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ABSTRACT

A frequently encountered problem in rotor dynamics is that of an otherwise linear rotor dynamic
system incorporating non-linear elements such as squeeze film dampers. Current work on such
non-linear multi-degree of freedom problems has largely been centred around finite element (FE)
models. The non-linear squeeze film forces are considered as external forces acting on an FE
modelled linear system. Over the years, efficient frequency based linear rotor dynamic
modelling techniques like the transfer matrix method and the mechanical impedance (dynamic
stiffness) method have been presented to model linear rotor dynamic systems. These can be used
either as alternatives to FE, or in combination with it, with certain well documented
computational advantages. This report presents a general method whereby receptances, readily
computed by all linear rotor dynamic modelling methods are used to solve the aforementioned
non-linear problem, thereby giving the designer a flexible approach in the choice of the linear
rotor dynamic modelling technique. The problem is formulated and solved in both the frequency
and time domains. In the frequency domain, periodic solutions are obtained by setting up and
solving the non-linear algebraic harmonic balance equations using the receptances of the linear
system resulting if the non-linear forces are considered as external, along with the unbalance
forces. In the time domain, the modal equations of motion at a conveniently selected location are
extracted from a suitably truncated modal series expansion of the receptances of the linear
undamped system resulting if the non-linear forces and certain internal linear forces are
considered as external, along with the unbalance forces. These time domain equations can be
used in testing for the nature of the stability of the harmonic balance solutions. The time domain
equations can also be numerically integrated, if necessary. The techniques presented are applied
to two common configurations incorporating one squeeze film damper. The receptances are
computed by the mechanical impedance technique. Correlation between harmonic balance and
time domain numerical integration solutions was found to be excellent. Very good agreement
between predictions and experiment was obtained. The major conclusion drawn in this report is
that harmonic balance and time domain numerical integration methods are not mutually
exclusive, but complimentary, and the availability of both methods affords the designer with a
flexible approach in efficiently producing reliable predictions under all operating conditions.
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NOMENCLATURE

ay. ay cosine coefficients in Fourier expansion of steady state displacements
AI.;. general modal constant, modal constant in x direction (kg'l)

A, AS cosine coefficients in squeeze film force expansions, egs. (30)
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my,, equivalent mass at SFD (configuration B, chapter 7) (kg)

M number of terminals of linear system

M monodromy matrix defined in eq. (124)
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ny number of lands

n, total number of modal state variables

=Q/w, w fundamental frequency of harmenic balance limit cycle

p (gauge) pressure distribution in squeeze film (Pa), number of unbalances
P, (gauge) cavitation pressure (Pa)

D (gauge) long bearing pressure distribution (Pa)

Ps (gauge) supply pressure (Pa)

P (gauge) short bearing pressure distribution (Pa)

Py Py cosine coefficients in squeeze film force Fourier expansions

Py, Py unbalance forces in x and y directions at k (N)

q number of modes in subsystem

gr number of modes in rotor subsystem
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CHAPTER 1

INTRODUCTION

A frequently encountered problem in rotor dynamics is that of an otherwise linear rotor dynamic
system incorporating non-linear elements such as squeeze film dampers. Current work on such
non-linear multi-degree of freedom problems has largely been centred around finite element (FE)
models. The non-linear squeeze film forces are considered as external forces acting on an FE
modelled linear system. In [1], [2], [3] and [4] periodic solutions are obtained either by harmonic
balance or the analogous trigonometric collocation method, resulting in a set of non-linear
algebraic equations. A somewhat cumbersome condensation technique involving the inversion
of large FE matrices is then applied to reduce the number of unknown degrees of freedom to the
number of non-linear degrees of freedom. The resulting set of non-linear algebraic equations is
then solved. In [5], [6] time domain numerical integration is applied to the modal equations of
motion set up by computing the eigenvectors and eigenvalues of the linear undamped system.

Over the years efficient frequency based linear rotor dynamic modelling techniques like the
transfer matrix method [7] and the mechanical impedance (dynamic stiffness) method [8], [9]
have been presented to model linear rotor dynamic systems. These can be used either as
alternatives to FE, or in combination with it, with certain well documented computational
advantages [9]. The aim of this report is to present a general method whereby receptances,
readily computed by all linear rotor dynamic modelling methods are used to solve the
aforementioned non-linear problem, thereby giving the designer a flexible approach in the choice
of the linear rotor dynamic modelling technique. The problem is formulated and solved in both
the frequency and time domains. In the frequency domain, approximate periodic solutions (limit
cycles) of given period are obtained by setting up and solving at each speed, the non-linear
algebraic harmonic balance equations using the receptances of the linear system resulting if the
non-linear forces are considered as external along with the unbalance forces. This receptance
technique greatly facilitates the formulation of the harmonic balance equations since one
considers the non-linear degrees of freedom exclusively, without having to perform any costly
condensation. Upon solution of this set of equations the response at any arbitrary location is then
readily determined, again by applying the appropriate receptances. However, difficulty is
encountered when attempting to test for stability of a computed set of periodic solutions unless
one can easily extract the time domain equations from the receptances. The modal equations of
motion at a suitably chosen location can however be easily extracted from a suitably truncated
series expansion of the receptances of the linear undamped system resulting if the non-linear
forces and certain internal linear forces are considered as external, along with the unbalance
forces. The nature of the stability of a set of periodic solutions over a given speed range can then
be determined by computing the monodromy matrix for each solution using the highly efficient
impulsive parametric excitation technique developed by Hsu and Cheng [10]. The time domain



equations can also be numerically integrated to provide a solution which will always be stable in
the steady state. This is necessary when the computed periodic solutions prove to be unstable.

The techniques presented in this report are applied to two common configurations: (a) a flexible
rotor incorporating a rigidly housed, highty misaligned squeeze film damper with and without
retainer spring; (b) a rigid rotor on a flexibly housed squeeze film damper. In the former case the
relevant receptances are computed by the mechanical impedance technique [9].

The advantages and disadvantages of the harmonic balance method and time domain numerical
integration to solve the non-linear squeeze film problem are well documented [11], [12]). Time
domain integration involves step-by-step numerical integration by some technique suitable for
stiff differential equations [13]. A sufficient number of rotor revolutions has to be taken to
eliminate the transient motion and reach steady state stable equilibrium i.e. for the motion to
settle down to an attractor in state space. This attractor’ can be either a (periodic) limit cycle,
quasi periodic motion or chaotic motion. This method is inevitably time consuming. On the
other hand, harmonic balance and trigonometric collocation find equilibrium periodic solutions
(limit cycles) of a given assumed fundamental frequency which will be either equal to the
rotational speed or some sub multiple of it. The accuracy of the periodic solution will depend on
the number of harmonics included. Note that such analytical methods, presupposing periodicity
of a given period will continue giving such solutions even when a bifurcation has occurred and
limit cycles of such period are no longer stable?. Hence the stability of the computed limit cycle
needs to be checked if it is to be accepted as physically realisable. If found to be stable, one will
have homed in on it directly without having to wait for any transients to die out as in the time
domain numerical integration method. However, such methods lead to a large number of non-
linear algebraic equations to solve, creating convergence problems. Arc-length continuation
techniques have been designed to overcome such problems, whereby a complete unbalance
response curve is traced out by “climbing” along the curve, provided at least one point along the
curve has already been determined [14]. In difficult cases the initial approximation to this point
can be determined using time domain integration. Moreover, when the motion is aperiodic, time
domain numerical integration is the only form of solution. The major conclusion drawn in this
report is that harmonic balance and time domain numerical integration methods are not mutually
exclusive, but complementary, and the availability of both methods affords the designer with a
flexible approach in efficiently producing reliable predictions under all operating conditions.

This report is organised as follows. Following this introduction, chapter 2 continues with a
summary of the models used for the non-linear element in the rotor dynamic system i.e. the
squeeze film damper (SFD) (section 2.1) and a summary of the receptance formulation for the

' Note that step-by-step time domain numerical integration will always drive the solution towards an attractor in state
space due to the local error in each time step. Points on the attractor are in a state of stable equilibrivm and hence, in
the steady state, despite the local errors, the computed trajectory is kept in close proximity to the exact trajectory.

2 In such cases the limit cycle is termed a repellor in state space and points on it are in a state. of unstable equilibrium
since the slightest perturbation in the state variables on it would drive the motion away from the cycle. The sudden
change of an attractor into a repellor as a control parameter (e.g. rotational speed) is changed is termed a bifurcation
f14].



linear part of the system (section 2.2). In chapters 3 to 6 the receptance-based model for
coupling the non-linear elements with the linear structure is developed. The model is then
validated with simulations and experimental results in chapters 7 and 8. The main conclusion of
this report and an outline of future research is given in chapter 9.



CHAPTER 2

SFD MODELLING AND RECEPTANCE FORMULATION

This chapter presents a summary of the models used for the non-linear element in the rotor
dynamic system ie. the squeeze film damper (SFD) (section 2.1) and a summary of the
receptance formulation for the linear part of the system (section 2.2).

2.1 SQUEEZE FILM DAMPER MODELLING

Squeeze film dampers have been widely used in high-speed rotating machinery to attenuate
vibrations, the forces transmitted to the engine frame due to rotor unbalance and to improve
stability [15]. A squeeze film damper consists of an oil filled annular cavity surrounding a
“squeeze ring” which is shrunk onto the outer race of a roiling element bearing mounted on the
shaft. The outer race of the journal is prevented from rotating but the journal is free to orbit
within the bearing housing clearance (Figures 1, 2). A soft flexible element (retainer spring) is
often placed in parallel with the squeeze film to comprise a vibration isolator. By this means, the
natural frequencies of the engine are artificially reduced so that they may be traversed well before
normal operating speeds. The purpose of the damper is to minimise the amplitude of vibration
and transmitted force as these low critical speeds are traversed. The retainer spring supports the
static load on the journal and prevents the outer race of the journal from rotating. The squeeze
film damper can also be used on its own, between the journal and the bearing housing, unassisted
by a retainer spring. An anti-rotation pin or dog prevents rotation of the outer race of the journal
in this case. The role of the damper is this case is again to reduce the vibration and transmitted
force while negotiating the already existing critical speeds of the system.

Because the inner member is prevented from rotating, unlike in a journal bearing, the squeeze
film itself cannot support a static load in the absence of a dynamic load. Hence, for a squeeze
film damper without retainer spring the journal will roll or slide along the bearing housing inner
surface until the level of the dynamic load becomes such that sufficient lift is generated in the
bearing to overcome the static load. The following summary is based on a detailed presentation
given in the first progress report [15].

In this work the squeeze film damper (SFD) is modelled as comprising two lands of length L
separated by a deep groove of depth &, through which oil is supplied at pressure p via

symmetrically placed holes (Figures 1, 2). The two-land model is claimed to be valid provided
the following condition is satisfied [16]:

<1 1
h,+c M



This condition is satisfied for the dampers considered in this report. Referring to Figures 1 and 2,
for each land the Reynolds Equation [17] can be written as

%%{h3%}+gz{h3%}= 127¢(é cos O + ey sinB) 2)

where & = ¢(1+ £cos8) is the oil film thickness.

Equation (2) can be solved to obtain the pressure distribution p(60.z) at any instant in time. This

solution depends on whether the damper is unsealed or sealed (Figures 1(a),(b) respectively).
Once p(B,z) has been established the squeeze film forces @, Oy in the radial and tangential

directions respectively (Figure 2) can be computed from the equations:

=-n,R JLIZ p,(0,z)cos0 dO dz (3a)

/240

= n, j”z [ pa(0.2)sin6 do dz 3b)

In these equations p,, (6,z) is a pressure distribution based on p(6,z) but modified according to
assumptions made as regards the supply pressure and the extent of the effective squeeze film
around the journal. These assumptions lead to different forms of p,, (6.z) and hence different

expressions for O, Or .
2.1.1 Unsealed Damper

For an unsealed damper the short bearing approximation applies in which it is assumed that the
pressure gradient in the circumferential (8) direction is negligible relative to that in the axial (z)

direction i.e.

dp __p
K % 00

Under such conditions, integration of equation (2} yields the pressure distribution as

6n {ewsmﬁﬂ-scosﬂ}( Lz) (z 1)
2 + o5l —+—= 4
pl8:2)= ¢? {1+ecos@f S R ) ®

Three main theories are used to determine the form of p,(6,z) for an unsealed damper, each
leading to different expressions for the squeeze film forces O, Or. '

The 27 film (or full film) theory assumes that no cavitation (i.e. no oil film rupture) occurs.
Hence, p,,(6,z) is given simply as



p.(8,2) = p(6,2) (5)

Substitution of equation (5) into equations (3) and integration yields the full film forces as [17]:

nRL? (1+282)ﬂ: .

QR,ZJ': =n; P 5 £ (6a)
(1-€%)2
RI} & i
Oror =0y ncz — €Y (6b)

(1-£%)2

The 7 film (or half film) theory assumes that (a) p; =0, (b) cavitation occurs at atmospheric
pressure. Hence p,_ (8,z) is now given by

p(@,z)|ps=0 ) P(9=Z)| =0 = 0

p,(6.2)= (7
(6.2) 0 . p(0, z)lpsi0 <0
From equation (4) one deduces that p(6,z) poog >0 from 6=6, to 6=6, =06, + 7, where
. £ ey
$inf, = e | €080, = ———— (8)
J(ew) +&7 Jey) +&
Hence the use of the term 7 film (or half film). The half film forces are [17]
RL (.
Qpe = gy + 828} ©a)
RI o
Qre=ny ncz {33‘8“] + 318} (9b)
where
2ec0s’ B,
& =~

(1-&* cos® 91)2

~ &‘5111191{3+(2—5£2)cos2 91} . (1+2¢%)

527 (1—~82)2(1—£2 cos® G'I)2 (1_82)2 “
gsin@,{1-2cos” 6, +¢&”cos’ 6, } 1
&= 2 3¢
(1-€*)(1-€*cos’ 9, ) (1-&)
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The full film and half film theories are classical extremes and in reality cavitation occurs at some
subatmospheric pressure p, <0 [17]. Accordingly, the variable film extent theory is defined

where

p(6.2), p(8,2)> p,

(10)
p. » pB:2)<p,

P (9’ Z) =

In this case the squeeze film forces will have to be determined by numerical integration. In [15],
the following expressions were derived from equations (3) for an unsealed damper:

L2

Qr = Qps +n,RoLsing, —n,R[. [ p,(6,2)cos6 d6 dz (11a)

-Lf2

L2 pBa+m .
0, = Qr . —n,RpsLeost, —n,R[ " [* p,(6,2)sin6 db dz (11b)

-L2

where Q.. Q,, are the half film forces given by equations (9) and 6, =6,+7 with 6,

determined by equations (8). Use of equations (11) instead of equations (3) cuts the computation
time by half.

If the cavitation pressure p, is taken as absolute zero (—101.325kPa) then the variable film

extent theory is referred to as the absolute zero cavitation theory. In [15] it is shown that the
absolute zero cavitation theory is the best theory to use in the absence of an experimentally
determined value of p_.

2.1.2 Sealed Damper

The problem of the two land scaled damper was considered in [18]. In this case the axial flow is
partially restricted by the end seals. A combined pressure distribution is assumed:

p6.0=p. 6.0+ 20,0 3% 12

where p_ (0,z)is the short bearing solution, given by equation (4). p, {9) is the long bearing

sh

solution of the Reynold’s Equation i.e. the solution of equation (2) when it is assumed that the
pressure gradient in the axial (z) direction is negligible relative to that in the circumferential (6 )
direction i.e.



@°__%p
%26

A is the empirically determined end leakage fuctor, 0 < A <1. A =0 for full leakage (unsealed
damper) and A =1 for zero leakage (fully sealed damper) [18]. p, (9) is derived in [18] as:

6nR> | & 1 1 _2_( £ )(Z—i-scosa)sinﬂ

- - + 13
c* | e|(1+ecosh)’ (1+82)2 2+¢e’) (1+ecosd) Po (13)

P 0)=

where

For sealed dampers the same variable film extent criterion given by equation (10) for unsealed
dampers is used to compute the forces but with equation (12) being used for p(0,z) instead of
equation (4). However, the form of the pressure distribution given by equation (12) does not
allow for the simplification of the numerical integration process possible for the unsealed
damper, equations (11) i.e. the extraction of the analytical part of the forces. Hence in this case
the full numerical integration over a 8 interval of 27 has to be performed.

2.1.3 Computation of Squeeze Film Forces

In order to compute the squeeze film forces Q,, O, by the variable film extent criterion a
function was written in MATLAB®. This function generates a 2 X n matrix of radial (row 1) and
tangential (row 2) forces for time histories £, &, ¥, ¥ n points long. This means a total of 2n
double integrations are performed. The double integration is performed using Simpson’s Rule by
an array scheme outlined in [19]. For an unsealed damper this function will give the integrals in
equations (11), which are to be added to the analytical expressions in these equations. For the
sealed damper this function gives the complete forces. With A8 =27/52 and Az = L/12, force
matrices with up to 50 columns could be generated in a fraction of a second to a sufficiently high
accuracy on a 333 MHz Pentium II desktop computer.

2.1.4 Squeeze Film Forces in Cartesian Coordinates

Referring to Figure 2 let x,, y, and x,, ¥, be the non-dimensional displacements of the journal
J and the bearing housing centre B respectively relative to fixed coordinates and x, y are the
displacements of J relative to B. The squeeze film forces Q,, O, inthex,y directions are given

by



0, = {0 (e W.£.W)siny + 0, (e, &,17)cos )

1
=—;€-{xQR(e,w,é,u'f)- yO, (e.w.&.y)} (14a)

Q, =0 (6’ W,é,{V)COSW -0 (8, v, é,lff)sin W

1 .. . .
:—;{yQR (e.w.8,9)+x0; (e.w.€,y)} (14b)

where

. 1, AL I, . )
e =(+5?), 8=E(xx+yy), W=8—2(xy—YX)
X=X, —Xg, Y=Y, ¥

X=X, —Xg, Y=Y, ¥

x,=X,fe, vy, =Y e etc, where X, , Y, ,.... are the displacements.

2.2 GENERAL RECEPTANCE FORMULATION

The general receptance matrix R (4M x 4M } for a linear structure with M terminals is given by

u=Rf (15)
where
“=[1 g Y By e Xu Oy Yy xM]r
f:[ﬁxl Myl Fyl li"/jxl """ FxM ﬂyM FyM MxM]r

X i 5},1. are the complex amplitudes of the linear, angular displacements respectively, and ﬁxi,
M yi are the complex amplitudes of the force, moment respectively at terminal no. i, in the xz
plane. Similarly, ff;, é:“- are the complex amplitudes of the linear, angular displacements

respectively, and F AZ’H. are the complex amplitudes of the force, moment respectively at

yi?
terminal no. i, in the yz plane.

The instantaneous linear, angular displacements are given by
Xi(r)=Re{5{viejM}, Byi(t):Re{éwyl-ej“’} ...... etc.

Similarly for the forces, moments.



The relevant terms in R for a linear rotor dynamic system are readily computed by a variety of
methods: transfer matrix (TM), mechanical impedance method (MI), FE, or some hybrid of FE
and TM or FE and MI, as extensively documented in the literature [9]. With the mechanical
impedance method, the whole matrix is given by

Z—l
= j—w

R (16)

In general R includes the effects of linear damping (viscous and structural) and gyroscopy and
hence R is complex, non-symmetric and a function of angular speed £2, as well as frequency @
i.e.

R =R(0,2)=R¥0,Q)+ iR (0,Q2) (17)

where R®, R? are matrices respectively containing the real and imaginary parts of the terms in
R.
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CHAPTER 3

HARMONIC BALANCE ANALYSIS

In this chapter a receptance based harmonic balance analysis technique is developed. Stability
analysis of the harmonic balance solutions is deferred to chapter 6.

3.1 DEFINITION OF LINEAR SYSTEM

In this analysis the approach is to consider the non-linear squeeze film forces as external, in
addition to the unbalance forces. Figure 3(a) depicts a rotor and support structure with n squeeze
film dampers applied between positions Ji and Bi, i=1...n on the rotor and support structure
respectively. The support structure is in general non-rigid and will exhibit dynamic behaviour.

Ji refers to the journal centre and Bi to the bearing housing centre at squeeze film damper (SFD)
no. i. In addition, p unbalance forces act at points Uk, k=1...p on the rotor. Ji, Bi, i=1...n

and Uk, k=1...p are the terminals of the linear system for which the receptances need to be

computed. Since no external moments are applied one can dispense with the moments and
rotations in equation (15). Additionally, it is convenient to partition the reduced (2M x2M }

matrix as follows:

u=RE (18)
where u=[%, .. %, T .. B f 0=[Fy .. Fy F, .. Pl and
o, } {aﬁ-'}}
R={f, "’ g 19
\i a{f ﬁu} ( )

The sub-matrices {Ococ!j} and ﬁ,j} contain the direct receptances in the x and y directions

respectively and %xﬁij} and {ﬂal-j} contain the cross receptances:

X, X,
—_ i — 1
oy === of; = (20a,b)
Y F,,=0.g=1..M g% j,F,,=0,g=L.M WNF,=0,g=1...M F, =0,g=1..M 4%
Y, ¥
i ! — H
By ==~ BBy == (20¢,d)
] YE_=0,4=1...M F, =0,g=1.M g%
g =g =l ML By =0 SHF )

P =0.9=1...M g2 j,F,, =0.4=1..M

11



Note that the number of terminals, M =n+ p. Also, as mentioned in section 2.2, R includes the

effects of linear damping (viscous and structural) and gyroscopy and hence R is complex, non-
symmetric and a function of angular speed, as well as frequency.

Referring to Figure 3(b), the unbalance forces at Uk in the x and y directions are given by

P, =U Q%sin(Qt+¢,)
= U, Q%sing, cos Q2 +U,£2” cos ¢y sin (21a)

P, =-U,Q%cos(Qr+¢,)
=—Uk!22003¢k cos Qr+U 2%sin ¢, sin Ot (21b)

The squecze film forces on Ji in the x and y directions are given by

0, =0,(X,.%.%,.%,) (222)
Qyi:Qyi(Xi’Yi’Xi’Yi) (22b)

where X, =X, —Xp, Y, =Y, - Yy

X;, Y, are the relative displacements between Ji and Bi. X, ¥ and X, Y, are the absolute

3
displacements of Ji and Bi respectively, both measured from the static equilibrium position of

Bi.

Expressions for Q,;, Q,; were given in section 2.1. Note that the squeeze film forces on Bi will

be —Q,;, —Q,;, since the inertia of the squeeze film is neglected.

