)
' s V Institute of Sound
and Vibration Research

Study of Regularized Solutions to Improve the Indirect Force
Determination and Transfer Path Analysis Using Numerical
Simulations for a Flat Plate
A.N. Thite and D.J. Thompson
ISVR Technical Memorandum 855

October 2000

University
of Southampton




SCIENTIFIC PUBLICATIONS BY THE ISVR

Technical Reports are published to promote timely dissemination of research results
by ISVR personnel. This medium permits more detailed presentation than is usually
acceptable for scientific journals. Responsibility for both the content and any
opinions expressed rests entirely with the author(s).

Technical Memoranda are produced to enable the early or preliminary release of
information by ISVR personnel where such release is deemed to the appropriate.
Information contained in these memoranda may be incomplete, or form part of a
continuing programme; this should be borne in mind when using or quoting from
these documents.

Contract Reports are produced to record the results of scientific work carried out for
sponsors, under contract. The ISVR treats these reports as confidential to sponsors
and does not make them available for general circulation. Individual sponsors may,
however, authorize subsequent release of the material.

COPYRIGHT NOTICE
(c) ISVR University of Southampton All rights reserved.

ISVR authorises you to view and download the Materials at this Web site ("Site™)
only for your personal, non-commercial use. This authorization is not a transfer of
title in the Materials and copies of the Materials and is subject to the following
restrictions: 1) you must retain, on all copies of the Materials downloaded, all
copyright and other proprietary notices contained in the Materials; 2) you may not
modify the Materials in any way or reproduce or publicly display, perform, or
distribute or otherwise use them for any public or commercial purpose; and 3) you
must not transfer the Materials to any other person unless you give them notice of,
and they agree to accept, the obligations arising under these terms and conditions of
use. You agree to abide by all additional restrictions displayed on the Site as it may
be updated from time to time. This Site, including all Materials, is protected by
worldwide copyright laws and treaty provisions. You agree to comply with all
copyright laws worldwide in your use of this Site and to prevent any unauthorised
copying of the Materials.



UNIVERSITY OF SOUTHAMPTON
INSTITUTE OF SOUND AND VIBRATION RESEARCH

DYNAMICS GROUTP

Study of Regularized Solutions to Improve the Indirect Force
Determination and Transfer Path Analysis Using
Numerical Simulations for a Flat Plate

by

A.N, Thite and D.]J. Thompson

ISVR Technical Memorandum No. 855

October 2000

© Institute of Sound & Vibration Research






L

Introduction

Tikhonov regularization
Iterative inversion
Conclusion

References

Contents

46

47






1. Introduction

In_transfer path analysis (TPA) [1-7] forces are usually identified indirectly from an
accelerance matrix and a set of operational accelerations. The measurements of
accelerances (measured from source locations to the response locations) and operational
responses (measured at a series of locations due to the operational source), however,
involve errors which are magnified by the matrix inversion particularly at frequencies
where the condition number of the accelerance matrix is high. This ultimately leads to

ertors in ecstimates of the contributions from these forces via different paths to the

. -

response. Hence it is important that the forces are identified reliably for the TPA to
produce reliable results.

The force identification errors can generally be reduced by over-determination, i.e using a
larger number of responses than the forces to be identified, and employing a least square
error solution. The least square error solution can be accomplished by Moore-Penrose
pseudo-inversion [5]. In such a least square solution, however, it is observed that the
errors in force reconstruction continue to be large at frequencies where the accelerance
matrix is ill-conditioned. This can, for example, be due to the fact that only a small
number of modes contribute significantly to the operational responses close to
resonances; this number can be smaller than the number of forces to be identified [8]

(over-determination, by adding extra response points does not help under this situation).

The least square solution can also be acheived through singular value decomposition of
the accelerance matrix. It is possible in this case to discard insignificant singular values in
order to improve the effective condition number of the accelerance matrix and hence

improve the force identification. The singular values can be discarded based on the error



in the estimation of accelerances [1,5] or the error in the measurement of operational
accelerations [6,7]. As seen in [5,6], however, singular value rejection does not overcome
the large force reconstruction error in the vicinity of antiresonance and the individual
contribution from each force may contain large errors when a smaller number of modes
(less than number of forces) are contributing to the responses even though the overall
response might be accurate.

