welded structures usually possess many spot welds and modelling 

each of them in detail would lead to a major computational effort. 

 

Commonly in FE models, point connections such as welds, rivets and bolts, are represented 

by two-noded elements (e.g. beams or springs with lumped masses). The parameters of these 

simple elements represent the mass and stiffness characteristics of the real joint, and therefore 

their influence on the rest of the structure. This simple connection can be connected to the 

substructures mainly in two different ways:  (1) directly connect the joint nodes to nodes in 

the substructures (node-to-node connection) and (2) using interpolation elements or 

multipoint constraints (MPCs) to connect the joint nodes to the substructures.  The node-to-

node connection requires coincident meshes: if the location of the joint changes, then the 

mesh of both surfaces needs to be modified. In contrast, when interpolation elements or MPCs 

are used, the connection can be placed at any location using the existing surface meshes.  

 

The latter feature offers a great advantage to industry, since it is then possible to assemble 

components with different mesh characteristics or to assemble components with complex 

geometries in which it is very difficult to have coincident nodes. Moreover, MPC connections 

can improve the computational efficiency when Monte Carlo simulation (MCS) is used to 
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analyze the dynamic behaviour of built-up structures with uncertainties in the location of the 

joints. In this case the MPC connections are used to model changes in the location of the joint 

instead of modifying the FE model from one sample to the next. In order to further improve 

the efficiency, component mode synthesis (CMS) gives a sub-structuring framework by which 

the number of the degrees of freedom (DOFs) can be reduced [2]. Combining CMS with MPC 

joints, the response of the system can be evaluated for many joint locations using the same 

modal representation of the substructures.   

 

However, model validation is needed.  In this document the results from FE models with 

MPCs are compared to analytical solutions to evaluate the accuracy of these modelled 

connections and to analyze the influence of the size and the type of element at which these 

MPCs are attached. Two different models are analyzed: two infinite beams and two simply 

supported plates. In all the models there is a single elastic connection with translational and 

rotational stiffnesses.  

 

Following this introduction, a review of the different FE joint models available in the 

literature is given.  In section 3 the MPC joint model is described in detail. In Section 4 the 

MPC joint model is validated using a model of two infinite beams with a single elastic 

connection. In Section 5 the MPC joint model is validated using a model of two simply 

supported plates with a single elastic connection and the influence of the size and the type of 

element at which these MPCs are attached is analyzed. Section 6 describes a method to apply 

component mode synthesis in combination with MPC joints to reduce the size of the model. 

Finally, conclusions are given in section 7.  
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2 SPOT WELD FINITE ELEMENT  MODELS 

 

A good FE spot weld model should be able to represent the physical and dynamic properties 

of these joints and therefore the variations in them. In this section some of the joint models 

available in the literature are reviewed. 

 

Two main types of spot weld models can be distinguished: models for stress analysis within 

the spot weld and models for vibration analysis which do not require the knowledge of 

stresses at the spot welds. In the first case, very detailed models are required to compute a 

smooth stress field at the spot weld. As stated previously, these models are used for stress 

analysis and durability. In general they are too detailed to use in dynamic analysis, leading to 

a prohibitive computational cost, therefore these models will not be considered in the present 

document. In the second case the only requirement from the model is to simulate, as closely 

as possible, the stiffness (and mass) characteristics of the real spot welds and their influence 

on the rest of the structure. This allows much simpler models with far fewer DOFs.  

 

These simpler models can be divided in two types, models that require coincident meshed 

surfaces in which the nodes of the plate elements of the joined surfaces are coincident and 

models that can be assembled with non-coincident meshes for which the plate nodes are non 

coincident, then it is not necessary to re-mesh surfaces to assemble them together.  

 

Next some of the most common models are reviewed.  

2.1 Single beam models 

 

These models have been commonly used in industry for many years. A node to node 

connection is applied between coincident meshes using a rigid link or a beam element. 

According to Lardeur et al. [3] this connection is physically inconsistent and leads to 

imprecise and unstable results. Similarly Palmonella et al. [4] agree that this model is an 

inadequate representation for the behaviour of the spot weld and generally tends to 

underestimate its stiffness.  
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2.2 Single Brick model 

 

This model was first proposed by Pal and Cronin [5] and connect two surfaces using a single 

brick element to characterise the spot weld nugget. The brick nodes are coincident with the 

plate nodes connected with rigid links in all DOFs, therefore it is necessary to have coincident 

meshes for the surfaces to be connected.  

 

2.3 Area Contact Model 2  

 

This element was created by Heiserer [6] and is known as area contact model 2 (ACM2). This 

model consists of a brick element connecting the lower and upper plates with weighted 

average constraint elements, called RBE3 in MSC Nastran [7], as shown in Figure 1. RBE3 

defines the motion at a reference grid point as the weighted average of the motions at a set of 

other grid points. The RBE3 element is able to distribute the applied loads onto a set of nodes 

without increasing the local stiffness as would happen with a rigid link. The ACM2 model is 

also known as the CHEXA spot weld model in LMS virtual lab [8]. This model provides the 

advantage of being able to connect surfaces with non congruent meshes and locate the spot 

weld anywhere in the surface between nodes, but is relatively sensitive to mesh size [3].                  

     

2.4 CWELD 

 
Fang et al. [9] proposed a model designed to connect congruent as well as non-congruent 

meshes using MPC equation. This element was implemented as the CWELD element in 

MSC/NASTRAN or PLINK in ESI/Pam-Crash. Figure 2 shows a sketch of the CWELD 

element. The elastic part of the CWELD element is a short beam from points GA to GB with 

six DOFs per node; this beam is modelled as a shear flexible Timoshenko type. The location 

of the connection is defined with a single grid point GS, which is projected onto the surfaces 

to be joined. Every node of the beam is connected to a chosen                        

set of nodes of the plate to which it belongs. In Figure 2, the node GA for example is 

connected to the shell nodes GA1, GA2, GA3 and GA4 belonging to the upper plate. The 

portions of the plates delimited by the nodes GAi and GBi are called “patches” [7]. 
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Figure 1: ACM2 model [3] 

 

The DOFs of the spot weld end point GA are constrained as follows: the 3 translational and 3 

rotational DOFs are connected to the 3 translational DOFs of each node GAi with constraints 

from Kirchoff shell theory,  
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Here x, y and z are the co-ordinates, with z  being  perpendicular to the element plane;  Ni,i are 

the parametric shape functions; Aξ  and Aη  are the normalised coordinates; u, v, and w are the 

displacement DOFs and xθ , yθ  and zθ  are rotational DOFs. 

