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1. Introduction

In experimental transfer path analysis (TPA) [1-4], effective diagnosis of the noise
problems depends on reliable force identification. The force identification is, however,
prone to errors. In particular, where forces are determined indirectly by inversion of
frequency response function (eg. accelerance) matrices, errors are introduced by the ill-
conditioning of the accelerance matrix at certain frequencies. If the accelerance matrix is
badly conditioned, small errors in the measurement of accelerances and operational
aqcelerations are magnified by the matrix operations and result in erroneous force
estimates. Since the force identification determines the contribution of different forces to
the sound pressure at receiver locations, these errors are propagated.

An earlier study [5] considered a rectangular simply supported plate as a test structure.
Numerical simulations were performed for 4 or 6 simultaneous coherent forces and
various strategies of reconstructing forces from measured responses in the presence of
noise were investigated. To improve the force identification, in 5] singular value
rejection was implemented based on the norm of the accelerance error matrix. In addition
resampling of the accelerance matrix was investigated and found to improve the force and
response estimates. The importance of considering the phase information when averaging
over a number of samples was also emphasized in that study.

The forces used in [5] were coherent and had zero phase difference. It is interesting to
investigate the sensitivity of force identification if a fixed non-zero phase difference is
incorporated. This formulation is explained in chapter 2 and results are given. The added
complication of incoherent or partially coherent forces is not introduced at this stage,

although it can be dealt with using procedures given in [2].



The conclusions in [5] may be sensitive to the particular choice of noise model used for
corrupting the responses and accelerances to simulate the ‘measurements’. In {5] a
Gaussian noise of rather small amplitude was assumed. It is imporfant to determine the
sensitivity of the conclusions to the noise amplitude, and to different formulations such as
a proportional noise model. In chapter 3 the effect of increased noise amplitude on the
force identification and response prediction is investigated. A proportional noise model is
incorporated in chapter 4, and results analysed.

An improved force identication was achieved in ref [5] by the rejection of singular values
based én the threshold established by the norm of the accelerance error matrix.” It was
observed that the results from this strategy were dependent on the band of error used i.e
+/- one or three standard deviation. In general the use of +/- one standard deviation
resulted in better predictions. However, the improvement was not so significant at
frequencies in the vicinity of anti-resonance. This could be due to the fact that the errors
in accelerance measurement and operational response measurement are not related. This
in turn may lead to inconsistency in the reconstruction of forces. It might, however, be
possible to improve the force identification and hence the response at the receiver
location if singular values are rejected based on the error in the operational response
measurments. This strategy is formulated and analysed in chapter 5. |

The H, estimator is a most commonly used frequency response function estimator in
structural analysis and was used in [5]. Since it is not a good estimator near the resonance
frequencies it might be possible to improve the force identification at resonance by
consﬁructing the accelerance matrix based on the H, estimator instead of I;. This,
however, may be dis-advantageous in the regions of anti-resonance. Other estimators also

exist which attempt to combine the advantages of H, and H,. These are explained in



chapter 6 along with the discussion on the force identification for respecive frequer—l_cy
response estimators.

It 1s observed that for good understanding and effective implementation of TPA, it is
important to formulate the propagation of errors in each step. The error propagation is
modelled in {6] for both random and bias errors. These models are explained in Appendix

and error propagation results are discussed in chapter 7.



2. Effect of fixed non-zero phase in coherent forces

2.1 Introduction

The forces used in [5] to study the different strategies were coherent and had zero phase

difference. The conclusions drawn there might have been influenced by the nature of

these forces. Hence, it is interesting to investigate the sensitivity of force identification if

a phase difference other than zero is incorporated.

In this study, a non-zero phase at each frequency is incorporated into the forces. The

phase at each frequency is generated using uniformly distributed random numbers. [t can

be written as below

Force=constant x e"*™" | where N is a vector containing uniformly distributed
random numbers varying between 0 and 1, different for
each frequency

Note : The phase difference once generated by this process is retained and used for all

trials in this section.

The forces generated by the above process are then used in generating the acceleration

responses on the rectangular flat plate at several locations, along with an appropriate

noise model, as in [5]. The accelerances from all forcing locations to all response

locations are also simulated as in [5]. The typical 1/3 octave noise spectra, as added to

the inputs and outputs of accelerance measurements, are shown in Figures la and 1b. The

same noise model is used for both the accelerances and operational responses. A typical

transfer mobility for one of the force positions to one of the response positions is shown

in Figure 2. The influence of measurement noise can be seen at high frequencies and is

very clear from the fall in coherence. Figure 3 shows operational velocity response for



one of the response positions. This can be compared with the noise spectra given in

Figure 1b.
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2.2 Force reconstruction

The forces are reconstructed by the inversion of the accelerance matrix and using
operational accelerations. As in [5], the following are compared

1. Use of full rank matrix (all singular values used)

2. Singular value rejection based on the norm of the accelerance error matrix

3. Resampling of accelerances



Figures 4a-b show the singular values of the accelerance matrix anc;l-_the reconstructed
forces for 4 forces and 4 responses (n,=n,~4) when all singular values are used. The force
reconstruction is guite poor in the low frequency region where the condition numbers of
the accelerance matrix are high. However the force reconstruction remains similar to the
case where the forces are in phase ( [5] see Figure 14). The reconstructed sum of forces is
also shown in the figure. Figures 5a-b show the singular values used at each frequency
and the forces reconstructed when singular values are rejected based on the threshold
established by the norm of the accelerance error matrix constructed from +/- 3 standard
déviatf’tms in the estimation of accelerance. These results are comparable with those
obtained when using forces that are in phase ( [5] see Figure 10). The same is the case
with resampling (Figures 6a—b)‘ and singular value rejection based on the error band of +/-
one standard deviation (Figures 7a-b).

The force reconstruction for the cases n=6, n.=~4 is shown in Figures 8-10, while Figures
11-13 show results for n=6, n.=6. All these results are in agreement with what is

obtained when forces are in phase (comparé with [5]).
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2.3 Velocity at the receiver location

Figures 14a-d show the 1/3 octave band velocity response at the receiver location for
n=n~4. At low frequencies, the predictions seem to depend on the rehablity of
estimating the sum of the forces as concluded in [5].

The predictions using singular value rejection based on the error norm calculated from +/-
one standard deviation are more reliable than either those with all singular values used or
using singular value rejection based on the error norm with +/- 3 standard deviation in the
es-tima'ﬁon of accelerance (compare Figure 14d with 14a-b). However the velocity
prediction in the region of 60-90Hz does not improve for the above case. Figure l4c
shows the response when accelerances are resampled. The prediction 1s accurate in this
case compared to when single accelerances are used or singular values are rejected. These
conclusions are comparable to those derived when the forces are in phase [5].