For a long time in the field of digital image processing and more recently in relation to
Nearfield Acoustic Holography (NAH), other techniques have been employed to improve
Source—ireconstruction [9-12]. These include iterative techniques of inversion and
Tikhonov regularization. In these techniques instead of minimising a cost function based
on ordinary least square errors, a function which incorporates some bias is introduced.
This new function is minimised to identify the source. In both techniques, the error in the
force reconstruction is divided into the bias error and the magnified variance. In the
ordinary ieast square solution only the variance is magnified and no bias error is
introduced. There can be a large magnification of the variance at frequencies where the
accelerance matrix is ill-conditioned. By introducing a Bias error which increases with
the value of a eg regularization parameter, it is observed that there exists a point (value
of regularization parameter or number of iterations) where the bias error and the random
error cross over. For larger values the bias error dominates, for smaller values the random
error dominates. At the cross over point the cost function is minimised. The introduction
of a bias error limits the magnification of random errors in the accelerance and the

operational responses. This however comes at the cost of a small bias error in the force

reconstruction.



In this report these two techniques are used in a numerical simuls-ition of a TPA
application in which the test object is a rectangular simply supported flat plate [5,6]. Four
simulatneous coherent forces are considered and five responses are used to reconstruct
them.

The Tikhonov regularization is used to reconstruct the forces in chapter 2 where the
theory for this also discussed. The iterative technique and its implemation are explained

in chapter 3.
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2. Tikhonov regularization

2.1 Introduction

The ordinary least square solution for the inverse problem (force reconstruction)
generally results in large force reconstruction errors at frequencies where the accelerance
matrix has a high condition number. Under such circumstances, it is possible to improve
the reconstruction by ‘regularizing’ the solution. One type of regularization which has
already been studied [5-6] is singular value rejection based on the error norm. Other
regularization methods are based on the introduction of bias in the solution. This is

explained below, which follows [10-12].

A
The observed operational responses (accelerations) @ can be represented as

A
a=ate

where ¢ is the response and e is the measurement error vector, or

= AF +e

where A - Matrix of theoretical accelerances
F - A force vector

However, an additional error € can be identified, that is due to the matrix inversion. The

A A
reconstrucied forces F can be used with the measured FRF matrix, 4 to calculate the
operational responses:
a=AF+e
N

The least square solution (eg the Moore-Penrose pseudo-inverse) aims to determine F

such that the fitting errors € are minimised i.e.



3
min(Z %) or min &>

=1

AN FAY
These fitting errors may come from error in A, errors in & or errors in the model used

(eg additional inputs)
2.2 Tikhonov regularization
Instead of ordinary least square solution, Tikhonov suggested [16,10-12] minimising a

cost function given by

H

Jxmin[(gﬁa)mé\? f?\)] m
where A is a regularization parameter. This cost function introduces a bias into the
solution which can be adjusted (by varying A value) to limit the magnification of
measurement errors due to ill-conditioning. Therefore, expanding J

A AA A A A ~H oA
J=(a- AFY"(a- AF)Y+ A(F F)

H H H

~ Y Fal FANNAY Fas
=a a-a AF- A

"oy

H . H H H ,H AH A

—F (4 A+I)F-a 4F-F F ava a

H ,H H H . H N

S F (4 A+INF-a AF-F (@ A" +a a

or

J‘\H A Fay /\H
J=F BF-BTF-F b+c (2}
where



The optimal solution which reduces the force reconstruction errors can be derived by

minimising the cost function (2). For this cost function to be minimum, the first

derivative of ‘J” with respect to force vector F must be zero. As the terms in the cost

function contain complex variables it is necessary that it be separated into real and

imaginary parts [13]. Therefore using

B=B,+iB,
*21 = Fy +il
b=b, +ib,

the first term in (2) can be expanded as, (noting that B is a Hermitian matrix)

H

F BE=(F, +iF)" (B, +iB,)(F, +iF))
r T . .

T o T - T T o T T T 1

The above equation can be simplified as follows :

I. Since the imaginary part of B is skew symmetric

FRTB ;Fp=0 and FITB 1F1=0 This eliminates the 2nd and 8th terms

. . T T
II. Since (FRTBRF[)T = F,TBRFR and F,TBRFR is areal scalar, Fp' BpF; = F, BylFy

This eliminates the 3rd and 5th terms

and

T T

; . T
1. Since (FRTB‘,F[) = —F,TBIFR and F,TBIFR is areal scalar, Fp" B, F; =-F; B/ Fy



So the 4th and 6th terms are equal

Therefore (3) can be written as

N /'\H
J=F, ByFy+F, ByF, —2Fy B,F,—b" F~F b+c

The fourth and fifth terms in this equation can be expanded to give,

H

B F—F b=—(byF, +ib]F, —ib] Fy, +b] F, + Fyb, +iFyb, —iF b, + F/'b,)
Since all the terms represent scalar real numbers

n AH g Y
b F-F b=-—(2b]F, +2b] F})

.