 

  
Figure 2: CWELD model [7] 

 

 

2.5 Summary 
 
Some of the most commonly used FE spot weld models were reviewed in this section. Their 
advantages and disadvantages are discussed next. 
 
The CWELD and ACM2 models can be located anywhere in the model, while the beam and 
brick models can only be connected between existing nodes and require coincident meshed 
surfaces. It is clear that a connection that can be located anywhere in the model is preferable. 
 
In the ACM2 and brick models, the joining element creates a link between areas in the 
connected plates. These areas can be related to the spot weld dimensions but controlled by the 
element size. In contrast the beam model creates a link between points. The CWELD model 
also creates a link between points, but the areas of the elements at which it is attached are 
constrained. It has been shown that a connection between points is not satisfactory when 
modelling spot welds, therefore a model that links areas is preferred.  
 
The ACM2 model is connected using RBE3 elements, which define the displacement at a 
given location as the weighted average of the displacement at a set of other grid points. In 
contrast, the CWELD model uses an MPC which specifies a consistent displacement with the 
element formulation, this being preferred to the RBE3. 
 
In general, the characteristics of the CWELD are appealing in contrast to other spot weld 
models and recently it has been used extensively. Finally a model based on MPC connections 
based on the CWELD model will be described and analyzed in the following sections. 
 

 6 



3 MPC ELASTIC CONNECTION  

 

An MPC elastic connection consists of spring elements connected to the substructures using 

MPCs.  The MPCs relate the connection DOFs ′Δ  to the substructures’ DOFs Δ  involved in 

the joint (see Figure 3) using a set of equations, i.e.  

 

 ( , )x y′ ′ ′Δ = G Δ  (3.1)  

                         

where  is the matrix of coefficients of the MPC equations, in this case  is populated 

using the element shape functions. In doing so, the relationship between  and Δ  is made 

consistent with the FE formulation and is a function of the position of the joint within the 

element

G G

′Δ

( , )x y′ ′ .  

 

There are many methods available in the literature to apply MPCs to the FE model, e.g. static 

condensation [10], augmented Lagrange multipliers, Lagrange elimination etc. When static 

condensation is used, a transformation matrix  that relates all the DOFs involved in the joint 

element can be written as, 

Γ

 

  (3.2) ⎧ ⎫
=⎨ ⎬′⎩ ⎭

Δ
ΓΔ

Δ

 

where 

 

 ⎡ ⎤
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⎣ ⎦

I
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 (3.3) 

 

The DOFs   are condensed into the DOFs  , resulting in a stiffness matrix  ′Δ Δ

 

 
0
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T K
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K
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where  is the connection stiffness matrix in local DOFs and  is the stiffness matrix of 

the substructure DOFs involved in the connection, as can be observed in Figure 3.  

′K K
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The resulting nodal forces in the joint are 

 

 MPC=F K Δ  (3.5)  

 

The substructures DOFs  can be partitioned as Δ
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where  and  are the DOFs in substructure (1) and substructure (2) respectively. (1)Δ (2)Δ
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Figure 3: MPC elastic connection for plate bending analysis: 
joint DOFs ( )′Δ ;        substructure DOFs involved in the connection ( )Δ .   
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4 VALIDATION OF A MULTIPOINT CONSTRAINT SPOT-WELD MODEL 

FOR ONE DIMENSIONAL SYSTEMS. 

 

This section investigates the validation of use of MPCs for connecting FE models and their 

ability to locate a connection anywhere between nodes. To avoid effects due to resonances 

and to simplify the evaluation, the joint is placed in a model of two infinite Euler-Bernoulli 

beams joined by a single connection. The transfer mobility from the upper to the lower beam 

as shown in Figure 4, is evaluated using two different FE models; one with an MPC elastic 

connection and the second with a node-to-node connection. Finally, the results are compared 

to an analytical solution.  

 

4.1 Finite Element models 

 

To model an infinite beam model, the region of the elastic connection is modelled using 

Euler-Bernoulli beam finite elements and then attached to semi-infinite Spectral Elements 

(SEs) as shown in Figure 5. 

 

An infinite beam structure can be incorporated into the FE model using the SE method. The 

SE approach is similar to the FE method, but the element matrix is defined via the dynamic 

stiffness relationships in the frequency domain [11]. An SE element that extends to infinity 

and is connected at a single point can be created; this element simulates a semi-infinite 

medium and can be connected to any node in a FE model according to the method described 

by Doyle [11]. 

 

The dynamic stiffness matrix of a semi infinite beam that extends to +∞  is given by  
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Figure 4: Two infinite beams connected with an elastic connection 
 

where 
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is the beam wave number. In the same way the dynamic stiffness matrix for a beam that 

extends to −∞   is given by 
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The SEs are connected to the FEs in a similar way in which two FEs are connected, but 

instead of connecting the mass and stiffness matrices, the dynamic stiffness matrices of the 

FEs 

 

  (4.4) 2
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are connected to the dynamic stiffness matrix of the SEs. 
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4.1.1 Node to node connection 

 

The nodal force matrix  of a connecting element comprising a translational and a rotational 

spring can be expressed as 

′F
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where  is the joint stiffness matrix in the local DOFs ′K ′Δ ,  and wK xKθ  are the rotational 

and translational stiffness of the elastic connection as shown in Figure 5 and  and jw xjθ  are 

the local DOFs at node j .  can be transformed into global DOFs as  ′K

 

 T
joint ′=K A K A  (4.6) 

 

where  is the joint stiffness matrix in global co-ordinates and  is a transformation 

matrix that relates the local to the global DOFs [1]. 

jointK A
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Figure 5: FE-SE Model of two infinite beams joined by a translational and a                
rotational spring 
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4.1.2 MPC connection 

 

The local DOFs of the joint element in equation (4.5) can be related to one or more DOFs in 

the global matrices using a MPC equation. The same method described in section 3 can be 

used. In this case the model is assembled as shown in Figure 5 and the G  matrix in equation 

(3.3) is expressed as  
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are the parametric shape functions for a FE Euler-Bernoulli beam and 
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is the normalized co-ordinate for beam i , / 2a s=  where  is the element length. s
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4.2 Analytical solution 

 

Appendix A gives the equations governing the system in Figure 4 using a mobility approach, 

and it also describes the derivation of the transfer mobility from a force excitation applied at 

point 1 on the first beam to a response evaluated at point 4 on the second beam. 