Figures 15a-c show the velocity responses for n=6, n.=4, while Figures 16a-c show
results for n,=6, n.=6. All these results are consistent with what was obtained when the

forces are in phase (compare with [5]).
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2.4 Conclusions
The characteristics of the reconstructed forces, and hence of the 1/3 octave band response
at the receiver location, do not change when the forces used have a definite phase

difference other than zero.

12



3. Experiments with considerable noise

In 5], while simulating the conditions to represent the experiments, Gaussian noise

models with either constant amplitude or amplitude proportional to frequency were used.

The amplitude at each frequency, however, was significantly lower than the operational

acceleration at any response location. Similar noise was added in both operational

response and accelerance measurements. The conclusions in [5] might be sensitive to the

amplitude of the corrupting noise. Hence, it is important to investiagte the sensitivity of
thg conclusions to the noise amplitude. In this chapter the influence of high amplitude

noise ;)\11 the force reconstruction and the response prediction is studied. Two sets of
predictions are considered: in the first the noise amplitude increases with frequency, in

the second the amplitude is constant with frequency.

3.1 Noise proportional to frequency

The measurement noise used in corrupting the acceleration response is shown in Figure
17a. This )can be compared with one of the operational accelerances given in Figure 17b.

At higher frequencies, above 1000 Hz, the noise amplitude is similar to the acceleration

amplitude. The noise in the acceleration used in this case is Gaussian with amplitude

proportional to the frequency. When converted converted velocity this gives a flat which

increases at 10 dB/decade in a 1/3 octave spectrum. Figure 18 shows the noise amplitude

in the input signal. Based on these noise models, accelerances are estimated and one of

the accelerances is shown in Figure 19. From the coherence plot it can be seen that the

accelerance is particularly noisy for frequencies above 1000 Hz.

Using the same procedure as in [5], the forces are reconstructed and velocity response at

the receiver location is predicted. The results are discussed below.
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Figure 19. Transfer mobility from excitation point I to
response point 1-noise proportional to frequency

3.2 Force reconstruction

Figures 20a-b show the singular values of the accelerance matrix and the reconstructed
forces for n=n.=4 when all singular values are used. The force reconstruction is quite
poor throughout the frequency range used for study. In this case it does not matter
whether the accelerance matrix has a higher condition number or not. Figures 21a-b show
the singular values used at each frequency and the forces reconstructed when singular
values are rejected based on the threshold established by the norm of accelerance error
matrix constructed from +/- 3 standard deviations in the estimation of accelerance. The

summ of forces is always under-estimated as a large proportion of the singular values are

14



rejected at each frequency. The force reconstruction improves remarl;:lbly when singular
values are rejected based on the error band of +/- one standard deviation in accelerance
estimation (Figures 23a-b), even though the measurement noise in the accelerations is
high. Figures 22a-b show the results when resampling of the accelerance matrix is applied
[5]. The force reconstruction has large errors but it is better than the cases where all
singular values are used (Figure 20} or singular value rejection is based on the error band
of +/- 3 standard deviation (Figure 21). However, it is quite inferior to that when singular
values are rejected based on the error band of +/- one standard deviation (Figure 23).

The foree reconstructions for the cases n,=6, n,=4 are shown in Figures 24-26. The force
reconstruction improves considerably for all singular values used (compare Figures 24
and 20) and for singular value rejection based +/- one standard deviation in accelerance
estimation {compare Figures 26 and 23). However, the force reconstruction is always
inferior with large noise amplitude compared to the rather small amplitude used in [5].
The reconstructed forces for n=6, n,=6 are shown in Figures 27-29. The above

conclusions remain valid for these cases as well.
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3.3 Velocity at the receiver location

Figures 30a-d show the 1/3 octave band velocity response at the receiver location for
n=n.=4. The velocity response predicted at higher frequencies with all singular values
used is quite poor whether or not phase information is used in the averaging process as -
shown in figures 30a-b. The response is accurate only in the vicinity of the first mode of
the rectangular plate.

The results when singular values are rejected based on the error band of +/- 3 standard
deviations are shown in Figures 30c-d. Compared to the cases when all singular values
are used (Figures 30a-b) the prediction at the receiver location has improved
considerably. However the velocity prediction in the high frequency range is lower than
the actual result. This is because the sum of the forces is under-estimated across the
whole frequency range (Figure 21b). The velocity response improves further when
singular values are rejected based on the error band of -+/- one standard deviation in the

estimation of accelerance as shown in the Figures 30g-h. The averaging with phase
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information iI-l:;:hlded results in better prediction (compare Figure 30g and 30h). The
resampling strategy results in predictions with large errors compared to those for singular
value rejection (Figures 30e-f and 30g-h). The resampling strategy is observed to be very
sensitive to the amplitude of the corrupting noise. The velocity prediction improves
significantly, however, for averaging with phase information when a large number of
averages is taken (in this study 25 averages are taken, improvement is observed with 200
averages). Thus it is seen that the singular value rejection strategy is least sensitive to the
notse amplitude, although the results differ considerably based on the size of the error
band used in constructing the error matrix.

The velocity prediction improves for an overdetermined system (n=6, n,=4), as shown in
Figures 31a-f (compare with Figures 30). Figures 32a-f show results for n=6, n.=6. In
both cases the low frequency prediction improves compared to n=4, n.=4. The singular

value rejection method, again, gives the best prediction (Figure 32¢-d).
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5.4 Noise constant with frequency

The measurement noise used in corrupting the acceleration respense for this case is a
Gaussian constant level spectrum (it therefore falls with frequency when converted to
velocity). It has very high amplitude at low frequency compared to the operational
acceleration (compare Figures 33a and 33b). Figure 34 shows the noise amplitude in the
input signal. Based on these noise models, the accelerances are estimated and one of these
is shown in Figure 35. From the coherence plot it can be seen that the accelerance is

particularly noisy in the low frequency region.
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Using the same procedure as in [5], the forces are reconstructed and velocity response at
the receiver location is predicted. The results are discussed below.