Therefore the simplified version of cost function is written as
J=F, By Fy+ F, ByF, ~2F, B,F, —(2by F +2b/ F)) +¢ (4)

Now the cost function can be differentiated with respect to each of the real and imagmary

components,

T
& _( g & a J
aF, G p F o

T
al “[ & A a ]
F, \Fyp Ty F ol

Following the derivation in [13], use can be made of various properties of such

derivatives, two of which are given below

AP a) s and o' Xa)

=(X+X"a where ¢and X are independent of a.
%04 7

In the second relation if X’ is symmetric then

da’ Xa)
o

2Xa

Using the above two properties, the derivatives can be written as



ar
—— = 2B, F, - 2B,F, -2b, (5)
FR

= 2BaF; ¥ 2B, Fy =2, (6)
!

Using the concept of a complex gradient ‘g™,

3,

g 1=
OF,  OF,
g =2B,Fy ~2B,Fy —2by + 2By F; +i2B,Fyp —i2b,

For a minimum value of ‘J’, g has to be equal to zero. Therefore

T~

2By Fy +iByF, +iB;Fy— B, F})=2(by +ib,) = 0

The first term in the above equation is simply BF, therefore

2B e =0

and hence the optimal solution which minimises the error amplification in force
reconstruction is given by

F=B"

By expanding B the solution can also be written as

Fay

~ .’\ H A A H
F=(4 A+IN)'4 « (7)
To obtain insight into this solution and in order to compare it with pseudo-inversion, (7)

can be represented in terms of the singular values of the accelerance matrix,
where 4 = USV #

F=(USV**Usy* + 10 \USV *)" a

= (VSHSVH + VIAV #) lystu a since UU and VV" are unitary matrices

= (V(STS+ IV )Y WWSHU



F=V(S*S+IA)"'S*U% 4 ®)
This can be compared with the pseudo-inversion in which F=VS'U%a.In (8) the

. _ . s
term (S7S+I2)7S7 isa diagonal matrix having elements ﬁ, which replaces
st +

the S7 the terms of which are s;;”".

As can be seen from the above relation, the regularization parameter effectively modifies
the singular values in the inverse. In doing this it introduces a bias error into the solution.
When‘rthe condition number of the accelerance matrix is high, the effect of smaller

S~

singular values which are prone to errors can be nullified by choosing an appropriate

regularization value A. If it is a constant value for each of the frequencies, when

associated with high condition number, the effect of adding the optimal regularization
parameter to larger singular values results in minimal bias. However, it is essential to
choose a proper regularization value so that it results in minimum magnification of
measurement errors while introducing negligible bias in the solution. To do this, it is
necessary to know the errors in the measurement or use mathematical methods which
approximate the optimal regularization parameter. One of the mathematical concepts to
choose regularization parameters when errors in the measurement are not known ié
explained below.

2.3 Ordinary cross validation

This method was suggested by Allen [14]. In this method, out of ‘m’ responses only
‘m-1" are used in the force identification. The forces so identified are then used in
reconstructing the remaining response. This.can be done for different values of

regularization parameter, The closeness of reconstruction of this response indicates the



effectiveness of the chosen regularization pararrfeter. This method is also referred to as
the PRESS method ( ‘Prediction sum of squares’ of deviations). The procedure followed
is given below

1. The number of responses ‘m’ measured is ensured to be at least one more than the

number of forces. Start with zero value of A, and identify the forces based on the m-1 set

of responses using (7). Let the number of forces reconstructed be ‘p’. Using these forces

reconstruct the remaining response.

Writing F; - Identified force with k™ element of response left out, etc,

e

the square of the deviation is [ak - A F k)

where

Al

Ar -1is a FRF row vector containing the transfer paths from ‘p’ force locations
to the k™ response location.
2. This procedure of leaving out one response and calculating the sum of squares of

deviations is repeated for each one of the response elements in turn. Based on the above

deviations, the ‘PRESS’ is calculated for that value of A (initially A =0)as

PRESS(A) = li(;k A ﬁ“ka 9

k=1
3. The above steps are repeated for different values of A (gradually increasing the value).

The value of A which gives smallest ‘PRESS’ is the optimum value of regularization

parameter for that frequency.
There are other techniques that can be used to select the regularization parameter [17],

such as

10



a. Generalised cross validation

b.Deterministic constrained least squares

¢. Equivalent degrees of freedom

However these are not investigated further here.

2.4 Force reconstruction

The following strategies are compared for force reconstruction in this chapter

1. Use of full rank matrix (all singular values used)

2. Singular value rejection based on the norm of accelerance error matrix (as in [5]).
Basedian the analysis in [5] the rejection threshold is set to +/- one standard deviation of
the accelerance error.

3. Resampling of accelerances (full rank matrix) as in [5] i.e. a new set of accelerances is
taken for each sample of operational response.