 

Solving the equations in appendix B, the velocities of  beams 1 and 2 at the connection point 

are given by 
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is the impedance of the connection and 
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is the mobility matrix from point  to point i j  for the Euler-Bernoulli beam. thk

 

4.3 Numerical examples 

 

The numerical example is a system of two infinite beams joined together by an elastic 

connection. To simplify the analysis all simulations were divided into two cases, the first in 

which only the effects of a translational spring  are analyzed and the second in which only wK
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xKθ  is considered in order to analyze the effects of a rotational spring. The values used for 

 and wK xKθ  are 610 N m  and 410 Nm rad  respectively. Both beams were assumed to be 

identical and the properties are given in Table 1. 

 

When the mobility of the translational connection is compared to the imaginary part of the 

mobility of the connected beams, a critical frequency 0ω  can be found, i.e. 
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 below 0ω  the spring is effectively rigid and the behaviour of the assembly is that of two 

beams working in parallel, above 0ω  the spring is flexible and works as an isolator. 

 

When the mobility of the rotational connection is compared to the imaginary part of the 

mobility of the connected beams, two critical frequencies appear 1ω  and 2ω , i.e. 
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 (4.17) 

 

Given the stiffness value and the beams properties used in the present example, 

0 654ω = rad/s, 1 81.56ω = rad/s and 2 11574ω = rad/s. 

 

The transfer mobility from the upper beam a position 0.01mx = −  in the upper beam to a 

position  in the lower beam was evaluated using two different FE models; the first 

using a MPC connection and the second using a node to node connection. Finally both 

solutions were compared to the analytical result.  

0.01mx =

 

Cross 
Section

Beams (1&2) Rectangular 0.5 0.006 7860 2.07E+11 0.3

( )
b
m ( )

h
m ( )3/Kg m

ρ

( )2/

E

N m
υ

 
Table 1: Beam properties  
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4.3.1 Accuracy of FE models:  a single translational spring connection. 

 

Figure 6 shows the comparison between the results from both FE models and the analytical 

solution for the translational stiffness case.  When the spring is connected from node to node 

(see Figure 5), the result for the transfer mobility is not exact due to FE discretization errors.  

          

In Figure 6, the mobility is plotted using a non dimensional frequency (  for the abscissa. 

In doing so, it is possible to compare the accuracy of different FE models with different 

element size; the frequencies corresponding to s=

)2
bk s

/ 6λ , s= / 3λ  and s=λ  are added as 

reference. Figure 6 shows the comparison between the exact solution and the prediction using 

the FE-SE model. It can be seen that the prediction agrees with the exact solution and it starts 

to deviate for frequencies slightly above the frequencies where s > / 3λ . If s >λ  the solution 

is very inaccurate.  These errors are expected from any FE model, since as a rule of thumb the 

predictions from a FE model are accurate up to a frequency for which  s= / 6λ . If the element 

shape functions are quadratic, as used in this study, then the accuracy limit increases up to 

frequencies where / 3s λ= .                                                                                                                                 

 

When the results from the MPC connection model are compared, it can be seen that the 

prediction agrees very well with the exact solution and start to differ at frequencies slightly 

lower than frequencies where s > / 3λ ; therefore it is marginally less accurate than the node to 

node connection.  This is explained by the fact that the displacements of the connection nodes   

depend on the shape functions of the element to which it is connected when a MPC is used; 

therefore additional discretization errors are introduced into the solution.  

 

However, these additional errors are small and the agreement between both models is very 

good at low frequencies, especially at frequencies corresponding to s < / 6λ . 

 

4.3.2 Accuracy of FE models: a single rotational spring connection 

 

When the node to node connection is used, the transfer mobility can be predicted with good 

accuracy at low frequencies as can be seen in Figure 7. The solution obtained with the node to 

node FE-SE model is accurate for frequencies where 3/λ<s .  At higher frequencies, the 
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solution starts to deviate from the analytical solution. Similar to the translational stiffness 

connection, when a MPC connection is used to connect the rotational spring, the response 

starts to deviate significantly from the analytical solution at slightly lower frequencies 

compared to the node to node connection. 

 

 

 

 

 

 

 

 

6
λ

3
λ λ    

Figure 6: Transfer mobility magnitude in a system of two infinite beams with a single elastic 
translational connection:            analytical solution;           MPC connection;                                       

node to node connection.  
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6
λ

3
λ λ    

Figure 7:  Transfer mobility magnitude in a system of two infinite beams with a single elastic 
rotational connection:            analytical solution;           MPC connection;                                         

node to node connection. 
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5 VALIDATION OF A MULTIPOINT CONSTRAINT SPOT-WELD MODEL 

FOR TWO DIMENSIONAL SYSTEMS. 

 

When plates are connected with an MPC joint, the MPC coefficient matrices are populated 

with the element shape functions as can be observed in equations (2.1) to (2.4) and in section 

3. Therefore it is important to analyze the formulation of the plate element that is being used.  

 

There are two main different plate theories [12]. The first is Kirchoff plate theory, in which 

the effects of transverse shear deformation and rotary inertia are neglected. Kirchoff plate 

theory is applicable to thin plates in which the plate thickness is much smaller than the 

bending wavelength. The second is Mindlin-Reissner theory. Here the transverse shear and 

rotary inertia become important when describing the plate behaviour, and is often used to 

analyze thick plates. 