3.5 Force reconstruction

Figures 36a-b show the singular values of the accelerance matrix and the reconstructed
forces for n=n,=4 when all singular values are used. The force reconstruction is quite
poor in the low frequency range up to 200 Hz. It improves, however, at higher
frequencies. Figures 37a-b show the singular values used at each frequency and the forces
reconstructed when singular values are rejected based on the threshold established by the
norm of accelerance error matrix constructed from the band of +/- 3 standard deviation in
the estimation of accelerance. The forces are under-estimated in the low frequency range
as a large proportion of singular values are rejected at each of the frequencies in this
region. When singular values are rejected based on the error band of +/- one standard
deviation in accelerance estimation (Figures 39a-b), the force reconstruction improves to
some extent across the entire frequency range. However, the force reconstruction remains
poor in the frequency range from 40 to 100 Hz. Figures 38a-b show the results for
resampling. The force reconstruction has large errors but it is better than the case wher¢
all singular values used (Figure 36b), and is quite accurate in the high frequency range.
However, it is inferior to the case where singular values are rejected based on the eiror
band of +/- one standard deviation (Figure 39b).

The force reconstruction for the cases n=6, n,.=4 is shown in Figures 40-42.. The force
reconstruction improves considerably for all singular values used (compare Figufes 40
and 36) and singular value rejection based on /- one standard deviation in accelerance

estimation (compare Figures 42 and 39). The improvement in the force reconstruction is
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insignificant when singular values are rejected based on the error band of +/- 3 standard

deviation {compare Figures 41 and 37).

The reconstructed forces for n=6, n,=6 are shown in Figures 43-45. The above

conclusions remain valid for these cases as well.

In general, as in the previous section, the force reconstruction is always inferior with a

large noise amplitude compared to the rather small amplitude used in [5].
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Figures 46a-d show the 1/3 octave band velocity response at the receiver location for

n~n.~4. The velocity response predicted at lower frequencies with all singular values

used is quite poor whether or not phase information is used in the averaging process, as

shown in Figures 46a-b. The response is accurate only in the vicinity of the first mode of

the rectangular plate.
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The results when singular values are rejected based on the error band of :1:/- 3 standard
deviation are shown in Figures 46¢-d. In comparison with the case where all singular
values are used (Figure 46a-b) the prediction at the receiver location has improved
considerably. However the velocity prediction in the region from 40 to 100 Hz is poor (as
were the forces). The velocity response improves further when singular values are
rejected based on the error band of +/- one standard deviation in the estimation of
accelerance as shown in the Figures 46g-h. The resampling strategy results in large
prediction errors compared to singular value rejection (Figures 46e-f and 46g-h). The
resampling strategy is thus observed to be very sensitive to the amplitude of cofrupting
noise as found in the earlier section. As with the force reconstruction, the velocity
prediction improves significantly for averaging with phase information when a large
number of averages are taken (200 rather than 25). The singular value rejection strategy is
least sensitive to the noise amplitude, although the results differ considerably based on
the size of the error band used in constructing the error matrix.

The velocity prediction improves for an overdetermined system (n,=6, n.=4) as shown in
Figures 47a-b for all singular values used (compare with 46a-b).

For the case of n=6, n.=6 results are shown in Figures 48a-c. In this case the low
frequency prediction improves for all the cases (compare Figures 48 and 46). The

singular value rejection method, again, gives the best prediction (Figure 48c-d).
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3.7 Conclusions

The conclusions drawn in [5] should be modified slightly when considerably large
corrupting noise i introduced in the simulations representing the experimental
‘measurements’. Under these circumstances, singular value rejection results in more
reliable predictions than resampling of the accelerance matrix (although, resampling
predictions can be improved by using a larger number of averages). In general it is
observed that the errors iﬁ the force reconstruction and the velocity prediction are large in
the {frequency range from 40 to 100Hz where few modes are present. It does not improve

even when singular values rejection is applied.
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4. The effect of a proportional noise model

4.1 Introduction

In [5] while simulating the conditions to represent the experiments, Gaussian noise
models with constant amplitude and amplitude proportional to frequency were used. In
chapter 3 those models have been studied with increased amplitude. In all these studies,
to estimate the measured accelerances, the corrupting noise is introduced in acceleration
and force ‘measurements’. In general it has been observed that the error in accelerance
es_timation can be better represented by an error model which is proportional to the
accele;ance amplitude [7]. In this chapter the sensitivity of the different strategieé to this
noise model is studied.

The noise model used here can be represented as below. For the accelerance the noise is

taken as
E =|4le. Ne”*™"
where A - theoretical accelerance matrix [5]

& - Mean error ratio
N, - Random numbers of 0 mean and variance 1 with normal distribution
N, - Random numbers from 0 to 1 with uniform distribution

Similarly, noise in acceleration measurement is given by
— J2a,

arp = IAlfg. Nle

where f - is a force vector

In this study, ¢ is taken to be 0.2.
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4.2 Force reconstruction

Figures 49a-b show the singular values of the accelerance matrix and the reconstructed
forces for n=n.,=4 when all singular values are used. The force reconstruction is poor at
many of the frequencies. Figures 50a-b show the number of singular values used at each
frequency and the forces reconstructed when singular values are rejected based on the
threshold established by the norm of accelerance error matrix constructed from the band
of +/- 3 standard deviation in the estimation of accelerance. The forces are under-
estimated at most of the frequencies. When singular values are rejected based on the error
band of*+/- one standard deviation in the aécelerance estimation (Figures 52a-b), the force
reconstruction improves across the entire frequency range. However, the force
reconstruction remains poor in the frequency range from 40 to 100 Hz. Figures 5la-b
show the results for resampling of the accelerance matrix. The force reconstruction is
incorrect but it is better than the cases where all singular values are used (Figure 49b). |
However, it is slightly inferior to the case where singular values are rejected based on the

error band of +/- one standard deviation.
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Figure 49a. Singular values along with error norm of Figure 49b. 1/3 octave band reconstructed forces for 4
accelerance matrix for 4 sources and 4 responses - sources and 4 responses with all singular - Proportional
Proportional noise model noise model
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4.3 Velocity at the receiver location

Figures 53a-h show the 1/3 octave band velocity responses at the receiver location for
n=n.=4. The velocity response predicted with all singular values used is incorrect
whether or not phase information is used in the averaging process as shown in Figures
53a-b.

The results obtained when singular values are rejected based on the error band of +/- 3
standard deviations are shown in Figures 53c-d. In comparison with the case where all
singular values are used, the prediction at the receiver location has improved
considerably. However the velocity prediction in the region from 30 to 100 Hz is
incorrect. The velocity response improves further when singular values are rejected based
on the error band of -+/- one standard deviation in the estimation of accelerance as shown
in Figures 53g-h. The resampling strategy results in better predictions than singular value
rejection when phase information is used for averaging (Figures 53e-f and 53c¢-d, 53e-f).
The resampling and singular value rejection strategy based on -+/- one standard deviation
are found to be least sensitive to the proportional noise model while predicting the

velocity response (compare with [5] ).

