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The scattering cross-section �s of a gas bubble of equilibrium radius R0 in liquid can be written in
the form �s=4�R0

2 / ���1
2 /�2−1�2+�2�, where � is the excitation frequency, �1 is the resonance

frequency, and � is a frequency-dependent dimensionless damping coefficient. A persistent
discrepancy in the frequency dependence of the contribution to � from radiation damping, denoted
�rad, is identified and resolved, as follows. Wildt’s �Physics of Sound in the Sea �Washington, DC,
1946�, Chap. 28� pioneering derivation predicts a linear dependence of �rad on frequency, a result
which Medwin �Ultrasonics 15, 7–13 �1977�� reproduces using a different method. Weston
�Underwater Acoustics, NATO Advanced Study Institute Series Vol. II, 55–88 �1967��, using
ostensibly the same method as Wildt, predicts the opposite relationship, i.e., that �rad is inversely
proportional to frequency. Weston’s version of the derivation of the scattering cross-section is shown
here to be the correct one, thus resolving the discrepancy. Further, a correction to Weston’s model
is derived that amounts to a shift in the resonance frequency. A new, corrected, expression for the
extinction cross-section is also derived. The magnitudes of the corrections are illustrated using
examples from oceanography, volcanology, planetary acoustics, neutron spallation, and biomedical
ultrasound. The corrections become significant when the bulk modulus of the gas is not negligible
relative to that of the surrounding liquid.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3180130�

PACS number�s�: 43.20.Ks, 43.30.Pc, 43.35.Bf, 43.35.Zc �ADP� Pages: 2163–2175
I. INTRODUCTION

Gas bubbles play an important role in the generation,
scattering, and absorption of sound in a liquid.1 Applications
include performance prediction for search sonar or underwa-
ter telemetry, acoustical oceanography, medical and indus-
trial ultrasound, and volcanology. The acoustic properties of
bubbles are generally well understood, to the extent that
acoustical measurements are sometimes used to determine
characteristics of bubble clouds such as their size
distribution.2–5 Such acoustical characterization of bubble
properties requires a firm foundation in theory.

The purpose of this article is to highlight and resolve a
discrepancy that exists at the heart of the currently accepted
theory of bubble acoustics. The scattering cross-section, �s,
of a small spherical bubble of equilibrium radius R0, under-
going forced linear pulsations at angular frequency �, is
commonly written in the form

�s =
4�R0

2

��1
2/�2 − 1�2 + �2 , �1�

where �1 is the bubble’s pulsation resonance frequency and
� is a dimensionless frequency-dependent parameter known
variously as the loss factor, damping constant, or damping

coefficient. The term “damping coefficient” is adopted here
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throughout. The value of � at resonance is equal to the re-
ciprocal of the Q-factor.

In Sec. II two models for � are described that differ in
the frequency dependence of the damping due to acoustic
re-radiation in the free field6 �known as “radiation damp-
ing”�. In one of these, published by Wildt7 and Medwin,2,8

the radiation damping coefficient is directly proportional to
frequency, whereas in the other, published by Andreeva9 and
Weston,10 the proportionality is an inverse one. This discrep-
ancy has hitherto gone largely unnoticed, to the extent that
the authors know of only three publications that mention
it.11–13

In Sec. III two different derivations for �s are provided,
with particular attention to establishing the correct frequency
dependence of � for small bubbles. It is shown that the dis-
crepancy is caused in part by ambiguity in the definition of �,
and three alternative �though not equivalent� definitions for
this parameter are suggested, which can be expressed in
terms of the unambiguous damping factor �. The first of the
two derivations, which includes thermal damping using a
generalization of Weston’s method, leads to Eq. �25�, includ-
ing a correction term that is not present in Weston’s original
formulation. The second, starting from Prosperetti’s14 equa-
tion of motion, leads to Eq. �43�, of identical form to Eq.

�25�, and also including the new correction term. This second
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derivation, which permits a more general damping factor,
leads further to new expressions for the resonance frequency
�Eq. �47�� and extinction cross-section �Eq. �67��. The result-
ing expression for �s is compared with a reference solution
due to Anderson,15 which, unlike the other models consid-
ered, has no restriction on bubble size, and serves as ground
truth for the situation involving only acoustic radiation
losses. In Sec. IV the persistence of the discrepancy and its
consequences for the extinction cross-section are discussed.
�The Andreeva–Weston model, shown in Sec. III to be the
correct one, was last used in the open literature, to the best of
the authors’ knowledge, more than 40 years ago,10,11 whereas
the incorrect formulation is widely promulgated through
standard reviews.1,16–18� This is followed in Sec. V by a de-
scription of scenarios in which the magnitude of the required
correction is not negligible, and conclusions are summarized
in Sec. VI.

II. SCATTERING CROSS-SECTION: PUBLISHED
RESULTS

In this section some previously published results for the
scattering cross-section of a single bubble are considered,
stripping them of all forms of damping other than radiation
damping. Thus, except where stated otherwise, the effects of
viscosity �of the liquid� and thermal conduction �in the gas�
are neglected. Surface tension at the boundary is also ne-
glected. These assumptions are made for simplicity and clar-
ity, in order to highlight the discrepancy in the radiation
damping term. The publications form two groups, each
adopting a different model for the frequency dependence of
the radiation damping term.

A. Wildt–Medwin „WM… model

The first relevant publication is the volume edited by
Wildt,7 Chap. 28 of which presents, for the first time, a de-
tailed description of the response of a bubble to ensonifica-
tion through resonance. Reference 7 offers a clear physical
insight into the important physical mechanisms that give rise
to damping at and around the resonance frequency.

Wildt’s derivation suggests that if acoustic re-radiation
is the only loss mechanism, then � has a linear dependence
on frequency. Specifically, Wildt’s formula for the radiation
damping coefficient is

�WM��� =
R0

c
� , �2�

where c is the speed of sound in the surrounding liquid.
Equation �2� is used by Medwin8 to describe the frequency
dependence of radiation damping in Eq. �1�, and further pro-
mulgated by its use in landmark papers12,19,20 and standard
reviews.1,16–18 The use of �WM��� from Eq. �2� in place of
the radiation damping coefficient in Eq. �1� is referred to as
constituting the WM model.