 

 When Kirchoff plate theory is used, the element results in a non-conforming formulation or 

alternately in a conforming formulation with additional DOFs [1]; the non-conforming 

formulation could result in incompatibilities with the MPC equations, whilst the conforming 

formulation is difficult to assemble due to the additional DOFs. 

 

Alternatively, when Mindlin-Reissner theory is used [12], the transverse shear strain is 

independent of the thickness of the plate. Therefore as the plate thickness decreases, the strain 

energy associated with transverse shear tends to dominate the  response, rather than tending to 

zero as in the Kirchoff plate theory. This phenomenon is referred to as “shear locking” and 

leads to an overly stiff prediction of the response. One approach to reducing the effects of 

shear locking is to use a reduced number of Gauss integration points when evaluating the 

shear stiffness of an element [13, 14]. In effect, this reduces the order of the interpolation for 

the transverse shear strain to that used in the Gauss integration scheme. In general this 

approach can lead to rank deficiency of the stiffness matrix and a singular set of equations. 

However, by appropriate selection of the element basis functions and integration schemes, it 

is possible to obtain a robust element known as the Heterosis plate element [15]. 
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In this section the ability of the MPC connection to be located anywhere in an element is 

tested for two different element formulations, namely  a non-conforming thin plate 

rectangular element [1] and a heterosis plate element [13].  

 

A system of two simply supported plates with a single elastic connection is used. The transfer 

mobility from the upper plate to the lower plate is evaluated using two different FE models; 

one with an MPC elastic connection and the second with a node-to-node connection.  Results 

are then compared to an analytical solution. 

 

5.1 Finite element models 

 

5.1.1 Thin plate rectangular element (Non conforming) 

 

This is a four noded element, with one node at each corner. Each node has three DOFs which 

describe flexural motion, vertical displacement  and two rotations w xθ  and yθ  as can be 

observed in Figure 8. It is based on Kirchoff plate theory, therefore it is assumed that 

 

 x
w
y

θ ∂
=
∂

 and y
w
x

θ ∂
= −

∂
 (5.1) 

 

 

the displacement function can be described in terms of the normalised coordinates ξ  and η  

 as 

 

 ( ) ( ) ( ) ( )1 2 3 4[ , , , , ] ew ξ η ξ η ξ η ξ η= N N N N w  (5.2) 

 

where  is a vector that contains the element DOFs and ew
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,z w ,y η

 yθ

 
 

Figure 8: Geometry of a rectangular element 
 

 ( )

( )( )( )

( )( )( )

( )( )( )

2 2

2

2

1 1 1 2
8

, 1 1
8

1 1
8

j j j j

T
j j j

j j

b

a

ξ ξ η η ξ ξ η η ξ η

ξ η ξ ξ η η η

η η ξ ξ ξ

⎡ ⎤+ + + + − −⎢ ⎥
⎢ ⎥
⎢ ⎥= + + −⎢ ⎥
⎢ ⎥
⎢ ⎥+ + −
⎢ ⎥⎣ ⎦

N  (5.3) 

 

are the element shape functions, where ( ),j jξ η are the normalized coordinates of each one of 

the element nodes. 

 

The rotations xθ  and yθ  are evaluated using equations (5.1) and (5.2), when doing so it is 

noted that yθ  is determined by the values of   and w xθ  at the four nodes as well as by the 

values of yθ  at nodes 2 and 3. This indicates that when elements are assembled, yθ  is 

discontinuous between nodes; this is therefore a non-conforming element. 

 

5.1.2 Heterosis element 

 

The Heterosis plate element [13] is a nine-noded plate element that is based on Mindlin -

Reissner plate theory shown in Figure 9. The central node has two rotations and each other 

node has 5 DOFs which describe in-plane and out-of-plane motion (42 DOF in total). The 

displacement field within the element is interpolated using serendipity basis functions, whilst 

the rotations in the x and y directions are interpolated using Lagrange basis functions. 

Reduced order integration is used to evaluate the shear stiffness matrix. This element does not 

suffer from shear locking and possesses correct rank.   

,x ξ  
xθ

2b

2a
2

1

3
4
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Figure 9: Node numbering for Heterosis element. 

 
 

The out of plane co-ordinates ( ), ,x yw θ θ  of a point within the element can be described as 

 

  (5.4) 
8

1
j j

j

w
=

= ∑N w

 
9

,
1

x j x j
j

θ θ
=

=∑P  (5.5) 

 
9

,
1

y j
j

y jθ θ
=

=∑ P  (5.6) 

 

where j  indicates the node number and 

 

 ( )( )( )1 1 1 1 , 1,3,5
4j j j j j jξ ξ η η ξ ξ η η= + + + − =N ,7               (5.7) 

 

 
( )( ) ( )( )2 2 2 21 1 1 1

, 2
2 2

j j j j j
ξ ξ ξ η η η η ξ+ − + −

= +jN , 4,6,8=  (5.8) 

 

 
( ) ( )( ) ( ) ( )(2 2 2 2
1 1

1 1 1 1
2 2

j j j j
j j

ξ ξ ξ ξ η η η η
ξ ξ η η

⎛ ⎞⎛+ +
⎜ ⎟⎜+ − − + − −
⎜ ⎟⎜
⎝ ⎠⎝

P = )j

⎞
⎟
⎟
⎠

 (5.9) 

 

are vectors of Lagrange and Serendipity basis functions respectively. 
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5.1.3 Node to node connection 

 

In the case of thin plate substructures with out-of-plane DOFs , w xθ  and yθ , the elastic 

element contains a translational stiffness  and two rotational stiffnesseswK xKθ  and yKθ , as 

shown in Figure 3.   

 

The nodal forces and DOFs of the point connection are related by 

 

 

1

1

1

2

2

2

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

w w

xx x

y

w w

x x
x

y y

y

w
K K

K K
K K

K K w
K K

K K

θ θ

θ

θ θ

θ θ

θ

θ

θ

θ

y yθ

⎧ ⎫′
⎪ ⎪−⎡ ⎤
⎪ ⎪′⎢ ⎥− ⎪ ⎪⎢ ⎥

′⎪ ⎪⎢ ⎥− ⎪ ⎪′ ′ ′= = ⎢ ⎥ ⎨ ⎬− ′⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪− ′⎢ ⎥ ⎪ ⎪

−⎢ ⎥ ⎪ ⎪⎣ ⎦ ′⎪ ⎪⎩ ⎭

F K Δ  (5.10) 

 

where  is the stiffness matrix of the point connection and ′K ′Δ  is a vector of local DOFs.  