173 Octavn raspansa- ditect maan 4 Al SV used - Avaage |, Rumse 25.Ex=d,Rusp=d Ei=2) 173 Oetavn rasponas- sorted mean -{ All 5V uted - Awrage | Runaw 25 Ex=d.Rasp=4 |[E;=)

o
=3
o
&

~
=
N
&

=)
T

o

N
=)

Vakocty leval [4U] 1wt (rs]
Valocay lwal [dH] tef (Im/s}

— ezl respanse
—— Estimated mean
T §3% carderce interval |

—— Kealresponsa
— Estimalad mean_
— BB% confidenca intenval

el 4 =307

3]
&

=0 . ) 40

7 ]

16" 0° 1w 10 10 10
Fraquancy [He] Feacuancy [Hz]
Figure 53a. 1/3 octave band velocity response for 4 Figure 50b. 1/3 octave band velocity response for 4
sources and 4 responses with all singular values used sources and 4 responses with all singular values used (no
(with phase information) - Proportional noise model phase information) - Proportional noise model

33



113 ot respanss- diract maan SV rfected - Amraga 1,Rume= 75.Ecvd Rosped [Eind) 173 Cotasa respanse yofted mean | SV pjected - Avecags LRunse 25, Exnd, Rosp=1 [E[m3t

20 h s 0 ) .
[-— ideal response = ealresponse
—— Estimated mean — Eslimated mean
200 — 6B% confidence interval g 204 —— 68% confidence interval
3 = 10F
£ £
: Pe
E g -10
H H
i 5 a0l
-30F
-420‘ e : 10 4?0‘ b= Py
Frequency [Hz] Froquency [Hz)
Figure 53c¢. 1/3 octave band velocity response for 4 Figure 33d. 1/3 octave band velocity response for 4
sources and 4 responses with singular value rejection sources and 4 responses with singular value rejection
based on error band of +/- 3 std. deviation in based on error band of +/- 3 std. deviation in accelerance
accelerance {with phase information) - Proportional (no phase information) -~ Proportional noise model
noise model
‘.‘- -
171 Ol M ponge- Girect medn < A SV uted - Avstage 2, Rurs= 75, Ex=4 Resp=4 [Elx3) 0 1/3 Ortave respanse sorted maan -{ A8 SV ussd - Awrags 2.Runsa 25,Exed Retp=da |E[=3)
20 T
20 20
& 10t 5 10
£ £
E ok ; ol
E -10p :?: -10f
3 . 3
| — Heslresponss 3 20l \: Healesporse |
— BB% confidence interval —— B3% confidenca interval
30, J -ao/
AL L * 05 pes =
10" 12° 10° 10 10 10
. Fraquarey [sz| Frequancy |Hz|
Figure 53e. 1/3 octave band velocity response for 4 Figure 53f. 1/3 octave band velocity response for 4

sources and 4 responses with all singular values used and  sources and 4 responses with all singular values used and
resampling (with phase information) - Proportional noise ~ resampling (no phase information} - Proportional noise

model model
17 Octave respanse- ditsct ean { SV resctud « Aveage | Runsa 25 Exsd Resoms Ei=1} a0 113 Qetave reaponae- aged maan { SV rejecled - Awragn 1.8un3= 25,Ex=4 Resg=d [E=1)
n T .
— dealresponse — Yealrespansa
— Estimated mean == Estimated mean
200 —— BB% confidence intereal 4 201 —-~ 68% confidence intenal
= 1ol PARTIIN
£ H
I 3ol
£ £
$ oof ] 200
-30r a0f
40 A 40 L L
10" 16° 10° 10" 10 10°
Froquancy [Hz| Fraquancy {He]

Figure 53g. 1/3 octave band velocity response for 4 Figure 53h. 1/3 octave band velocity respounse for 4
sources and 4 responses with singular value rejection sources and 4 responses with singular value rejection
based on error band of +/- one std, deviation in based on error band of +/- one std. deviation in
accelerance (with phase information) - Proportional accelerance {no phase information} - Proportional noise

noise model model



4.4 Conclusion

In general, all the strategies are found to give better results when a proportional Gaussian
noise model is used for corrupting the ‘measured’ accelerance compared to when a
Gaussian addititive model (both small or large amplitude). The singular value rejection

and the resampling strategies result in reliable predictions for this noise model.
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5. Singular value rejection based on errors in operational accelerations

5.1 Intreduction

An improved force identication is achieved in ref [5] by the rejection of these singular
values which are small enough to be influenced by measurement noise. This rejection is
based on the threshold established by the norm of the accelerance error matrix. As
discussed earlier, the results obtained from this strategy are dependent on the band of
error used 1. +/- one or three standard deviation. However, the improvement is not so
significant at frequencies in the vicinity of antiresonance, particularly in the region 40-
80Hz E.;ee Figures 23, 26, 30g-h, 39, 46g-h). It is interesting to explore a second criterion
[8] for rejecting the singular values, based on their contribution to the operational
response. The operational responses are the surmmmation of contributions from each of the
singular values. In this criterion smaller singular values are rejected if they contribute less
than the error in the measurement of operational accelerations. The errors in the
operationél responses can be estimated based on a covariance matrix recorded during the
measurments or by using relations as in [7]. The formulation for this strategy is given
below

5.2 Formulation

From [7], the variance (squared standard deviation) in the estimation of the auto-spectrum

Syx 1s given by

A
Sx
AN
. ()

where n, is the number of samples taken.
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From the accelerance matrix, if the forces are known, the acceleration can be calculated
as
{a} =[4}{s}
Due to the errors in the measurement, the measured acceleration can be represented as
A
ap={a+a,} (2)
The contribution from each singular value to the operational responses can be derived as
below

Using singular value decomposition, the accelerance matrix can be decomposed as

A
A=usvH
This can also be written as

AN
A=A+ As+ Aas....+ A4

where

H S l— f_ o]
4,=U,S,V, for j,k=1......n, and 1=1....n, (3)

L5000 Jk

The contribution from each singular value the response is given by

{aj} =[AJ]{ f} forj=l...n, )
The equation (4) cannot be evaluated since the forces are not known. However this

difficulty can be overcome by normalisation. The contribution from the largest singular

value can be taken as a first approximation to the acceleration response. Therefore

{af} z[Al]{f}
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where a, is a first approximation to the acceleration response

Taking the norm of the above equation

J{a, 3] =4 10N

o, 3=l K )

Taking the norm of (4)

|{"’J}
e =[]

Taking the ratio of (5) and (6), although they are both inequalities, gives the qualitative

LiH[Aj]{f}l! forj=I.....n,

i¥ai ©)

relation

“{aj }H H[Af ]“

- (7
”{af }H [4]]

The above relation, for 2-norm, can be written as

"{“1}” 5 ()
el s,

This suggests that singular values should be rejected when

BN - )

[} e s,

5.3 Cumulative sum of singular values
In the earlier study [5], as in equation (9), individual singular values were compared to

the norm of the error matrix which may reject more information than necessary. Hence it
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1s interesting to investigate the effect of comparing individual singular values or the
cumulative sum of singular values while rejecting the singular values. The formulation
for this criterion is discussed below.