B. Andreeva–Weston „AW… model

A form of the damping coefficient that is less well
10
known is derived by Weston and appears for the first time
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�without derivation� in the work of Andreeva.9 Although
Weston does not introduce the variable � explicitly, his deri-
vation of �s results in an expression that is consistent with
Eq. �1� only if the radiation damping coefficient is inversely
proportional to frequency, that is, if � is replaced with �AW,
given by

�AW��� =
�1

2R0

c
�−1. �3�

The use of �AW��� from Eq. �3� in place of the radiation
damping coefficient in Eq. �1� is referred to as constituting
the AW model. A graph similar to Fig. 1 from Medwin’s
paper,8 showing the variation in the total damping coefficient

FIG. 1. �Color online� Theoretical damping coefficient vs equilibrium
bubble radius for air bubbles in water at atmospheric pressure �0.1 MPa� for
acoustic frequencies 1, 30, and 1000 kHz, calculated using �a� the Wildt-
Medwin model and �b� the Andreeva–Weston model. The total damping is
the black solid line and the contribution due to acoustic radiation is shown
as a dash-dotted line �-.-�. The remaining curves are for viscous and thermal
damping, as indicated by the legend. The resonant bubble radius �denoted
�R0�res� is marked for each frequency using a vertical gray line �cyan online�.
This quantity is calculated here as the value of the equilibrium bubble radius
R0= �R0�res that satisfies the condition �0�R0 ,��=�, where �0 is given by
Eq. �23� �generalized to incorporate surface tension effects �Ref. 14��.
with bubble radius R0 at three frequencies, is presented here
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as Fig. 1�a�, using Eq. �2� for the radiation damping coeffi-
cient, proportional to R0. Figure 1�b� shows the damping
coefficient plotted in the same way, except that the contribu-
tion from acoustic radiation is calculated using Eq. �3�. Both
graphs include viscous and thermal damping, as well as the
effects of surface tension. The discrepancy between WM and
AW models of radiation damping is apparent from the lower
right portion of each solid curve, where the radiation damp-
ing term is dominant.

Apart from by Weston himself,11,21 use of the AW model
is rare. The only other publication the authors know of is that
of Anderson and Hampton,12 which presents three different
equations for �s: first, their Eq. �54� �attributed by Anderson
and Hampton12 to Spitzer22 and abbreviated here as AH-54�,
which Anderson and Hampton state is not valid away from
resonance, and is identical to the WM model; second, a cor-
rected version, AH-55, which is identical to the AW model;
and third, AH-56, which includes additional effects due to
viscous and thermal damping and forms the basis of their
subsequent calculations of bubble attenuation vs frequency.
Once stripped of these extra complications, AH-56 reduces
not to AW but to WM, making AH-55 and AH-56 mutually
inconsistent.

III. SCATTERING CROSS-SECTION: THEORY

Spherically symmetrical pulsations of a single gas
bubble of negligible density in an infinite volume of liquid
are considered. Except in Sec. III E the bubble radius is as-
sumed to be small compared with the acoustic wavelength in
the liquid. Perturbations to the bubble’s radius are assumed
small, permitting use of the methods of linear acoustics.

A. Damping factor „�…

Following Morfey,23 the expression “damping factor” is
used in this paper to refer to the parameter � in the equation
of motion

Ẍ + 2�Ẋ + �nat
2X = 0, �4�

where the dots represent time derivatives and �nat is the un-
damped natural frequency. In the following Eq. �4� is applied
to the bubble, with X representing the departure of the bub-
ble’s radius �R� from its equilibrium value �X=R−R0�. Con-
sidering further a sinusoidal forcing term of angular fre-
quency �, and in general permitting � to vary with
frequency, �→����, the equation of motion then becomes

R̈ + 2����Ṙ + K����R − R0� = F���ei�t, �5�

in which R is understood to be a complex variable and � ,K
are real parameters that are independent of time, representing
resistive and elastic forces, respectively. Like �, the param-
eters K and F can also be functions of the forcing frequency

�. The effect of inertia is included in the forcing term, so that
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Fei�t = −
4�R0

2

mRF
rad PF�t� , �6�

where PF is the external forcing pressure, mRF
rad is the radia-

tion mass in the radius-force frame,1 equal to three times the
displaced liquid mass

mRF
rad = 4��0R0

3, �7�

and �0 is the equilibrium density of the liquid.
The particular solution to Eq. �5� is

R = R0 +
F

K − �2 + 2i��
ei�t, �8�

and hence

�R − R0�2 =
�F�2/�4

�K/�2 − 1�2 + �2�/��2 . �9�

If the term 2� /� is small, then the maximum response oc-
curs when � is equal to �K, which means that K may be
approximated in Eq. �9� by the square of the resonance fre-
quency �K��1

2�. If this substitution is made, the similarity
between the denominators of Eq. �9� �the radial excursion�
and Eq. �1� �the scattering cross-section� makes it tempting
to assume further that � is equal to 2� /�, but is it correct to
do so? It turns out there is no simple answer to this question,
as the true relationship between � and � depends on the
precise definition of �, which is explored further below.

B. Derivation of the damping coefficient „�…, based on
Weston

The following derivation follows the method of
Weston,10 generalized by replacing the specific heat ratio ���
with a complex polytropic index �denoted ��. Consider a
plane wave pi of pressure amplitude A and angular frequency
�:

pi = A exp�i��t − x/c�� , �10�

incident on a spherical bubble placed with its center at the
origin such that the factor F in Eq. �5� is given by

F = −
A

�0R0
�11�

and

PF = pi�x = 0� = A exp�i�t� . �12�

Assume that the scattered wave ps is a spherical one of am-
plitude �B� /r, such that

ps = �B/r�exp�i��t − r/c�� , �13�

where r is the distance from the origin. The scattering cross-
section �s can then be defined in terms of the ratio B /A as