′K  can be transformed into global DOFs as  

 

 T
joint ′=K A K A  (5.11) 

 

where  is the joint stiffness matrix in global co-ordinates and  is a transformation 

matrix that relates the local to the global DOFs [1]. 

jointK A

 

5.1.4 MPC connection 

 

The local DOFs of the joint element in equation (5.10) can be related to one or more DOFs in 

the global matrices using a MPC equation. The method outlined in section 3 is used. In this 

case the model is assembled as shown in Figure 3, where the G  matrix in equation (3.3) is 

defined as 
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(1)

(2)

0
0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

G
G

G
 (5.12) 

 

where ( )iG  is the matrix that relates ( )i′Δ  to ( )iΔ  for substructure i . ( )iG  depends on the 

element formulation 

  

 ( ) ( )( )
1 2 3 4

( ) 31 2 4

31 2

,i ii x y

4

y y y y

x x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥

∂∂ ∂ ∂⎢ ⎥′ ′ = ⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥

∂∂ ∂ ∂⎢ ⎥− − − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

N N N N
NN N NG

NN N N

 (5.13) 

 

where  are the element shape functions for node jN j  as defined in equation  (5.3). When 

heterosis elements are used,  ( )iG  is defined as  

 

 

( )

( )

( )

( )

0 0

0

0 0

i

ii

i

0

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

N

G P

P

 (5.14) 

where 

 

 ( ) [ ]1 2 3 4 5 6 7 8 9
i =P P P P P P P P P P  (5.15) 

 

is the vector of serendipity basis functions for substructure as defined in equation (5.9) and 

 

 ( ) [ ]1 2 3 4 5 6 7 8
i =N N N N N N N N N  (5.16) 

 

is the vector  of Lagrange basis functions for substructure i  as defined in equations (5.7) and 

(5.8). 
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5.2 Analytical solution 

 

In this section the transfer mobility for the system in Figure 10 is derived, thin plate theory 

being used.  

 

Appendix B shows the equations governing the system in Figure 10 using a mobility 

approach, and it also describes the derivation of the transfer mobility from a force excitation 

applied at point 1 on the first plate to a response evaluated at point 4 on the second plate. 

 

Solving equations in appendix A, the velocities at plate 1 and plate 2 at the connection are 

given by 

 

 
1(1)(1) (2)

2,2 1,2
(2)(2)
3,4

0
0 0

C
ext

C

−
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤

′= −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

YV Y
I Z

YV
F  (5.17) 

 

where          

 

 iω′ ′=Z K  (5.18) 

 

is the transfer impedance of the connection, and 

 

 

,,,
, , ,

,, ,( )
, , , ,

, ,,
, , ,

yx

x yx x x

y x y y

w Mw Mw F
i j i j i j

MF Mk
i j i j i j i j

M My F
i j i j i j

Y Y Y

Y Y Y

Y Y Y

θθ θ

θ θθ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y  (5.19) 

 

are the mobility matrices from point  to point i j  for plate . The terms in matrix k (5.19) are 

calculated for thin rectangular plates in terms of a modal summation [16]. 
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(1)
xL  

( )F ω  

(1)
yL  

Figure 10: Two parallel simply supported plates assembled with an elastic point connection. 

 

 

 

 

 

Table 2: Properties of each component for the numerical example 

 

5.3 Numerical examples 

 

The numerical example is a system of two simply supported parallel plates with an elastic 

connection as shown in Figure 10. The properties for each plate are given in Table 2. To 

simplify the analysis all simulations were divided into two cases; the first in which only the 

effects of a translational spring  are analyzed and the second in which only wK xKθ  is 

considered in order to analyze the effects of a rotational spring. The values used for  and wK

xKθ  are 16000 N m  and 1600 Nm rad respectively.  

Component (1) 0.6 0.5 0.006 7860 2.07E+11 0.3 0.02
Component (2) 0.6 0.5 0.02 7860 2.07E+11 0.35 0.02

( )
xL
m ( )

yL

m ( )
h
m ( )3/Kg m

ρ

( )2/

E

N m
υ η

(2)
xL  

xK  yKθ θ  wK  

( )w ω  

(2)
yL  

y  

x  
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The transfer mobility from coordinate (0.38, 0.32) in plate 1 to coordinate (0.38, 0.32) in plate 

2 as shown in Figure 10 was evaluated. In this example, the co-ordinates of the spring 

( ),c cx y  are in both plates.  (0.1227,0.1614)

 

When the MPC connection is incorporated, the plates are modelled using a mesh of 11 11×  

identical elements. The co-ordinates of the spring correspond to ( )2.25 ,3.5x ys s  , where xs  is 

the element length in x  direction and  is the element size in  direction. The local          

co-ordinates of the connection within the element are

ys y

( ) ( ), 0.25 ,0.5x yx y s′ ′ = s .  For the node 

to node connection a mesh of  elements is used in order to have a node exactly at the 

elastic connection location. 

22 22×

 

When heterosis elements are used to predict the transfer mobility, in the case of a connection 

with translational stiffness , both connection models have almost identical behaviour and 

are in very good agreement when compared to the analytical solution. Only  FE discretization 

errors are present at higher frequencies as can be observed in Figure 11. At resonance the 

difference in magnitude is negligible and the first natural frequency is overestimated by 

approximately 0.5 Hz, whilst the second natural frequency is overestimated by approximately 

0.3 Hz as shown in Figure 12(a) and Figure 12(b). These differences are small and consistent 

between FE models.  

wK

 

In the case of a connection with rotational stiffness xKθ , both connection models have good 

agreement with each other, but there are differences when compared to the analytical solution, 

especially at low frequencies where a difference of approximately 2dB can be observed in 

Figure 13. These discrepancies are mainly caused by the difference between the thin plate 

theory used in the analytical solution and the formulation of the heterosis element, which is 

based on Mindlin–Reissner theory, and convergence issues in the modal summation when 

rotational DOFs are involved. The natural frequencies are overestimated by the same amount 

as in the translational stiffness case, as can be observed in Figure 14. 