Let the partial contribution from last (n-r) singular values to the accelerations be given

by

{aparfia!}:[’q’” A +Ane]{f} (10)

Taking the norm of the above equation

SR N CRva—

e (1

{6 e[| 5 (4

Taking the ratio of relation (5) and (11) gives the qualitative relation

Jfera ] ( Jic3)
I{a,}] L4l

The above relation, for 2-norm, can be written as

[{e}
fle ] s

This suggests that the contribution from last (n-r) singular values can be neglected when
| S +8 .48

ol Bomell oy LSS, 3
T 0

The same argument can be extended for using cumulative singular value summation for

4 -

AI‘

+|

Ar+1

A

A
# Ie

(12)

| S +8 .48

J‘!e

the rejection of singular values based on the norm of accelerance error matrix.
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If, instead of the 2-norm, the Frobenius norm is used then there is no necessity to
consider the cumulative effect of singular values. This is because the Frobenius norm of a

matrix is given by
“[A]lL =[S+ 45 ] which considers all singular values.

The following four cases are compared in this section
1. Singular value rejection based on the norm of the acceleration error
a. Comparing individual singular values with and without resampling

b. Comparing cumulative sum of singular values

"—

2. Singular value rejection based on the norm of the accelerance error matrix

a. Comparing individual singular values

b. Comparing cumulative sum of singular values
The noise model used is same as in section 3.1 and it has same amplitude as there.
5.4 Force reconstruction
Figures 54a-b show number of the singular values used at each frequency and the forces
reconstructed when singular values are rrejected based on the threshold established by the
norm of the operational acceleration error vector. This is constructed from the band of +/-
one standard deviation in the measurement of acceleration and is for n=n.=4. In this case
individual singular values are compared with the error norm. The forces are shghtly
overestimated at most of the frequencies. When the cumﬁlative sum of singular values is
compared with the error norm, the force reconstruction does not improve significantly
(compare Figures 54 and 55). Figures 56a-b show the results for resampling along with
singular value rejection (individual singular values compared). The force reconstruction

does not differ significantly from the above cases.
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When singular values are—:rejected based on the norm of the error matrix constructed from
+/- 3 standard deviation band in the estimation of accelerance, the force reconstruction is
very poor (Figure 57). As in the earlier experiments, the force reconstruction improves
when +/- one standard deviation band is used (compare Figures 58 and 57). Figure 59
shows the force reconstruction when the cumulative contribution of singular values is
considered rather than individual singular values. From Figures 59a and 58a it is seen that
more singular values are used in the low and high frequency ranges when the cumulative
sum is considered. The force reconstruction also shows a difference in that the amplitudes

of the Torces are larger to some extent when based on the cumulative sum.
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5.5 Velocity at the receiver location

Figures 60a-f show the 1/3 octave band velocity response at the receiver location for
n~n.=4. The velocity response between 30 and 100 Hz is underestimated when singular
values are rejected based on the comparison of individual singular values with the norm
of the error in the acceleration measurement (Figure 60a). At all other frequencies the -
predicted lresponse is reasonably accurate. When the cumulative sum of singular values is
used in the comparison, the response in the frequency range 30 to 100Hz improves
{compare Figures 60b and 60a). Further improvement at higher frequencies is acheived
when singular value rejection is combined with resampling (Figure 60c).

The results when singular values are rejected based on the norm of the error in the
accelerance are shown in Figure 60d-f. The velocity prediction is very poor for the case
where the +/- 3 standard deviation band is used (Figure 60d). The velocity is
underestimated at most of the frequencies. When the +/- one standard deviation band is
used, the predictions improve considerably (Figure 60e). The response in the frequency

range 30 to 100Hz is still underestimated. The velocity response predicted in this region
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improves when the cumulative sum of singular values is compared with the error norm
{(compare Figures 60e and 60f).

5.6 Conclusion

In general, predictions by both methods (norm based on the acceleration error and the
accelerance error) are reliable when the norm is based on the +/- one standard deviation
error band. In the case of the acceleration error, further improvements are achieved by
resampling and using the cumulative sum of the smallest singular values. For the case of
the accelerance error, good improvement is observed when the cumulative sum is taken
for coniparing with the error norm. Hence, singular values have to be rejected based on a
comparison of the error norm with the cumulative sum of singular values.

The above conclusions depend on the amplitude of corrupting noise used. It might be
possible to get better predictions with noisy accelerance using accelerance error based
singular value rejection. On the other hand for noisy accelerations acceleration error

based singular value rejection might suit.
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Figure 60a. 1/3 octave band velocity response for 4 Figure 60b. 1/3 octave band velocity response for 4
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6. Force identification with different FRF estimators

In the work up to now the frequency response function estimator H; has been used. This
is designed to minimise the effect of noise on the output signal. H; is the most popular
frequency response function estimator. It is quite accurate at antiresonance. However, it
underestimates the FRF near the resonance (in fact it underestimates the FRF at all
frequencies but the difference is small apart from near resonances). As observed in [5]
small errors at resonance (when there is a high condition number of the accelerance
matrix) can lead to large force reconstruction errors. To overcome this it might be helpful
to useﬁ;n alternative FRF estimator, such as the H, estimator which is accurate ﬁear the
resonances. It is also interesting to explore other estimators which combine the
advantages of the H; and H, estimators. Five different estimators are used in this chapter
to reconstruct the forces, and the results from each are compared. These estimators are
described in Appendix. The corrupting noise model used in this section is similar to the
one used in section 3.4 which has constant amplitude for all frequencies.