4. Tikhonov regularized solution based on ordinary cross validation

In all the simulations four sources and five responses are used. The test structure is a flat
plate 0.6 x 0.5 x 0.0015 m , as used in [5,6]. The accelerances estimated using 50
averag.es where as operational accelerations are obtained using 25 averages.

The forces are reconmstructed by the inversion of the accelerance matrix and using
operational accelerations as in [5-6]. Figures la-d show the reconstructed force 1 for all
the four cases. As expected the force reconstruction errors are large when all singular
values are used (Figure la). The improvement is considerable when singular values are
rejected based on the norm of error matrix (compare Figures l1a and 1b). Figure Ic shows
the force 1 reconstructed with resampling of the accelerance matrix [5]. In the high
frequency range it is comparable to the singular value rejection case. It results in large

errors near the first resonance, but the results are better than when all singular values are

11



used without resampling. The reconstruction of force ! obtained using Tikhonov
regularization is shown in Figure 1d. The reconstruction is overestimated at the first
resonance but is closer to the actual force in most of the frequency range.

Figures 2a-d show the reconstructed force 2. The overestimates in force 2 are larger than
for force 1 (Figure 2a) when all singular values are used (as force 2 is smaller than force
1). For the low frequency region the improvement is considerable when singular values
are rejected based on the norm of the accelerance error matrix (Figure 2b). At most of the
frf;quencies, however, force 2 is still overestimated, with a peaky reconstruction near the
first resonance. Figure 2¢ shows the reconstruction of force 2 from resampling of the
accelerance matrix. The degree of overestimation in the reconstruction is more than that
when singular values are rejected but far better than when all singular values are used.
The Tikhonov regularization based reconstruction of force 2 is similar to the singular
value rejection case (Figure 2d).

Figures 3a-d show the reconstructed force 3. The singutar value rejection based
reconstruction along with Tikhonov regularized solution résult have the smallest errors
(Figures 3b,d).- The resampling case results in greater errors than the above but less than
when all singular values are used without resampling.

Figures 4a-d show the reconstructed force 4.. The reconstruction errors for force 4 are
large compared to all the other forces (Figure 4a) when all singular values are used (force
4 is the smallest of all). Even the other strategies also result in higher errors. The
reconstruction error is relatively low when singular values are rejected or the solution is

Tikhonov regularized (Figures 4b and 4d).

12



Overall, the reconstruction errors are minimum with Tikhonov regularization based on
ordinary cross validation in the higher frequency range and the second best is singular

value rejection case.
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The force reconstruction is also shown in 1/3 octave representation in Figures 5a-d. Again

the superiority of the Tikhonov regularization and the singular value rejection case is

confirmed in the results.
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2.5 Velocity at the receiver location

Figures 6a-d show the 1/3 octave band velocity response contribution at the receiver
location from force 1. The velocity contribution calculated with Tikhonov regularization
results in the smallest error compared to all other strategies (compare 6d with 6a-c).
When all singular values are used the velocity contribution is overestimated to a large
extent (Figure 6a). When resampling is combined with the use of all singular values the |
result improves (compare Figures 6¢ and 6d).

Figures 7a-d show the 1/3 octave band velocity response contribution at the receiver
location from force 2. As the force 2 reconstruction is very poor (overestimated) in all the
cases, the velocity contribution is larger than the actual result. However, Tikhono{f
regularization again results in the smallest errors (compare Figure7d and Figures7a-c).
Figures 8a-d show the 1/3 octave band velocity response contribution at the receiver
location from force 3. Once more the velocity contribution calculated with Tikhonov
regularization has smaller errors than all other strategies {(compare 6d with 6a-c). When
singular values are rejected, the prediction is close to that predicted by Tikhonov

regularization (Figure 8b).
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Figures 9a-d show the 1/3 octave band velocity response contribution::lt the receiver
location from force 4. As the force 4 has the smallest amplitude and largest relative
reconstruction error (overestimated) in all cases, the velocity contribution is larger than
the actual one. It is very poor when all singular values are used without resampling
(Figure 9a). However, Tikhonov regularization results in a better prediction than the
others (compare Figure 9d and Figures 9a-c).

The total velocity response due to all four forces is shown in Figures 10a-d. In all the
cases between the resonances the prediction is poor. In fact it is higher than the actual
resporise in these frequency ranges. As expected (due to better individual force
contribution estimates), Tikhonov regularization results in the smallest errors (compare
‘Figures 10d and Figures 10a-c). This is more evident when the velocity responses are

represented in 1/3 octave bands as shown in Figure 11.
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one standard deviation
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Using an example of a 5 x 4 FRF matrix it has been shown that Tikhonov regularization

with ordinary cross validation gives superior results to singular value rejction or matrix

resampling.