3.2 REPRESENTATION OF DISPLACEMENTS AND FORCES

In harmonic balance analysis, one seeks periodic solutions of fundamental frequency @ !, This
frequency will in general be either equal to the rotational speed £ or some sub multiple of it:

w=—, N21 23
N (23)

The period I” of the limit cycle to be computed is hence related to the period of rotation 7 by:

I'=NT, N2l (24)

! Note that in this report the symbol @ is used to symbolise both a general frequency and the fundamental frequency
of vibration of the harmonic balance solution. The appropriate meaning of @ will be apparent in the context.

12



Accordingly, the absolute displacements at SFD no. i (i = 1...n) at Ji and Bi can be expressed in
a Fourier series expansion:

L)
X,=Xou+ Z(a}ﬁ cos st + by, sin s(ur) (25a)
5=l
Y, =Y, -;-Z(af}ﬁ cos SO + byy; sin Sa)t) (25b)
5=1
biid
s=1
m
Yy =Yop + 2 (af,Bf COS SOt + byg; Sin swr) (26b)
s=1

Similarly, the relative displacements are given by

m
X, =Xy + Z(a;‘}i cos sof + by, sin scor) (27a)
s=1
m
Y, =Y, + Z (af,i cos st + by, sin sa)t) (27b)

5=l

where

_ _ s o _ .8 5 §o_ S LS
Xoo=Xou—Xop » O = ayz —Axp;i» bxi = bxsi — Dy

_ s _ .8 5 s _ 15 3
Yor = You — Yo Gy = ayy; —~ Qypi » by = by — byp; -

Because the squeeze film forces Q,, @, arc functions of the relative displacements and

velocities, they will also be periodic with fundamental frequency @ and can be expressed in a
Fourier series expansion:

L
0i=0u+Y, (pji COS SO + gy; $in sa)t) (282)

. 5=l

_ Fit
0,=0,+ Z(F';i cOS SQI + g, Sin swt) (28b)

1%
I

where

—  1gr

o ="1:Jo Qy dt
2T

Pai _Fjo Q,;cossax dt

g5 = }2..‘[;“ Q. sinswr di (292)

I3



— 1 oI
Qyi:FJ. Qyi dt

0
s 2T

Pyi ZFJO Q,;cosswr dt
;24T .

gy = FJ{) Q,;sinsor dt (290)

In the solution of the harmonic balance equations is convenient to express the periodic squeeze

film forces as follows [11]

0. =0 +k X, +cu X, + 3 (A7 cos sar + B} sin sor) (30a)
s=l
0, =0y +ky X, +c,, X, + D (A% cos sor + B sin sor) (30b)
5=
where
S, By, AL, B=0for s=N 3D

i.e. the constants A, By, Ay, By are non-zero for the non-synchronous harmonics and zero

for the synchronous harmonic (see equation (23)). Hence 2m-+1 coefficients in each of the
equations (30) need to be determined. Substituting for X; and its time derivative from equation

(27a) into equation (30a):

iz 1l
Q. =00tk Xot+k, (a;,. cos st + by, sin swr)+ € z (— sy, sin st + swhy, cos sa)t)

s=1 5=l

+ i(A; cos st + B, sin scot) (32)
=]

Equating the constant terms and cosine and sine coefficients on the right hand side of equation
(30a) and equation (32) gives

0, = Cri + kX0
Py; = kgl + 5QC by + Ay
G = —50C, ;0% + kb + By
(33a)

for s=1...m.

These equations can be written in matrix form:

14



Qf' 1 Xy 0 e e e e e O] %m‘
Pii .
q; 0 aAIX': fﬂbi, 0 CH

i : 1 1 . ] ,
pg . bX! "'le O 1 .. e “as : Axfz
T P : A B

” D ay,  maby : 1 0 Am
P 0 B —mowa™ 0 -+ v o 0 1 i

m L Xi Xi i m
_th_ i Bxi i

or,
qx = G,1y

q, is @2m+1)x1, G,is (2m+1)x(2m+3) and

rx{(2m+3)><1}=[l:‘]

X

where kx:[QxOE kxxi Cxxf]T and axz[A;’i Bj-’i A;? B)’g}r

Noting that AY Bﬁ = 0 (equation (31)), the following algorithm is applied to compute r,:

i o

~delete from G, the 2(N +1)th and {2(2N +1)+1}th columns to obtain the (2m+1)x (2m +1)

matrix G

xred
-compute r, .4

_ -1

where rxred - eredqx
k
X
and Tyreq = |:
axrcd

a .4 is a, but with the Nth and (N +1)th columns omitted.

-recover a by setting up 2mx1 vector with its Nth and (N +1)th rows equal to zero and the
elements in the remaining rows taken from a, 4.

A similar process is applied for the determination of ky=[Qy0,- kyi ¢,;] and

a, = [A;i B Al B;’f]r where one starts from the equations:

¥i

15



gyi = Qi Tkyi¥oi

=k, ay, +50C,by; + Al

yi
qy; = —s0x,ay +k wibri + By
for s=1..m, (330
or, in matrix form:
51 T0.,]
Q{‘ 1 Y, 0 e e e e 0 kym
Pyi 0 a a)bf,i I 0 ny!
g\ o ; . | G
); : in — Way; 0 1 o Al
Pyit _1: : Dot e T 3 I
S E : : e (34b)
Dyi < : oo e e e ¥
U a mep o e 10,
pyr' m ht A}’i
- _0 byf "—ma)aYi 0 oo 0 1‘ Bm
_Qyi_ S

The notation used in equations (30), also used elsewhere e.g. [11], is unfortunate in that it can
mislead one into thinking that cross-coupling effects were neglected. This is absolutely not the
case. The expressions for the SFD forces in equations (30) are merely an alternative
mathematical way of expressing the SFD forces in equations (28), as seen from equations
(34ab). The form for the SFD forces in equations (30) is used since it is found to enhance
convergence of the iterative solution of the harmonic balance equations (derived in section 3.3).

The unbalance forces in equation (21) can be conveniently written in a form similar to that of the
squeeze film force Fourier expansion (28) by writing

8 U .22 sin g, Jcos st + [, Q* cos ¢, Jsin swr} (352)

iME i Mg

5, U, Q% cosg, Jeos s + (U, Q*sing, Jsin sar} (35b)
where the constant 8, is defined by

Sys =

5

{0 s#N 36)

1 s=N

i.e. 8y, is non-zero only for the synchronous harmonic component (see equation (23))
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3.3 HARMONIC BALANCE EQUATIONS
Prior to setting up the harmonic balance equations, a rudimentary pattern is illustrated which will
be used as a “template” for the actual equations. Let X () be the response at a point i on a linear

structure due to a harmonic force F(t) at frequency sw at point j. Let r be the receptance
connecting X (t) with F (t) The superscripts R, I applied to a scalar complex number denote

respectively the real and imaginary parts of that number.
X(t)= Re{ﬁejm” }= Re{(X~R + jfl)ej“‘" }z X® cosswr— X 'sinsar = X cos st + X sin st
F{t)= Re{ﬁej“’” }: Re{(ﬁR + jF! )ej“’"}: FR cos st — F'sinseot = F, cos st + F, sin soot

X :rﬁ:(rR +erXﬁR +jﬁ1)=(rRﬁR —rlﬁl)+j(rRﬁI+r[ﬁR)

Hence,
FR _ RER _IFT
X'=RF 4 /FR
or,
X =rF. +r'F, (37a)
X, =r*F -r'F, (37b)

The pair of equations (37) is applied to the cosine and sinc components of the harmonic sw of
each force to obtain the cosine and sine components of the elemental response due to each force
in that harmonic s@. Linearity of the structure enables one to add up these cosine and sine
components of the elemental responses to obtain respectively the cosine and sine components of
the full response in harmonic s@®.

Let €,,; and ¢;,; be the static eccentricities of Ji from Bi in the x and y directions respectively.

These are determined either by measurement or by the solution of the static problem.
Considering the squeeze film forces in equations (28), the unbalance forces in equations (35), and
applying equations (37) one can write the following.

For each Ji in the x direction:

Xosi— € = Z [aaffﬁ (0)- O yip; (O)Exj + 2 [O‘ﬁmj (0)- O‘ﬁ]r’Bj‘ (O)Eyj l (38a)
=1

j=1

! All zero frequency receptances are real.
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Ay = 2 [aa.ﬁ]j (sw)- 0‘0‘113; s a’)]Px; +0y, Zaah[}k (s0)U,R2%sing,
k=1

Z [0‘051;1; (S w aa.]lBj S a’)]qx; + Oy 20‘0511 Uk (S w )Uk cos g,

k=1

p
+ [O‘ﬁmf (se0)- aﬁJzBJ sw) ]P +6Nr2 0B i (s U 2% cos

1 k=l

M=

[
Il

n P
+2[aﬁfl.])‘ (S(U aﬁ.lej (S(t)) ¥ +6Ns aﬁ.}iUk (S(Dk]kgzsiﬂ ¢k

j=1 k=1
R r
byn =, [aa%;j (s@)— oot (s w)}l;j + Gy, ) 00y (500 W2 cos ¢,
= k=1
n

P
- 2 {aa}'ﬂj (s)- anI'.!'Bj (s a’)]P;j — 8, Eaa}iUk (s}, £2%sing,

j=1 k=1

n 7
+ z [aﬁﬁjj (Sa))_aﬁ%Bj (Sw)}ljj + 0y Eaﬁ}?m (s0)U, 2% sing,
= k=1

- Z [OQBJ;JJ (s )- aﬁJ:Bj (s w)]? v Nv aﬁ.hUk (sl 02 cosg,

k=1

for s=1...m

For each Bi in the x direction:

Xop = 3 (00051, (0)~ 0011, 0V, +Z[aﬁm, 0)- 035, 0),

J=1 i=

n P
aypi = z [‘Xagw ()~ ooty (s w)]pfcj + 8y D X0ty (s0)U, 27 sing,

j=1 k=1

7

+> [c“szfj ()~ cvotgpy (s a’)l];g +0y EaaB:Uk (s, 2% cos g,

= k=1

k=1

n 1
+ Z [aﬁgw (Sw) - aﬁ;‘Bj (Sa))]P;j + 0y z 0B g (s ), 27 cosg,
=l

I p
+ z [aﬁjle (sew)- aﬁlliiBj (s a))]q;j +0p, Zaﬁilswk (s}, 2% sing,
k=1

j=!

(38b)

(38c)

(39a)

(39b)
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n r
byp; = 2 [O‘aguj (sw)- aagiBj (s w)]ﬁij + 0 ZaagiUk (s@)U, 2% cos¢,
=1 =1

1
- z [O‘asuj (s)- aaBrBj (s C‘))]ij ~ S ZaaBzUk (s a’)Uk sing,

=t

i

P
+ z [O‘ﬁgw (se)- aﬁgfsj (5 a))}];j + 8y Eaﬁf;wk (so)U, 2% sing,
= k=l

2 [aﬁm.r; (sw)- aﬁBrBj S )lpy; 6Ns aﬁéiUk (s}, L2 2cos ¢

=]

for s=1...m

For each Ji in the y direction:

Y().h eO)J: Z bﬁmy ﬁﬁJlBj O)Eyj + Z [ﬂa.ft.]j (0) ﬁ(x.lej ( )b
yy; = z {/Bﬁmj (sw)- ﬁﬁ.ﬂBj (S a))]p T O s 2 ﬁﬁ.hUk (s C‘))Uk cos ¢y
n P
+ 2 [ﬁﬁ}w (Sa))— ﬁﬁ}fiBj (S(D)]Q';j + 6N.rz ﬁﬁ}iUk (SCU)UJch2 sin g,
j=1 k=|
+ Z [ﬂaﬁfj (s w)- JBOCJ:BJ (s w)lpx_] + 8y, 2 ﬁa.hUk § CO)UkQ sin g,

j=t

+2[ﬁo‘my (sw)- ﬁaﬁBj (sa) ]q)g'*'amz ﬁaJ:Uk(sa’)UkQECOS%

j=1

by = 2 [ﬁﬁ.ﬁ]j (sw)- ﬁﬁ.th (s) l]y] + 0 2 BB (s a’)Uk sing,
j=1
n I N p
- z [ﬂﬁjuj (sw)- BB (S CU)]P;J' S s z ﬁﬁJ;Uk sO) 2% cos g,
=1 k=
3 [Bak, (sw)- Bk (sl + 61, Borkon ()0, 2% cos
= k=1

< i
- 2 [ﬁa}’i]j (s0)— ﬁa}iﬂj (s a))]P;Scj — Oy Z Bot i (sw)U 2% sing,
j=1 k=1

{(39¢)

(40a)

(40b)

(40c)
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fors=1...m

For each Bi in the y direction:

Yop; = i [ﬁﬁsu;f (0)- BBis; (O)Eyj + i LBO‘B:'J;' (0)- Botg;p; (0)15;9 (41a)
j=t =
Ayp; = i [ﬁﬁgfﬂ (Sm)_ ﬁﬁgmj (Sw)]P;j + 8y, i ﬁﬁsch Sa))UkQ 2 cos Oy
Jz] k=1
+ i .—ﬁﬁéffj (Sw)’" ﬁﬁfgfsj (Sw)]q;J + O z”,‘ BBpivw (s ), L2%sin (0
j:] k=1

r P
+ JBagiJj (sw)- ﬁagiBj (se )]P;; + 8y 2 Bogy (sl 2% sin g,

j=l k=l
nr P
+ 2 ﬁa;?ijj (sw)- /Ba,:m;j (s 0))}1};’ + 8y Z ﬁa}:ink (s ), 82 2cos (0% (41b)
=l k=1

n P
Byg; = Z [ﬁﬁgijj (Sw)_ ﬁﬁBRfBj (sa))]q;j + 5st ﬁﬁgwk (s0)U, 2% sin o
j=1 k=1

—Z[/Bﬁij Sa) ﬁﬁB!Bj S(D }pyj 5N92 Bﬁll?i[/k(swpkgzcosqsk

k=1

. R R &R 2

+ Z [ﬁaguj (sw)- ﬁaBiBj (s w)]qsscj + 6N32ﬁaBiUk (s )V p$2°cosg,
= k=1
- I 1 5 L I 2.

- Z[ﬁaBiJj (sw)- ﬁanBj (Sw)]P}cj - 5N.vzﬁaBiUk (SC”)U (£27sing, (41c)
j=1 k=l

for s=1...m

Substituting for ij s Pyjs q;j,éyj \ p;j, q;j from equations (33a,b) in the above equations (38)-

(41) (see Appendix A), one arrives at the following system of equations:

~ Lan{am+1) =
Myx Myy (ome Vy fyx + fyy
where:
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Vg
ViIn VBn
_ 1 1 m m .
Vi = [wa ayy bynp v ayy bXJi]r ,i=1l...n
_ 1 1 m m -
Vabi = [XOB.E ayg; bym 0 Oxm bXBi]r si=Ll.n

van van
_ 1 1 m m ]1' .
Vi = [YOJi ayp by o ayy byl . i=lo.n
_ l 1 m " }l‘ .
Vypi = [Y[}Bi Ayg: by - yy byl . i=lon

The matrices M__, Mxy, Myx, Myy and the column vectors f,,, fxy, fyx, fyy are given in the

Appendix A, equations (A6)-(A25). It suffices to say that:

M,,., M,, are square matrices of order 2n(2m +1) both containing the coefficients Kiis Cois

and, respectively, the receptances Ococ(sa)), ﬁoc(sa));

M,,, My, are square matrices of order 2n(2m+1) both containing the coefficients Kypis Cyyjis

and, respectively, the receptances aB(sw), BB(sw);

fx. T,y are column vectors of order 2n(2m+1)x1 both containing the coefficients Qs Ayjs
Bj; and, respectively, the receptances aolsw), Polsw);
f,y. f,, are square matrices of order 2n(2m+1)x1 both containing the coefficients Qs Ay

B, and, respectively, the receptances oB(sw), BB(sw)
... where j=1...n and s=0...m.

Hence the terms in M, Mxy, Myx, Myy, | fxy, fyx, fyy are non-linear functions of the

elementsin v, vy, from equations (33), (29), (22), (14), (3).

Note that if cross-coupling (mostly due to gyroscopic effects) in the linear system is neglected
ie. ﬁij }, {ﬁ%}: 0 in eq., then Mxy, Myx s fxy, f'yK =0 and the system of equations reads:

A e

or
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{NIxx - IZn(2m+l)}vx = fxx ) (43a)
M, - Izn(zmu)}vy =15y (43b)

However the two resulting systems in the x and y directions will still be coupled since the
coefficients in M, , £, are derived from Q,; = ij (X j,Yj,X j,l}j) and the coefficients in Myy,

XX

f,, are derived from Q,; =0, (X j,Yj,X j,Y j). Hence, the system of equations (42) or (43) will

always represent a system of 4n(2m+1) coupled non-linear algebraic equations in 4n(2m+1)

unknowns contained in vy, V.

The system of equations (42) is then expressed as

£(v)=0 (44)

VX
v =[ } (45a)
Vy

and f(v) is a non-linear vector function of v :

M. M v f . +f
_ XX xy | x || x T iy
f (V) - {l:Myx Myy ] I4n(2m+1)}|:vy:| [fyx + fyy } (45b)

and solved by any iterative solver suitable for systems of non-linear algebraic equations. This is
explained in the following section 3.4.

where

Note that the number of unknowns is 4n(2m+1) i.e. (2m+ 1)x number of non-linear degrees of
freedoml. This number is the same as for other alternative methods used to solve this class of
non-linear problem by harmonic balance [1], [2].

! Associated with each squeeze film i, i =1...n, there are 4 degrees of freedom: X .Y, Xp, . Yp,-
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3.4 SOLUTION OF THE HARMONIC BALANCE EQUATIONS

For any assumed v the non-linear vector function f (V), given by equation (45b) can be evaluated

as follows:
{a) From the elements in v construct the time histories over one period I of the relative
displacements X,, Y; and the relative velocities X;, Y, at each squeeze film from

equations (27).

(b) Construct the time history over I' of each squeeze film force pair QH-(X,.,Y},XI.,YE),
0, (X i1 X i,f’,-) from equations (14) and one of equations (6), (9), (11) or (3), depending
on the choice of cavitation model and end sealing conditions.

: : : = ) 5 s oy ) 5

(c) Using equations (29) compute the Fourier coefficients Q.. py. 94.Q4. Py 9
(s =1...m), for each squeeze film.

(d) For each squeeze film determine the terms Q.. Cuus Kyys Aus By Qpuis Cppis Ky

5
Ay,

(e) Compute the matrices in equation (45b) from equations (A6)-(A25) in Appendix A.

By, (s=1...m), from equations (34a,b).

Hence, the equation (44) can be solved by some iterative procedure for a given value p; of a
particular control parameter . The result obtained can then be used to obtain an initial
approximation to the solution for the next value p,,, of the control parameter . Hence a

continuation process [14] is set up. If the rotational speed £2 is used as the control parameter
then the system of equations to be solved for each £2; is equation (44):

f(v)=0

Use of the rotational speed £2 as control parameter of the continuation process results in failure
at multiple solutions [14] i.e. when more than one solution is possible for a given speed (e.g.
bistable regions in the unbalance response due to spring hardening or softening effects of the
SFD). In order to overcome this, arc-length continuation [14] is employed. The control
parameter is changed from €2 to an “arc-length” o . The rotational speed {2 now becomes an
unknown, Q = (o) and an extra equation needs to be added to the system (44). Suppose that v
and £2 are required for 0 =0, ie. v;, ; are required. Suppose that v,_,, £, ,, corresponding
to ¢ =0, , are known. Then the equation that defines ¢ in the interval o, ; <o <0, is [14]:

2
(c-0._) :iz"v_vi_l||+[_9__£ﬂ) , 0, <00, (46)
¢ Wy Wy
where [[a| is defined thus: if vector a=[g, -+ a,]', then [a]| =af +...+a}.

c is the radial clearance of any one of the dampers and @, is the lowest natural frequency of the

undamped linear system. Note that ¢ and @, are merely introduced to non-dimensionalise the
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right hand side of equation (46) in order to work with a non-dimensional arc-length 5. The
system of equations to be solved for each given value of 7, 0; is

£f(Q,v)=0 -
p(@.7)=0 0
where £(£2,v)=£(v) in equation (45b) and, from equation (46):
1 o oY
Qv)=—lv-v |+ —=-Z=2L | —-(c-0,,) 48
e B s B SV

The vector of unknowns is now angmented to

=7 49
W‘g (49a)

and the system of equations (47) can be expressed as

g(w)=0 (50

where

o5

A given value of ¢ will correspond to just one solution w. Hence the problem of multiple
solutions does not arise when ¢ is used as control parameter. As © is increased the
continuation process “climbs” along the unbalance response curve’ in one direction with ease, no
matter how intricate the curve may be. The unbalance response curve is traced out in all its detail
using arc-length continuation (in contrast to the poor performance of rotational speed control
parameter in bistable regions).

Equations (44) or (50) are soived for a given value of the control parameter by a predictor-
corrector iterative process [14]. The process used in this research is summarised below. It refers
to the solution of the general system

h{x)=0 (51)

! By “unbalance response curve” is meant a curve showing the variation of one element of v (e.g. mean y
displacement at a squeeze film) or some combination of certain elements in v (e.g. peak to peak amplitude at a
squeeze film) with the rotational speed £2 .
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with control parameter g. If =€, then h is f and x is v i.e. we have equation (44). If
=0 ,then h is g and x is w i.e. we have equation (50). The iterative scheme was implemented

on MATLAB® (Version 5).
3.4.1 Iterative Scheme
To find the solution x, for u =y, let x{ be the jth iterate for x;.

A. PREDICTOR STEP

If i =42 (i.e rotational speed control parameter)

0 __
X; =X

If u=0c (ie. arclength control parameter), linear interpolation [14] is used:

g.—0;
0 _ i i—1
Xi =Xi4 +[""—'_}xi—l 'Xi—z)

01 =0Cia
B. CORRECTOR STEP
B1. Compute the Jacobian matrix of h(x) at x = X

J?:ah_(x)

) S N
B2. Apply the damped Newton-Raphson Method [20]:
x]" = x| -t
where hf = h(xf) Hi = (J ] Tl, ¥ €1 is the damping factor
B3. Increasej by 1.

While [x] - x{™!| <10l do steps B4-B6:

B4. Update Hf using Broyden’s Method [20]

T (Hg_ly = q)qTH;H
i i Tyl
q Hi 'y

—xl —xi, y=hi —hi!
where q=x{ —x{, y=h] —h]
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B5. Compute xf“ using damped Newton —Raphson Method, step B2

B6. Increasejby 1.