6.1 Frequency response estimators

Figures 615-0 show the transfer accelerance from forcing point 1 to response point 1
obtained using H,. This estimator almost matches the theoretical accelerance as seen
from comparison with Figure 61a (theoretical accelerance) and 1/3 octave representation
in Figure 61b. However, small errors exist in the vicinity of resonance. The H, estimator
gives a poor accelerance in the vicinity of antiresonance as shown in Figures 62a-b
(between 60 to 100Hz), while the H, estimator combines the advantages of both H; and
H, as shown in the Figures 63a-b. This estimator however leads to some error in the
vicinity of antiresonance compared to H; (compare Figures 61 and 63). Similar

conditions occur with H, although the errors are found to be greater than for H, (Figure
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64). The H, estimator seems to give results that are closest to H; but leads to some errors

in the multi-modal frequency range of 200 to 400Hz (compare Figures 61c and 65b).
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These FRF estimators have been used in the construction of the accelerance matrix.

Following the procedure in [5], forces are reconstructed for each of the estimators.
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6.2 Force reconstruction

Figures 66a-e show the force reconstruction for each of the estimators for 4 forces and 4

responses. Even though the H, estimator is biased near the resonance, 1t reconstructs the

forces better than any other estimator considered. The H, estimator leads to the worst

force reconstruction (Figure 66b). The results for the other estimators lie between those of

H, and H,.
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Figure 66a. 1/3 octave band reconstructed forces for 4
sources and 4 responses based on H, estimator with all
singular values used.
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Figure 66¢. 1/3 octave band reconstructed forces for 4
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estimator with all singular values used.
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Figure 66b. 1/3 octave band reconstructed forces for 4
sources and 4 responses based on H, estimator with all
singular values used.
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Figure 66d. 1/3 octave band reconstructed forces for 4
sources and 4 responses based on H, estimator with all
singular values used.
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Figure 66e. 1/3 octave band reconstructed forces for 4
sources and 4 responses based on H; estimator with all

singular values used.

6.3 Velocity response at the receiver location

-~

The velocity responses are shown In narrow band representation in Figures 67a-e for the

various estimators. The predictions based on the H; estimator are better than those from

any other estimator considered as seen from Figure 67a. The H, estimator leads to a spiky

prediction at many of the frequencies (Figure 67b). Other estimators predict the responses

with an accuracy which lies between the H; and H, based predictions.

Figures 68a-¢ show 1/3 octave representations of the velocity response at the receiver

location. Again it is seen that the response based on the H, estimator is better than all the

other estimators considered.
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Figure 67a. Velocity response at the receiver location for
4 sources and 4 responses based on H, estimator with all
singular values used.
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Figure 68e. 1/3 octave band velocity response at the
receiver location for 4 sources and 4 responses based on
H, estimator with all singular values used.

6.4 Conclusions

The 1, estimator, even it though has differing accuracy at resonance and antiresonance,
results in a better force reconstruction across the frequency range in the inversion process
than the other estimators considered. The Hj estimator gives results in the force

reconstruction which are amost as good.
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7. Etror propage;tion
A complete understanding of error propagation plays a major role in devising ways to
improve the force reconstruction. It is shown analytically and empirically by Blau [6] that
random errors and bias errors propagate with different amplification during the process of
force reconstruction. These error propagation models (as in [6]) are discussed below
7.1 Error propagation in force identification
It is well accepted [9] that the errors in the accelerance matrix and operational

accelerations are magnified by at most the condition number ‘x’ during the matrix

S~

inversion for force reconstruction. This can be written as

HdSﬂ ” <’

dd,,

or (14)

|dS ;| < <*[ds

¢4

where dS, - Error in the force spectral density estimation

dA - Error in the accelerance estimation

Jur
dS,. - Error in the operational acceleration spectral density estimation

NB : The condition number is squared since power spectral densities are used.
Quantitative error models are developed in [6] to characterise the contributions from
various sources of errors in the process of force reconstruction by matrix inversion. These
indicate that the magnification factors differ for various errors. The explanation given
below follows ref [6]. Compared to the earlier studies by different researchers (eg. [10]),

in [6] the estimations of error are made for individual forces each frequency rather than

restricting consideration to the norm of vectors. This gives better insight into the whole
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process. The reconstructed forces are characterised by their auto and cross spectral
densities.

The propagation of the error is estimated based on the following formulation,
(Sy+dS,)=(A4, +dd, )" (S, + aS, WA, +dA,)"

where f- force, a - response, and + is for pseudo-inversion.
Errors considered in [6] are, discussed below.
7.1.1. Errors on the response spectra

The spectral densities of response are calculated using finite fourier transforms of
the m(;?{surements rather than continuous time histories. This results in variatioﬁs from
actual spectral densities. There are three aspects to this,

a. Time discretization - this never creates a problem as long as the sampling

theorem is respected

b. Reduction of observation time to ‘T’ of finite length

C. '.Substitution of the expectation by averages.
‘b’ and ‘¢’ yield a complicated error behaviour and errors due to these can be classified
into two categories viz., random and bias errors..
Random errors :
Random errors describe the variation around the expected value. They are characterized
by either the variance or the standard deviation. The standard deviation, when the
response is represented as an auto spectral density, is inversely proportional to the square
root of the number of averages [7]. This is based on the assumption that the random
process is Gaussian. On the other hand, the standard deviation for cross spectral density is
also related to the cbherencé function. Here the assumption is made that any random

process contributing to the measured response signal occurs prior to the receiving
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structure. Thus statistical characteristics of random errors on spectral density estimates
will be the same whether estimates are made on the input side (force) or the output side
(accelerations). Hence the error in force reconstruction due to this type of error can be
taken to be proportional to the amplitude.

NB: Non-simultancous acquisition of all the responses increases the random errors.
Measurement noise induced bias:

The measurement noise is used to refer to noise on the information channel from the
sensor to the numerical representation of response spectra. It includes sensor noise, noise
on cablgs, amplifier noise, quantization noise in analogue to digital conversion, round-off
noise in spectrum calculation, etc. These all lead to the over-estimation of the response
spectra and hence lead to the over-estimation of the force spectra. This error is amplified
in proportion to the condition number of the accelerance matrix.

Leakage induced bias:

Leakage is the phenomenon appearing in the estimated spectra due to the convolution of
actual spectra and the spectrum of the window used in signal processing. This leads to
leakage of energy into the side bands. As leakage means virtually higher damping, the
condition numbers decrease and hence leakage errors are more moderately amplified by
the inversion process.

7.1.2 Errors on FRF’s

Errors in frequency response function (FRF) measurement are also grouped into random
and bias errors.

Random errors:

Using the ordinary coherence function, for random Gaussian additive noise, the variance

in the estimation of FRF can be calculated as mentioned in [7].
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In the force ;econstmction, it is shown in [6] that the error amplication is bounded by
terms containing both condition number and the square of the condition number. In
contrast, in earlier theories the square of the error is multiplied only by the square of the
condtion number.