To quantify the above comparison, the table 1 given below shows the average 1/3 octave

band error (in dB) in the velocity prediction by each of the methods.
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Table 1 - Summary of results (Average 1/3 octave band errors in dB)

Method Force 1 Force 2 Force 3 Force 4 Total Rank
(19N) (10N (27N) (6N) contribution
coatribution contribution | coniribution | contribution

Moore- 39 1429 7.2 17.5 4.9 4
Penrose

Resampling 4.9 89 29 14.4 4.4 3

SV rejection 3.5 6.4 2.7 8.2 34 2

Tikhonov 3.0 6.3 2.8 8.0 2.5 1
Regui‘arzn




3. Iterative inversion

3.1 Background

When an ill-conditioned accelerance matrix is directly inverted, the measurement errors
in the operational responses are magnified in the identified forces. To overcome this, the
solution could be regulafized as discussed in the last chapter. In this chapter an alternative
known as iterative inversion is studied. The solution in this case is based on the principle
that when an infinite number of iterations is used in a proper formulation, the solution

tends to the exact one. In the iteration process errors in the force identification can be

"—

classified into two groups; bias error and variance around the mean. The bias error in the
forces tends to zero as the number of iterations is increased, while the random error goes
on increasing. By seeking a compromise in the bias error it is possible to limit the
variance. In fact, there is an optimum number of iterations where the bias error and the
random error are equal. At this iteration number, the combined error reaches a minimum. -
This property of iterative inversion can be effectively utilized to reduce the combined
error.

3.2 Derivation

Iterative inversion [9] can be applied to force identification as follows.

Given a k™ estimate of the forces, Fi, the k+1" estimate is generated as

Y Ea A 'h, A AN
Fin=Fi+ 4 (a— AF k) where the term in brackets is the difference between

the reconstructed response A F and the measured

response g which is multiplied by the convergence

factor f3.
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H H

Fra=p4 2{1-/321 Q{)ﬁu (10)

The first approximation for the force vector is taken as

~ A H A
FU = ﬁA 4]
Therefore from (10)

H

S /\H/\ Fay )
Fi=p4 a+(1—ﬁA A]ﬁA a

and

FaY “V“AHA /\HA AH/\ AHI\ /\‘H/\ AHA ’
Fa=p04 a+[[~ﬁA AJﬁA a+[1—ﬂA A](I—ﬁA A)ﬁA a (1
and so on,

Fay H A
Equation (11) is a geometric series with a geometric ratio of (I ~fA AJ .

. (1_ nk”)

Therefore since 1+n+n’+,...... 40" = T—) ,
' —

the k™ term can be written as

A Fal H A - Ial H A kel A H A
kaﬁ(f—-([—ﬁfl AD I—[I—,BA AJ A a (12)
The solution con\}erges for an infinite number of iterations only when
NH oA k+1
{[—ﬁA AJ —[0] as ko

In the limitting case (when k tends to infinity), therefore from (12)

Ial AHA _IJ‘\HA
m:;{m A] A a
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AHA _IAH/\
=(A A) A a

This is the Moore-Penrose pseudo inverse which minimizes the mean square error

3.3 Alternative formulation

For simplicity (11) can also be written as

Fa k N H A r A H Fal

F =ﬁ2(}-_ﬁA AJ 4 a (13)
. =0

Using singular value decomposition of the matrix 4
~ k rH

Fe=pY(1-prav®) 4 a

r=0

where A =USV*

A2 =878

A k r A 2N ’
Fo=py (vv” ~BYNVY) 4 a (14)

r=0
Note (77" - PYNTH) = (1 — BRIV (1= v{1-pa "
=V(1-pnY V" since VIV =1

Therefore (14) can be written as

A k r A H A
Fi=pYV(I-pN)V" 4 a
r=0
Again using SVD
k r

= B V(1-pa) v HVSUY a,

r=0
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- ﬁi y(1- ,BAZ)rSUH a

r=0

This equation can be simplified using geometric series as |
Fu= ﬁV(] ~(1-pa7) )(I ~(1-p8)) sU" 4
_ V(I ~(r-px)" )S“‘U” a
As the term in brackets, and S, arc diagonal matrices this can be written as

Fi = ¥diag (1—(1—/355)"*‘), ............ (1_(1_[335)“‘) Ut a (15)

Sl Sn

where n is the rank of accelerance matrix.

Equation (15) can be further simplified as

IS

Fi= Vdiag(y/l,wz, ............ W”)UH a (16a)

where

kol
(1—(1— fs? ) ) |
W, = ; : fori=1,2,. n ' (16b)

i

Thus iterative inversion can be seen as an alternative means of regularizing the inverse of

;1, replacing s7° by w,(k).