While QXf - x;H’ < eps) OR Qh;" < eps) do steps B7-B9:

B7. Update H} using step B4.
B8. Compute Xf“ using undamped Newton-Raphson Method: step B2 with y =1

B9. Increasejby 1.
B.10. x{ =x,.

In step B1 the Jacobian matrix was evaluated using the MATLAB® function numjac.m®© [21].
For steps B2 and B5 the damping factor v =0.1. For steps B4-B6 1ol = 107, In steps B7-B9,

eps =2x107'°, the smallest number registered in MATLAB®.

To start the arc-length continuation process, two previous solutions X;_,, X;_, are required.
Hence to compute the “points” X;, X,,..... on an unbalance response the following procedure
was followed:

a). Compute %, and X, with control parameter (= £2.

b). Compute the remaining solutions X5, Xg4,..... with control parameter =0 .

The starting estimate for the first solution x,, i.e. X} in predictor step, is found as follows:

a). In the case of a rotor fully supported on retainer springs, since one starts the solution at a low
speed, the mean displacements will be approximately equal to the known static displacements.
The amplitudes of vibration are taken as zero.

b). TIn all other cases, assumptions for xi usually fail, especially with a large number of

unknowns. In such a case x| is obtained from a time domain numerical integration solution

(chapter 4), for the first speed.
In the arc-length continuation process, the arc-length length increment used in this research was

around 0.1. QOccasionally this value had to be reduced. In the simulations carried out (chapters 7,
8) the arc-length continuation method proved its effectiveness in dealing with multiple solutions.
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3.5 RESPONSE AT A GENERAL POSITION

Once the harmonic balance equations (44), have been solved then the vibration at a general
position P can be computed. The displacements Xp, Y, at P, measured from its static

equilibrium position will be given by:

n

Xp=Xop+ > lakp cossat +bipsin scr) (522)
s=1

Yp =Yy + 3 (asp cos et + bipsin sar) (520)

5=

Having determined the elements in the vector v in equation (44) i.e. the vector of unknown
harmonic components at the squeeze films, the Fourier components of the squeeze film forces
Qs Phis Ay le, Pyis gy (s=1...n) can be determined as in steps (a) to (c) of the first

paragraph of section 3.4. The terms in equations (52) are then obtained by applying the same
principle used to derive the harmonic balance equations, equations (38)-(41).

Xop = i‘, [OfOCPJj (0)— ooty (O)Exj + i [aﬁpﬁ (0)— 0B (O)Eyj (53a)

il

axp = Z [aaPJ_] (S w)- aaPB_{ (s w)]P:g + 6Nr2aaPUk (s w)Uk sin g

= k=1

+ Z {aaﬂb (SCD) cCOCPBJ' (Sw)}zxj + 5Ns ZaaPUk (Sw)UkQ cos ¢'k

j=1 k=l

=

+ [aﬁPJ; (sw)- aﬁPBJ (sw) ]Py; + 0 s 2 of (Y, 2 ?cos g,

Jj=1 k=1
n r
+ z Lxﬁ;’Jj (S a))— aﬁ;’Bj (S w)]ﬁ;; + 5staﬁ;’(]k (S a’)UkQ 2sin Ok (53b)
=1 k=1

it

r
byr = 2 [O‘aﬁjj (sw)- aall}Bj (s a’)]?;scj + 51\&2““?& (s@)U 2% cosg,

=1 k=1

=

- z [O‘amj (sw)- aaPBj 50) ]Px; Ons zaaPUk @) £2*sing,

J=1

11

+ 2 [aﬁmy (sw)- aﬁPBj (s w)]‘iy; + 51\/:2“5?(11: (s ) ,2%sing,

j=1

n Jid
—Z[(XIBPJJ(SQ)) aﬁPBj s) ]py_] 5st OB by (50U €27 cos (33¢)

k=1
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for s=1...m.
Similarly for the y direction.
3.6 LIMITATIONS OF THE HARMONIC BALANCE EQUATIONS

The equations (38)-(41) are completely general except for the “mean equations™ (38a)-(41a).
These pre-assume that the linear structure on which the non-linear forces and unbalances act is
not capable of rigid body motion!. If the structure is capable of rigid body motion it is termed
degenerate [22] and one or more of the receptances, o« Jw(O), BB Mj(O) —> oo . Note that this

usually restricted to the receptances at the rotor and not at the support structure, Hence it is
equations (38a), (40a) that are generally subject to this limitation. A typical case where this
occurs is a rotor that is coupled to the support structure only through squeeze films, without
retainer springs, as in Figure 4. In this case the linear system consists of two uncoupled
subsystems, rotor and foundation, with the former capable of rigid body motion for which the
mean equations (38a), (40a) do not apply and need alteration. Hence, for any receptance

oo JUJ-(O), BB mj(O) — oo the element in the first row, first column of the matrices {Mfﬂij ,

{Mfyﬁj} (see Appendix A, equations (Alda), (A15a)) and the first element in fxliﬁ, fyl;Ji (see

Appendix A, equations (A24a), (A25a)) need amendment. This alteration shall be done for the
specific cases considered in chapter 5. The principle used is that all the zero frequency forces

acting on the degenerate rotor subsystem, comprising the mean oil forces 0., Q,; , and any static

load (e.g. gravity, for the y direction) must be in equilibrium, since, for periodic vibration, there
is no mean (zero frequency) acceleration anywhere (easily seen by differentiating twice any of
equations (25), (26)). Hence the mean equations (38a), (40a), are replaced by equilibrium
equations. A general method to cater for such situations in the case of many squeeze films
(n=3) is the object of current research and shall not be reported on at this stage”.

! In FE terms this means that the stiffness matrix K is not singular i.e. |K!¢ 0., K is positive definite [23]. If K is

singular then it will be posilive semi-definite, and one or more of the eigenvalues dynamic system will be zero,
enabling rigid body motion.

2 In such situations, involving positive semi-definite rotor subsystems, the case n23 involves the solution of a
“statically indeterminate” problem within the dynamic equations.
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CHAPTER 4

TIME DOMAIN ANALYSIS

In this chapter, a receptance based time domain analysis method is developed.

4.1 DEFINITION OF LINEAR SYSTEM

In this analysis, the “linear system” is defined in a slightly different fashion to that used in
harmonic balance analysis. All damping forces at the supports, linear as well as non-linear, and
gyroscopic moments, if significant, are considered as external, along with the unbalance forces.
Suppose the resulting undamped linear system consists of @ uncoupled subsystems. For example
if the xz plane is uncoupled from the yz plane then one has two uncoupled subsystems and Q0 =2.
If, in addition, the rotor is uncoupled from the support structure (e.g. Figure 4) then one has a
total of Q=4 uncoupled subsystems (rotor in xz, yz planes, support in xz, yz planes). The
receptance matrix R(@) for each such subsystem is real and symmetric and any term R; (@) can

be expanded as a modal series [24]:

oa r

A
R@)=> —" (54)

2
r=i 0 —Q

where @, is the undamped natural frequency of the subsystem in mode r and A; is the

corresponding modal constant which is given by [24]:
A =yl (55)

W/, ¥ are the values of the mass normalised mode shape of mode r evaluated at degrees of

freedom i and j respectively.

In practice, over a given frequency range, the series (54) can be truncated after a finite number of
modes g:

4 ;
Rij(w)zz 2 . 2 (56)

Note that by considering any gyroscopic moments as external one not only removes asymmetry
in the complete system receptance matrix and uncouples the xz and yz planes' but removes the

! Provided no cross-coupled stiffness terms are present in the linear system.
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rotational speed dependency of the system receptance matrix. Hence, the sub-system receptance
matrices will be real, symmetric and independent of rotational speed.

4.2 COMPUTATION OF TERMS IN SERIES EXPANSION

The undamped natural frequencies @, are easily determined by applying to each subsystem any

linear frequency based rotor dynamic meodelling technique e.g. transfer matrix, mechanical
impedance (MI). In particular, with MI the @, ’s are found by locating the zeros of IZ(a)j where

Z(a)) is the impedance matrix of the subsystem (see equation (16)) i.e. by solving
[Z{w)]=0 (57)

This equation is effectively solved for any chosen number of zeros within a specified frequency
range using Muller’s algorithm [25].

Once the ®,’s, r=1...q have been determined, the corresponding modal constants Aj,
r=1...q of a receptance term R; (a)) are very easily determined by computing Rj; (w) for p

selected frequencies @ i=1...p within the chosen frequency range and performing a modal

sel i°

fit [24] by solving the equations:

R; (a:)sel 1) wf - o, o} - D1 [ 4}
N . 5 (58)
o ) | L
i et p/| |—3———  —z
Hwi ™ p w‘l _wsel P
or
r = M a
(px1) (pxq)lgx1)
Now p>gq. If p=q ie asmany points are taken as modes, then
a=M"r - (59)
If p>q i.e. more points are taken than the number of unknown modal constants
a=M'r (60)

where M* is the pseudo- inverse of M, given by [24]:
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ML = MM MT (61)

Note that for the cases considered in section 5.1.1 p=g where the number of modes in each
subsystem was g=4. This was found to give highly accurate results. Note also that prior to
performing a modal decomposition of the receptance R; (w) over a given frequency range it is

wise to check if any of the resonances @, of the subsystem is missing, e.g. by plotting it R; (co)
out over that range, or, much quicker, by checking if R; (@) changes sign in passing through
each @,. If a resonance is found to be missing then corresponding modal constant is zero' and

should be omitted from the series expansion (56) prior to performing the fit i.e. the appropriate
row and column should be deleted from r, M and a in equation (58), prior to inversion.

4.3 DERIVATION OF EQUATIONS

For clarity general equations are presented for both the following conditions satisfied:

1). The xz and yz planes are uncoupled in the linear undamped system. Hence Q =2 uncoupled

subsystems (in the xz and yz planes) are considered which means that two uncoupled 2M X 2M *
receptance matrices R, R, are used where

uxz:szfxz’ uxz:lfl gyl X'M QyMJ’ fxz:[Fxl ﬂz’yl ﬁxM MyM] (622)
Uy, = Ryzfyz » Wy = lﬁ §xl 1711/[ é“JcM _L fyz - [ﬁyl M, ﬁyM MxM] (62b)

2). Additionally, the “external” gyroscopic moments are negligible. Hence, the moments and
rotations can be dropped from equations (62) and one works with the reduced M XM receptance
matrices in the x and y directions i }, {ﬁu }:

uxz(’ptij X’uX:[X~l X:M]’fxz[ﬁxi ~xM] (633')

u, =8, 80, = Bt =lF, o Ful (63b)

The schematic diagram in Figure 3(a) is used to describe such a system. However, the damper
symbol now denotes a general damper, linear, as well as non-linear, as do the symbols {0,

Qui=L.n for the damping forces. The symbols P,, P,, k=1l..p, are used for the
unbalance forces (equations (21)). As in section 3.1, X 5t} Yy(t) are defined as the
displacements of Bi from its static equilibrium position. X L), Yﬁ(t) are defined the

displacements of Ji from the static equilibrium position of Bi. €y, €, denote the static

! If moments and rotations are not considered in the receptance matrix (as in equations (63)) this means that point
and/or point j is a node in the rth mode, from equation (55).
2 M is the number of terminals (nodes) of the subsystem.
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displacements of Ji from Bi. Hence, the dynamic displacements of Ji i.e. the displacements of Ji
from its own equilibrium position are given by X (t)—eyy» Y5(2)- €0yi -

Considering the x response at a particular journal Ja, the general frequency domain equation can
be written as:

S{X 1, (£)— €0 t= 10011 (@)= 0t 15 (@)}3{0, )+ ... + 4 u(0) = 2,5, (0)13{0,., ()}
+ 0y @3{P O} o+ 00, (@ISR, () (64)

where 3{f (1)} denotes the Fourier transform of £(t).

Hence, transforming into the time domain:

X5, (0)- €00 = gt )= By )} 0 e)+...... + g ) = P ()1 0. t)
P OV P () 4 By, (0% P () (65)

where ‘=’ denotes the convolution operation and Ay (t) is the impulsive receptance [26] between i

and j, defined as
hy(1)=5", ()} (66)

I

g
Now «; (a) =Z J - (equation (56))
r=l1 a)

Hence, by applying the inverse Fourier transform to each term in the series of equation (56) gives

hy(e)=Y —Lsinw, 1 (67)

1 . . . . . .
Note that ——sinm,,¢ is the impulse response function of a single degree of freedom of unit
mxr

mass and natural frequency @,,. Hence substitution of hy (t) as given by equation (67) into

equation (65) shows that the dynamic response X, (t)—e,,, is the sum of the modal responses
X ;a( ) of undamped single degree of freedom systems of unit mass, natural frequency @, each

subjected to modal forces (A Juzi = ALapj s » Asan P - Hence one can write:

n

j(.;a + w?rX;a = 2 (A;a.lj A.;LIEJ' pxj (X; ? Yj H Xj ? Y ) Z A.quk ka (t (683-)

j=1
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g
for r=1...q, where X , :eom+ZX§a.

r=1

Similarly, for the y direction

Pr 402y =Y (B - By 2, (X ,.7,.X .7, J+ 3 Bl Py () (68b)
k=1

j=t

4

for r=1...q, where Y¥;, =e,, +2Yfa.
r=1

For equation (68b) the required modal constants Bj; are obtained by decomposing the

corresponding receptances:

q BI;

ﬁij(w)zz 3

r=1

s (69)
@, —0
The next step is to bring each relative displacement X ;, ¥; j=1l..n in terms of the modal

displacements X,, ¥;,. Consider the x response at a general position P. The modal equations

can be written as
. n - . p
Xp+ a)er; = Z(A;ﬁ - A;Bj bx_r (Xj’Yj X ’Yj )"’ ZA;Ukka (t) (70)
= k=l

q
where the dynamic response at P is ZX p-

r=1

Now from equation (55), it is evident that the following refationship between modal constants
applies:

r i
Al = Mﬂ_ (71)
i Ar
(144
This means that
Ar r Ar
r _ “ PJa v r  __ ‘*PJa r r — ‘Pl r
APJj = A.Ialj 1 APBj = AJaBjs Apyy = r Ao
Jaju Jalu Jata

This means that the right hand side of equation (70) can be obtained by multiplying both sides of
equation (68a) by Apy, / Aj,,, - Hence it follows that
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r
APJa r

X, = X; (72a)
AJaJa ¢
Similarly,
r B;Ja r
Jala
Therefore,
g 4 Al
r=I1 r=1 A.laJa
and
AB_JJ(J
EX = 2 o ey (74)
r=1 ‘Ylala
Hence,
Al AL
X;=X,—-Xp=ep+ 2 e Bk g (752)
r=1 AJaJa AJaJa
Similarly,

g B}- Bh

_ liJa Bilu

Y;=e, +Z(Br— “Br—}’fa (75b)
r=i JaJu Jala

Hence, finally, equations (68) are brought entirely in terms of X , ¥; . These are represented

below:

I

X;a + wer.;u = Z (A.;an - A.;aBj bxj (Xj ’Yj » X; ’Y iAJ'aUk (762)

P=

Y" +C0 YJ’:: *Z( J:a.o[r B;aij)j(Xj’Yj’Xj’Y iBJaUk (76b)
J=1
for r=1...q, where

r r r r
= +2{ AJ_]Ja _ ABJJ(: }( V.=¢ +i(BJjJa _ BBjJa }r
Oxf Ja? & j T “0yf Ja

r r r
Ja.la AJuJa r=I BJaJa BJa.Ia

r ¥ ¥ r
i A.Ij.la _ ABjJa Y Z BJ;Ja _ BBjJa yds
i Ar Ar Jd ? Br Br Ja*
r=1 JaJa Jala re=] JaJa Jata

Q.;» ©,; are given by the appropriate expressions in section 2.1 for squeeze film dampers. For

any linear damper they are given simply as C, X C, Y where C,;, C,; are the viscous

damping coefficients. The unbalance forces P, (t), % (r) are given by equatlons (21).
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This set of 2¢ coupled' non-linear second order differential equations can be solved numerically
by any technique suitable for stiff differential equations (see section 4.4). Once solved, the
response at each squeeze film i, i =1...n, is given by equations (73), (74):

o Ar. q Br_ .
XJi = €y + Z#X;a * YJi = e[)yi + Z_rﬁ‘@_YJa (73a,b)
r=| ‘Xuja r=1 BJaJa
AL, & Bl
Xpi = Z“flix Jar Y8 = 2_“‘3”“ Y, (74a.,b)
r=l AJaJa r=1 B Jala

The dynamic response of any other position P is obtained from equations (72)

q Ar . & B?’ .
Xp=D Xl Yo = 2 2E, (77a,b)
r=l “Yala r=1 = Jula

Note that the chosen location Ja for the solution of the modal equations is arbitrary. In fact, it
need not be a squeeze film journal at all and can be any point A on the structure. Hence the
subscript Ja can be replaced by A in all the above equations. What is important is that A or Ja is
not a node for some mode b within » =1...g. This will make A}, (or A}, )=0for r=5 in the

denominator of all equations (72)-(75).

The general number n,, of second order modal equations of motion for Q subsystems is given by
Hey = QZ(number of modes taken for each subsystem) (78)

Furthermore, if gyroscopic effects were to be taken into account, they are treated in a similar
manner to the squeeze film forces. The appropriate rotational receptances contained in the
matrices R,,, R,, in equations (62) have to be decomposed. The gyroscopic moments G,

G,;, at adisc D of polar moment of inertia [ in the xz, yz planes are given respectively by

Gp=1p020,, (79b)
The rotations 6,;,, 8,5 in the xz, yz planes are then brought in terms of X Ja- Y, as for the

relative displacements X ;, Y; at the squeeze films in equation (73), using the relation (55).

! Through the squeeze film forces.
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4.4 SOLUTION OF MODAL EQUATIONS OF MOTION
Defining
s=f x4 v, - x% vg %%, vL o x5 vl

the system of 2¢ non-linear second order differential equations (76) can be written in standard
form, as a system of 4¢+1 first order differential equations:

§=£(s) (80)

The system given by equation (80) is then integrated numerically. Note that even for the
simplest of problems involving squeeze films, problems of stiffness arise [15], [13]. A “stiff”
system is one that requires ever decreasing time step sizes to maintain the local integration error
within the desired tolerance. This makes Runge-Kutta methods unsuitable. A fast integration
method (FIM) [13] was implemented successfully in [15] and can be used to solve the above
systems. Moreover, MATLAB® (Version 5) has a function ODE235© {21] that is specially
designed to solve stiff systems. It works on roughly similar principles as the fast integration
method, involving the computation of the Jacobian matrix at each time step. It was found to take
roughly the same time as FIM to integrate over a given number of revolutions. Most of the time
domain simulations presented in this report used this function. A factor which aggravates
stiffness is the number of equations to be solved, determined by the number of modes g taken in
the receptance decomposition. According to Petyt [23], the larger the system to be solved, the
smaller the time step size required for a given tolerance. Hence the number of modes taken, ¢
has to be carcfully considered. This should be the minimum number to ensure a decent fit over a
carefully chosen frequency range. The quality of fit is checked by plotting out the approximate
receptance reconstructed from g modes, equation (56), and the exact receptance over the chosen
frequency range. Because the problem is non-linear, the chosen frequency range has to cover a
minimum number of harmonics of the top rotational speed.

Note that in harmonic balance analysis the number of non-linear algebraic equations to be solved
increases directly with the number of non-linear elements (see end of section 3.3). On the other
hand in time domain analysis the number of non-linear differential equations to be solved, given
by (78) is independent of the number of non-linear elements. Hence, for problems involving
several dampers, when harmonic balance is prone to convergence problems, time domain
analysis provides a useful backup. Note finally that in the harmonic balance analysis, one works
with exact receptances (covering the infinite modal series) but with responses having a finite
number of harmonics. In the time domain analysis, approximate receptances (covering a finite
modal series) are used but the computed response has an infinite frequency spectrum. It should
be noted however that that part of the spectrum outside the fitting frequency range should be not
be considered and should be negligible for a good fit.
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CHAPTER §

APPLICATION TO SPECIFIC CONFIGURATIONS

In this chapter the frequency and time domain equations presented in chapters 3, 4 are applied to
two configurations A, B, each incorporating one squeeze film.

5.1 DESCRIPTION OF CONFIGURATIONS

In both configurations A, B gyroscopic effects are neglected and the squeeze film is taken to be
the only source of damping. Hence the “linear system” as used in the harmonic balance analysis
context (section 3.1) will be identical to that used in the time domain analysis context (section
4.1). This means that the receptances will be real and obey the reciprocity principle for both
types of analysis. There is also no x-y cross-coupling.

5.1.1 Configuration A: flexible shaft in rigidly housed SFD

In configuration A, a flexible shaft is supported by a self-aligning bearing H at one end and by a
rigidly housed squeeze film damper at J (Figure 5). An unbalance disc is carried on the overhung
portion at U. The self-aligning bearing H is modelled as a fixed pivot. A retainer spring can be
optionally placed in parallel with the squeeze film, leading to two alternative schematic
configurations: Al (with retainer spring, Figure 5(a)) and A2 (without retainer spring, Figure
5(b)). As illustrated in Figure 5(a), in configuration A1 the retainer spring is not grounded at the
rigid bearing housing B but at a different location F. This permits the static eccentricities
(misalignments) &y,;, €, (=ey/c, €y /c, c=radial clearance of damper) of the journal

from the bearing housing to be altered by moving the bearing housing horizontally and vertically
respectively. In this work &, =0 and only &,,, is varied. The equations that describe

configuration Al apply both for the retainer spring fully supporting the static load, &,,, >-1,
and for the retainer spring partially supporting the static load, &;,; <-1 g

5.1.2 Configuration B: flexible shaft in flexibly housed, unsupported SFD

Configuration B is illustrated schematically in Figure 6. A rotor is supported by a self-aligning
bearing at one end H and by a flexibly housed squeeze film damper at J. No retainer spring is
placed in parallel with the damper. Instead the damper is in series with the flexibility of the
bearing housing B. The self-aligning bearing H is again modelled as a fixed pivot. This
configuration was studied experimentally and analytically by Dogan [27] for low speeds (rigid

! Note that €o. > Eo,y Tefer to the static displacements of J from B with the full static load taken by the retamer
spring. With J resting at the bottom of the clearance circle, this static position lies at some point outside the
clearance circle (g5,, <—1)-
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rotor). It has been recently studied experimentally by Levesley et al [28] for high speeds
(flexible rotor). Note that in the linear system, the rotor is uncoupled from the bearing housing.
The absolute displacements of J and B are measured from the static equilibrium position of B
prior to loading it with the static load from the rotor.