Leakage induced bias:

Leakage induced bias crrors are not magnified by the condition number during the
inversion process. Errors are magnified moderately due to the reason discussed earlier for
acceleration leakage error.

A sumary of errors and error propagation models from [6] is shown in Table 1. ~

7.2 Current study

To confirm the above models and understand the propagation process, experiments are
simulated to represent measurements which result in random and bias errors alone in the
estimates. In this study, only the errors in the accelerance are considered while
considering the operational accelerations as error free. The bias error is incorporated into
the accelerance by introducing a measurement bias error in forces applied while
estimating the accelerances. The accelerations are assumed error free. The random error is
introduced by making the force measurement error free and incorporating random
measurement noise into the accelerations. Figures 69 and 70 show the transfer
accelerances from forcing loaction 1 to response loaction 1 for these errors. The
accelerance matrices are formed for both cases and the forces are reconstructed using all
singular values as in [5]. Figures 71a-b show the condition numbers of the éccelerance
matrix for both the cases. It is seen that the addition of random error alone reduces the

condition numbers (compare Figures 7laand 71b).
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Table 1. SUMMARY of error models [6]

errors on S,,

Error type | Error charecteristic | Propagation to Distribution Underlying
dSg over dSg assumption
Random As if force spectra were estimated directly Response signals are

acquired
simultaneously ,
random errors of the
estimates are not
influenced by
measurent noise

Measurement

noise can be
described by one

D=(l+a)l+E
a - common relative
error on all response
spectral densities
E - Matrix of complex
random variables

Cs,,=common

relative error in

noise induced - ” s ”
: A

blas errors on | S, +dS,, =Sy + S, | 2y <xi(Ay)e, | [Spy|= - | uncomelated zero

Sa mean random
. process per output
Leakage S, +dSaa= n¥ S,.D . |S “ Response signals are

induced bias &5 <10Cs,, I i | FIWFlir acquired
errors on S,, £ I simultaneously,

transfer behaviour of
the receiving
structure can be
described by a model
with distinct
resonances

Random
errars on Ay,

Ap+dd, =4, + £

Shaker excitation,
simultaneous
acquisition of all

" responses, H, -
estimate, no change
of measurement setup
between FRF and
response
measurements,
noise/deviations from
linearity can be
described by one
uncorrelated zero-
mearn noise process
per ouiput

Leakage
induced bias
errors on Ag

o
Ag+ddg =D 4, D,
Do ={l+a)f +E
D, =(1+a2)1+E2

Saa
S e
”Sﬂ ”r Icl L
ds S
’S?l clecoh ) H-S_ﬁhﬁl;[fwx( Aﬁ)gﬁ!
erlss]
&5 <10Ci, 1dsm|=TF

C.g=common
relative error on
Afa

As above (for random
errors on FRFs), and
transfer behaviour of
the receiving
structure can be
described by a modal
model with distinct
resonances

Where

L - number of forces,

E, ,E,- Matrices of complex random variables

62

a, ,3,- common relative errors on input and output side respectively (FRF)



From matrix manipulation, the theoretical amplification of error is given by

A
error( A)

ef)sxk—FF (15)
FAS
A

where k¥ is a condition number of the accelerance matrix.
while the actual error amplification can be written as

A
F-F

S0
e(fl=L —1 (16)
~ 1A

4q

301

Acc mag [rrehs2]
Ace oetdB ref[mMNs2]

A0t

40
10

Frequency [Hz] - Frequency [Hz]
Figure 69a. Transfer accelerance from source location 1 Figure 69b. Figure 70a. 1/3 octave band transfer
to response location 1 for bias error alone in accelerance.  accelerance from source location 1 to response location |
for bias error alone in accelerance. - - - - ideal,
actual

Ace mag [nvis2)

Act ot d rel [mNs2]

=20t

-0k

<40

W' 10
Frequency [Hz] Frequency [Hz]
Figure 70a. Transfer accelerance from source location 1 Figure 70b. 1/3 octave band transfer accelerance from
to response location 1 for random error alone in source location 1 to response location 1 for random error
accelerance. alone in accelerance. - - - - ideal, actual
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Figure 71a. Condition number of accelerance matrix at Tigure 71b. Condition number of accelerance matrix at
each frequency for bias error in accelerance. each frequency for random error in accelerance.

7.3 Forte re.construction

The force reconstruction with only bias error in the accelerance is shown in Figure 72a.
The reconstruction is reliable except at the first resonance of the plate (26 Hz). In
comparison with the bias error propagation, the random error results in worse force
reponstruction (compare Figures 72b and 72a). This, however, may be due to larger
random error in accelerances (compare Figures 69 and 7.0). If these errors are normalised
(as in (15) and (16)) then it is possible to compare them.

The expected error magnification and the actual error magnification are shown in Figures
73-76. As seen from these figures, the magnification of error for bias error alone is less
than the condition number at all frequencies for all forces (Figures 73a-76a). The relative
error is observed to be high in the smallest of the forces reconstructed (Figure 76a -
Force 4 is only 6 N). With random error alone the error magnification is by condition
number or more than that (Figures 73b-76b). Again, the relative error in the smallest

force 1s high (Figure 76b)
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Figure 73a. Error in reconstructed force 1 for 4 sources
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7.4 Velocity response at the receiver location

Unlike the errors in the forces, the 1/3 octave velocity response at the receiver location
does not differ much for the two types of errors (Figures 77a-b). At antiresonance, the
random error alone results in a higher error. But the differences are large when narrow

brand predictions are compared as shown in Figures 78a-b.
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7.5 Conclusions

In general, a random error in the accelerance results in magnification in relation to the
condition number or more in the force reconstruction process. The effect is largest on
smaller forces. The bias errors however result in a magnification which 1s smaller than

the condition number.
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8. Conclusions

Using numerical simulations, force reconstruction and transfer path analysis has been
carried out in continuation of the earlier work [5]. To investigate the sensitivity of earlier
conclusions to phase information in the forces, forces with fixed phase at each frequency
have been used. In the second study, rather high amplitude random noise has been used
for corrupting the measured quantities. Further to this work, a proportional noise model
with high noise amplitude has been implemented. The singular value rejection method to
improve the force reconstruction has been further investigated for different threshold
critaria. The sensitivity of force reconstruction to different FRF estimators and the error
propagation have also been simulated to understand the errors in force reconstruction.
The following conclusions are drawn based on these simulations.

1. The characteristics of force reconstruction and hence the 1/3 octave band response at
the receiver location do not change whether or not the forces used have a non-zero
relative phase.