3.4 Basis for number of iterations

To find out the optimum number of iterations in order minimize the combined error it is
necessary to formulate an expression for the bias error and the variance. The expressions

can be derived as follows [15].

The reconstructed operational accelerations derived from identified forces are given by
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= Udiag(p,, @y rerreernn 6,)U" a where 4, = (1 -(1- ﬁsf)"“) (17b)

=5, a where 8, = Udiag(@,,Bssrrrr-’ 8, U " ()

Therefore the overall mean square error of the estimation is given by

MSE=¢ kz =E [(c;— a)” (c;— a):| where a = AF is the exact operational response
= E| (5, a- AF)!' (S, a- AF)}

= E||5,d |+|4F] - E{[&k 3) H}AF - (AF)HE[cSk 3}

AQ NH
= E||5, a +[AF}2—2R6{E{[5,C a} }AF}

2
Adding and subtracting E[ﬁ . a} to this equation gives

e} = E[ 2}—11’5[5;( &T E|:5k ST +|4F] —2Re{Ei:(5k ;)H}AF}

Since (assuming the measurement of a is unbiased)(E [5 X aD =06, AF, the first two

[

A
o, a +

terms in the equation can be simplified as

E[ EHE{ak E}T - E{ E}L[@,‘ AR’ —~2Re{[E{5k QD Hc?kAF}
- E{(fsk a5, AF} H(csk a— 6,(AFH

Similarly the last three terms can be simplified as

AN N
o, a b, a
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2

o

+14F] —2Re{E{(5k EJH}AF} =[5, 4F|" +|4F|’ ~2Re|(5,4F)" 4F

= (5, AF — AF)" (8, AF - AF)

Therefore the expression for MSE can be written as

Fat H AN
g = E{(é‘k a- &, AF) [cn a- 35, AF)} +(8,AF - AF)" (5, AF - AF)

~F (5k {3— AF}] H[ak {.cL AF}H +((5, -1 4F)"((8, - 1)4F)

- E_z‘mce{(ék {3~ AF}](ak {3— AF})HH +(aFY' (8, - )" (5, - I)A];“

—E trace{c?k (2— AF)(;H AF) ’ 5,(”H +(4FY' (5, - D) (5, - })AF (18)

If it can be assumed that same variance ¢ * exists for all the measurement points, this

reduces to

g =0’ > 7 +(4F) (8, - 1) (6, - I)(4F) (19)

i=1
where ¢ is defined in (17a).
The above equation cannot be quantified since ‘F’ is unknown. The second term,

however, can be simplified as follows.

The actual bias error is given by b=(5, - I)(4F)

A N
whilst, the estimated bias error is given by 5 = (5 =1 )[aj
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The variance of the estimated bias error from the true bias error can be obtained

(assuming [l;} =bh)as

E{(B— b) H(@- bﬂ - E—(2~ AF] H(ak -1)"(5, - I)(g— AFH (20)

_ m,ce(((gk - 1)(2_ AF))((@ - 1)(2_ A FD Hﬂ

=E trace((é‘k - I)[;\— AF] (Qﬂ_ 4 F) ”(5k - I)HH

-

Again with the assumption that the variance o ? is the same for all the acceleration

measurements, the above equation can be simplified as

E[(g— b) H[g_ bﬂ - E[azz‘race(U(dfag({ﬁl . ) - 1)(diag(¢1 ,'_¢n)_ ])H Uﬁjjl

_ E[azrmce(U{dfag(gﬁf,..¢3) ~2diag($,,-4,)+ I}U”)

=az(i¢? —2i¢f+n) @y

The left hand side of (21) can also be simplified as
A H Fa) A H Fay Ial H
E{[b— bj (b— b}} = E{b b} + E[p"b] -2 Re{E[b bi|}

As it has already been assumed that F [g} = b, therefore

E{[Bm b)H[B— bj:| - EFH B}—b”b

Using (21)
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AH A H n
E{b b}—b”b = az(zqﬁ -2 ¢, +n}
i=1 i=]

= b“b:E{gHg}—{az(i¢f~2i¢f+n)} (22)

Combining the above equation with the earlier expression (19)

AT A

& = 02(2i¢f —n) +E[b b:|

i=1

Since

AN AHA
Eb-bi=b b {23)
the mean square error can finally be written as

: 2 i AT A
g,=0"12> ¢, —n|+b b (24)

i=1
The above expression is used in arriving at a compromise between the bias error and the

variance. This can be readily established by expanding the terms in (24) as below

gl =g’ (224&] —no-5 + (3) HU(diag(¢i,...q$,,)~ I)H(diag(gél,...qéﬂ)— I)U”(g)

The second term in this equation is a constant value which does not change with the
number of iterations ‘k’. The cross over occurs when the first term equals the third term

and where the magnification of random etrors starts dominating i.e

02[22 ¢j) = [2) HU(diag(qél yourf,) = I)H(diag(gél yerh) = J)U”[Sj

The iteration number ‘k’ which results in the above condition is the optimum iteration

number which gives a compromise between bias error and the magnified random errors.