�s � 4��B/A�2, �14�

Weston’s derivation for this ratio is now followed. Euler’s
equation relates ps to the radial component of particle veloc-

ity u:
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−
�ps

�r
= �0

�u

�t
. �15�

Substituting Eq. �13� into Eq. �15� relates the particle veloc-
ity in the liquid at distance r from the bubble center to the
acoustic pressure associated with the spherical radiated field,
ps�r�, giving

u�r� = 	1 −
i

�r/c
 ps�r�
�0c

, �16�

which, when evaluated at the bubble wall, relates the scat-
tered amplitude to the rate of change of bubble volume V
�assuming that departures from the bubble’s rest radius are
small�

B

R0
2 �1 + i�R0/c�exp�i��t − R0/c�� =

i��0

4�R0
2

dV

dt
. �17�

An expression for dV /dt can be found by differentiating the
polytropic relationship between pressure and volume �PV�

=constant, where � is the complex polytropic index of the
air bubble17,24�. If the hydrostatic pressure is P0 and the
acoustic pressure inside the bubble is pb, such that the total
interior pressure is P0+ pb, the result is

dV/dt = − i�pbV0/�P0, �18�

where V0 is the unperturbed bubble volume. Substituting for
dV /dt in Eq. �17� and rearranging for the interior acoustic
pressure

pb = 4�
�P0B

�0V0�2 �1 + i�R0/c�exp�i��t − R0/c�� . �19�

In the absence of surface tension, this pressure must equal
the sum of the incident and scattered fields �using Eqs. �10�
and �13��:

pb = 	A +
B

R0
e−i�R0/c
e+i�t. �20�

Equating the right hand sides of Eqs. �19� and �20�, and
solving for the ratio B /A, the result is �introducing the short-
hand 	 for �R0 /c�

B

A
=

R0

��1 + i	�
2/�2 − 1�e−i	 , �21�

where 
 is a complex parameter given by the equation


�R0,��2 = 4�
��R0,��P0R0

�0V0�R0�
, �22�

the real part of which is closely related to the pulsation reso-
nance frequency. Specifically, if � is real and independent of
frequency �which occurs for both isothermal and adiabatic
pulsations�, then 
 is equal to the bubble’s natural frequency.
For example, in the adiabatic case � and 
 are equal to the
specific heat ratio and the Minnaert frequency,25 respectively.

To proceed further, the following variables are defined

�0�R0,�� � �Re�
�R0,��2� �23�
and
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�th�R0,�� �
Im�
�R0,��2�

2�
. �24�

The variable �1 was introduced earlier as the “resonance
frequency” but not properly defined. The new variable �0

plays a similar role and can be thought of as a more rigor-
ously defined version of the same variable, though it is more
closely related to the natural frequency than the resonance
frequency. Wherever the symbol �0 is used below, it is al-
ways in the sense of Eq. �23�.

With these definitions, from Eq. �21� the following gen-
eralization of Weston’s expression for the scattering cross-
section is obtained:

�s =
4�R0

2

	�0
2

�2 − 1 − 2
�th

�
	
2

+ �AW���2

, �25�

where

�AW��� � Im
pi�0�

ps�R0�
= 2

�th

�
+

�0
2

�2 	 . �26�

If thermal effects are neglected �implying that �0=�nat and
�th=0�, Equation �25� simplifies to the AW model with �1

equal to �nat. The correction term −2�th	 /� in the denomi-
nator of Eq. �25� �amounting to a fractional correction to the
resonance frequency of �th��0�R0 /c� is new.

Wildt’s derivation makes the same assumptions and fol-
lows an almost identical procedure as Weston’s, so why does
it result in a different expression for � �Eq. �2��? A close look
at Wildt’s derivation reveals a subtle error on p. 462. The
error occurs in the step from Wi-17 to Wi-22, where the
abbreviation Wi-n indicates Eq. �n� from Ref. 7. Specifically,
although Wi-13, Wi-16, and Wi-17 are correct to first order
in 	, a missing second order term is required for the step to
Wi-22. To illustrate the nature and importance of this missing
term, the expansion exp�−i	�=1− i	−	2 /2+O�	3� is substi-
tuted in Eq. �21� to obtain

B

A
=

R0


2/�2 − 1 + 	2�
2/�2 + 1�/2 + i	 + O�	3�
. �27�

Substituting Eq. �27� in Eq. �14� gives Eq. �25� to this order
of accuracy, again consistent with the AW model.

One might conclude from this that Wildt’s equation for �
�Eq. �2�� is incorrect. Indeed, if � is defined through Eq. �1�,
that would seem to be the only possible conclusion. In order
to be unambiguous, however, such a definition of � requires
the resonance frequency �1 to be defined first. Both
national26 and international27 standards provide different
definitions of resonance frequency to choose from, depend-
ing on the type of resonance �peak response of, for example,
scattered pressure, or bubble wall velocity, or displacement�
each leading to a different �. The most obvious choice for the
present purpose would be to define the resonance frequency
as the frequency that maximizes �s, but this choice leads to
an internal contradiction, because this frequency cannot be
equal to �1 in Eq. �1� unless the derivative ����� vanishes at
�=�1. The issue of the resonance frequency is addressed in

Sec. III D, but here a second interpretation is considered,
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based on Wildt’s implied definition �from Wi-32� as the
imaginary part of the ratio of R0 to the scattering amplitude.
Denoting this quantity �Wildt:

�Wildt��� � Im
R0

B/A
, �28�

so that

�Wildt��� = Im	 pi�0�
ps�R0�

e−i	
 . �29�

With this definition it follows �by substituting Eq. �21� into
Eq. �28�� that

�Wildt��� = 	2
�th

�
+

�0
2

�2 	
cos 	 − 	�0
2

�2 − 1 − 2
�th

�
	
sin 	

= 2
�th

�
+ 	 +

�th

�
	2 −

1

6
	2

�0
2

�2 + 1
	3 + O�	4� �30�

and

�s =
4�R0

2

	�0
2

�2 − 1
2

+ �Wildt
2 + 	�0

4

�4 − 1
	2 + O�	2�Wildt
2�

,

�31�

replacing Wi-34, which is missing the term ��0
4 /�4−1�	2.