2. The conclusions drawn in [5] differ slightly when considerably large corrupting noise
is introduced to simulate the experimental ‘measurements’. Under these circumstances,
singular value rejection based on +/- one standard deviation band results in more reliable
predictions than resampling (however, resampling predictions can be improved by taking
a large number of averages which is seen to give better results even at antiresonance).

3. Use of a proportional Gaussian noise model does not alter the earlier conclusions [5].
In fact most of the strategies result in good predictions for this error model.

4. The predictions from singular value rejection, whether based on acceleration error or
accelerance error, do not differ significantly from each other when the norm is based on

+/- one standard deviation error band. In general the +/- one standard deviation band
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results in better predictions than +/- 3 standard deviation. However, the improvements are
not significant at frequencies where more than one mode contributes to the response and
the condition number is high. This condition can arise at frequencies between two
resonances and in the vicinity of antiresonance. At such frequencies, by discarding
singular values the error in the estimation of forces would be less, but the response
predictions seem to have higher errors.

5. When singular value rejection is based on estimates of the error in the operational
acpelerations, further improvements are acheived by resampling the accelerance matrix
and co_ﬁ"'sidering the cumulative sum of singular values that are rejected. Also for the case
of estimates of the accelerance error, good improvement is observed when the cumulative
sum is taken for comparing with error norm. Hence, it is essential that singular values be
rejected based on a comparison of the error norm with the cumulative sum of the smallest
singular values.

6. The Hlf estimator, although is less accurate at resonance than at antiresonance, results
in better force reconstruction across the frequency range in the inversion process than
oflaer FRF estimators considered. This might be egplained by the conclusions in [6] that
bias errors are magnified less strongly than random errors.

7. In general, random errors in the accelerance result in magnification by the condition
number or more in the force reconstruction process. The effect is greater on the smaller
forces. The bias errors, however, result in an error magnification which is smaller than the

condition number.
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Appendix Different estimators of frequency response functions

H, estimator
This is a most popular estimator of the frequency response function and is based on the

least square technique to reduce the effect of noise on the output. It is given by

H = S'W (Al
I - S.\'.\' )
where S, =~ XN X ad S, =3 XL
Mg m3

"~

and X(f) and ¥{f} are Fourier transforms of X(t) and y(t} respectively and * indicates
conjugation.

H, minimizes the effect of noise in the ouput. Provided the input is noise free, the H,
estimator calculates an un-biased estimate of the frequency response function. At a
resonance, as the input strength required for reasonable response is very low, the noise
floor may affect the input measurement. This results in overestimation of the auto
spectrum of x(t) as noise power also gets added to the signal. Hence, the FRF estimator
H, is biased and less than the actual one at the resonances. Even at antiresonance H; is
biased but the amount of bias is very small since the noise in the measured force is less.
Note : It is assumed that the noise in the input and output are not correlated and hence the
cross spectrum is unbiased for a large number of averages.

H, estimator

This estimator is calculated based on a least square technique to reduce the effect of noise

in the input. It is given by
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H, = (A2)

Xy

M

where S, = lZX(f)*X(f)
oM

H, minimizes the effect of noise in the input. Provided the output is noise free, the H,
estimator calculates an. un-biased estimate of the frequency response function. At a
resonance, as the response is very large, effect of the noise floor is minimal and hence the
estimator approaches actual FRF. For the estimate to be unbiased the noise floor should
be cogsiderably lower than the response. This condition means that if the response is
small enough to be corrupted by the noise floor, even at resonance, the estimate would be
biased. At any frequency as the noise power gets added to the actual output, the auto
spectrum of the output is overestimated. This over estimation depends on signal to noise
ratio. The signal to noise ratio can be very low at antiresonance. Hence, at antiresonance
the H, estimator would be biased and would be greater than the actual FRF. Even at’
resonance the H, is biased but the amount of bias is very small since the signal to noise
ratio is largé.
NB : H, always under-estimates the FRF, but at anti-resonance the bias error is low and
the FRF approaches the actual one.
H, always over-estimates the FRF, but at resonance the bias error is low and FRF
approaches the actual one.
H, estimator
This estimator evaluates the FRF based on the minimization of the effect of noise on both

input and output by a total least square method and is called an unbiased estimator [11].

The estimator is given by



2
S—kS+{kS—S)+4kSS
yyfxx\/fxxyy S oxy yx

H, = (A3)
28
yx
where
k F=3 1 is aratio of input to output noise power.
mm

When noise ratio tends to 0, the estimator approaches H, and if it tends to infinity it
approaches H,. In all other cases, where a significant amount of noise exists in both input
and otput, the estimator lies between H, and H;. The major disadvantage with this
estimator is that the ratio of noises has to be known before hand, which in general is
difficult to estimate reliably.

H, - as given by Fabunmi ( Total least square estimate )

It is also possible to obtain a total least square based estimator in terms of H; and H,. The |

estimator [12] in this case is given as

2
y F
H2 — 1
. = _‘HI} (A4)
4 F
7 +1
HI‘
where
@, 2
J [Sgy| de .
@ 2 Sxy
F= - and  coherencey” = 3
2 2 XX TyY
J S| do
@
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The weighting function F is formulated such that higher weight is given for H, at the
resonances and for H; at antiresonances. Reasonably good results are obtained with a
constant value of F over a large frequency range [12]. However further experiments
indicated that this can give a good estimation either at resonance or antiresonance point.
According to [12] rather than using a constant F, the weighting should be such that the
ratio of F to H, approaches zero for resonance and infinity at antiresonance. The optimal
value of F at each natural frequency is found to be inversely proportional to the iméginary
part of H,.

H, estifiator

If the signal to noise ratio is small, H, tends to have large errors at some frequencies. To
overcome this difficulty in [13] it is suggested to use a different weighing function as

given below

Hs = H(1-WYy+ HW (A5)
where
2
.|
W=e
and

Here, the weighting is exponential and has a value 1 at resonance and reduces to zero
exponentially at all other points. The exponential decay is inversely proportibnal to the
damping factor [13], which in turn decides the magnitude of «. This estimator can give
good results in the region of simple modal behaviour. Under mulii-modal behaviour (high

modal overlap), finding the weighting function at each frequency would be difficult.
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The major assumption in the H; and H, estimators is that, H, is unbiased at antiresonance
and H, at resonance. In the majority of the cases where modal behaviour is predominant
this assumption may be true. However, when the response at resonance is not so
dominant or the force required at antiresonance is not high enough to be well clear of the
noise floor, then this assumption would be violated and the estimator would still be

biased.
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