This iteration number can be used in (16) to obtain the reconstructed forces with

minimum error.
3.5 Convergence parameter -

The convergence parameter 3 decides how fast the solution is going to converge to the
Moore-Penrose pseudo inversion. The larger the value of convergence parameter, the
faster is the convergence. As already mentioned, however for convergence to occur the

following condition has to be satisfied
) LH oA k+1
(1—;344 AJ —[0] as k—>w

The above expression decides the upper limit for the convergence parameter. Using

singular value decomposition, this convergence criterion can also be written as

(1-ps7) <1 fori=t,2, . n.

Therefore p< —2—
57

b

If only one convergence parameter value [ is used for all singular values, the part of the

solution contributed by the larger singular values converges faster than the smaller ones.
The difference increases as the condition number increases. Since in the case of high
condition number, smaller singular values are prone to modification by measurement
errors, the slower convergence can be effectively utilised in restricting the iteration to
reduce the error propagation. To accommodate the above criterion, the convergence

parameter can be written as

where ¢ is a constant less than one.

B =

e



To improve the resolution i.e enough number of iterations, it is necessary that t£e
convergence parameter constant ‘c’ has different values for different condition numbers.
This is because at smaller condition numbers if a large constant is used the cut-off
iteration occurs at a very low iteration number. This is found to reduce the resolution.
Hence the constant ‘c’.can be varied based on the condition number. The following
exponential expression has been devised for use in the simulations in this study
c=1-099%7"

where
x = Condition number of the accelerance matrix

y - Constant which controls exponential decay, in this study it is taken to be 0.1

The above expression is also represented graphically as shown in Figure 12.
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Figure 12. Variation of ‘¢’ for y=0.1

3.6 Noise in the operational responses

The standard deviation in the operational response can be obtained either directly (by
averaging) or indirectly as in [14]. Based on this standard deviation, the cut-off iteration
number can be determined. There is a difficulty in choosing the cut-off iteration number

by error compromise when the standard deviation is larger than or considerable in



magnitude compared to the response itself (eg at antiresonance). In this situation, based
on the error expression it is observed that the cut-off criterion is satisfied already at the
first iteration. This results in an underestimation of the forces concerned. Another
problem is faced at resonance where the standard deviation is very small compared to the
operational response which might lead to a larger number of iterations being required for
error equalization (bias and variance). A large number of iterations means larger
amplification of measurement errors. Hence the force reconstruction would be incorrect
in both cases.

This problem can be overcome if a fixed percentage of the operational response is taken
as the assumed standard deviation (10% or 20% etc of response), which introduces a
small bias in the response predicted at the receiver location. This strategy results in
another problem however, that of finding the fracti_on of operational response to be used
as the assumed standard deviation. In this study a solution is proposed in which the
reconstructed forces are used to validate operational responses other than the ones used
for force reconstruction. For this, the fraction is varied in some range (10 to 50%) in
small steps (5% step) and the fraction which results in small validation error at each
frequency is used for force reconstruction at those frequencies. The expression for the

validation error is given below

~ A
()| @
valid J valid
N
g
valid

where m is number of validating responses used

J

J

(a) - Vector of reconstructed validating operational responses
valid



(a) - Vector of measured validating operational responses
valid

In the derivation of the total error in reconstruction, it is assumed that the standard
deviation in the measurement of operational responses is same for all the responses. To
generalize further, it is possible to incorporate individual standard deviation in the
measurement of operational responses with minor modification in the formulation given
in equations (19), (20), (22) and (23) as below

£ = E{mce{ék (3“ AF ) (2’_ AF) HngH

+E{rmce((5k - 1)[2— AF)(Q— AF) H(ak - I)Hﬂ— 5

The above equation can be simplified using a covariance matrix ‘a’ as

H

FASERVAY .
~b b (25)

&% = race(5,C0V ()8, ) + trace{ (s, — 1)COV(@)(5, - 1)"

The folloWing strategies are compared for force reconstruction in this chapter

1. Common standard deviation for all the responses estimated from measurements.

2. Individual standard deviations for each of the responses estimated from measurments
(equation (25) - values on the diagonal of COV(a) are used).