For both configurations A2 and B it is assumed that the distributed static load can be replaced by
a concentrated load at J equal to W, the equivalent static load at the squeeze film, given by:

W:EM* (81)
l.f

where ZM = sum of anti-clockwise moments of gravity forces about H and I, = distance of

SFD from pivot H.
5.2 HARMONIC BALANCE EQUATIONS
In this section the symbol w refers to the fundamental frequency of the limit cycle.

5.2.1 Configuration A (Figure 5)

For configuration A, equations (42), with n=1 (number of squeeze films), p=1 (number of
unbalance forces), rigid bearing housing (V,z,Vy =0), no x-y cross-coupling (!P‘ﬁ;j },

{ﬁaij }: 0) collapse to:
M, O I \ L g3
0 My ~ 12{2m+1) Vy - fy ( )

where
. 1 1 m m ]1'
Ve = [X or Ax; bxy 0 ax by
_ i 1 m m
Vy = [Y(}J ay; by, o ay bw]r

For configuration A1 (retainer spring in place) (Figure 5(a)):

From equations (A6), (A9), (Al0a), (Al3a), (Al4a), (Al5a), Appendix A, for real receptances

(o}, {BBL1=0)
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From equations (A16), (A19), (A20a), (A23a), (A24a), (A25a) in Appendix A
I eoxs +0 (00050 | €y T By (O)Qy() ]
Uy ((U)A;lc By (W)A; 0By (wQ?
0057 (@)By + 8310y (e’ By (w)B)l;
: , I : (84a,b)

The phase angle ¢ of the unbalance is taken as zero. Also, recall that 8y, (s=1...m) is non-

zero only for the synchronous harmonic (s =N, where the fundamental frequency of vibration
@ =£/N). On the other hand, the constants Aj, B, A; , B; will be zero for the synchronous

harmonic, s =N ). The receptances «;;, ]32-}- in the x and y directions respectively are for a beam

pinned at H and sprung atJ. o; = ﬁij if retainer spring is isotropic.
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The mean and harmonic components of the dynamic response X,, Y, at a general position P

(equations (52)) are given by equations (53} which reduce to

Xop =0, (O)Q:
ayp =0Olp; (S CU)P;
byp = 0p; (@5 + 8, 0py (s QR

Yor = Bps (O)Qy
ayp = By (SCU)P; —Ons By (Sw)ng
bip = Bpy (SW)CI;

For configuration A2 (no retainer spring) (Figure 5(b)):

(85a)
(86a)
(87a)

(85b)
(86b)
(87b)

The linear system now consists of a pinned-free beam, which is degenerate. The linear system is
capable of rigid body motion: rotation about H. Hence ¢, (0)%00. Hence, as explained in

section 3.6, the zero frequency equations need modification. This means that the element in the
first row, first column of M, , M, as given by equations (83a,b) and the first element in f,, f,

as given by equations (84a,b), need alteration. As explained in section 3.6, the zero frequency
equations become equilibrium equations. Recall the Fourier expansion for the squeeze film

forces, equation (28):

0.=0, + Z (p; COS St + ¢ sin sa)r)

m
s=1

kil

0,=0,+

(p; COs s@t + g, sin Scot)

i 1

Now, from equations (33a,b)

=00tk b
Hence, equations (88) become:
kxxX o= —Qx()

(882)
(88b)

(89a)
(89b)
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Equations (89) are now the zero frequency equations and the specified elements in M, , M, f,,
f, can now be amended. Hence the matrices and vectors M,, M,, f,, f; in equation (82) are

now given by:

[k, +1 ]
ko0, (@) oc,0,)
— e, 0 (@) k0 @)
M, =
kO, (mco) AC,, &y (mo)

i ~mac, 0, (mo) Ky, (me) |
{90a)

[k, +1 i

kyyﬁ.]] (w) a)cyyﬁ.f] (a’)
_a)cyyﬁ.ﬂ (CO) kyyﬁJJ (CD)
1\/13‘r =
kyyﬁJJ (ma)) ma)cyyﬁ.” (mw)

L "ma)cyyﬁﬂ(mw) kyyﬁﬂ(ma)) N

. {90b)
[ Qx() ] i QyO -W ]
a (@)A} B (a’)A; 8y Bw (m)UQZ
o, (@)B, + 810ty (0p? By (CO)B;
£ =— : f,=- ; (91ab)
&y (ma))A;” B (ma))A;" =8By (ma))U.Q 2
[ Xy (mw)BY +8 5,0y (m@ YU 2 i ] B (ma))B;"

The receptances @, f; in the x and y directions respectively now refer to a pinned-free beam.

@y = By.

The harmonic components of the response X, Y at a general position P are given by equations
(86a,b), (87a,b). However, the mean components, given by equations (85a,b), need modification.
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Since the distributed static load has been replaced by a concentrated load at I, the zero frequency
forces acting on the rotor produce no deformation of the rotor. Hence

i l
Xop = lP Xos> Yop =Y, (92a,b)

J l.I

where [, is the distance of P from the pivot H. Hence, X,, ¥, are measured from the line

joining H to the bearing centre.

5.2.2 Configuration B (Figure 6)

For configuration B, equations (42), for n=1 (number of squeeze films), p=1 (number of
unbalance forces), flexible bearing housings, no x-y cross-coupling ({aﬁxj J", {ﬁ%}zO), are of

the form:
M, 0 I \ £, 93)
0 My - 4(2m+l) Vy - fy (
where:
* v Y A
VxJ:[XOJ aﬁu b;u o ayy b,'z,]r,va:[XOB a;(B b%(B o ayp b;?B]r
vyJ:[YOJ aslfj b}l’.] e dyy b)'g]r’vyB:[YOB axlrs bll’B v ayp b}%]r

From equations (A6), (A9):

M =|:I\’IxJ —MxJ:|’M — MyJ _MyJ
X MXB _MXB Y MyB —MYB

From equations (A16), (A19):
g =Bl g 2| D
fxB v fyB
My, My, My, Mg, I, g, fy, fg are nominally respectively given by equations

(Alda), (A14b), (Al15a), (A15Db), (A24a), (A24b), (A25a), (A25b) in Appendix A, but taking note
that the receptances are real ( ociI. } {ﬁ I;.}—_— 0) and that the receptances connecting J and B and
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those connecting U and B are zero (due to the uncoupling of the rotor and foundation subsystems
in the linear system). Since the rotor subsystem is degenerate, M, My;. £y, f,; need

fq,f

correction. Since the rotor subsystem is the same configuration as A2 then M,,, M R

yI:
are given by equations (90a,b), (91a,b). Hence....

&, +1 ]
kxxa.b’ (CO) wcxxa.f.] ((0)
=00y (w) KOy ((9)
M, =
k0t (mw) max,,0;; (mw)

B —mac, &y, (ma)) kxanJ (mCO) _
{94a)

ky, +1 il

kyyﬁ-” (0)) G)nyﬁ_u (CI))
—ac,, By (@) kyyﬁ]] (@)
M =
kyyﬁjj (mw) ma)cyyﬁjj (mw)

i —max,, B, (ma) kyy B (maw) ]

(94b)
i Qx{) | : I QyO -W |
12574 (Co)Ai B (Q’)A; —8mBy (@Q?
0 (@)B, + 8,0 (@YU Q* B (a))B;
f,=- : fy == : (95a,b)
gy (maJ)A;" B (mCO)A;1 — OBy (Mo 2?
| Xy (mw)BJT + Oy (mw)U-Q 2_ i B (ma) )B ;n

From equations (A14b), (A15b) in Appendix A
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[k Otpp (0)

e, Gpp (w)

O)nyﬁBB (CD)

k0t (@)
— 00, 00pp () k(@)
M, =-
Ky B35 (0)
k,, Bis (@)
—ac,, Baa(©) Ky Bp(®)
MyB =

From equations (A24b), (A25b) in Appendix A

X pp (CU )A;lc
Xpp (CU )B;lc

i O’«'BB(O)on |

kxxaBB (mw)
~ 1m0, 0t ()

kyyﬁBB (mo)
- mwcyyﬁaa (m)

i ﬁ BB (O)Qyo
Bas (@ )A)l;
Bes (a’ )B;

Bes (ma))A;"

maoc, 0 g (mo)

mwcyyﬁBB (mw)

Bz (ma))B;”m

ko Opp (ma)) i
(96a)

kyyﬁBB (mw) N
(96b)

(97a,b)

The response at a general position P on the rotor, X, Y, , is given by equations (86a,b), (87a,b)

for the harmonic components and equations (92a,b) for the mean components. . X, ¥, are

measured from the line joining H to the static equilibrium position of the bearing centre prior to

loading it with W.
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5.3 TIME DOMAIN EQUATIONS

These equations are presented in terms of the non-dimensional variables

t=Qt, X =X][c, xh=Xb[e, v =Y [e, vy =¥]fc, d( Ydr=()

In this section the symbol @ refers to a general frequency.

5.3.1 Configuration A (Figure 5)

In this configuration Q =2 subsystems are considered: rotor in xz and yz planes. Hence for both

configurations Al and A2 the equations are obtained from equations (76) but with the addition of
the static load W for A2.

For configuration Al (retainer spring) (Figure 5(a)):

2
@ 1 1 .
X2t = AT O (x, v, X,y )+— A, Usint 08a
J 0?2 J L JJ’Qx( ¥ )’) i (98a)
w?’ 1 1
”r yro.r _ r - r _
¥ +£22 Y7 —;!?Bﬂgy(x,y,x,y )——C—BJUUCOS'L', r=1..q (98b)
4 d e J rr ! d ’
xX=x; :801+Zx;, y=y, :80),4-2));, X :zx_] s Y :zy]r (99a,b,c,d)

r=1 r=1 r=1 r=|

The dynamic response of any point P on the rotor (i.e. displacement of P from its own
equilibrium position) is given by:

. A;J s : B;J r
xp =2Ar Xrs  Vp :zBr Y (100a,b)
r=1 47 =1 Dy

For configuration A2 (no retainer spring) (Figure 5(b)):

2
w 1 1
X+ 2yt =—— AL O (x, v, x, ¥V )+— A} UsinTt 101a
- R ) JJQx( y ZV) o U ( )
O e B, {0, (e, y.x,y)-w-1Br,U =1 101b
y,] +92 yJ" _@ JF Qy X, ¥V, X,¥Y jJ— _"'"C' Ji cost, r=— e ( )
q P q 7 f q Iy r s q I
x=x, =y, y=y =2y, K= =Y, Y =y =2 (102a,b.c.d)
r=l r=1 r=1 r=1

The response of any point P on the rotor is given by:
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L AL, BL, ,
xp=) Ly, ypzz ELy7 (103a,b)
=1 Ay =1 By

The required modal constants are given by decomposing the corresponding receptances as in
section 4.2:

4 4
oy ()= zw > B;{w)= 2 (104a,b)

r=l

Note that for case A2 oy (@)= By () hence @, = @,, and A;=Bj;. This will also be the case
for Al if the retainer spring is isotropic. Note also, in the case A2, ®,,, @, =0 since the first
mode is rigid body rotation about the pivot H. Hence, for r =1, equations (101a,b) are the rigid
body equations with 1/ A} ; and I/ A}U being respectively equal to the equivalent rigid body mass
at J and the equivalent rigid body mass at U referred to J. For this reason, the response at any

arbitrary position P, given by equations (103a,b), is measured from the line joining H to the
bearing housing centre, as for the harmonic balance equations (92a,b).

5.3.2 Configuration B (Figure 6)

In configuration B O =4 uncoupled subsystems are considered: rotor in xz and yz planes and
support in xz and yz planes. g, modes are taken for the rotor subsystem in both the xz and yz
planes. g, modes are taken for the suppoit subsystem in both the xz and yz planes. If the
support is modelled as a mass on a spring, gz =1. Accordingly, the equations are

oY a)er r 1 r LA 1 r H
x; + X, = A X VX, +—A UsinT 105a
J Q J = 2 JJ’Qx( y )’) JU ( )
w r
e gg’ ¥y = QZB;J{Q (x,y,%,y)— W}——BJUUCOST, r=1...qs (105h)
2
#5 waT _ 1 5 L
Xp +F.7CB -——'C.(z—ZABBQx(x, y,x,y) (].OSC)
2
7y aJFy.'.' 5 1
o —— Yy = — x,v,x, s=1... 105d
VB 02 B “0? BBQ ( y J’) 9k ( )
R
5 =35 =2y k=3 v —Zya (106a,b,c,d)
r=1 r=I 5=l
qr
2 Xy )’J—ZJ’J xB_ZxB Ya —zy (106e.£,g,h)
X=X, —Xgy Y=Y, —Ygs X =X; =Xy ¥ =¥7 -3 (106i,j,k,1)
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For points i, j on the rotor the required modal constants are determined from the modal
decomposition of the corresponding receptances:

! 4z B"
a)) 2 J 2 > ﬁxj Z 0)2 _ a) (107a,b)
r=l R.xr r=1 " Ryr
For the bearing housing only
qr AS 4F B-"
aBB(w)_"z—'zB—jwi“, Bes(w)= Z 22 (108a,b)
s=1*YFxs s=1 " Fys

Note that for the rotor o(w)= f;(@) hence @y,, =@y, and A} = Bj. This will also be true for

the bearing housing if the support stiffness is isotropic. The response xp, yp at a general
position P on the rotor is given by equation (103a,b). xp, yp are measured from the line joining

H to the static equilibrium position of B prior to loading it with the rotor.

5.4 SOLUTION OF EQUATIONS

The harmonic balance equations were solved according to the iterative scheme in section 3.4.1.
For the time domain equations, each of the three sets (98), (101), (105) was expressed as

s =f(s) (109)
and solved as explained in section 4.4. For equations (98) or equations (101} (configuration A)
§s= [7: P T B x5y A y.’lq]r
For equations (105) (configuration B)

4R

— L 1 4 L 1 q qF
S"[T X; ¥y o X% ¥ Xp Y - X' ¥

21 7] dp ry 1 r] ’qr rq
xX; ¥, o X% Y/t xg yp ... Xg' Yp'

The tolerance on the magnitude of the local integration error in s was 0.1% of the element of
smallest magnitude in s.

Software was developed in MATLAB® (Version 5) to solve the equations presented in this
chapter.
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CHAPTER 6

STABILITY OF HARMONIC BALANCE SOLUTIONS

Having established both the harmonic balance and time domain equations for a squeeze film
damped rotor dynamic system one can address the issue of stability of the computed harmonic
balance solutions. As explained in the Introduction, chapter 1, these solutions are periodic,
equilibrium solutions i.e. limit cycles in state space, which can be either stable (attractors) or
unstable (repellors), depending on the operating conditions. Limit cycles that are repellors are in
unstable equilibrium and hence unattainable in practice due to inevitable minor fluctuations in
the operating conditions. Hence, any harmonic balance solution technique must be accompanied
by some technique to check for stability in order to determine which solutions are reliable
predictions. Additionally, the stability test method should be as efficient as possible in order not
to detract from the computational efficiency gained in using the harmonic balance method. Two
main methods I, II are applied in this report to test for stability of a limit cycle. Both methods
assume that the computed limit cycle is a reasonably accurate approximation to the exact limit
cycle.

6.1 METHOD I — Direct integration from equilibriem initial conditions

This is the most basic method. One takes the state variables of any one point on the computed
limit cycle and uses them as initial conditions in the solution of the time domain equations. The
time domain equations are then integrated with these initial conditions over a limit number of
rotor revolutions (say 10). If the computed trajectory remains on the limit cycle then that cycle is
is stable (attractor). If it diverges from it, it is unstable (repellor). In the latter case, continuation
of the solution for a further number of revolutions will reveal to what attractor the trajectory will
settle down to'.

One has to remember however that the time domain equations are formulated in terms of modal
state variables x}, y7, x7, ¥7 in equations (98). The harmonic balance solutions on the other
hand give the actual full state variables x;, y,, x;, ¥, (equations (99), = X,/c, Y, /c,
X, / (Qc), ¥ f / (Qc) in equations (82)). Hence, in order to extract the initial conditions to the
time domain equations from an instantaneous point on the limit cycle one has to perform a modal

decomposition of the harmonic balance solution. This is done as follows. Consider
configuration A. Suppose one wishes to decompose the state variables of the harmonic balance

! Theoretically, a trajectory starting exactly on an unstable limit cycle should remain on it. The divergence from a
repellor occurs primarily because of the local error, however small, in each integration step. Two additional reasons
are. the fact that the computed limit cycle is itself approximate (finite number of harmonics), as are the time domain

equations integrated (finite nurnber of modes).
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solution at 7=0, x,(0), v,(0), x;(0), ¥,(0) into the corresponding modal state variables
x;(0), y7{0), x7(0), ¥7(0), r=1...q. Take g points on the rotor P1....Pq. Determine the
harmonic balance displacements and velocities at Pi, X, (0), Yy, 0), X »0), YP,. (O), i=1l..g,
from equations (52), (85)-(87). Then

0=, 5, 0=100), 4 =280y ) Ta® g0p0g)

But, from equations (100a,b)

Xp; 0) iAP!J 7

1 ALy
BP:J r
0= 325,70
r=1 7
%, (0)= z A v (0)
Ay
y O) PzJ ’I‘
& rzl‘ BJJ
Hence,
HxPE(O)" _A;’IJ/A}J Agl!/A?J -—x} (0)
2 P : : : (111a)
%, 0)] | 4by /AL - Al /AL [ %10)
_yPI(O)— _B11"11/BJ1'J Bgu /B.?J__y.ll (0)_
: = : : : (111b)
Yy (0)_ PqJ/BJJ ng.l Bf#d,__y}f(O)_
_x;’l (0)_ —A;’u/ Aulu A}q’u/ A}J | _X’JI(O)—
: = : : : : (11lc)
_x;’q (0)_ _A;’ql / A.E.U T Alq"qj / A.?J _x}q (0)_
I J’;l (0)- -B;Ju / B}U o Bjy, / Bj, 1 J’:'i (0)_
: = : : : : (111d)
i y;”q (0)_ _BlquJ / B..EU Tt ngJ / Bj, i _y}"' (0)_
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The modal constants Ay, Bp;, r=1...q, are computed as in section 4.2. The modal state

variables of T at 7=0, (to be referred to as the initial modal state variables) are then obtained by
solving each of the above four systems of equations (11la,b,c,d). The initial conditions state
vector s, is hence obtained:

2=l #0) $%0) .. ¥O) 3O H0O) B0 .. O ol a2

Experience gained from the simulations presented later in this report has shown that the
conditioning of the matrices in equations (111) strongly affects the accuracy of the computed
initial modal state variables. The reason for this is that equations (111) are approximations since
the infinite modal series is truncated after g modes. If the points Pi are close together then the
matrices in equations (111) are close to singular. Hence the error due to the modal truncation is
grossly amplified upon inversion. Therefore, the following steps are taken to minimise this
effect:

(a) The points Pi should be as far apart as possible: divide the span of the rotor into ¢ segments
and take points Pi joining these segments.

(b) Use more modes g in equations (111) than are actually used when solving the differential
equations (98). This makes equations (111) more accurate and hence less adversely affected by
any ill conditioning of the matrices in these equations. The extra initial state variables generated
upon solution of equations (111) are then dropped when forming the initial conditions state
vector sy, equation (112). Steps (a) and (b) proved highly effective in the simulations carried

out.

6.2 METHOD II: using Floquet Theory

In this method, one considers small perturbations of the modal state variables about the limit
cycle. For this analysis, the system of equations (109) in the time domain is written as:

s’ =f(r,s) (113)

where s is now the vector of modal state variables only, excluding t (previously the first element
ins. Also, for convenience, t is defined as 7= @t where @ is the fundamental frequency of the
limit cycle, rather than 7 =£ (£2 =rotational speed), as previous. Let sg =5y {z) be the

equilibrium state vector i.e. the vector of modal state variables at a general point on the limit
cycle (harmonic balance solution). Hence sg is a periodic function of = with period 27. Note

that in Method I s;(0) was computed to use as initial conditions for the time domain equations
(98). Now

$, =£(7,55) (114)

s —sp =f{r,8)-F(r,5;) (115)
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Define u=s—sg = vector of perturbations in the modal state variables. For small perturbations

about the limit cycle one can write

, of
un-v

==l (116)

S=Sq

where, in the above equation (116), £(r,s) has been expanded as a Taylor series about s = sy, :

f(r,s):f('r,sE)+-g-£—s=SE (s—sp )}+... (117
Equation (116) is written as
u' =Wt (118)
where
W(r):%szsﬁ (119)

W(t)is an n xn, matrix of partial derivatives where n, is the number of modal state variables.
Since these partial derivatives are evaluated at sg{t) which is periodic with period 27 then
W(r) will also be periodic with period 27 :

W(t)=W(r+k2r), k=12,... (120)

Hence equation (118) is a system of ordinary linear homogeneous differential equations with
periodically varying coefficients. The study of the stability of the limit cycle has hence been
reduced to the study of the stability of such a system of equations. Such a study is referred to as

Floquet Theory and can be found in any standard text book on ordinary linear differential
equations e.g. [14], [29], [30], [31]. The matrix W(’r) for the specific configurations A, B will

be presented in section 6.2.3. In the following section the fundamentals of Floquet Theory are
presented.

6.2.1 Fundamentals of Floquet Theory

The system of equations (118) will have n, linearly independent solutions u,(z),...... Uy, (z).

These can be collected into a fundamental matrix U{t):
Ur)=u, @) ... v, (@) (121)

Hence, U(t) is a solution of the matrix differential equation
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U'=W()U (122)

if, in addition, w,(0)=1 0 - of, w,(0)=fo 1 - of, ..., u, ©)=f0 - 0 if,
then U(t) is referred to as the principal fundamental matrix Up(z). Hence Up(r) is the unique

solution of the initial value problem

U=W(@E)U, U0)=1I, (123)
In general neither U(r) nor UP(’E) are periodic. The monodromy matrix M is defined as
M =U,(27) (124)

It can be shown [30] that the discrete general solution of equation (118) is of the form

u(kor)=Y Ace,, k=012... (125)
i=1
where A, i=1...n, is an eigenvalue of M, e; the corresponding eigenvector and ¢; an arbitrary

constant. Note that equation (125) gives the perturbation vector u sampled at intervals of 27,
which is the period of the limit cycle. Any two rows in u(k27r) can be plotted against each other
for k =0,1,2,.... The resulting plot of sampled points (or return points) is a Poincare map. The

eigenvalues of M are referred to as the characteristic or Floquet multipliers. From equation
(125), these govern the stability of the perturbation vector u(7) and the evolution of the sampling

points on the Poincare map. For stability

4| <1, for i=1...n,, (126)

ie. each A, must lie within a unit circle. If I/'L,-] >1 for one or more values of i then the motion is

unstable and the sampled points diverge. Moreover, in such a case, one can determine the stable
type of motion the perturbed trajectory femds to by examining A, the critical multiplier,

responsible for the instability. It is important to note in what follows that since all the
information is obtained from equation (118), which is valid only in the immediate vicinity of the
limit cycle one can only ascertain the fendency to a certain type of motion. Suppose that u(0)=0

i.e. the first sampled point on the Poincare map is very close to the unstable equilibrium position
(0,0), representing the limit cycle.