The physics underlying the source of these discrepancies
is illustrated by Eq. �16�. The ratio of the local scattered
pressure field to the local particle velocity contains both real
and imaginary parts �through substitution of Eq. �13� into Eq.
�15��. At the limit of r→�, this ratio is real and equal to the
impedance of a plane wave, the pressure and velocity are in
phase, and indeed locally the wavefront appears planar at r
→�. At the limit of r→0, they would be � /2 out of phase,
but this limit cannot be achieved because the bubble wall
prevents one tracking back from r→� to r→0. On such a
track the magnitude and phase of the ratio of ps to u changes
from the r→� value, the phase difference increasing to-
wards � /2 without reaching it. The discrepancy lies in the
order to which one approximates by how much the magni-
tude and phase of the ratio differs from the r→0 value. This
is made clear by the way the 	=�R0 /c terms enter the deri-
vation of Prosperetti:14 the amplitude term 	 / �1+	2�1/2 is
retained to second order �equations 3.102, 3.105, and 4.190
of Ref. 1�.

It is shown above that, after correcting the error in
Wildt’s derivation, the results of Wildt7 and Weston10 are
consistent. It now remains to investigate how Medwin,2 who
uses the damping model of Devin,28 independently repro-
duces Wildt’s original �uncorrected� result, thus creating a
second discrepancy, this time between Weston10 and
Medwin.2,8 Prosperetti’s14 formulation is now used to ad-
dress this remaining discrepancy.

C. Alternative derivation of the damping coefficient,
based on Prosperetti

Building on the work of Smith,29 Devin28 derives an

equation of motion for the bubble volume that includes ef-
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fects of viscous, thermal, and acoustic damping. Prosperetti14

derives an equation of motion for the bubble radius, includ-
ing O�	2� correction terms to Devin’s equation, that can be
written �in the present notation� as

R̈ + 2�Ṙ + K�R − R0� = −
A

�0R0
e+i�t, �32�

where �neglecting effects of surface tension for consistency
with Sec. III B�

K = �0
2 +

	2

1 + 	2�2, �33�

� = �0 +
	

1 + 	2

�

2
�34�

and �0 is the contribution to the damping factor � from
mechanisms other than acoustic radiation. �For example, the
combined contribution from shear viscosity � and thermal
losses would be �0=�th+2� /�0R0

2 �Refs. 14 and 30�.�
The input impedance Z is defined as the ratio of incident

pressure �at x=0� to the particle velocity at r=R0:

Z �
pi�x = 0�

us�r = R0�
= i�0c		 K

�2 − 1 + 2i
�

�

 . �35�

An expression for the scattered pressure can then be derived
in terms of � by use of Euler’s equation �at r=R0�:

us�R0� = − i
1 + i	

�0c	
ps�R0� . �36�

Eliminating us from Eqs. �35� and �36� gives

pi�0�
ps�R0�

= − i
1 + i	

�0c	
Z , �37�

which can be written as

pi�0�
ps�R0�

=
�0

2

�2 − 1 − 2
	�0

�
+ i	2

�0

�
+

�0
2

�2 	
 . �38�

Substitution of Eq. �38� in Eq. �29� results in an equation
identical to Eq. �30� except with �th replaced by the more
general �0.

Calculating the scattering cross-section with radiation
damping only �i.e., set �0=0 in the squared modulus of Eq.
�38�� the result is Eq. �1�, with �1=�0 and Eq. �3� for the
damping coefficient, once again in agreement with the AW
model, which therefore must be the correct one.

Medwin2,8 defines � as

�Medwin��� �
2�

�
, �39�

and then uses this expression for � in Eq. �1�, implicitly �and
incorrectly� assuming that it is equal to the imaginary part of
the pressure ratio �Eq. �38��. Substituting Prosperetti’s result

for � in Eq. �39� gives
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�Medwin��� =
2�0

�
+

	

1 + 	2 = 2
�0

�
+ 	 − 	3 + O�	5� . �40�

Comparison with the imaginary part of Eq. �38� demon-
strates that this assumption results in an unwanted factor
�2 /�0

2 in the radiation damping term, coincidentally repro-
ducing Wildt’s result for �s and reinforcing the erroneous
impression that Medwin’s and Wildt’s expressions for the
scattering cross-section are both correct. To lowest order in 	
and �0, the damping coefficients �Wildt and �Medwin are equal:

�Medwin = �Wildt −
�0

�
	2 −

1

6
	5 − 2

�0
2

�2 
	3 + O�	4� . �41�

A convenient form for �s that follows from Eqs. �35� and
�37� �with Eq. �39�� is

�s =
4�R0

2�1 + 	2�−1

�K/�2 − 1�2 + �Medwin
2 , �42�

or �equivalently�

�s =
4�R0

2

	�0
2

�2 − 1 − 2
�0

�
	
2

+ 	2
�0

�
+

�0
2

�2 	
2 . �43�

Equation �43� is derived from Prosperetti’s equation of mo-
tion. It is identical in functional form to Eq. �25�, which is
derived using the generalization of Weston’s method that was
outlined in Sec. III B. The only difference between them is
the appearance in Eq. �43� of the more general �0 instead of
�th for the non-acoustic damping factor.

Comparison of Eq. �40� �with �0=�th� with Eq. �26�
then gives

�Medwin = �AW +
	

1 + 	2 − 	
�0

2

�2 . �44�

D. Effect of radiation damping on the resonance
frequency

The resonance frequency predicted by the AW and MW
models and by Eq. �43� are now compared. Specifically, the
WM and AW models are considered in the form

�WM =
4�R0

2

	�0
2

�2 − 1
2

+ 	2
�0

�
+ 	
2 �45�

and

�AW =
4�R0

2

	�0
2

�2 − 1
2

+ 	2
�0

�
+

�0
2

�2 	
2 . �46�

In all three cases, the ratio �s /R0
2 is a function of the three

parameters � /�0, 	0, and �0 /�0, where 	0=�0R0 /c.
For a pressure resonance, the resonance frequency can

be defined26,27 as the frequency at which the magnitude of

the mean square scattered pressure response �proportional to
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�s� is maximized. Adopting this definition and denoting the
corresponding resonance frequencies �43, �WM, and �AW,
gives the result