 

In spite of these differences, the performance of the heterosis elements connected by MPCs is 

acceptable, having the same frequency limitation as typical FE models. 
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When thin plate elements are assembled using a node to node connection, the predictions are 

comparable to the results obtained from the heterosis element. In some cases this prediction is 

closer to the analytical solution, as can be observed in Figures 11 to 14 since both are based 

on thin plate theory.  On the other hand, when thin plates are connected using MPCs the 

solution is significantly in error and different from the analytical solution, as can be observed 

in Figure 11 and Figure 12. The error is generated when the MPCs are attached to the non-

conforming elements, for which yθ  is discontinuous between nodes. Hence an important 

overall conclusion is that MPC connections should not be implemented on any model 

comprising thin plate non-conforming elements. 

 

 

 
 

Figure 11:  Magnitude of transfer mobility in a system of two simply supported plates with a 
single elastic connection with translational stiffness:           analytical solution; 

            node to node-heterosis;          MPC-heterosis;          node to node-thin;          MPC-thin.   
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(a) (b) 

 
Figure 12: Magnitude of transfer mobility in a system of two simply supported plates with a 

single elastic connection with translational stiffness: (a) first resonance ; (b) second 
resonance:          analytical solution; 

            node to node-heterosis;          MPC-heterosis;          node to node-thin;          MPC-thin.     

 
Figure 13:  Magnitude of transfer mobility in a system of two simply supported plates with a 

single elastic connection with rotational stiffness:           analytical solution; 
            node to node-heterosis;          MPC-heterosis;          node to node-thin;          MPC-thin. 
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(a) (b) 

Figure 14: Magnitude of transfer mobility in a system of two simply supported plates with a 
single elastic connection with rotational stiffness: (a) first resonance; (b) second resonance:          

analytical solution; 
            node to node-heterosis;          MPC-heterosis;          node to node-thin;          MPC-thin. 
 

5.3.1 Influence of element size in MPC connections  

 
To study the influence of element size for MPC connections, the same numerical example in 

section 5.4 was used.  The FE model with heterosis elements and an MPC connection was 

modified to change the element size from the original 11 11×  element mesh to meshes ranging 

from 6 to  elements and compared to the analytical solution. 6× 22 22×

 

Since the location of the nodes is changed for every different mesh, the force was applied and 

the response calculated using MPCs in order to predict the same transfer mobility as in 

section 5.4. 

 

It was found that the element size has a small influence when adapting  MPC connections and 

only differences at higher frequencies are present due to discretization errors as can be 

observed in Figure 15.  There is a stiffening effect due to the increase in the constraint area as 

the element gets larger; however this effect is negligible since the variations in natural 

frequency and peak magnitude are insignificant as can be observed in Figure 16. It was also 

observed that MPCs not only can be used to locate and incorporate connections, but also to 

apply excitation forces and calculate responses at any location, leading to accurate transfer 

mobility calculations. 
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Figure 15:  Transfer mobility magnitude in a system of two simply supported plates with a 

single elastic connection with translational stiffness:           analytical solution; 
                           MPC-heterosis 6  mesh;          MPC-heterosis 6× 22 22× mesh.  
 

 
Figure 16:  Transfer mobility magnitude in a system of two simply supported plates with a 

single elastic connection with translational stiffness: (a) first resonance; (b) second resonance:           
analytical solution;           MPC-heterosis 6 6×  mesh; 

               MPC-heterosis mesh;           MPC-heterosis meshes from 7  to  22 22× 7× 21 21×
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6 COMPONENT MODE SYNTHESIS APPLIED TO MPC CONNECTIONS 

 

CMS is a method used to reduce the size of the model and it also offers a sub-structuring 

framework for the analysis of the dynamic behaviour of uncertain structures [2]. One of the 

most accurate and frequently used CMS methods is the Craig-Bampton method [17]. In the 

fixed interface method the component normal modes are calculated with the interface between 

the components held fixed. These modes are further augmented by static constraint modes to 

improve convergence, yield the exact static solution and assure the compatibility between 

components, facilitating coupling of structures. 

 

To use CMS with sub-structures assembled with an MPC connection, first the system is 

divided into components.  For the example in Figure 10, the system can be divided into two 

components: (1) the upper plate and (2) the lower plate. 

 

The second step is to constrain the interface DOFs in each component. Here all the DOFs 

surrounding the area in which the location of the connection varies are constrained. For 

example, Figure 17 shows the interface DOFs in the case in which the location varies within 

one element. The normal modes are then calculated and the reduced normal mode matrix for 

kept modes k
αΦ  is used. Here the reduction in size is achieved. The static constraint modes 

c
αΨ   are evaluated and assembled in the overall component mode matrix 

 

 i i
k c

i⎡ ⎤= ⎣ ⎦B Φ Ψ  (6.1) 

 

for component i , . Then to transform from the component physical co-ordinates u to 

the component modal co-ordinates q  then  

1,2i =

 

  (6.2) u = Bq

 

The component modal mass and stiffness matrices for each component i  are given by, 

 

 ii iT iμ B M B
i

 (6.3) =

 i iT i=κ B K B  (6.4)  
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where  and  are the mass and stiffness matrices of component i  in component physical 

co-ordinates , 

iM iK

u ( )iμ  and  are the mass and stiffness matrices of component i  in 

component modal coordinates and 

( )iκ

  

 

(1)

(1)

(2)

(2)

k

c

k

c

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

q
q

q
q
q

 (6.5) 

 

where  are the component modal coordinates and  are the constraint co-ordinates for 

the component. To assemble the component modal matrices for components 1 and 2 

using

( )i
kq ( )i

cq

thi

MPCK , the component modal co-ordinates q  are transformed into linearly independent 

component modal co-ordinates  using a transformation matrix S  that relates all the 

component modal coordinates as 

v

   