(a) A, real and positive (— jump, same period bifurcation [31], [B31):

From equation (125)
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u(k2r)= Ace, (127)

Since A, is real, consecutive sampled points on a Poincare map will lie approximately on a
straight line of direction determined by the eigenvector e.. Since A. >0 they will lie on the
same side of the unstable equilibrium point (0,0) but at increasing distances from it. Hence, in
this case the motion of the perturbed trajectory tends to a limit cycle of the same period. The
perturbed trajectory will settle down to such motion if such a stable limit cycle exists, in which
case the points will congregate at a single point at one end of the line.

(b) A, real and negative (— period doubling bifurcation [31], [3]):

Equation (127) still applies and consecutive sampled points on a Poincare map will
approximately lie on a straight line of direction determined by e,. However since the critical

multiplier A, <0, consecutive sampling points flip on either side of the unstable equilibrium

point (0,0), at increasing distances from it. Hence, the perturbed trajectory tends to a limit cycle
of period twice the unstable limit cycle. The perturbed trajectory will settle down to such a
motion if such a stable limit cycle exists, in which case the points eventually congregate at two
points at each end of the line on either side of the unstable equilibrium point. Hence, a period
doubling bifurcation is termed a “flip” bifurcation.

(¢) A, complex (— quasi-periodicity, secondary Hopf bifurcation [31], {31, [12], [14]):

Tn this case two complex conjugate multipliers A, )L’:. cross the unit circle simultaneously. From

equation (125)
u(k2m)= Ace, + (}LZ )k c,e.

Now A =|A e/, =~ A =l4

C

fol® = |ﬂ,c|k {coske + jsinkg}

Hence,
u(k27)= |1, | {d, coskp +d, sin ke} (128)

Equation (128) plotted on a Poincare plane gives one or more (depending on ¢ ) spirals
emanating from the unstable equilibrium point (0,0). As an example, the two rows of u(k2r),
k=0,2,... are plotted against cach other for J4|=1.1, d;=[0.2 04]", d,=]0.4 02f. A
single spiral for comsecutive return points is obtained for ¢ =0.3491 (Figure 7(a)). For

@ =3.4907 , alternate return points (circles and squares in Figure 7(b)) form two spirals. For
@ = 4.6432 the return points form 4 spirals, Figure 7(c). If a stable quasi-periodic attractor exists

in the vicinity of the unstable limit cycle, the return points will diverge from the unstable
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equilibrium point along one or more spirals and settle down into a “drift ring” of points
surrounding the unstable equilibrium point [14], [12]. The bifurcation of a limit cycle into quasi-
periodic motion is referred to as a secondary Hopf bifurcation'. Quasi-periodic motion is
characterised by a frequency that is irrationally related to the fundamental frequency of the limit
cycle (= sampling frequency). Hence the points never quite coincide with each other, forming a
“drift ring”. In exceptional circumstances the two frequencies are rationally related, in which
case “phase locking” is said to occur and the drift ring degenerates into a finite number of points
[31].

To summarise, in order to test for stability of a limit cycle by Floquet Theory one needs to
determine the perturbation matrix W(t) and the associated monodromy matrix M, and examine

the eigenvalues of M.
6.2.2 Computation of monodromy matrix

The monodromy matrix M can be computed by two alternative methods, designated in this report
as Methods Ila and Hb.

Method Ila — direct from the definition of M in equation (124).

This involves solving the perturbation equations (118) numerically (by fast integration [13], or
Runge-Kutta,.....etc} n, times over the interval 7=0 to 7=2x, with the initial conditions

w©O)=[ 0 - of, u©)=[0 1 - of, ... u, (0)=[0 - 0 1J' respectively. Mis

then given by

M=y (27) ... u, () (129)

where ul('r)...uns (r) are the solutions obtained. Needless to say, this is extremely time

consuming, even more so since this has to be performed for each limit cycle in a complete set
computed by the harmonic balance method (i.e. the unbalance response). In this research this
process was found to run into several hours. Hence, such a method would eradicate all the
computational efficiency gained using the harmonic balance method. In fact, Method I (section
6.1) is much faster than this method (IIa). Notwithstanding its gross inefficiency, this method
has been used in the literature to test for the stability of harmonic balance solutions e.g. Hahn e?
al [1], July 1994 and Chu et al {32], 1998. Not surprisingly, in the cited references only a few
solutions were tested from a complete unbalance response.

' A (primary) Hopf bifurcation occurs when a limit cycle (i.e. periodic oscillation) is born from an unstable constant
solution {unstable equilibrium point in state space). On a phase plane the limit cycle surrounds this unstable
equilibrium point. Analogously, on a Poincare map the stable drift ring of sampled points of the stable quasi-
periodic attractor surrounds the unstable equilibrium sample point of the unstable limit cycle. Hence the term
secondary Hopf bifurcation [14].
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Methed IIb — using impulsive parametric excitation theory.

Hsu [33], [10] in 1972 developed a very fast approximate method for computing the monodromy

matrix. This method was implemenied by Zhao ef al [3], April 1994 (i.e. before [1] and [32],
where the slow Method IIa was used). In this technique the periodic interval [0,271:] of the

periodic matrix function W(r) is divided into K equal segments A7. Let 7;, k=1...K, be the
value of T at the midpoint each segment. W(t) is replaced over [0,2715] by a series of impulses
of strength W, A7 [10] where

W, =W(,) (130)

It can be shown [33], that

w A
M = WxdTgWkadt | Wadr, Widr (131)

The above product converges to the exact matrix M as K — . However, in the simulations
presented in this report, K =200 gave highly accurate results. In this research the matrix
exponentials in the product in equation (131) were computed using the MATLAB® function
expm3.m© [21]. Such a function computes the matrix exponential via the eigenvalues and
eigenvectors of the exponent. Hence it is extremely rapid (around a fraction of a second in this
work). In this work it is shown that the application of Method IIb cuts down the time to compute
the stability along an entire unbalance response curve from several hours (Method ITa) down to a
few minutes, with negligible loss of accuracy.

6.2.3 Derivation of W(t) for configurations A, B

Configuration A (Figure 5):

Consider configuration Al. Equations (98) are rewritten in terms of the redefined variable
7 = ¢ where o is the fundamental frequency of the limit cycle:

2
»r . 1 r y 1 r :
Xp + a))g X7 :_TAJJQx(x’yax ¥ )+—AJUUN2 sm(N’E) (132a)
ce ¢
w2 { 1
i +m—y2r)’§ = ;—G?B;JQ}‘ (x, . %, y')";BquNz cos(N) (132b)

Let X'z, Ve, %7z, ¥ be the equilibrium modal state variables (modal state variables on the

limit cycle) and u}, v}, u} , V] the respective perturbations i.e.

r_ .r r ro__ ., ¥ o I . L4 S U
Xy =Xppduy, Yy =YtV Xy =Xgp iy, Yy =Ygty (133a,b,c.d)
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Consider equation (132a):

2
;. i ;. | - )
Xy + L e L g = o — ALO (g, i, X5 yE)+;AJUUstm(NT) (134)

Subtracting equation (134) from equation (132a) gives:

2
1
u;r +%M‘; ZZ)?A;J [Qx(xd’,x,, y,)— Qx(xE!yE’x%’y’E)]

“‘%A}J 9 (1 xp)t aQ (y y5)+aQ (5" = x5 )+ aif(y’—yfg) (135)
ox dy

c

where the right hand side of the above equation has been expanded in a Taylor series about the
equilibrium state and truncated beyond the linear terms. Now, from equations (99)

g g
Xp =X =€t X Xips Ve =Yg =€y + D, Ve (136a,b)
r=1 r=l
? ’ q
Xg =X = zxnz yE = yJE = 2)’ (136¢,d)
pi
From equations (133a,b,c,d)
q q
X=Xx; =£, +Z(x5E +uj), y=y; =&y +2(y}5 +v§), (137a,b)
r=1 r=1
q q
=x; = Z(XSE v ), Y=, =3 +vy) (137c,d)

r=]

Hence, substituting for x—xz, y=Yg, ¥ —x%, ¥ —yp from equations (136), (137) into

equation (135):

2 .
o O 1 00, b 5 90, » 00, ~b 4 00,
w2y = A’ x§u+ x_;_v+ "Eu+ xEv 138a
J J 2 JU[ ax P J ay poue J axf e J ayl ~ I ( )

Similarly, for the y direction

” a)z)’ aQ J z aQ ?
A wyz vh = B;, 2 21{’,’ > 2N w2 Z o (138b)
h= h=l

h=1 X h=1

The partial derivatives in equations (138) are evaluated at the equilibrium state variables xp (r),
ve(t), x:(t), ¥%{r) and hence they are periodic functions of 7, period 27 .

Defining

_ 1.1 1 q q sl 1 rq "I]r
u-[uJ Vi oo Up V3 ouy Voo Uy Vg
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Equations are written in the form (118), where

Y6 - wie) )

-1 90, 00, 20, 30,
Al § A, § ...... Af’fa% A aQy
00, o0 a0 20
B} 7 a—xy B} . gy ...... BJI'J a_xy B}J __é_)_’)_f_
wilz) =j;1)? (140)
J J 2 2
Al anx A a%c e A4 a%r A, any
Q92 0, ., 90
_ 1 : ( 2 2 2 2 ) 141
b= Fdlag O Wyp e o By Dy (141)
[ 0 2 3 30,
A}J% A}J—ayg—f A}U_a% A}U%
9Q 90 30 90
B}Ja—; B‘}Jﬁ ...... B}J'a_xf B}J ayf'
W)=l (142)
cw : : o :
d d P p
A_?J % A_?J af‘f ...... A?j __a_%llc_ Aff[_] a%f
o0 a0 30 30
B.?J a_xf B.(}J gf' Bfrrj Ex-?- B_?J -gf

For configuration A2 the matrix W(r) remains unchanged from that in equations (139)-(142).

Configuration B (Figure 6):

Equations (105) are rewritten in terms of 7=a¢ and a process similar to the above is applied.
The perturbation vector in equation (118) is now
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1.1
o=l

‘1

uy
and W(r) is given by
A 90,
4 A
a0 o0
I 7=y 1 x5
B.f.f ax BJJ ‘ ay
o 90, 20,
AL a—Qx Ajf )
00, a0,
qp =¥ qg =¥
I BJJ‘? ax B.IJ ay
co’ 90, 90,
¢ _A]BB an _A]BB ay
9Q, a0,
—Byp a—x’ —Bgg —a;—
4 . a X . a X
-agp e g
a0, aq,
B B

1 .,
D= —zdlag(a)‘%x1

v} wir  vi® up vy uir
V}l - u'f’” V}qﬁ Mg vg u’B qr
W(r)= 0 Lofan+ar)
w,(r)-D W, (r)
W, (t)=
a0 a0 e . 90
i X 1 X _A .2 — A Txx
AJ’J’ aax . AJJ aaQy X aan A aaQy
Q . . .
L a—y B}, a—; - By a—x) W “'éyi
a .a X ‘ a X . aQr
O R b e
a0, o0, . 90, 30,
Bif ax’ Bjf a_; - Al a—x’ —Ajff ay}
90 a0 1 90 1 90
by == L2 4l T2 g4l
BB aax ABE aay BB aax BB aay
b2 B2 By Bt
2 'y ] . 'y
000 _ 1030 4020 40 30
— Agh a—i - Agh o Al =T Afp N
00, @, 90, a0,
- Bif ax’ - B ay’ Bik a; Bif ay)
2 2 2 2 2
Dyl Orrg,  Drygy Pra Pyl

qr
Vg

"[.F]r
Vg

(143)
d a0,
"AMIU i - _A}U Eﬁ
d90, aQ,
_B}Ja_x)' B}Ja—y}
— AdR a& — AU 9&
g ax A ay
aQ 90,
_A-‘;}l ax)' _A‘?JR ay)
| 90, Al a0,
BE ax BB ay
30, a0,
B}aaa—x’ BLB.E"T
.a .a x
S
aQ .20,
Bgj axy BEET;“
(144)
2 2 ) (145)
wa‘{F Fyq
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aQX an a X aQI an a X aQ).‘ a X-
V2% 4% - 4% AT A AT - S A
90, o0, 00 JQ a0, o0 90, oQ
B,lua—x} B*l”a_y;‘ b 5 ; B}Jﬁ _B.lr.i'-é"x';_ Bj; 3 ; "B,lu—aj —B}Ja—yf
30, 0 90 30, 20 30, 4 02, 90,4 02,
a2 s e aSE A A o SApTE AR
aQ ag a0 oQ a0 a0 oQ, a0,
R ¥ dg ¥ 4R ¥ 4R ¥ — Adr ¥ Adr b _ AdYR ¥ AR ¥
i Ji ax; B A By' I axf B J ayt A.H axf I ay.r AJ’J axf AJJ ay:
2 a X aQX an aQI aQJ.’ an aQX a X
cw _A;!?B'% A.]BB ayr _A.IBB axi A}?B ay.v ]BB a , ALB ayi };?B —g AIIS'B a?;
30, 30 30 30, 20 30 0 30
"B;ma_x} "B,!lm“é")'?y —B}RB. axf _B};.Ef By; B.IBB ax;v BJ!BB-an Béﬂ“é;'yy‘ BIIBB ayf
0 0 20 90, 030 90 e 0 30, 4, 90,
A% —ap e - A -ABSE ARST ABGT o ABSS BT
—_ BYr a& _Rir aQ} . — RUr a& — RUr ?& 4r aQ) qF aQJ’ Bt aQ"‘ I BQ"
i BE axf BB ayf BB axl BB ayl BB axl BB ay.r BB axl BB ayf |
(146)

6.3 SUMMARY

Three methods for testing the stability have been presented in this chapter: Method I, based on
direct integration of the time domain equations and Methods IIa,b based on the computation of
the monodromy matrix. Method Ia is not practicable. The best approach, adopted in the
simulations in this research is to derive the stability curve' for a given unbalance response using
the fast Method IIb and then perform confirmatory spot checks at salient points using Method L
All three methods assume that the computed limit cycle is a reasonably accurate approximation
to the exact limit cycle. Hence sufficient harmonics need to be included in the harmonic balance
solution. Also, an adequate number of modes need to be included in the time domain equations
(for Method I) and the perturbation equations (Methods II). Since Methods 1 and IIa involve
numerical integration of differential equations the number of modes has to be limited to avoid
problems of stiffness. On the other hand, in the approximate Method Ib, more modes can taken
and despite the increased size of the matrices in the exponents in the product in equation (130)
the speed of computation is only moderately affected (chapter 8). '

Software was developed in MATLAB® (Version 5) to perform the stability analysis according to
the methods developed in this chapter. The partial derivatives contained in W(z), equations

(139)-(142) and (143)-(146), were evaluated numerically from the relevant squéeze film force
expressions presented in section 2.1.

! e curve showing the variation of the leading multiplier (i.e. multiplier with greatest magnitude) with rotational

speed.
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CHAPTER 7

ANALYSIS: CONFIGURATION B

In this chapter an analysis of configuration B (Figure 6) is presented. The analysis is restricted to
arigid rotor.

7.1 SIMULATION

For this analysis it is assumed that the rotor in Figure 6 is rigid and the bearing housing is
modelled as a mass on a spring. This is done to compare directly with time domain simulations
done in [27], [34] and harmonic balance (HB) and time domain (TD) simulations already done in
[151, but which did not employ the receptance formulation. This assumption did not in any way
simplify the harmonic balance equations. Receptances for a flexible shaft were simply replaced
by receptances for a rigid shaft. However, the time domain and stability equations were
considerably simplified since, in equations (105}, (106) and (143)—146) the number of modes of
the rotor subsystem in both the xz and yz planes, g,=1 , and the number of modes of the support
subsystem, in both the xz and yz planes, ¢z=1. The numerical integration of the simplified form

of equations of motion (105) had already been performed by a fast integration method in the first
report [15].

In [34] and [15], the rigid body model used was as shown in Figure 8 where m,, is the equivalent

mass at the squeeze film. Also, the unbalance U was expressed in [34] as

U=m

eq (147
where u# was defined as the non-dimensional dynamic load parameter. Hence, in order to make
direct comparison with [34], [15] the receptances o, (=), &,y (= B,y ), Ogp(= Bgp) used

were

1
T — (148)

w*m,,

gy = (149)

kB —Ct)sz
where My =245kg, mp=35kg, ky =621MN/m [34]. The equivalent static load at J,

W =294N. The first undamped natural frequency @,, of the system with the squeeze film

damper (SFD) shimmed out was 75 Hz (corresponding to a critical speed of 4500 rpm). The SFD
parameters were as in Table 1.
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Bearing radius R 68.216 mm
Land length L 9 mm
Radial clearance ¢ 0.216 mm

Table 1: SFD geometric parameters (configuration B).

The oil viscosity 1= 21cP=0.021Nsm™> The SFD considered was unsealed and a two land

model (section 2.1) was used, as in [34]. In [34] the variable film theory (section 2.1.1) was used
with an experimentally determined cavitation pressure p,. In the present work the variable film

theory was also used but the cavitation pressure p, was fixed at —~101.325 kPa (i.e. absolute zero

cavitation). The supply pressure pg was 34.5 kPa [34].

The arc-length continuation technique was used in the HB solution. All simulations were done
for a dynamic load parameter « = 0.229, as in [34]. All results presented in the following section
refer to the relative displacement of the journal J from the bearing housing B.

7.2 RESULTS AND DISCUSSION

Figures 9(al),(a2) show the variation of the predicted non-dimensional half peak to peak x, y
relative displacements with rotational speed. Figures 9(b1),(b2) show the variation of the non-
dimensional mean x, y relative displacements with rotational speed. These were predicted using
HB with N =1, (i.e. fundamental period I" of limit cycle =period of rotation T, equations (23),
(24)) and number of harmonics m =5. Another way of expressing the unbalance response was
through harmonic ellipses {3]. From equations (27), the 5™ harmonic components of the relative
displacement in the x and y directions are given by

X (t)=ay cossax +by, sinsot (150a)
SY{t)= aj cos st + by sin swt (150b)

This pair of orthogonal harmonic components forms an ellipse (“harmonic ellipse”). Figure
10(a),(b),(c) show the variation of the semi-major axes of the first three predicted harmonic
ellipses with rotational speed.

Figure 11 shows the variation of the rotational speed with the arc-length control parameter o .
From Figures 9-11 it is evident that multiple solutions exist within the speed range 3020 rpm to
3383 rpm. This is especially evident from Figure 11 where, in the range 3020 rpm to 3383 rpm,
a given rotational speed corresponds to three different values of 0. The y displacements in
Figure 9(a2),(b2) and the harmonic ellipses in Figure 10 reveal a spring softening characteristic
in the series combination considered (i.e. SFD in series with bearing housing flexibility). This
contrasts with the spring hardening characteristic observed in parallel combinations (i.e. SFD in
parallel with retainer spring in rigid bearing housing) [35].

61



The stability of the computed HB N =1, m=5" solutions was checked using Floquet Theory
(Method II, section 6.2). The monodromy matrix was computed using both the long method
(Method Ia) and the fast, approximate method (Method IIb, with K =200 in equation (131)).
The results are presented in Figures 12(a),(b),(c) which respectively show the variation of the
magnitude, real part and imaginary part of the leading multiplier with rotational speed by both
Methods IIa, IIb. For Method IIa (section 6.2.2), the fourth-order Runge-Kutta method was used.
The results are seen to be virtually identical. Method Hb was found to cut down the computation
time from 8 hours (Method IIa) to less that 8 minutes (Method IIb) with negligible loss of
accuracy. Hence Method Ha is seen to be useless. It is of the author’s opinion that the use of this
method in [1], [32] was totally unwarranted.

The stability data as presented in Figure 12 were not found to be easy to interpret, for this
problem. Hence, a facility was included in the software to indicate the stability of each HB
solution, based on the value of the associated leading Floquet multiplier, directly on the
unbalance response curves in Figures 9-11 according to the notation in Table 2.

notation state of stability
‘0’ stable
-+ unstable, same period instability (section 6.2.1)
$ unstable, period doubling instability (section 6.2.1)
s unstable, quasi-periodic instability (section 6.2.1)

Table 2: Indicators for state of stability of HB solutions in Figures 9-11

The stability results computed by Floquet Theory were then examined by Method I at the salient
points of Figures 9-11. As explained in section 6.1, Method I involved performing a TD
integration solution using initial conditions computed from the HB solution. Since a rigid body
model was used there was no need to perform a modal decomposition of the HB solution.
Consider any convenient figure from Figures 9-11 (e.g. Figure 10(a)).

Section A-B (sce Figure 10(a)): Along this branch all HB N =1 solutions are stable. In Figure
13, the TD solution for point B (3383 rpm) continues to follow the HB computed limit cycle,
indicating that it is an attractor,

Seetion C-D (see Figure 10(a)): Along this branch the HB N =1 solutions are unstable
(repellors). Trajectories starting close to such limit cycles tend to be repelled to the stable limit
cycles of the same period residing on branch A-B. This is illustrated in Figure 14, which refers
to point D (3076 rpm).

! Note that the value of m merely controls the accuracy of the computed limit cycle. Stability analysis naturally
assumes that the HB computed limit cycle is fairly accurate.
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Section E-E’ (point E” excluded) (sec Figure 10(a)): The HB N =1 solutions along this short
section are unstable. Trajectories starting close to such limit cycles initially tend to flip about the
unstable N =1 limit cycle, indicating a tendency to double the period. However, no stable
N =2 limit cycle exists in the vicinity, the flip effect dies out and the trajectory eventually
collapses to a stable N =1 limit cycle along branch A-B, as in Figure 14. This misleading effect
is a direct consequence of the fact that Floquet Theory strictly applies to the immediate vicinity
of the limit cycle being tested for stability. Strictly speaking it can only state for certain whether
the cycle is stable or not. This is dealt with more fully in section 8.4.2 (Figure 49).