	 �0

�43

2

= 1 −
2�0

2

�0
2 −

	0
2

2
, �47�

	 �0

�WM

2

= 1 −
2�0

2

�0
2 +

	0
2/2

1 − 2�0
2/�0

2

+ O�	0
4� �	0

2  1� �48�

and

	 �0

�AW

2

= 1 −
2�0

2

�0
2 −

	0
2

2
− 2

	0�0

�0
. �49�

No approximation is involved in the derivation of either Eq.
�47� �from Eq. �43�� or Eq. �49� �from Eq. �46��, except for
the assumption that both �0 and �0 are independent of fre-
quency. That of Eq. �48� �from Eq. �45�� requires the further
assumption that 	0

2 is small.
The main point here is that the O�	0

2� term in Eq. �48�
has the wrong sign. This sign error, which can be traced back
to the incorrect frequency dependence in the radiation damp-
ing term of the WM model, implies that the WM model
systematically underestimates the resonance frequency by a
fraction of order 	0

2. If a measurement of the resonance fre-
quency were used to estimate the bubble radius, the WM
model would lead to a bias of the same order in the inferred
radius.

E. Comparison with breathing mode solution for �0
=0

The scattering amplitude for the breathing mode of a
spherical gas bubble of arbitrary radius �i.e., without restric-
tion on the magnitude of 	0� is now evaluated for the case
when �0=0. It has already been shown theoretically that �of
the models considered so far� AW �or Eq. �43�� is the correct
version. The purpose of the present section is to show that
there exists a regime in which 	 is large enough for the
discrepancy to become an issue, while remaining small
enough for the derivation to hold. The amplitude of the scat-
tered wave associated with the pulsating or “breathing”
mode �denoted Bbm� is determined by15 �see also Ref. 16�

AR0

Bbm�x�
=

�0
2

�2 	 sin 	 − cos 	�1 − ��x��

�0
2

�2 cos 	 +
sin 	

	
�1 − ��x��

+ i	 , �50�

where

��x� �
�0

2

�2 + 1 −
3

x2 �1 − x cot x� , �51�

x =
�

�0
��g

�0
, �52�

and �g is the equilibrium gas density. The scattering cross-

section for the breathing mode is introduced as
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�bm�x� � 4��Bbm�x�/A�2, �53�

with Bbm given by Eq. �50�, and the variable �0 is defined as
this cross-section evaluated with zero gas density

�0 � �bm�0� . �54�

This quantity is plotted in Fig. 2 for the case 	0=0.3 and
compared with the approximations WM and Eq. �43� for the
same case, and with �0=0, for consistency with Anderson’s
model �Eq. �43� and AW are identical for this case�. This
graph is valid for any gas of negligible density in any liquid.
As expected from the sign error in Eq. �48�, WM underesti-
mates the resonance frequency �this is caused by the error in
radiation damping�, whereas Eq. �43� gives the correct reso-
nance frequency. Both WM and Eq. �43� overestimate the
maximum breathing mode scattering cross-section. This
anomaly is explained below, in the discussion following Eq.
�58�.

The effect of departures from zero gas density are now
considered by plotting the difference between �bm and �0 in
Fig. 3 �solid curves�. This graph shows that an increase in
gas density reduces the resonance frequency, an effect that
can be understood by considering the behavior of �bm for
small values of the ratio �g /�0 as follows. Equation �50� can
be approximated, if the gas density is small, using

��x� �
�0

2

�2 −
x2

15
, �55�

such that

AR0

Bbm
�

�0
2

�2 	 sin 	 − cos 		1 −
�0

2

�2 +
1

15

�g

�0

�2

�0
2


�0
2

�2 cos 	 +
sin 	

	
	1 −

�0
2

�2 +
1

15

�g

�0

�2

�0
2
 + i	 .

�56�
2

FIG. 2. �Color online� Theoretical pressure response �normalized scattering
cross-section, �s /4�R0

2� vs dimensionless frequency � /�0. Black solid line
�blue online�: Eq. �43�; gray line �cyan online�: Eq. �45�; dash-dot line: Eq.
�54� with Eq. �50� and x=0. Damping coefficients at resonance are 	0=0.3
and �0=0.
If 	 is also small, expanding to O�	 � gives
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AR0

Bbm
�

�0
2

�2 − 1 −
1

15

�g

�0

�2

�0
2 +

	2

2
	1 +

�0
2

�2 

1 +

1

15

�g

�0

�2

�0
2 −

	2

6
	1 + 2

�0
2

�2 
 + i	 . �57�

Using Eq. �57� for the amplitude of the breathing mode
yields the approximate result

�bm � 4�R0
2

1 −
	2

3
	1 + 2

�0
2

�2 
 +
2

15

�g

�0

�2

�0
2

	�0
2

�2 − 1 −
1

15

�g

�0

�2

�0
2
2

+ 	2�0
4

�4

. �58�

This expression is evaluated and the difference relative to �0

plotted in Fig. 3 �dashed lines� to enable comparison with its
counterpart evaluated without these approximations. The
graph is calculated for an air bubble in water at a temperature
of 283 K. It applies more generally to any gas in any liquid
with the density ratios stated in the figure caption. Neglect-
ing the gas density in Eq. �58� results in the AW model for
the denominator and an order 	2 correction in the numerator.
This correction to the numerator explains the amplitude
anomaly of Fig. 2, without affecting the frequency of reso-
nance.

The resonance frequency associated with Eq. �58� �de-
noted �58�, to lowest order in 	0

2 and �g /�0, is given by

	 �0

�58

2

= 1 −
	0

2

2
+

�g

15�0
. �59�

By a curious numerical coincidence, the two correction terms
in Eq. �59� approximately cancel for a bubble of air in water
at atmospheric pressure. The precise ratio for an ideal gas at

FIG. 3. �Color online� Difference in normalized scattering cross-section
��s−�0� /4�R0

2 vs dimensionless frequency � /�0, for an air bubble in wa-
ter at pressure as marked, calculated using Anderson’s expression for the
breathing mode �Eq. �53�, with Eq. �50� for Bbm, solid lines� and the ap-
proximation �Eq. �58�, dashed lines�. The corresponding density ratios �g /�0

are 0.00125 �for a pressure of 0.1 MPa�, 0.100 �8 MPa�, and 0.250
�20 MPa�. The radiation damping coefficient at resonance is 	0=0.3.
temperature T is
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15	0
2�0

2�g
=

45kBT

2mgc2 Re � , �60�

where kB is Boltzmann’s constant �1.381�10−23 J /K� and
mg is the average mass of an air molecule �4.82�10−26 kg�.
Using round values of T=300 K and c=1500 m /s gives ap-
proximately 0.81 Re��� for the right hand side, i.e., between
0.8 �for isothermal pulsations� and 1.2 �for adiabatic ones�.