3. 25% of response as the standard deviation,

4. Standard deviation chosen in the range of 10 to 50% of response along with validation.

In all the simulations the same flat plate is used as previously with four sources and five
responses, except in the 4th case where 4 x 4 FRF matrix is used for force reconstruction
and the last response is used for validation. The standard deviation which results in the
minimum sum of errors at each frequency is used in the reconstruction of forces in this

4th case.



3.7 Force reconstruction

The variation of bias error and variance with respect to the number of iterations for one of
the frequencies is shown in Figure 13. The iteration number where these two errors
coincide is taken as cut-off iteration number. Figure 14 shows cut-off iteration numbers
for each of the frequencies. The reconstructed force 1 is shown in Figures 15a-d for all
the four cases. The strategy based on a common standard deviation results in an
underestimation at many frequencies and an overestimation near the first resonance
(Figure 15a). The use of individual standard deviations does not make much difference in
thé fofee reconstruction (compare Figure 15a and 15b). When 25% of the response is
used as the standard deviation, the reconstruction is much superior and is comparable to
Tikhonov regularization result (compare Figure 15¢ and Figure 1d). Using the percentage
of the response found from the validation as the standard deviation results in a similar
reconstruction as when 25% of the response is used (compare Figure 15d and Figure
15¢). However, there is a spiky reconstruction near the first resonance which is due to the
fact that many possible force reconstructions would also lead to good response
predictions in this region (first resonance).

The reconstructed forces 2-4 show same trends as seen from Figures 16-18. The force
reconstruction is also shown in 1/3 octave band representation in Figures 19a-d. Again, as
can be seen the fixed percent of response used as standard deviation gives superior results
(Figures 16c-d). The optimum percentage of the response used as standard deviation in
the simulation of the 4th case is shown in Figure 20. It can be seen to vary befween 10%

and 50%.
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3.8 Velocity at the re&%iver location

Figures 21a-d show the 1/3 octave band velocity response contribution at the receiver
location from force 1. The velocity contribution calculated with the variable percentage of
response used as the standard deviation determined using validation results in the least
error compared to all other strategies (compare 21d with 21a-c). The prediction is slightly
superior to that of Tikhonov regularization {compare Figure 21d and Figure 6d).

The similar trend is observed in contribution of forces 2-4 to the velocity response. The
contributions from forces 2-4 are shown in Figures 22-24,

The vetocity response due to all forces at the receiver location for all four cdses are
shown in 25a-d. The prediction with the variable percentage of response used as the
standard deviation determined using validation follows the actual response more closely
than others (compare 25d with 25a-¢). This prediction is superior to that of Tikhonov
regularization in the higher frequency range (compare Figure 25d and Figure 10d). This is

also evident when represented in 1/3 octave bands (compare Figure 26d and 11d).
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3.9 Summary

Using an example of a 5 x 4 FRF matrix it has been shown that iterative inversion based
on assumption of a fixed percentage of the response as the standard deviation alongwith
validation gives superior results to other iterative inversion schemes.

To quantify the above comparison, the table 2 given below shows the average 1/3 octave

band error (in dB) in the velocity prediction by each of the methods.
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Table 2 - Summary of results (Average 1/3 octave band errors in dB)

Method Force 1 Force 2 Force 3 Force 4 Total Rank
(19N {10N) (27N) {6N) contribution
contribution | contribution contribution | contribution

Common std 5.9 5.6 6.9 6.6 2.8 3
deviation

Individual std 59 7.0 53 8.2 2.8 4
deviation

25.% of resp as 3.1 4.9 2.7 6.4 2.4 2

std dgiiation
10 to 50% of resp 23 49 17 6.7 2 1

as std deviation
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4. Conclusions

Using numerical simulations, force reconstruction and transfer path analysis has been
carried in continuation of the earlier work [5-6]. In this study regularization techniques
are investigated for force reconstruction and the contributions of individual forces to the
response at the receiver location are compared. The Tikhonov regularization is
implemented based on an ordinary cross validation scheme for choosing the
regularization parameter. In the second study, iterative inversion is investigated for force
reéons’fmction. Bias error and variance are usgd to armmve at an optimum number of
iterations. The following conclusions are drawn based on these simulations,

1. Tikhonov regularization results in better reconstruction of individual forces and their
contribution compared to the singular value rejection or resampling of the accelerance
matrix.

2. The iterative inversion based on a common standard deviation under-estimates the
forces near antiresonances. The solution is biased to a large extent. In fact singular value
rejection based contributions are less over-estimated than this case.

3. Even when the individual measured response standard deviations are used, the force
reconstruction is similar.

4. By assuming a fixed percentage of the responses as the standard deviation a flexible
scheme is developed by which force reconstruction can be controlled. The results with the
concept of validation error are better compared to Tikhonov regularizatioﬁ based on

ordinary cross validation.
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