Section E’-F (see Figurc 10(a)): Period doubling actually cuts in at E” rather than E. Along this
section, HB N =1 solutions are unstable. Trajectories starting close to such limit cycles will be
repelled to stable N =2 limit cycles as shown in Figure 15, which refers to point E’ (3243 rpm).
In Figure 15(d), the return points flip on either side of the first (unstable equilibrium point E on
this figure) and eventually congregate at positions A, B. A set of N =2 limit cycles along
branch E-F on Figure 10(a) was computed using HB, N =2, m=10. Figure 16(a) shows the
variation of the semi-major axis of the first harmonic ellipse (i.e. the £2/2 subharmonic
component, £2 being the rotational speed (rad/s)). Hence this curve shows the variation of the
strength of the subharmonic component along branch E-F of Figure 10(a) (which itself refers to
N =1 limit cycles). An unstable N =2 limit cycle at point M (3080 rpm) of Figure 16(a) is
shown in Figure 16(b1). This is very similar to the unstable N =1 limit cycle at point D (3076
rpm) of Figure 10(a), shown in Figure 14(a). Two stable N =2 limit cycles are possible at point
F (4277 rpm) of Figure 10(a). These are shown in Figures 16(b2),(b3) and correspond
respectively to points O and P of Figure 16(a). As one moves along the curve in Figure 16(a),
the two loops of the N =2 limit cycles first diverge from each other and then start merging into
one another until subharmonic activity dies out.

G (4431 rpm) (sec Figure 10(a)): At this point the N =1 limit cycle is stable. This is verified in
Figure 17.

Section H-I (see Figure 10(a)): Along this short section the HB N =1 solutions are unstable,
exhibiting a quasi-periodic instability. This is verified in Figure 18, which refers to point H
(4655 rpm). As shown in the Poinare Map in Figure 18(d) the return points spiral out from the
first (unstable equilibrium point E on this figure) along two spirals and eventually settle down on
a drift ring surrounding E.

Section J-K (see Figure 10(a)): Along this section the HB N =1 solutions arc unstable,
exhibiting a period-doubling instability. This is verified in Figure 19, which refers to point J
(5149 rpm). As shown in the Poincare Map in Figure 19(d) the return points flip on either side of
the unstable equilibrium point E, neatly along a straight line and congregate at A and B.

L- (see Figure 10(a)): Beyond point L the HB N =1 limit cycles are stable as verified in Figure
20, which refers to point L (5961 rpm).
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Some experimental results obtained from {271 (or [34]) are reproduced in Figure 21. These show
that a jump up in the relative displacement does occur as the speed is increased and that the jump
is followed by period doubling. Period doubling around the first undamped' critical speed @, in

a series combination was also experimentally verified in [36] with a test rig of similar
configuration and dimensions. Its occurrence in the region of @, was also explained by

elementary reasoning in [35], [36].

It has to be mentioned that in [27], [34], dynamic pressures below absolute zero were measured.
These appeared as tension spikes, followed by instantaneous recovery to absolute zero in the
measured pressure pulse. This means that the oil temporarily withstood tension before rupturing
(cavitating). Such a phenomenon was also observed in [17], where a list of references on studies
about instantaneous tension in oil is given. In the simulations made in [27], [34], the best value
for cavitation pressure p, was found to be an average between the measured tension spike

minimum and absolute zero. However, in this report the spring softening and period doubling
effects were still predicted using a fixed cavitation pressure of absolute zero.

7.3 CONCLUSION

In this chapter the stability and bifurcation response of an SFD in series with bearing housing
flexibility around the first undamped critical speed was studied using a realistic predictive model
for the SFD based on absolute zero cavitation. The study was confined to a rigid rotor. The
system dynamics were found to be particularly rich, exhibiting a jump, period doubling
bifurcations and a secondary Hopf bifurcation {quasi-periodicity). The series combination was
found to exhibit a spring softening characteristic in contrast to the spring hardening characteristic
observed in parallel combinations. The predicted jump-up in relative displacement and period
doubling agreed with experimental observations.

' SFD shimmed out.
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CHAPTER 8

ANALYSIS: CONFIGURATION A

In this chapter a quantitative and qualitative analysis of a test rig that can be modified to
configurations Al or A2 (Figure 5) is presented. Simulations from harmonic balance and time
domain analyses are compared with each other and with experimental data from the test rig.

8.1 DESCRIPTION OF TEST RIG

The test rig (see Figure 22) used is housed in the Mechanical Engineering laboratories of the
University of Southampton. Experimental work has been previously carried out on this rig and is
described in [16]. Referring to Figure 22, a motor driven pulley (1) drives the mild steel stepped
shaft (4) through a flexible coupling (2). The shaft has two self-aligning ball bearings (3), (6).
The one on the left hand end (3) is rigidly housed. A ring (the squeeze ring) is shrunk onto the
outer race of the ball bearing on the right hand end (6). The complete assembly (forming the
journal, 1) is free to move within the clearance of the rigidly supported bearing housing B (7).
Oil is pumped into this clearance via three equi-spaced holes in B around a central
circumferential groove to provide the squeeze film damping. The damper is unsealed (as in
Figure 1(a)). A disc (8) is carried on the overhung portion at U to which unbalance masses can
be attached.

In configuration Al, four flexible bars (5), forming a squirrel cage, connect the squeeze ring
assembly J to the rigid frame (9) at F. Hence, these bars (forming the retainer spring) are in
parallel with the squeeze film. However, since they are grounded at F, one can vary the static
misalignments &g, &,; of J by moving the bearing housing B (as mentioned in section 5.1.1).

The retainer spring fully or partially supports the static load (see section 5.1.1). The spring also
prevents the outer race of the journal J (i.e. the squeeze ring) from rotating. In configuration A2
the bars (5) are removed and the journal J rests on the bottom of the clearance in the static
condition. Also, an anti-rotation bolt is used to prevent the squeeze ring from rotating with the
shaft, as explained in [16]. For configuration A2, the equivalent static load to be borne by the
squeeze film was computed as 151 N,

Safety regulations did not allow the rotational speed to exceed 100 rev/s (6000 rpm). Simulations
revealed that the effect of the stiffness of the ball bearing (3) (typically of the order of 10'% N/m)
had virtually no effect on the dynamics of the rig over a frequency range covering at least five
times the top rotational speed of 100 rev/s. Hence (3) corresponds to the fixed pivot H in Figure
5. On the other hand, J will be a rigid mass attached to the shaft. The first two undamped natural
frequencies of the rig in configuration Al (i.e. pinned at H, sprung at J) were computed as 14 Hz
and 40 Hz by the mechanical impedance technigue. With the squeeze film damper shimmed out
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(i.e. with shaft pinned at both H and J) the first two undamped natural frequencies were computed
as 31 Hz and 91 Hz.

Vibration in the x and y directions was monitored at three locations: the squeeze film position I,
the disc position U and the mid-shaft position M. The latter position is roughly the mid-point of
the 50 mm diameter portion of the shaft. The x, y vibrations at the three positions J, U and M
(Figure 22) were measured by three pairs of orthogonal displacement transducers. The support
bracket for each transducer was of stiff alumninium construction and fixed to the rigid frame of the
rig (9). The rigidity of these support brackets over the operational speed range was verified in
[16].

The parameters of the squeeze film damper (SFD) are given in Table 3 [16].

Bearing radius R 50.022 mm
Land length L 9.72 mm
Radial clearance ¢ 0.132 mm

Table 3: SFD geometric parameters (configuration A).

The experimental results presented for configurations Al and A2 came from different sources.
For Al the experimental work was conducted by the author of this report. For A2, the
experimental data were obtained from [16]. In [16] the groove depth /&, was 1.82 mm. Since
then the groove has been deepened to 5.25 mm. Hence, for the SFD in configuration A2 the ratio
on the left hand side of the inequality (1), section 2.1, was 0.07 (< 0.1). For the SFD in
configuration Al the ratio was equal to 0.02 (< 0.1). In both cases the rato satisfies the inequality
(1). Hence the two land model (section 2.1) for the squeeze film was assumed to be applicable fo
both SFDs used. Evidently, it was much more accurate for the SFD used in Al.

The oil used in the SED was calibration fluid C Shell with viscosity of 0.006 Nsm™ at 21°C. The
viscosity changes mostly between 20°C-25°C when it is reduced to 0.005 Nsm? [16]. The
viscosity at the average operational temperature was taken as 0.0045 Nsm™, as in [16]. This
value was used in all simulations. Hence no measurements were cartied out before the oil
temperature reached 25°C. The oil temperature was measured at the oil-collecting tray, directly
below the SFD.

8.2 SIMULATIONS

8.2.1 Configuration Al

For configuration Al two static misalignment conditions were considered: €,,; =—0.6,-0.8. In

both conditions &,., =0. For each misalignment condition, the responses for two different
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unbalances at U were computed : U/ = 2.59%10*kgm and U =5.10% 10~*kgm. The simulations
carried out were as follows:

(2) Solution of the harmonic balance equations (82) with N =1 (i.e. fundamental period I" =
period of rotation T, equations (23), (24)) and m =35 harmonics for the speed range 10-100
rev/s using arc-length continuation.

(b) Stability analysis of the response computed in (a), using the fast Method IIb with K = 200
(section 6.2.2, equation (131)).

(¢) Confirmation of the stability results obtained in (b) at sclected speeds by using Method I
(section 6.1, equations (110)-(112), (98)). Poincare maps were used where appropriate.

The simulations were performed using two different cavitation models for the SFD (section 2.1):
full film theory (i.e. no cavitation), and absolute zero cavitation theory (i.e. variable film theory
with the cavitation pressure p, set to absolute zero, —101.325kPa). The supply pressure pg was
1 bar. These two theories where used to investigate the influence of cavitation in the SFD on the
predicted dynamic behaviour.

The receptances of the shaft supported by the spring (5) (Figure 22) were computed using the
mechanical impedance technique [9]. As explained in [9] the shaft clement impedance matrices
incorporate both distributed stiffness and distributed inertia effects and are exact, regardless of
the element size, so long as the element is uniform. Shear deformation was taken into account.
Since gyroscopic effects were neglected in all equations in chapter 6, rotatory inertia (transverse
and polar moment of inertia) was neglected for both the shaft elements and the attachments. The
model input into the MATLAB® mechanical impedance program REC.m is described in Table 4.
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attached | attached fixed

station/ | No./ | diameter | length mass stiffness | pivot?
element No. (mm) (m) (kg) (kN/m)

station 1 0.15176

element 1 16.000 0.0200

station 2 0.06922

element 2 25405 (.0290

station 3 yes

element 3 25.405 0.0440

station 4

element 4 50.000 0.7150

station 5

element 5 25.405 0.2620

station 6 1.35667 123.4

element 6 25.405 0.0130

station 7

element 7 25.385 0.2093

station 8 6.40390

element 8 25.385 0.0127

station 9

Table 4: Summary of input into mechanical impedance program.
(Data in bold type refers to the stations, data in light type refers to the elements).

As can be seen from Table 4 the model has 8 elements and hence, 9 stations, of which station 3
(H) is a fixed pivot and station 6 (I) is sprung. The small mass of the coupling hub at the left
hand end of the shaft in Figure 22 was lumped at stations | and 2. The squeeze ring assembly
mass was lumped at station 6 and the disc mass at station 8. It was naturally assumed that the left
hand end of the shaft was free of any shear force and bending moment {flexible coupling).

For the time domain and stability analyses the appropriate receptances were decomposed as in
section 4.2. The first five undamped natural frequencies ®,, =, =®,, r=1...5 were

computed as explained in section 4.2 and are given in Table 5.
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mode f.=w,/(2r) A} Al

no. r (Hz) (x107 kg™ (x107kg™")
1 137 54.235 77.803
2 40.4 38.334 -34.209
3 173.9 251.196 -38.783
4 334.7 104.839 -13.606
5 749.1 19.513 0.207

Table 5: Undamped modal parameters of linear system (Al)

The modal constants A7 (=B)), r=1..5 of the appropriate receptances o (= B;) were

computed according to the procedure described in section 4.2. Table 5 gives the modal constants
A, Al,, r=1..5. The fitting frequency range was 0-500 Hz. This range hence covered 5

harmonics of the top rotational speed of 100 rev/s. When integrating the time domain equations
(98) the number of modes used was reduced to 4 i.e. Aijf (= Bg) was not used. This was done to
avoid problems of stiffness (section 4.4). The accuracy of this simplification was ascertained a
priori from Figures 23. These figures respectively give the point receptance «;, and the transfer
receptance ¢, . In each figure the solid line gives the exact receptance and the dashed line gives

the approximate receptance reconstructed from 4 modes (i.e. using the first 4 terms in the series
in equation (54)). Satisfactory agreement is guaranteed up to 500 Hz.

In simulations (c), when generating the initial modal state variables from the modal
decomposition of the harmonic balance solution, it was considered prudent to retain the fifth
mode. This is due to reasons given in section 6.1, relating to the conditioning of the matrices in
equations (111). As explained in this section, the additional initial modal state variables
generated were then dropped when forming the initial conditions vector s, {equation (112)). In

the simulations (b), where Method ITb was used, the addition of the fifth mode, despite increasing
the size of the matrices W, in the exponents of the product (131), hardly affected the speed of

computation. However, its inclusion hardly influenced the accuracy of the results.
8.2.2 Configuration A2

For configuration A2 only one unbalance I/ =5.10X 10~ kgm was considered. The absolute zero
theory was used as the cavitation model since the full film theory gives no lift for the case of no

retainer spring [17]. Moreover, the half film theory (section 2.1.1) overestimates the vibration
[17]. The supply pressure p, was 1.2 bar. Simulations (a) to (c) in section 8.2.1 were performed

on equations (82), (101). In addition, the time domain equations (101) were integrated over 120
revolutions for each speed in the range 24-100 rev/s, steps of 2 rev/s. A waterfall diagram was
constructed from the fast fourier transforms (FFTs) of the last 0.5s of each solution. The
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frequency resolution was hence 2 Hz, as that used in the measurements [16]. Analysing the last
0.5s of each solution also meant that the number of revolutions neglected was at least 70 (at 100
rev/s). This was considered sufficient to eliminate the transient vibration. The initial conditions
for a given speed were obtained from the final conditions of the previous speed. For the first
speed the initial conditions vector s, was given by

=0 2£0) 30) - x0) ) K0) ¥0) - ) YOl
=[o 0 -099 o - of,

which corresponds to the shaft lying at the bottom of the clearance circle. For speeds lower than
24 rev/s no lift was obtained due to the low oil viscosity.

For the receptance computation, the input into the mechanical impedance program Rec.m was
identical to that in Table 4 except that no spring was included at station 6 (J). As for Al, the
receptance decomposition for the time domain and stability analysis was done over 5 modes for a
frequency range of 0-500 Hz. Table 6 gives the first five undamped natural frequencies and the
modal constants A}, Ay, r=1..5.

mode fr=0./(2r) Ay Ay

no. r (Hz) (x107kg™h (x107kg™"
1 0 66.771 81.309
2 39.0 31.507 -36.914
3 171.6 248.118 39.777
A 334.2 102.339 -13.415
5 749.0 19.438 0.207

Table 6: Undamped modal parameters of linear system (A2)

When integrating the time domain equations only 4 modes were used, as for Al. The accuracy of
this simplification was ascertained a priori from Figures 24, which respectively give the point
receptance ¢(;, and the transfer receptance oy, . In each figure the solid line gives the exact

receptance and the dashed line gives the approximate receptance reconstructed from 4 modes (i.e.
using the first 4 terms in the series in equation (54)). Satisfactory agreement is again guaranteed
up to 500 Hz. As for Al, the fifth mode was retained in the modal decomposition of the
harmonic balance solution in simulation (c) (section 8.2.1). It was also retained for simulation

®).
$.3 EXPERIMENTAL WORK

8.3.1 Configuration A1
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In this work the displacement transducers at positions J and U were Benily Nevada 3300XL®
(eddy current probes). The transducers at M were Hypertone® (capacitance probes). Details on
the calibration of the probes is given in Appendix B.

Referring to Figure 22, the static eccentricities (misalignments) of the journal J from the bearing
housing B were adjusted by loosening the screws bolting B to the frame at G. A small clearance
in the screw holes throungh B allowed its position to be adjusted prior to retightening. The
adjustment of the eccentricity was complicated by the initial bend in the shaft which meant that
the static misalignment varied as the shaft was turned. A dial test indicator with its stem pressed
against the shaft close to the SFD position revealed that as the shaft was rotated slowly, the run-
out at the SFD position was around 0.0425mm in the vertical direction. This run-out
corresponded to around 30% of the radial clearance of the damper. The run-out was significantly
lower in the horizontal direction, suggesting that gravity effects aggravated the run-out. Hence,
as the shaft was rotated manually, J traced out an elliptical orbit within the clearance with its
major axis approximately vertical. Efforts were made to centre this orbit at the desired static
eccentricities (Le. £,y =0.0,—-0.6 in one case, and &,;.&y,, =0.0,—0.8 in the other).

Hence, the eccentricity was adjusted in the vertical and horizontal directions for four angular
positions (0°, 90°, 180°, 270°) of the shaft. The angular position 0° corresponds to the “high
spot” on the shaft at the SFD position. For each direction x, y the average eccentricity for the four
angular positions was brought as close as possible to the desired eccentricity in that direction.
The static misalignment was rechecked after each experiment when the rig was hot. Details are
found in Appendix B.

For each misalignment condition, the unbalance response was measured for U =2.59x107" kgm
and for U =5.10x10"'kgm. Vibration data (time histories) were obtained from all six
transducers for each speed in the range 10-100 rev/s, in steps of 2 rev/s. An eight channel
HP3566A® Analyzer coupled with a personal computer (pc) was used to.capture the time
histories. The time capture length was 0.5s with a sampling rate of 4096/s. Hence the frequency
spectrum of the data was 0-1.6 kHz with frequency resolution of 2 Hz. This resolution was
generally considered adequate since a 2 rev/s step was the smallest attainable with the speed
controller. However, the data length was increased to 2s at those speeds where a more detailed
frequency spectrum was required. The data were converted to MATLAB® data format using the
sdftoml© data conversion program and analysed in MATLAB® were peak-to-peak amplitudes and
the frequency spectrum for each speed could be computed. Unlike [16], the HP3566A® Analyzer
was set to measure the “dc” component of the vibration. The procedure followed is explained in
Appendix B.

As in [16], cavitation effects were monitored by observing closely the oil just as it came out of
the annular clearance. Cavitation was characterised by tiny pin-hole bubbles in the oil. This was
observed over certain speed ranges. Table 7 below summarises the four experiments conducted
and the speed ranges where cavitation was observed.
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Epyr €947 U Ps start finish cavitation
(x 1074 kgm) | (bar) | temperature | temperature speed range
(°C) O (tev/s)
0.0 -0.6 2.59 1 32 36 -
0.0 -0.6 5.10 1 25 33 30-34
0.0 -0.8 2.5% | 25 33 30-36, 86-92
0.0 -0.8 5.10 i 25 33 30-36, 80-100

Table 7: Summary of experimental conditions

It is important to note that the cavitation speed ranges in Table 7 tend to agree with those
obtained Burghardt [16] who worked with static eccentricities &,,;, =-0.4, —0.8 and a supply

pressure 1.2 bar.

In these experiments no attempt was made to compensate for the effect of the residual unbalance
on the measurements.

8.3.2 Configuration A2

The experimental work for this configuration is explained in [16]. It suffices to say here that as
in the previous section, vibration data (time histories) were obtained from all six transducers for
each speed in the range 8-100 rev/s, in steps of 2 rev/s, using the HP35606A® Analyzer and pc.
However, the HP3566A® Analyzer was set to measure only the alternating (*“ac”) component of
the vibration only. The time capture length was 0.5s and the sampling rate was 2048/s. Hence
the frequency spectrum of the data was 0-800 Hz, resolution 2 Hz. The data was processed in
MATLAB® as explained in the previous section.

8.4 RESULTS AND DISCUSSION
8.4.1 Configuration Al
Half peak to peak unbalance response

In Figures 25-28 the experimentally determined unbalance response (half peak to peak amplitude)
in the x and y directions at the locations I, U, M is compared with the B, N =1, m=>5
prediction. Figures 25, 26 both refer to a static eccentricity &g, =-0.6 and to unbalances

U =2.59x10kgm and U =5.1x107" kgm respectively. Figures 27, 28 both refer to a static
eccentricity £y, =—0.8 and to unbalances U =2.59x107*kgm and U =5.1x10"" kgm

respectively. In all measured and predicted responses an anti-resonance speed of around 52 rev/s
is evident. This corresponds to the anti-resonance in the transfer receptance o (52 Hz) in

Figure 23(b).
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In Figure 25 (&, =-0.6,U =2.59x10"* kgm) it is seen that the full film theory works

reasonably well and it was not felt necessary to redo the simulation with absolute zero cavitation
theory. This agrees with experimental observation of no cavitation (Table 5). The discrepancies
at the mid-shaft position M are attributed to the effects of residual unbalance and the lower
sensitivity of the probes used at M (~2 V/mm) when compared to those at Jand U (~8 V/mm). In
the x direction (where the SFD is centralised) two maxima are observed in both measurement and
prediction at the SFD (J) and disc (U). These are quite close to the undamped natural frequencies
of configuration Al (pinned-sprung shaft), 14 rev/s, 40 rev/s (Table 5). In the y direction (where
the SFD is offset) the first maximum is not present while the second one occurs at a lower speed
(around 32 rev/s). Hence the behaviour in the y direction is more akin to the pin-pin
configuration (first natural frequency 31 Hz, see section 8.1, end of third paragraph).

The weakness of the full film theory becomes apparent at the higher unbalance of
U =5.1x10" kegm (Figure 26) around 30-34 rev/s, which is the zone of maximum amplitude.
Outside this region predictions from both full film and absolute zero cavitation theories give
identical results. This suggests that cavitation occurs only around 30-34 rev/s, as observed in
experiment (Table 5). The full film theory predicts extremely high vibration at around 30-34
rev/s at positions other than the SFD (i.e. at U and M) which were (fortunately) not verified in
practice. It is important to note that the arc-length continuation technique revealed this effect in
all its detail since the process “climbs” along the unbalance response curve, as explained in
section 3.4. If rotational speed were used as control parameter the high amplitude effect would
have appeared less stark since the process would have “cut across” the zone 30-34 rev/s in the
horizontal direction.

The failure of the full film theory becomes even starker at a higher eccentricity &,,; =—0.8

(Figures 27, 28). Discrepancies between the full film and absolute zero cavitation theories
emerge not just in the 30-36 rev/s zone, but, for the y direction especially, in the 80-100 rev/s
zone (Figures 27(b),(d),(f) and Figures 28(b),(d),(f)). This suggests that cavitation also occurs in
the range 80-100 rev/s, which agrees with experimental observation (Table 5).