It is argued above that the radiation damping can domi-
nate if 	 is sufficiently large. This statement seems to conflict
with the initial assumption �made in order to satisfy the re-
quirement of uniform pressure at the bubble wall� that 	 is
“small.” Some experimental conditions have forced prag-
matic solutions where the tractable approach has been to ap-
ply formulations known to be derived assuming that 	→0,
but where this is not the case in practice. The need to en-
sonify across the range of bubble pulsation resonances to
obtain a size distribution for bubbles in a population span-
ning orders of magnitude, probably meant that Leighton et
al.5 worked at up to 	�0.2. The application of a two-
frequency technique by Newhouse and Shankar31 probably
generated exposure exceeding 	�2.

Nevertheless, it is shown above that there exists a re-
gime in which the 	2 terms are needed, while the derivation
remains valid. Prosperetti14 also argues that O�	2� terms are
not only justified, but necessary in the regime when 	 /2� is
small but 	 is of order 1. A further counter-argument is one
of principle, as follows. A derivation that purports to be ac-
curate to order 	2 must include all terms of that order. Some
of the terms might be negligible for some conditions, but the
correct way to identify the circumstances in which they may
be legitimately neglected is to derive the formally correct
solution and only then consider which terms to omit.

F. Confusion caused by the use of dimensionless � in
�s

As the preceding text shows, the use of a dimensionless
damping coefficient without adequate definition creates con-
fusion. It would not be correct to state categorically that one
or other expression for the dimensionless damping coeffi-
cient is right or wrong, because any can be perceived as
being correct in complying with each respective definition
�giving rise, in the present notation, to �Wildt, �Medwin, and
�AW�. However, the same ambiguity does not apply to the
definition of the scattering cross-section, so one can make
such a statement about �s. Thus, the WM model for �s �Eq.
�45�� is missing a term of order 	2 in the denominator. This is
the same order as �2 itself, making it a correction to leading
order in the damping term, translating to the sign error in the
corresponding correction term in the expression for the reso-
nance frequency �WM �Eq. �48��. The confusion can be miti-
gated by avoiding use of the dimensionless coefficient �,
replacing it with the unambiguous damping factor � as in Eq.

�43�.
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IV. PERSISTENCE OF THE DISCREPANCY, AND THE
EXTINCTION CROSS-SECTION

A. Persistence of the discrepancy: The example of
ultrasound contrast agents

The result identified as incorrect by the analysis of Sec.
III originates from early research related to search sonar7 and
is now in widespread use in acoustical oceanography. �Ref-
erences 18 and 32 are recent examples taken from many
possible candidates�. A more recent application that is now
explored in more detail arises in biomedical acoustics,33

namely, in the study of ultrasound contrast agents �UCAs�,
i.e., microbubbles used to enhance the contrast of ultrasound
images. This application is chosen because it illustrates how
this previously unchallenged discrepancy has been exported
to another field and because the case of UCAs provides a
convenient demonstration involving the relationship between
the extinction and scattering cross-sections. The narrow
bubble size range of UCAs promoted a technique of fitting
the measured ultrasonic scatter to models of the scattering
and extinction cross-sections, in order to produce empirical
estimates of, say, the elasticity34 or frictional losses in the
bubble wall35 in order to determine the mechanical properties
of the stabilized bubble wall. Having an incorrect expression
for one of the fixed parameters �radiation damping� is unsat-
isfactory, especially because since its pioneering introduction
in the early 1990s,34–36 the approach became widely used
around the world, with the incorrect formulation appearing in
dozens of research papers and reviews.33,37,38 Additional dif-
ficulties are exemplified by experiments with UCAs to mea-
sure the attenuation of the ultrasonic signal and then compare
these data with the computed extinction cross-section for the
bubbles. These difficulties are described below.

B. Confusion caused by the use of dimensionless �
in �e

The accepted formula for the extinction cross-section
��e� of a bubble can be written as1,2,8,16

�e = �s
�

�rad
, �61�

where �s is given by Eq. �1� and the denominator,

�rad = � − 2�0/� , �62�

is the contribution to the damping coefficient from radiation
damping alone. Of the various possible definitions for �
though, the following questions are now posed: which one
should be used in �a� the right hand side of Eq. �62�, �b� the
numerator of Eq. �61�, and �c� the expression for �s �Eq.
�1��?

To answer these questions the definition of the extinc-
tion cross-section is considered as the ratio of the mean rate
of work done on the bubble to the mean intensity of the
incident plane wave. This definition leads to

�e = −
8��0cR0

2

�pi�2
Re�pi�Re�pi/Z� , �63�
and hence
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�e =
4�R0

2

�K/�2 − 1�2 + �Medwin
2

�Medwin

	
, �64�

which can be written as

�e = �s
�Medwin

	
�1 + 	2� . �65�

Equation �65� shows that the answer to both �a� and �b� is
�Medwin �or the approximately equivalent �Wildt�, while the
correct answer to �c� is shown in Sec. III to be �AW.

Therefore, if the dimensionless damping coefficient is
used to encompass the losses, then one is faced with the
unsatisfactory conclusion that, unless correction terms are
applied to the currently accepted equations for these cross-
sections, there is no single definition of � that gives the cor-
rect result for both �s and �e, i.e., correct substitution of Eq.
�1� into Eq. �61� requires use of both �Medwin and �AW:

�e =
4�R0

2

��1
2/�2 − 1�2 + �AW

2

�Medwin

�Medwin − 2�0/�
. �66�

The confusion is eliminated by expressing the cross-sections
in terms of �0 �and 	� instead of �, i.e., using Eq. �43� for the
scattering cross-section, with �0 given by Eq. �23�, and

�e = �s
2�0/�

	
	1 +

�

2�0
	 + 	2
 �67�

for the extinction term.