 =q Sv  (6.6) 

 

where 

 

0 0 0
0 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
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I
I

s
I

I

  (6.7) 

 

and  

 

 

(1)

(2)

(1)

(2)

k

k

c

c

⎡ ⎤
⎢ ⎥
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⎢ ⎥
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⎢ ⎥⎣ ⎦

q
q

v
q
q

 (6.8) 

 

 

 Here it can be noted that the constraint co-ordinates are related to the DOFs   from 

equation 

( )iΔ

(3.6) as 
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The global mass and stiffness in the global co-ordinates  are given by,  v
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resulting in   
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 (6.11) 

 

where  and  are diagonal matrices of eigenvalues of component 1 and component 2 

respectively. Finally the elastic connection 

(1)
kkΛ (2)

kkΛ

MPCK  can be added to the system stiffness 

matrices using equations (3.6), (6.9) and (6.11) as 
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(2)

(1) (11) (12)

(21) (2) (22)

0 0 0
0 0 0
0 0
0 0

kk

kk
R

cc MPC MPC

MPC cc MPC

⎡ ⎤
⎢ ⎥
⎢=
⎢ +
⎢ ⎥

+⎢ ⎥⎣ ⎦

Λ
Λ

K
k K K

K k K

⎥
⎥

 

It can be observed that if the location of the point connection changes within the element, only 

the terms in the matrix MPCK  change. This  means that to obtain the reduced mass and 

stiffness matrices  and  when the location of the point connection changes, only the 

matrix G  in equation 

RM RK

(3.1) needs to be re-calculated and equation (3.4) re-evaluated, offering 

a reduction in computation time. 
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6.1 Frequency response function 

 

The equation of motion for forced vibrations in co-ordinates  is given by  v

 

 ( )R R+ = vM v K v f  (6.13) 

 

If harmonic motion is assumed, i te ω=v V  and ( ) ( )
i te ω=v vf F  then 

 

  (6.14) 2 1
( )[ ]R Rω −= − vV K M F

 

The transformation from linearly independent modal co-ordinates  to the physical 

component u  co-ordinates is given by equations 

v

(6.6) and (6.2) as 

 

    (6.15) U = BSV

 

One can express the modal forces   in terms of the specified actual forces   ( )vF ( )uF

 

  (6.16) ( ) ( )
T T=vF S B F u

 

Then in physical co-ordinates the receptance matrix is given by A

 

  (6.17) 
12 T T

R Rω
−

⎡ ⎤= −⎣ ⎦A BS K M S B

 

Finally, the response at nodal point r  with an excitation of unit amplitude at nodal point is 

given by the term  in the  matrix. Introducing damping with a loss factor 

e

( , )r eA A η , this can 

be evaluated using the matrix product 

 

  (6.18) ( ) 1* 2
, 1r

r e R RA iη ω
−

⎡ ⎤= + −⎣ ⎦B S K M S B *T e T

 
where  and   are the  and  row of  respectively. The method outlined here is 

validated in the following section. 

*rB *eB thr the B
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6.2 Numerical validation 

 

The numerical example is the same system as used in section 5.3.  Using MPCs, the elastic 

connection is located at the midpoint of the element that surrounds the area in which the 

position varies, represented as the shaded elements in Figure 10.  

 

Using this position, the transfer mobility from coordinate (0.38, 0.32) in plate 1 to coordinate 

(0.38, 0.32) in plate 2 as shown in Figure 10 was evaluated. For the CMS approximation, only 

the first 50 modes of component 1 and the first 14 modes of component 2 were kept. Less 

modes of component 2 are required, because it is stiffer with fewer modes in the bandwidth 

considered.  

 

The results are compared to the full FE solution in Figures 18(a) and 18(b). It is observed that 

the CMS approximation gives accurate results, especially below 1000Hz, saving nearly 90% 

of the computational time. 

 

 

 

 

y  

x
 

Figure 17: Constrained interface DOFs to apply CMS with MPC joints. 
  Joint location variation,   constraint, w xθ  constraint, yθ constraint. 
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(a) 

(b) 

 

Figure 18: Transfer mobility: (a) translational stiffness connection and (b) rotational stiffness 
connection:              full solution+node to node;              CMS+MPC. 

 
 

When the component mode matrix B  is assembled using equation (6.1), fewer modes can be 

kept in order to further reduce the DOFs of the system and reduce computational time. When 

more modes are truncated, the frequency range in which the solution is accurate is reduced i.e. 

the accuracy at higher frequencies is lost but the accuracy at lower frequencies is maintained. 

 

Therefore depending on the frequency range of interest the computational efficiency can be 

further improved. In this example a CMS solution with 25 kept modes for the first component 

and 7 for the second (half the modes than the ones considered in the original CMS solution) 

are necessary to obtain good accuracy up to 103 Hz, as can be observed in Figure 19. 

 

In Figure 19 it also can be observed how the frequency range in which the CMS solution is 

reduced as the number of kept modes is reduced.  
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Figure 19: Transfer mobility at baseline position with a translational stiffness connection:            
full solution;              CMS: 

(a) 25 + 7 kept modes; (b) 12 + 3 kept modes; (c) 6 + 2 kept modes; (d) 3+1 kept modes 
 

 

If the frequency range of interest were up to 250 Hz, keeping only 3 modes of the upper plate 

and 1 of the lower plate is enough to have accurate results. 

 
To evaluate the relative stiffness of the connection, the static stiffness of the spring is 

compared to the sum of the point dynamic stiffness of infinite plates with the material 

properties and thickness of each connected plate, i.e. 

 

 ( ) ( ) 8D iω ω ρ∞ hB′=  (6.19) 
 

 where ρ  is the density,  is the thickness and h B′  is the bending stiffness of plate given by 

 

 
( )

3

212 1
EhB

υ
′ =

−
 (6.20) 

 
where  is the Young’s modulus and E υ  is the Poisson ratio. 
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For the previous numerical example, when the static stiffness of the connection 

N/m is compared to the sum of the magnitude of the dynamic stiffness of the 

connected plates at 50 Hz, N/m, it can be observed that . 