From the full film unbalance response predictions in Figures 26-28 it is evident that as the y static
eccentricity and unbalance is increased an uncavitated SFD causes the rotor to behave in certain
speed ranges as though it were pinned at the SFD journal J. This tendency is especially strong in
the y direction at the higher static eccentricity of —0.8. The critical speeds tend to ~32 rev/s for
Eoyy =—0.6, U =5.1x10"* kgm and to ~31 rev/s, ~91 rev/s for Eoyy =—0.8. Cavitation in the

SFD around these speeds eliminates the pinning effect at J and maintains the vibration at
acceptable limits at all positions along the rotor. In the case of £y, =-0.8, cavitation

completely attenuates the second pin-pin critical speed of 91 rev/s (Figures 27(b),(d),(f) and
Figures 28(b),(d).(f)) both in the predictions and the measurements. The vibration attenuation at
these speeds is a direct result of the lift produced by the cavitation effect. It is well known that
cavitation results in lift of the journal [15], [17]. Figure 29 compares the mean y displacements
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(lifts) for &;,, =—0.6, U =5.1x 10™* kgm predicted with the full film and absolute zero theories.
Figures 30(a),(b) compare the lifts predicted with both theories for €0y =—0.8 and

U=259%10"" kgm, U =5.1x10" kgm respectively. In these figures it is evident that
cavitation lifts the journal roughly within the speed ranges in Table 5. Elsewhere there is no lift
from the static position, as for the full film prediction. In the range 30-34 rev/s the predicted
amplitude of vibration at the SFD is high by both theories. However, since there is no lift in the
full film prediction, the minimum oil film thickness at the base of the clearance is extremely
small, due to the static offset in the y direction. This results in excessive damping forces,
effectively causing instantaneous pinning of the shaft at J, and consequently excessive vibration
at all other positions (like U and M). On the other hand, the lift produced by cavitation counters
the static eccentricity and hence results in a larger minimum oil film thickness. Hence the lift
eliminates this instantaneous pinning effect at J, keeping the amplitudes at all other locations low.

Orbital Motion

In Figures 31, 32, 33 the orbital motion in the resonance region (26-38 rev/s) is presented for
€0,y =—0.6, U =2.59x107* kgm (Figure 31), &, =-0.6, U =5.1x10™ kgm (Figure 32) and
€y =08, U= 5.1x107" kgm (Figure 33). The predictions are HB, N =1, m=35 with the
appropriate cavitation model (i.e. full film in Figure 31, absolute zero cavitation in Figures 32,

33). Overall, it is seen that the orbital motion was reasonably well predicted. In particular one
notes the following.

(a) The recasonable agreement of the predicted and measured SFD orbits in size, shape and
orientation.

(b) The elliptical shape of the disc orbits in both measurement and predictions. Note that the
glitches caused by the lack of roundness of the disc periphery where the displacement was
measured resulted in spiky and jagged orbits at U.

(c) The change in orientation of both the SFD and disc orbits as the range 26-38 rev/s was
traversed.

(d) The kinks in both measured and predicted orbits at mid-shaft M (Figures 31(c3),
32(a3),(b3), 33(b3),(c3). These kinks disappeared at 38 rev/s in both measured and
predicted orbits (Figure 31(d3), 32(f3), 33(f3)).

Aperiodic motion was measured for eo'y , =—0.6, U =5.1x10"kgm in the range 32-34 rev/s
(Figures 32(c),(d)) and for g&;,, =-0.8, U =5.1x10""kgm in the wider range 30-36 rev/s
(Figures 33(c),(d),(e)). Aperiodic motion was also measured for &, =-0.8, U =2.59%107*

kegm, but only at one speed (30 rev/s). Naturally, the harmonic balance method could not predict
such motion. However, as seen from Figures 32(c1),(d1) and 33(c1),{d1),(e1) the HB computed
SED orbit fitted nicely around the outer loop of the measured SFD orbit. Hence the peak to peak
vibrations were still adequately predicted with HB in this speed range. Also, as seen from

74



Figures 32(b1), 33(b1) the SFD orbits were over predicted. This suggests that cavitation actually
started at a slightly higher speed than predicted.

In order to explain the measured aperiodic motion, the stability of the HB N =1 solutions needed
to be examined.

Stability of HB solutions

Figure 34(a),(b) shows the results of the fast stability check (Method TIb) made on the HB, N =1,
m=5 solutions for &y, =-0.6, U=259x10"kgm (full film) and U =5.1x10" kgm

(absolute zero cavitation). All solutions were found to be stable. This was confirmed by spot
checks made using Method I at selected speeds. Two results of such a check are presented in
Figures 36 and 37. In Figure 36 the HB (N =1, m=5) and time domain (TD) orbits at 32 rev/s
are compared for &, =—0.6, U= 2.59x10~*kgm, full film theory. The initial conditions for

the TD solution were obtained by doing a modal decomposition of the HB solution. As can be
seen, the TD orbit remains on the HB orbit after 10 shaft revolutions, indicating that the HB
computed limit cycle is indeed an attractor. In Figure 37 the same is performed on the orbit at 90
rev/s for €4, =06, U = 5.1x 107 kgm, absolute zero theory. As can be seen, the HB orbit is

an attractor. The slight initial perturbations in the disc (U) and mid-shaft (M) responses, Figure
37(b).(c) are due to slight errors in the initial modal state variables computed by the modal
decomposition technique. This example at 90 rev/s is included to demonstrate that the TD
method with number of modes ¢ =4 is accurate even at such high speeds (as ascertained

previously from Figures 23).

Figure 35 shows the results of the fast stability check (Method IIb) made on the HB solutions
(N=1, m=5) for €y =-0.8. Figure 35(a) refers to the unbalance U =2.59%107* kgm,

absolute zero cavitation. All solutions were found to be stable. Figure 35(b1) refers to the
unbalance U =5.1x 107 kgm, absolute zero cavitation. Tt is evident that in the rotational speed
region 32-35 rev/s the HB N =1 solutions are unstable. From Figure 35(b2) it is seen that the
leading multiplier in this region is complex. This indicates that the motion in the region 32-35
rev/s tends to quasi-periodicity. This was then verified by Method 1. Three speeds were
considered: 30, 34, 38 rev/s. The first and last (30, 38 rev/s) are outside the instability zone and
the middle (34 rev/s) within it. Figure 38 refers to 30 rev/s. In Figures 38(al)-(a3) the TD
solution over 10 revolutions with initial conditions derived from the HB solution is overlaid on
the HB solution. The small initial perturbations were due to slight errors in the initial modal state
variables. In fact, Figures 38(b1)-(b3) show the TD solution over a further 5 revolutions: the
perturbations have disappeared and the TD solution remains closely matched to the HB solution,
indicating that the HB computed N =1 limit cycle at 30 rev/s is an attractor. The same applies to
Figure 39, which refers to speed 38 rev/s. The HB computed N =1 limit cycle at 38 rev/s is an
attractor. Figure 40 refers to the speed 34 rev/s. As can be seen, the N =1 limit cycle is a
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repellor'. The TD solution in Figure 40 is over 80 shaft revolutions. The TD solution was
continued over a further 80 revolutions and a Poincare map constructed for the complete motion
(160 revolutions) (see Figure 41). As can be seen from Figure 41, the return points (i.e. sampled
points) spiral out from the first (point E, on unstable limit cycle) along 4 spirals and settle down
on a drift ring around the unstable equilibrium point E. This confirms that the 32-35 rev/s zone is
indeed a qliasi—periodic zone, as indicated by the fast Method IIb (Figure 35(b1), (b2)). In Figure
42 the TD predicted steady state quasi-periodic motion at 34 rev/s (last 80 revolutions out of 160)
is compared with the corresponding measurement. The time capture data length for this speed
was increased from 0.5s to 2s. As can be seen from Figures 42(al), (bl) both measured and
predicted SFD orbits consist of two sets of “opposing” loops interwoven into one another,
although in the predicted orbit they are more densely interwoven. The similarity between
prediction and measurement is more striking for the disc position U (Figures 42(a2), (b2)) and the
mid-shaft position M (Figures 42(a3), (b3)). The frequency spectra for measurement and
prediction at the SFD at 34 rev/s are shown in Figure 43. The frequency resolution is 0.5 Hz.
Subsynchronous activity is evident in both measurement and prediction. A strong 9 Hz
component was predicted in both x and y directions. This 9 Hz component was measured only in
the vy direction (Figure 43(b2)). Additional frequency components were measured at 13 Hz and
21 Hz. The 21 Hz component is the difference between the 34 Hz and 13 Hz components. The
13 Hz component was not predicted. A fairly strong 25 Hz component was predicted in the y
direction. This is the difference between the 34 Hz component and the 9 Hz component. The
predicted second order subharmonic (17 Hz) was negligible. The measured one was more
significant. This explains why the two sets of opposing loops in the measured SFD orbit (Figure
42 (b1)) are not densely woven into each other. Both measured and predicted spectra show some
frequency components between the 34 Hz and 68 Hz components. The predicted 43 Hz
component is the sum of the @ Hz and 34 Hz component.

The questions remain as to why the measured aperiodic motion in Figure 32(c),(d) for
Epyy =06, U =5.1x10""kgm was not predicted (Figure 34(b)) and why the predicted

aperiodic region for &, =-08, U =5.1x10""kgm (i.e. 32-35 rev/s) was not as wide as

measured (30-36 rev/s). If one compares Figures 34(b) and 35(bl), it is seen that for given
unbalance, the effect of increasing static misalignment is to shift the stability curve upward and
its peak {around 34 rev/s) further into the unstable quasi-periodic zone. Now, as mentioned
previously, the run-out of the shaft at the SFD in the vertical direction results in a variable static
misalignment. The values for &,,, used in the simulations are based on averages (see Tables B1,

B2, Appendix B). For the ideal condition &,,, =—-0.6 the static misalignment can be as high as

—0.8 at 8 =180° 'in Tables B1(a2),(b2). This explains the measurement of aperiodic motion in
the region 32-34 rev/s for £y, =—0.6, U = 5.1x10* kgm. For the ideal condition €oyy = 0.8

the static misalignment can be as high as —1.0 at 8 =180° in Tables B2(a2),(b2). This explains
why the measured region of aperiodic motion for £y, =—0.8, U =5.1x 10™ kgm was wider than

predicted. The variable static eccentricity may also have introduced a chaotic element into the
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motion which may explain why the measured SFD orbit in Figure 42(b1) was not as “neat” at the
predicted SFD orbit in Figure 42(al). This chaotic element may also explain the “fuzziness” in
the measured frequency spectra, Figure 43(b1),(b2), which is a characteristic of chaotic motion
[12]. Preliminary processing of data acquired with €,,;, <—1.0 (i.e. retainer spring supporting

only part of the static load in the static condition) gave neater aperiodic SFD orbits in the region
30-36 rev/s, with less fuzzy spectra, possibly due to an invariant static misalignment.

It should be mentioned that it does not seem possible to construct Poincare maps from
measurements, The reason for this is that the rotational speed can never be determined exactly.
If the measured motion is T periodic (T = the rotational period), small errors in the rotational
speed (=sampling frequency of map) will cause a cumulative drift in the return points, which
should otherwise all coincide. Hence T periodic motion would appear aperiodic, over several
revolutions. This means that any measured aperiodic motion cannot be identified as being either
quasi-periodic or chaotic motion using the Poincare map as was done on the predicted aperiodic
motion in Figure 41.

8.4.2 Configuration A2
Measured vs. HB predicted unbalance response

Figure 44 shows the experimentally determined unbalance response (half peak-to-peak)
compared with the HB prediction for N =1, m =5, absolute zero cavitation. The following
observations can be made.

(a) At the STD and in the y direction especially, there is hardly any vibration except in the
regions around 31 rev/s and 90 rev/s. These correspond to the first two undamped natural
frequencies of the pinned-pinned shaft (31 Hz, 91 Hz).

{(b) Around the first critical speed (31 rev/s) the predicted motion is very complicated with
multiple solutions. The arc-length continuation technique was the only method of
solution.

(¢) The SFD vibration around the second critical speed (~90 rev/s) is grossly under-predicted
by the HB N =1, m =5 method.

(d) The recorded values for half peak-to-peak amplitude at the SFD in the y direction around
the first two critical speed regions were actually greater than the radial clearance. It was
reported in [16] that the shaft shook violently in these regions and the anti-rotation bolt
(preventing the squeeze ring from rotating) was not very effective. Since the probes
measured the displacement of the squeeze ring, its rotation was probably responsible for
this discrepancy.

From Figure 45 it is predicted that the journal T lifts only around 30 rev/s and 90 rev/s. At other
speeds it rests at the base of the clearance. This matches with observations made in [16],
although the HB predicted lift around 90 rev/s was much smaller than observed.
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Stability and orbital motion

Figure 46 presents the results of the fast stability check (Method IIb) on the HB N=1, m=5
solutions. As can be seen, the HB solutions outside the critical speed regions are on the threshold
of stability. Around the first critical speed (30-31 rev/s) a multiplicity of solutions exists, some
of which are stable, some unstable. Beyond 82 rev/s all the HB computed N =1 limit cycles are
clearly unstable. This explains why the SFD vibration and lift beyond ~80 rev/s were grossly
under-predicted by HB, N =1. The results in Figure 46 were next confirmed at the salient points
using Method L

In Figure 47 an HB N =1 limit cycle at 31 rev/s found to be stable by the fast Method IIb is
checked by Method 1. For accuracy, the number of harmonics m is increased from 5 to 8. Figure
47(a) shows the time domain integration solution (g=4) over 20 revolutions with initial
conditions derived from the HB solution. Considerable initial perturbations are obtained. These
are not attributed to instability of the orbit but to errors in the initial modal state variables
computed by the modal decomposition technique. These perturbations virtually disappear over 2
further 5 revolutions, Figure 47(b1)-(b3), and the TD trajectory follows the HB computed N =1
limit cycle, proving that it is indeed an attractor. As can be seen from Figure 47(b1) the
inaccuracy of the N =1, m=8 solution (evident along the upper part of the orbit) was
responsible for the errors in the initial modal state variables and hence the initial ruffling of the
TD trajectory in Figure 47(a). The stable HB orbits at 31 rev/s were found to fit very closely
around the measured orbits for 30 rev/s (see Figure 48(al),(a2)). Note that the resolution of the
speed controller was not better than 2 rev/s and the tachometer measured speed to the nearest 1
rev/s. Figures 48(b1),(b2) and 48(c1),(c2) show predictions and measurements at 32 rev/s and 36
rev/s respectively. Only the disc and mid-shaft orbits are shown since the SFD measurements
were spoilt by the rotation of the squeeze ring. For direct comparison with the (“ac”™)
measurements, the “dc” component of the HB predictions was removed. Not that the kinks at the
upper part of the measured mid-shaft orbits in Figure 48(a2),(b2) were predicted by the HB
method.

As mentioned earlier, the HB N =1 solutions are clearly unstable for the range 82-100 rev/s.
Figure 46(b2) indicates that the instability is of the quasi-periodic type (critical multiplier
complex). However, a small region AB (85-87 rev/s) exists where the critical multiplier is real
and negative, indicating a period doubling instability (see Figure 46(b2)). This phenomenon is
investigated in Figure 49 where the stability of the SFD limit cycle at 86 rev/s computed by HB,
N =1, m=5 is investigated by Method T. Figure 49(a) shows the evolution of the TD solution
with initial conditions derived from the HB solution, over 20 shaft revolutions. As can be seen,
the trajectory flips neatly on either side of the unstable HB computed limit cycle. This also
shows up in the Poincare map of the first 20 revolutions (Figure 49(b)): consecutive return points,
enclosed in circles and squares respectively, flip on either side of the first (unsiable equilibrium
point E). This indicates that the critical multiplier is indeed real and negative. However, a stable
N =2 limit cycle does not exist in the vicinity of the unstable N =1 limit cycle, the flip effect
dies out and the trajectory evolves as shown in Figure 49(c), over a further 80 revolutions. This
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example highlights the fact that while the leading Floquet multiplier can definitely indicate
instability, it can only indicate the potential to a certain type of stable motion in the vicinity of an
unstable limit cycle.

The stable orbital motion beyond 82 rev/s is next considered. The predictions were obtained by
computing the time domain response over the range 24-100 rev/s as explained in the beginning of
section 8.2.2 (page 69). '

Figure 50 refers to the orbital motion at the SFD at 84 rev/s. Figure 50(a) shows the prediction
(last 80 revolutions out of 180). Figure 50(b) shows the corresponding Poincare map. Figure
50(c) shows the measured SFD orbit (alternating “ac” component only) over 0.5s. Note that
rotation of the squeeze ring caused the measured peak-to-peak vibration to appear larger than the
diametral clearance. However, the measured orbit still bears a striking resemblance to the
predicted orbit in Figure 50(a). Both orbits consist of two sets of opposing loops (like butterfly
wings), with a concentration of trajectories at the lower right hand part of the orbit. Figure 51
shows the frequency spectra of the predicted (steady state) and measured SFD orbit over 0.5s.
The frequency resolution is hence 2 Hz for both predicted and measured spectra. Strong
subsynchronous components that loosely approximate to one-third and two-thirds subharmonic
components appear in both measurement (32, 52 Hz respectively) and prediction (30, 54 Hz
respectively).  Additional minor subsynchronous components are also evident in both
measurement (22, 62 Hz) and prediction (24, 60 Hz). From Figure 51 it is seen that most of the
non-synchronous components are reasonably well predicted. In order to classify the type of
predicted aperiodic motion at 84 rev/s, the TD solution was continued from that shown in Figure
50(a) over a further 160 revolutions. The results are shown in Figure 52. Figures 50(a),(b) are
reproduced in Figures 52(al),(a2) for comparison. Figures 52(b1),(b2) show the motion over a
further 160 revolutions. The forms of both orbit and Poincare map are repeatable. This indicates
that the aperiodic motion is probably a complex form of quasi-periodic motion rather than chaotic
motion. However, a formal test for chaos using the Lyapunov exponent {31] was not performed
to confirm this. Notice that the Poincare map (Figure 52(a2) or (b2)) is roughly triangular in
shape, reflecting the presence of the strong approximate one-third subharmonic.

The type of aperiodic motion shown in Figure 50 was found to be prevalent over the range 82-
100 rev/s in both measurements and prediction. However, for the predicted motion ouly, over a
narrow range 85-87 rev/s, the aperiodic motion locks into 3T-periodic motion i.e. lmit cycles
with N =3 (“phase locking”, page 54). The steady state periodic solution at 86 rev/s, computed
by time domain integration, was used to provide an initial approximation to the harmonic balance
continuation process with N =3 and m=20. A branch of stable N =3 limit cycles was hence
computed in the range 85-87 rev/s. Figure 53 shows the stability check by Method I of the HB
N =23, m=20 orbits at 86 rev/s. The TD (g =4) integration solution with initial conditions
derived from the HB solution is shown in Figures 53(a1)-(a3) for the first 10 revolutions. The
steady state TD solution is shown in Figures 53(b1)-(b3). The HB computed N =3 limit cycle is

an attractor. This example of 3T periodic motion at 86 rev/s highlights the accuracy of using
g =4 modes in the TD solution even when many harmonics of the fundamental frequency are
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significant. In fact, the highest significant harmonic in the HB solution is 20><86/ 3=573 Hz i.e.

beyond the fitting frequency range of 0-500 Hz in Figure 24. Figure 54(b) shows the Poincare
map of the steady state TD solution over 30 shaft revolutions. The triangular form in the
Poincare maps of Figures 52(a2),(b2) has degenerated into three fixed points at the corners,
among which the 31 return points are distributed. Phase locking is an exceptional case, occurring
when the lowest frequency component becomes an exact rational multiple of the synchronous
component. It was not verified in the measurement at 86 rev/s (Figure 54(c)), which remained
similar to the orbits in Figure 50(a),(c). Figure 55 compares the measured and predicted
frequency spectra of the SFD orbit at 86 rev/s. For the prediction (Figure 55(al),(a2)) the
frequency resolution was refined to 1 Hz. For the measurement (Figure 55(b1),(b2)) it was 2 Hz.
As can be seen, the additional minor subsynchronous components of ~22, 62 Hz that were
predicted and measured at 84 rev/s (Figure 51) have disappeared from the prediction (Figure
55(al),(a2)), which contains only exact harmonics of the fundamental frequency of
86/3 = 28.67 Hz. The extra frequency components remain in the measurement, however (Figure

55(b1),(b2)).

From this section it is concluded that the phenomenon of subharmonic resonance occurs in the
region 82-100 rev/s, which also contains the second pin-pin critical speed (91 rev/s).
Subharmonic resonance is caused in this case by the rotational speed being close to 3 times the
first pin-pin critical speed of 31 rev/s.

Measured vs. TD predicted unbalance response

Figure 56 compares the measured half peak-to-peak vibration with that predicted by TD
integration in the range 24-100 rev/s. As explained in section 8.2.2, the integration was carried
out over 120 shaft revolutions at each speed (steps of 2 rev/s) and only the last 0.3s of data was
considered. This was more than adequate to eliminate the transients at all speeds except at 30
rev/s where the disc and mid-shaft predictions are much higher than measured due to the
transients. The TD predicted response in Figure 56 shows a general improvement over the HB
N =1 response in Figure 44. However, the y vibration at the disc and mid-shaft positions was
over-predicted beyond about 82 rev/s (Figures 56(d),(f)), despite the fact that the transients were
completely eliminated from the TD solution.

Figures 57-59 show the predicted and measured waterfall diagrams at the three positions J, U, M.
Good agreement between prediction and measurement is evident. Subsynchronous activity
beyond 82 rev/s is especially strong at the SFD in the y direction, Figures 57(a2),(b2), with
components approximately one-third and two-thirds of the rotational speed. At the disc position
(Figure 58) the synchronous component is the only significant component, although a one-third
subharmonic makes an appearance around the second critical speed (~90 rev/s). The mid-shaft
vibration, Figure 59, is richer in harmonics and subharmonics. The measured subsynchronous
components at the disc and mid-shaft positions in the y direction are much weaker than those
predicted. This may help to explain why the HB N =1 predictions at the disc and mid-shaft
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positions beyond 80 rev/s are not that bad, despite the fact that the N =1 limit cycles become
unstable (Figures 44(c)-(f)).

8.5 CONCLUSIONS
For configuration Al the following conclusions were reached.

- The full film theory worked well at Jow static eccentricity and low unbalance. As the
unbalance and/or static eccentricity was increased, absolute zero cavitation theory had to
be used. Cavitation effects were experimentally observed in those speed ranges where
divergences between the two cavitation models appeared.