V. EXAMPLE APPLICATIONS

In many circumstances, the contribution from damping
due to radiation losses �without which the various scattering
models described in Sec. III are in agreement� is small rela-
tive to thermal or viscous damping, so the magnitude of any
error produced by the choice of an incorrect model is small.
The purpose of this section is to discuss the conditions for
which the radiation damping might be large enough to cause
a significant effect, including numerical examples from a
wide range of applications. Since the effect increases as the
bulk modulus of the gas becomes no longer insignificant
compared to that of the surrounding �possibly bubbly� liquid,
these examples cover not only the acoustic monitoring of
domestic bubbly products with high void fractions but also
of bubbly liquids in extreme conditions �e.g., in coolant, fuel
lines, or engineering for deep-ocean and extraterrestrial en-
vironments�.

A. When are radiation losses large?

The examples considered for Figs. 2 and 3 involve
acoustic radiation but no other form of damping. The value
of 	2 at resonance is proportional to the ratio of the bulk
modulus of the gas bubble Bbubble to that of the surrounding
liquid Bmedium. Because of the relatively low pressure at the
sea surface, the underwater acoustics literature is concerned
mostly with damping dominated either by thermal conduc-
tion �in the case of large bubbles� or viscosity �small ones�.
In these circumstances the compressibility of the gas bubble

is far greater than that of the surrounding liquid, leading to a
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strong resonance with low radiation loss �small 	�. The ratio
Bbubble /Bmedium will increase if Bmedium is reduced. For ex-
ample, if the medium surrounding the bubble in question is
itself a bubbly liquid, the medium becomes more compress-
ible than the bubble-free liquid. Examples are found in ship
wakes, white caps caused by breaking waves, foams, bubble
clouds generated by therapeutic ultrasound, sparging, or as
found in the production of metals, pharmaceuticals, food-
stuffs, or domestic products, for which void fractions can
exceed 1%.39,40 The ratio will also increase as Bbubble in-
creases with increasing static pressure. If the depth of a
bubble in the ocean is increased to a few hundred metres, the
radiation damping can be dominant, as in the case of a fish
bladder,9 the lung of a deep diving whale or a methane vent
at the seabed41 �noting the additional complication of hydrate
formation�. Most models of bubble resonance assume that a
bubble-free liquid surrounds the bubble in question, and to
get large absolute effects �	2 of order 0.1� under such cir-
cumstances, for a bubble of air in water the static pressure
needs to increase to several hundred megapascals, which is
not achievable in oceans on earth. Even if such a high static
pressure were to exist, the air inside the bubble would liq-
uefy unless the temperature were also increased. For this
reason the acoustics of bubbles at high temperature and pres-
sure in a volcano are considered,42,43 since their presence
might influence or indicate eruptions and outgassing
hazard.44–48 Figure 4 illustrates the presence of a high void
fraction in a sample of volcanic rock.

Below some examples are considered. While in some
earlier sections of the paper, non-acoustic forms of damping
were neglected for clarity, it is important to include these in
the quantitative calculations of Sec. V B.

B. Numerical examples including non-acoustic
damping „�0Å0…

Figure 5 shows �s plotted vs frequency for WM, AW,
and Eq. �43�, using numerical values of 	0=0.3 and
2�0 /�0=0.3. Also plotted �vertical dashed lines� are the
resonance frequencies associated with each model, as pre-
dicted by Eqs. �47�–�49�. Figure 5 shows that if the values of
	0 and �0 are realized, significant differences arise not just

FIG. 4. �Color online� Photograph �by TGL� of bubbles in set lava at Ti-
manfaya, Lanzarote. The image is 117 mm wide.
between the WM and AW models but also between both of
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these and Eq. �43�. Taking Eq. �47� as a reference on the
grounds that the derivation of Eq. �43� makes fewest ap-
proximations of the three models considered, it can be seen
that neither AW nor WM are wholly accurate: WM underes-
timates and AW overestimates the resonance frequency �see
Eqs. �48� and �49�� by 	0

2 /2�1−2�0
2 /�0

2� and 	0�0 /�0, re-
spectively. The graph applies to any negligible density gas in
any liquid.

There are many combinations of temperature and pres-
sure that can give rise to the chosen input values of 	0 and
�0. To illustrate the diversity, the following generic scenarios
are considered:

�1� Case A: air bubbles at atmospheric pressure �e.g., in ship
wakes and breaking waves,49 foodstuff,39 and cement
paste40� and the multiphase reactors used in chemical,
biochemical, environmental, pharmaceutical, or petro-
chemical industries.50

�2� Case B: methane bubbles in seawater at a depth of order
1000 m �notwithstanding the formation of hydrates at
this depth�41,51,52 �or deep water blowout53�.

�3� Case C: carbon dioxide bubbles at high temperature and
pressure in a volcano.44–47,54–56

�4� Case D: nitrogen bubbles in ethane lake on Titan.57,58

�5� Case E: helium bubbles in liquid mercury �neutron spal-
lation target�.59–64

FIG. 5. �Color online� Theoretical pressure response �normalized scattering
cross-section� vs dimensionless frequency � /�0 calculated using WM �Eq.
�45��, AW �Eq. �46�� and Eq. �43�. Damping coefficients are 	0=0.3 and
2�0 /�0=0.3.

TABLE I. Defining parameters �in bold� for cases A �
bubbles in molten lava�, D �nitrogen bubbles in et
spallation target�. Parameters in remaining columns a

Case
Bg

�MPa�
�m

�kg m−3� �
T

�K�

A 0.14 1 000 7 /5 280
B 10 1 000 4 /3 280
C 35 2 600 4 /3 1470
D 0.21 630 7 /5 95
E 0.60 13 200 5 /3 300
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For these gas-liquid mixtures the following notation is
introduced �see Table I�:

�a� subscript g denotes properties of the gas �e.g., �g for the
gas density�,

�b� subscript w denotes properties of the host liquid �e.g., cw

for speed of sound in the bubble-free liquid�, and
�c� subscript m denotes properties of the gas-liquid mixture

�e.g., Bm for its bulk modulus�.