16000wK =

( )
1 2 71.36 10D +
∞ = × ( )

1 2
wK D +

∞

 

To validate the model for different coupling conditions, the CMS+MPC model is compared to 

the full solution of the node to node connection model using different stiffness values: (a) 

, (b)   and (c) ( )
1 2

wK D +
∞< ( )

1 2
wK D +

∞≈ ( )
1 2

wK D +
∞ .  The CMS solution with 25 kept modes for the 

upper plate and 7 kept modes for the lower plate was seen to give accurate results up to 103 

Hz.  

 

For different connection stiffness values, the CMS+MPC model has a good agreement with 

the node to node connection and full solution as can be observed in Figure 20. 
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Figure 20: Transfer mobility at baseline position with a translational stiffness connection:            
full solution, node to node;              CMS+MPC: 

(a) ; (b) ; (c)  610WK = 710WK = 810WK =
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7 CONCLUSIONS 

 
In this work multipoint constraints (MPC) were used to apply connections between structures. 

It was shown that an MPC connection can be placed between nodes of an FE model and is 

able to model the change in the location of the elastic connection in an accurate way. 

 

 When beams are connected, results showed that the MPC connection has the same 

performance compared to the direct node to node connections, both models giving accurate 

results for point connections comprising a translational or rotational spring. 

 

Results showed that the MPC connection is not accurate when thin plate elements are used, 

due to the non-conforming formulation. In contrast, when the heterosis element was used the 

results showed that the MPC connection is as accurate as the node-to-node connection.  

Additional errors appear when rotational springs are used in the connection, due to 

discrepancies between the element formulation and the analytical solution. Some convergence 

issues exist in the modal summation when rotational DOFs are involved; however the solution 

is still acceptable. 

 

MPCs can be used to apply forces to an FE model at any location even if there is no node at 

the required location. 

 

When MPC connection is applied in combination with component mode synthesis (CMS), 

CMS gives a sub-structuring framework and a reduction in the number of the degrees of 

freedom (DOF) of the model. Combining both approaches, the response of the system can be 

evaluated for any connection location using the unchanged modal representation of the 

substructures in an accurate and numerically efficient manner.  

 

For different element size models and for different connection stiffness values, the 

CMS+MPC model has a good agreement with the full solution of a node to node connection 

model. 
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APPENDIX A 

 
 
 
-∞ extF  2F  ∞
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For this system each point has two degrees of freedom, therefore the forces and displacement 
matrixes at each node are 
   

                                                             i
i

i

v
ψ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

v                                                       (A.1) 

 

                                                             i
i

i

F
M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F                                                      (A.2) 

 
 
Then the mobility matrix Y  relates the force matrix in point i and the velocity matrix in 
point j as  

ij

  
                                                             ij ij=v Y F                                                       (A.3) 
 

where  containing the following  elements ijY ,
i j j

v F
i

i vY F
ω− = ,  ,

i j j
F

i

iY Fψ
ωψ− = , ,

i j j
v M

i

i vY M
ω− =   

and  ,
i j j

M
i

iY Mψ
ωψ− =  

 
 

Figure A-1: Two infinite beams with a single elastic connection comprising 
translational and rotational stiffness 

1  2

( )ωv  

3 4 
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The equations defining the system in Figure A.1 are; for the upper beam 
 
                                                                                                   (A.4) 2 12 22ext= +v Y F Y F2

3

2

2 ⎤
⎥
⎦

3

 
 
for the lower beam 
 
                                                                                                                 (A.5) 4 34=v Y F
 
Finally the spring can be defined in terms of its mobility 
 

                                                                                                         (A.5) 2

3 3

e
s

e

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

v F
Y

v F
 
 
here the equilibrium forces are 
 

                                                                                                           (A.6) 2

3 3

e

e

−⎡ ⎤ ⎡
=⎢ ⎥ ⎢−⎣ ⎦ ⎣

F F
F F

 
Finally for the system in Figure A-1, the connection is massless. Therefore 
 
                                                                                                                       (A.7) 2 =F F
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APPENDIX B 
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Figure B-1: Two simply supported plates with a single elastic connection 
comprising translational and two rotational stiffnesses 

 
 
For this system each point has three degrees of freedom, therefore the forces and displacement 
matrixes at each node are 
   

                                                             
i

i xi

yi

v
ψ
ψ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v                                                       (B.1) 

 

                                                             
i

i x

yi

F
M
M

i

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F                                                      (B.2) 

 
 
Then the mobility matrix Y  relates the force matrix in point i and the velocity matrix in 
point j as  

ij

  
                                                             ij ij=v Y F                                                       (B.3) 
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where  containing the following  elements ijY ,
i j j

v F
i

i vY F
ω− = ,  ,

i j xj
x F

i

iY Fψ
ωψ− = , 

,
i j yj
y F

i

iY Fψ
ωψ− = , ,

i j j
v Mx

xi

i vY M
ω− =  ,  ,

i j xj
x Mx

xi

iY Mψ
ωψ− = ,  ,

i j yj
y Mx

xi

iY Mψ
ωψ− = , ,

i j j
v My

yi

i vY M
ω− =  ,  

,
i j xj
x My

yi

iY Mψ
ωψ− =  and  ,

i j yj
y My

yi

iY Mψ
ωψ− = . 

 
 
The equations defining the system in Figure B.1 are; for the upper plate 
 
                                                                                                   (B.4) 2 12 22ext= +v Y F Y F2

3

2

2 ⎤
⎥
⎦

3

 
 
for the lower plate 
 
                                                                                                                 (B.5) 4 34=v Y F
 
Finally the spring can be defined in terms of its mobility 
 

                                                                                                         (B.5) 2

3 3

e
s

e

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

v F
Y

v F
 
 
here the equilibrium forces are 
 

                                                                                                           (B.6) 2

3 3

e

e

−⎡ ⎤ ⎡
=⎢ ⎥ ⎢−⎣ ⎦ ⎣

F F
F F

 
Finally for the system in Figure B-1, the connection is massless. Therefore 
 
                                                                                                                       (B.7) 2 =F F
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