Figure 5 is applicable to each of these scenarios. The
properties of the gas-liquid mixture are specified by means of
the gas bulk modulus Bg, mixture density �m, specific heat
ratio � of the gas, and temperature T. These four parameters
may be chosen freely for any given value of 	0 and �0 /�0.
Once chosen, the first two of them �Bg and �m� determine the
bulk modulus Bm

Bm =
3Bg

	0
2 �68�

and the sound speed cm of the mixture �column 6�

cm =�Bm

�m
. �69�

The bubble radius R0 can take any value. Once chosen, its
value determines the undamped natural frequency �column
7�

�0 = R0
−1�3Bg

�m
�70�

and “equivalent” viscosity, which is defined as �column 8�

�eq � R0
�3Bg�m

�0

2�0
. �71�

Thus, �eq is the shear viscosity that would be required, if
viscosity were the only non-acoustic damping mechanism, to
achieve the non-acoustic damping factor �0. For example, a
bubble radius of 1 mm gives a resonance frequency ��0 /2��
of between 2 kHz �case C� and 32 kHz �case E� and equiva-
lent viscosity between 1.5 Pa s �case A� and 39 Pa s �case C�.

The gas density corresponding to these conditions is
shown in the last column ���g�ad, calculated from Bg assum-
ing adiabatic pulsations�

bbles in wake�, B �methane vent�, C �carbon dioxide
lake on Titan�, and E �helium bubbles in mercury
lculated using the expressions given in the text.

cm

m s−1�
�0 R0

�m s−1�
�eqR0

−1

�Pa s mm−1�
��g�ad

�kg m−3�

68.3 20.5 1.54 1.25
577 173 13.0 51.9
670 201 39.2 95.2
38.9 31.6 1.49 5.36
105 11.7 11.6 0.581
air bu
hane
re ca

�
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��g�ad =
mgBg

�kBT
. �72�

Together with the information from the table, this value can
be used to estimate the required void fraction using

U =
�w − �m

�w − �g
, �73�

provided that the bubble-free liquid density �w is known. To
do so, Wood’s equation65 is used in the form �accepting the
use of this low-frequency approximation for the purposes of
this first-order calculation�

	 1

Bg
−

1

Bm

�w

2 + 	 �g

Bm
−

�m

Bg

�w +

�m − �g

cw
2 = 0. �74�

Using this equation it is found that the required void fraction
is approximately 3% for all cases considered, even though
the static pressure �as given by Bg /�� varies by more than
two orders of magnitude. The physical reason for this result
is that, unless the void fraction is very low, increasing the
pressure increases the bulk modulus of the gas-liquid mix-
ture surrounding the bubble in question almost as much as it
does that of the gas bubble. This can be seen more clearly by
writing Eq. �73� in the form

U =
	0

2/3 − Bg/Bw

1 − Bg/Bw
. �75�

For the cases considered, Bg is small compared with Bw,
from which it follows that U�	0

2 /3=0.03. The difficulty of
applying Wood’s equation if the bubbles are at or near reso-
nance is recognized,66,67 but the above simple analysis sug-
gests that large values of 	0 are unlikely to be achieved by
high pressure alone.

VI. SUMMARY AND CONCLUSIONS

The dimensionless damping coefficient � introduced by
Wildt7 and developed further by Medwin2 are considered.
Particular attention is paid to the role of radiation damping in
determining the through-resonance frequency dependence of
the scattering cross-section �s of a single spherical gas
bubble in terms of the parameter 	, defined as the product of
acoustic wave number and bubble radius. Specific conclu-
sions are as follows

�1� Published theoretical results of Andreeva9 and Weston10

for �s are not consistent with those of Wildt and Med-
win. The AW model, which has not been used in open
literature for more than 40 years, is correct to order 	2 in
the denominator of �s. The WM model, which is in
widespread use, is missing a term of this order and thus
requires a leading order correction to the damping term.

�2� A generalization of Weston’s derivation is used to obtain
a new expression for �s �Eq. �25��, which simplifies to
the AW model if non-acoustic damping is neglected. The
same equation is then derived by application of Euler’s

equation to the input impedance obtained from Prosper-
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etti’s equation of motion, leading to Eq. �43�. This sec-
ond approach leads also to a new equation for the extinc-
tion cross-section �e �Eq. �67��.

�3� The magnitude of the effect, as measured by the differ-
ence in resonance frequency between the different scat-
tering models, though often small, can become signifi-
cant in some realistic conditions. It is of order 10% if 	
and 2�0 /� are both equal to 0.3 at resonance �and is
proportional to 	2�. This requires either a bubble under
very high pressure �comparable with the bulk modulus
of the surrounding liquid� or a bubble in a highly com-
pressible liquid. Possibilities explored include a ship
wake at atmospheric pressure, methane vents under pres-
sure at the seabed, carbon dioxide bubbles in molten lava
and helium bubbles in a neutron spallation target. For all
cases considered, the required void fraction according to
Wood’s equation is close to 3% �i.e., 	0

2 /3.�
�4� The zeroth order term from Anderson’s expansion for the

scattering cross-section of a fluid sphere of arbitrary ra-
dius and density is simplified and used to confirm the
accuracy of the AW model for the case with gas density
and non-acoustic damping coefficient both negligible.

�5� Three different definitions of � are considered, denoted
�AW �defined by Eq. �26��, �Wildt �Eq. �28��, and �Medwin

�Eq. �39��. Of these, �AW is required in Eq. �1� to obtain
the correct frequency dependence for �s, while either
�Wildt or �Medwin �and not �AW� must be used in Eq. �65�
for �e. Unless correction terms are applied to the cur-
rently accepted equations for �s and �e, there is no
single definition of � that gives the correct result for both
cross-sections.

�6� In situations for which acoustic radiation is the main
form of damping �e.g., in water under high static pres-
sure�, the WM model underestimates the resonance fre-
quency. Its use to infer the bubble radius from an acous-
tical measurement would therefore lead to a systematic
bias.
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