- The lift at the SFD journal caused by cavitation kept the vibration at other locations low
as the first critical speed was traversed.

_ The model managed to predict aperiodic behaviour measured in the critical speed region
of 30-36 rev/s at a static eccentricity of —0.8, and unbalance of 5.1x10™*kgm. The
aperiodic motion predicted was of the quasi-periodic type. The variation of the static
misalignment due to the vertical run-out of the shaft and the consequent use of a
conservative average value for &g, in the prediction was the reason for not predicting

aperiodic motion measured at €,,, =—0.6 and U = 5.1 10~ kgm.

For configuration A2, the shaft behaved like a pin-pin beam and the single SFD provided little
benefit. The shaft hardly lifted except around the two critical speeds. It was evident that the low
viscosity oil was not suitable for this configuration (i.e. single unsupported SID). The model
managed to predict strong subsynchronous activity around the second pin-pin critical speed of
~90 rev/s. Subharmonic resonance in this region was caused by the rotational speed being close
to three times the first pin-pin critical speed of 31 rev/s.
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CHAPTER 9

CONCLUSION AND FUTURE RESEARCH

In this report a comprehensive receptance based method for the non-linear modelling of squeeze
film damped rotor dynamic systems has been presented. This method encompassed harmonic
balance analysis, stability analysis, and time domain integration analysis. In chapter 3 a general
method for harmonic balance (HB) analysis using exact receptances was developed. In chapter 4
a general method for time domain (TD) analysis based on the approximate modal decomposition
of the receptances was presented. The equations developed in chapters 3 and 4 were then applied
to specific configurations A, B involving one squeeze film damper (SFD), in chapter 5.
Configuration A comprised a flexible shaft in a rigidly housed SFD either with parallel retainer
spring (A1) or without parallel retainer spring (A2). Configuration B was similar to A2 but with
the bearing housing flexible. In chapter 6 two general methods for the stability analysis of limit
cycles computed by HB were presented with reference to the specific configurations A, B.
Method I involved time domain integration over a limited number of cycles using initial
conditions determined from a modal decomposition of the HB solution. Method II was based on
Floguet Theory and entailed the computation of the monodromy matrix. This matrix could be
computed in two alternative ways: either straight from its definition (Method Ila), or
approximately, using impulsive parametric excitation theory (Method IIb). Method Ila was seen
to be useless, despite being used in the literature. A quantitative and qualitative analysis of
configurations B and A was presented in chapters 7 and 8 respectively. Analysis on
configuration B was restricted to a rigid rotor. The reader is referred to the specific conclusions
reached, summarised at the end of these chapters. The approach adopted to analyse these
problems was as follows.

(a) Perform the HB N =1 solution with a svitable number of harmonics m, using arc-length
continuation. '
(b) Derive the stability characteristic of the HB computed unbalance response using the fast

Method Ib.
(c) Confirm the stability results obtained in (b) at the salient points of the unbalance response

using Method L
(d) Perform TD integration, as required, in those speed ranges where instability of the HB
N =1 solutions is detected.

Simulations showed excellent correlation between all the various analytical techniques
developed. This in itself validated the soundness of the receptance model. Additionally, the
model was experimentally validated.

The major conclusion drawn is that the use of a comprehensive receptance based model,
encompassing both time and frequency based methods, allows fast, reliable predictions under all
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operating conditions. Moreover, use of the receptance formulation allows a wide choice of linear
rotor dynamic modelling techniques (e.g. finite element (FE), mechanical impedance (MD,
transfer matrix (TM), hybrids FE/TM, FE/MI) for efficient receptance computation.

The next phase of the research will involve the following tasks.

- Processing of data already acquired for configuration A1 with partially supported journal
(i.e. &, <—1). Experimental results for this condition have revealed “neater” quasi-

periodic orbits in the region 30-36 rev/s than those obtained for &;,, =—0.8. This was

attributed to the invariant static misalignment condition.

- Further tests on configuration A2 with more suitable, thicker oil.

- Extension of the simulations of configuration B to cover the flexible rotor. Experimental
validation of these simulations would involve collaboration with M. Levesley of the
University of Leeds, who has already carried out such experimental work in [28].

- Possible application of the model to a test rig with two flexibly house squeeze film
dampers and experimental validation. The test rig (to be designated “configuration )
was described in the first report [15] and is still under construction.

- As for the model itself, the only area still to be developed is the problem of degenerate
rotor subsystems with number of squeeze films n =3 (see end of section 3.6).
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magniluda (nvN)

point receptance at J: actual {sofid), reconstructed from 4 modes {dazh) transfer receplance batweaen J and U: aatual (solid), reconstructed from 4 modes {dash}
T T T

T T T T T T T T 10 T T T T T T T

1 L L L

1 s L 1 ' 1 1 1 ' ' L
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fraguancy (Hz) fraqueney {Hz)
(a) Point receptance at J, o;; (b) Transfer receptance between J and U, o 5,

Figure 23: Receptances for configuration AL

Exact: , reconstructed from 4 modes: — ——.

" point receplancs al J: actual {salid), reconstructed from 4 mades {dash) , ransles recaptance batween J and U: actual {solld), reconstruciad fram 4 modas {dash}
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(a) Point receptance at I, o, (b) Transfer receptance between J and U, ot 5,

Figure 24: Receptances for configuration A2.
, reconstructed from 4 modes: — ——.

Exact:
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response at SFD: normalised y disptacement amptiude (half paak to peak)

amplituda (half peak to paak)
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Figure 25: Unbalance response (norinalised half peak-to-peak ) for Al withe,,; =—0.6,

U=259%10"kgm, ps =1bar.
Measurements:—=— . Predictions, HB, N =1, m =5 : full film —%—.
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tasponse at SFD: normafised x displacamant amplitude (haff peaic to paak)
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Figure 25: Unbalance response (normalised half peak-to-peak ) for Al withey,; =-0.6 ,

U=51Ix1 0’4kgm, ps =1 bar. Measurements: —+—.
Predictions, HB, N =1, m =5: full film —s——, absolute zero cavitation —o—.
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Figure 27: Unbalance response (normalised half peak-to-peak ) for Al withey,; =—0.8,

U=259%x10"*kgm, p, = 1bar. Measurements: —=—.
Predictions, HB, N =1, m =5 full film —s«—, absolute zero cavitation —S—.
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Figure 28: Unbalance response (normalised half peak-to-peak ) for A1 withe,,; =—0.8,
U=51x1 0'4kgm, ps =1bar. Measurements: ——=—.
Predictions, HB, N =1, m =5 : full film —s——, absolute zero cavitation —o—.
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rasponse at SFD: nermafised mean y displacsmant
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Figure 29: Normalised HB predicted mean y displacement (lift) for Al withe,,; =—0.6,

100

U =51x10"kgm, ps =1bar. Full film —i—, absolute zero cavitation —S—.
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Figure 30: Normalised HB predicted mean y displacement (lift) for Al withe,,; =—0.8,
ps =1bar. Full film —i— , absolute zero cavitation —&—.
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absclute value of leading multiplier absoiuls yalue of laading multipliar
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(@) U =2.59x10~* kgm, full film theory  (b) U =5.1x107* kgm, absolute zero theory

Figure 34: Fast stabilty check (Method IIb) for harmonic balance solutions N =1, m =35,
for &y, =—0.6 : variation of magnitude of leading multiplier.
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Figure 35: Fast stabilty check (Method I1Ib) for harmonic balance solutions N =1, m=35,
Jor £4,; =-0.8:

(a): U =2.59x10 ~ kgm, absolute zero theory. (b1), (b2): U =5.1%1 0~ kgm, absolute zero theory.
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rasponse at SFD: normalised x displacement amplitude thell peak 1o peak) response al SFD: isad y displ: 1t i {half paak to paak)
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Figure 44: Unbalance response (normalised half peak-to-peak ) for A2 with
U =51x10"kgm, ps = 1.2 bar. Measurements: —=—.

Predictions, HB, N =1, m =5 : absolute zero cavitation —&—.
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response al SFD: normafissd maan y displacsment
o T T . T T T T T T

40 50
rotalianal spaed (rev/s)

Figure 45: Normalised HB predicted mean y displacement (lift) for A2 with
U=51x10"kgm, p ¢ =1.2 bar, absolute zero cavitation.
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Figure 46: Fast stabilty check (Method I1b) for harmonic balance solutions N =1, m =5 Jor
A2 with U = 5.1x 107 kgm, absolute zero theory.
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responsa at dise, 30-31 ravls rasponse at mid-shalft, 30-31 revis

-1

ek . . M e N M . < : : : H : |
i -2 -1

(al) Disc (U) 30-31 rev/s (a2) Mid-shaft (M) 30-31 rev/s

rasponse at disc, 32 revis rasponse at mid-shaft, 32 rav/s
T

(b1) Disc (U) 32 rev/s (b2) Mid-shaft (M) 32 rev/s

rasponsa at disc, 36 ravis response al mid-shaft, 36 rev/s

(1) Disc (U) 36 rev/s (¢2) Mid-shaft (M) 36 rev/s

Figure 48: Predicted and measured “a.c” orbits for A2 near the first critical speed (31 rev/s)
with U =5.1x10 kgm, ps =1.2 bar.

Prediction: HB, N =1, m =8, absolute zero theory (———). Measurement (0.5s) ).
In (al), (a2) prediction at 31 rev/s, measurement at 30 rev/s. Scaling of axes in (c1), (c2)
enlarged for clarity.
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rasponsa at SFD, BEravsls Poincare Map, 21 samplas
T T T

3 L : : L
-0.2 0.t 0 0.1 0.2
XinTVe

(b)

Figure 49: Stability check by Method I: predicted SFD orbits at 86 rev/s for A2,
U =5.1x10"" kgm, absolute zero theory, ps = 1.2 bar.
(a) HB, N =1, m =5 (+++*), time domain integration (—) (over 20 revolutions with q =4,
initial conditions derived from HB solution).

(b) Poincare map of (a) (sampling rate: once per shaft revolution, no. of samples: 21; unstable
equilibrium point is E, indicated by “*”, consecutive return points enclosed in circles and
squares).

(c) Time domain integration over a further 80 shaft revolutions.
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rasponse at SFD, 84 rews Poincare Map, 81 sarmples
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Figure 50; Aperiodic motion at 84 rev/s at SFD for A2, U =5.1x1 0~ kgm, p s =1.2 bar.
(a) Time domain integration (with q =4, last 80 out of 180 revolutions, absolute zero theory).

(b) Poincare map of (a) (sampling rate: once per shaft revolution, no. of samples: 81)
(c) Measured orbit (“a.c.” component only)
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Figure 51: Frequency spectra of SFD orbit at 84 rev/s for A2, U=51xI 0~ kgm,
ps =12 bar.

(al), (a2): predicted (absolute zero theory). (b1}, (b2): measured.
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tesponse al SFD, B4 revfs Poincara Map, 81 samples
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(al) SFD Orbit (a2) Poincare Map of (al)

Poincare Map, 16 samples
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rasponsa at SFD, 84 revis
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(b1) SFD Orbit (b2) Poincare Map of (b1)

Figure 52: Predicted aperiodic motion at 84 rev/s at SFD for A2, U =5.1x1 0~ kgm,
absolute zero theory, ps = 1.2 bar

(al), (a2): Last 80 out of 180 shaft revolutions (as in Figure 50(a),(b)).
(b1}, (b2): Further 160 shaft revolutions.
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raspansa at SFD position, 86 revis Poincara Map, 31 samples
T T 04f T i T

+

0zF
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(b)

response at SFD, B rews
T T

=05

Figure 54: Motion at 86 rev/s at SFD for A2, U =5.1 x10~ kgm, pg =12 bar.
(a) Time domain integration (with q =4, over 30 revolutions, absolute zero theory).

(b) Poincare map of (a) (sampling rate: once per shaft revolution, no. of samples: 31)
(¢} Measured orbit (“a.c.” component only)
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SFD position: responsa in x direction

SFD position: response in y directions
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Figure 55: Frequency spectra of SFD orbit at 86 rev/s for A2, U =51x1 0~ kgm,

ps =1.2bar.

(al), (a2): predicted (absolute zero theory) (Figure 54(a)).
(b1}, (b2): measured.
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SFD position: ised v disp it (half paak to paak}

by 10 20 a0 5 T 2 90 w %
rotational spead {ravarls) rotational spaed {tavsis)
(a) SFD (]), x direction (b) SFD (]), y direction
disc posifion: r lised y disp t i (half peak tc peak)

Axfc
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rolational speed {ravs/s) rotational spsed {revs’s)
(e) Mid-shaft (M), x direction () Mid-shaft (M), y direction

Figure 56: Unbalance response (normalised half peak-to-peak ) for A2 with
U =51x10"kgm, pg =12 bar. Measurements: —3—.

Predictions: time domain integration, g =4, absolute zero cavitation —7—.
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SFD position: respons in x diraction SFD posilion: rasponse in y direction
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Figure 57: Waterfall diagrams of vibration at SFD (J) for A2, U =5.1x1 07~ kgm,
ps =1.2bar.

(al), (a2): predicted (absolute zero theory). (bl), (b2): measured.
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disc position: responae In y cirection
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Figure 58: Waterfall diagrams of vibration at disc (U) for A2, U =5.1x10~* kgm,
ps =12 bar.

(al), (a2): predicted (absolute zero theory). (bl), (b2): measured.
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Figure 59: Waterfall diagrams of vibration at mid-shaft (M) for A2, U =5.1x107* kgm,

pg =12bar.

(al), (a2): predicted (absolute zero theory). (bl), (b2): measured.
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APPENDIX A

HARMONIC BALANCE MATRICES
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Substitute for Q,;, p};, 43.0y;, Py;» 4y from equations (33a,b) into equations (38)-(41).
Equations (38) become:

Koy —€owi = z [O‘O‘Mj (0)- QO 5ip; (O)Ion i+ kXo; )"' Z [O‘ﬁmj (0 O‘ﬂmf (O)KQ)’O j kY, )

j=1 j=l
(Ala)

H
5 R { R 5 5 5 s
Axy; = Z [C’59‘mj (sw)- O y;p; (sw )Ikxxj (aXJj —axp; )+ S,y (bXJ[f — by )+ Ay ]
=

+§ba}w (500) otk s0) [ s (53— gy} o By ~ iy 1+ B
2[&&@ s00) = oy )k, iy — i I se, by by )+ 45
g[aﬁ@ (s00) =Bl o) s, (a3 — i Vo Ry By~ By )+ B

+5M2aawk (s ), £2° smtpk+6M2aocwk (s}, Q2% cos ¢,

k=l

P
+ 5:\/:2 0B (50,27 cos g, + 6szaﬁJzUk (s} 2%sing, (A2a)

k=1 k=1

s [ R R s K s s N

by = Z OO 13 (se}- QL g;p; (S @ )I_ SEOC 1 (aXJj — dyp )‘*‘ ko (bXJj - by )'*’ ij]
[ 1 1 5 H s K s

- 2 OO (sw)— X y;p; (s m)Ikxxj (aXJj — dxg; )"‘ SO (bXJj — byg )"‘ ij]

+ Z aﬁ.ﬁfj (S a)) a)BJaBJ (S CD)I S@Cy,; (aYJj aYB_,' )+ k (b)ib b;Bj )+ B )sfj]

.
- z _aﬁ.le (sw)- aﬁ}mj (s a))Ik i (afffj — ayp; )"' SWCyy; (blsuj —byp; )"‘ A;j]
=1

P P
+ 51\/.;20‘0‘?1& (Sw)UkQZ cos¢y, — 51\&20‘“};& (Sw)UkQZ sing,

k=1 k=1

~

7
+5Nv2aﬁ§Uk(Swy]kQZSin¢k st aﬁJ:Uk Sw)UkQ cosd, (Alc)

k=1 k=1
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Equations (39) become:

XOB['-:i[O{aB[JJ(O) 05053131 I Oroj Tk Xo;)“‘i[o‘ﬁsm (0)- aﬁBlBj(O)IQy0]+kyyjY0j)

j=t j=l (A2a)
Ayp; = 2 [O‘aguj (sw)- aagiBj (s CU)Ikxxj (ajw Ayp; )“‘ SOC,, (b;q- —byp; )'*‘ A;j]
=t
+ 2 _aa}}w (sw)- aa‘IB’iBj (s 0))1 SQCy, (aXJ_,l Aypi )"' ki, (bJSfJJ —byp; )'*' B;j]
=1
+ 3 ol (50) - 0B (sl ity = iy )+ s, 5y i+ 4
j=1
+ P‘ﬁéw (s ) - aﬁéiBj (S a))I—- SWC (ai;g - a}{Bj )"" Ky (b;y ~byp; )+ B ;;]
j=1
P r
+8 2 O‘O‘,};Uk (SCU)UkQ ?sin O +Op, Zaa}mu& (Sa))Uk‘Q 2 cos Oy
k=1 k=1
P P
+0y, aﬁB:Uk Sw)Uk COS‘Pk + 5staﬁfl;iwc (SCO)Uk-QZ sin ¢, (A2b)
k=1 k=1
byg = Z ani};fji (S w)_ aa?!Bj (S OJ)I— SQC,; (a;']j - a;(Bj )+ k. (b)‘u b}\(Bj )+ B):‘_,' ]
j=1
- 2 [‘xo‘,lguj (S a)) - aaII?iBj (S W ) - (a;(Jj — Ay )“' SAC (bfw - bngj )"‘ Ai;]
Jj=1
: R R 1 5
+ 2 [Olﬁaw (sw)- OB i (sw)]-s 0C (alsfjj — dyg; )'*' ky; (b;ﬁ —byp; )"‘ B yj]
j=l
c I I |
- 2 [aﬁBiJj (sw)- OB pi; (sw)lk Wi (aYJJ ~ Qyp; )“*‘ swe (b;’Jj —byy; )+ A;j]
=l
+ 3y, Zaa&wc (s}, Q7 cos gy — S, ZaaB[Uk (sw)U 2%sing,
k=1
I r
+ 8y Zaﬁgz’Uk (s, Q2 ?sin &y — O Z - aBéiUk (s}, 2 2cos g, (A2c)
k=1 k=1
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Equations (40) become:

YOJE - e()yJi = 2 bﬁﬁﬁ (0)_ ﬁﬁJﬁBj (O)IQ}'OJ + kyyjYO_,r z[ﬁafifj ﬁanBj O)IQXOJ + kxijOj)
j=1

(A3a)

ayy; = i [ﬁﬁﬁjj (sw)- )BﬁﬁBj (s a’)Ikyyj (als’Jj — Gy )‘*‘ 50C,,; (b;jj — byp; )+ A ]

j=1

+ i [5:8}1;9' (S 9’) - ﬁﬁjﬁBj (S w )I— S00C,,; (af,ﬂ - als’Bj )"' Ky (b;Jj - bf:Bj )+ B;j]

j=1

+ 3 [Bok, (s0)- ok (seo)k, (@l — iy )+ s, (B2, B3y, )+ 43

i=l

+ i LBO‘,IWJ (so0)— ﬁaffiBj (so0 )I" SO,y (a::uj ~ dyp; )’*‘ Ky (biv(ﬁ ~byp; )+ By ]

j=1

r P
+0 5 2_ 5/3}?% (s}, 2 Zcos @y +0y, Z BBin (sl 2% sin g,
k=1 k=1

Iid p
+0y, 2 ﬁa.l}iUk (5 m)UkQ ?sin ¢ 0y 2 ﬁa.lh'Uk (S CO)Uk-Q ? cos o, (A3b)

k=1 k=1

byy; = z”: [/B/BEJ; (s)~ ﬁﬁﬁsj (s )I‘ SCC (a;’.{i — Qyg; )+ ks (blijj —byp; )‘*‘ By ]

i=

- i ﬁﬁ}ijj (5 a’)_ ﬁﬁ}iBj (S a))lkyyf (af’ay' - a;'Bj )+ Sy, (blf’Jj - b}S’Bj )"‘ A;j]
j=I

+ i jﬁaﬁjj (sw)- ﬁauI'(iBj (s @)I— SC (a}v(.ﬁ — ayp ) +kyy (b;’fj — by )+ By ]
=

= 2 JBO[..IW.U (sw)- ﬁanlfiBj (s m)]:kxxj (agfjj - aj{Bj)"‘ SGC,,; (b;(y —bgmj )"' Ajj]
= .
14 Jid
."'SMZﬁﬁ}EUk (s )V 2% singy ~ ch BB i (s, 2% cos g,
k=l k=1

P P
+ 8y Y, Bt (s )U 2% cos g, — 5st Betji (s0 ), 2% sin g, (A3c)
k=1

k=1
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Equations (41) become:

YOB: z [ﬁﬁBzJ] ﬁﬁBtB] (0 :KQ) 0 f + kyyjYOJ ) Z [ﬁaBzJj ﬁaBsz IQIOJ + kxxj XOj )
j=l (Ada)

Qyp; = i [ﬁﬁBRuj (sw)- ﬁBgiBj (s a))Ikyyj (aiscy — ayg; )"' SQC (b;.y' ~byg; )"' A;j]

z_, [ﬁﬁmj (so)- ﬁﬁ}efs}j (s )I— SECy,; (a;Jj — g )+ Ky (bf;ﬁ — by )"‘ B ;j]

+ Z [BO‘B;J; (S a)) ﬁasra,. s a))]:kx.q (aXJ} axa,: )"' soe, ( }\(J_,n b;Bj )+ A):j]

J=1

M
+ 2 [ﬁazlmj (s)- ﬁa‘[BiBj (s C‘))I_ 80X, (ag(Jj — axp; )"‘ Ky (b;{Jj —byy; )"' By; ]
=1

7
"“5sz BB (sl 2% cos g, +5Nv2ﬁﬁBzUk(Sa’)Uk-stm¢k

k=]

P P
+6 5 Z ﬁagi{]k (S a))Uk‘Q ?sin Oy +6Ns2 ﬁo‘il?fwc (S w)UkQ ?cos b (Adb)
k=1

k=l

N
b YBi

ﬁﬁgjy (sc)- ﬁBBRiBj (s w)I" SOy (a;’ﬂ — dyp; )+ Koy (bf;ﬁ = byg; )+ B ;{1]

Il
NgE

L
LN

=

- ;8/3;511' (S 0))_ 13)8113;'3;' (S w)lk i (af:y' - a;’Bj )"' S (b;Jj - bis/Bj )+ A;j]

.
1]

=

:)Bagfjj (S w)- ﬁ(-_x;iBj (5 W)I— SOC 1y (a:;’.lj — Qg )"‘ ko (b;(lj —byp; )"‘ B;j]

+
5

=

- -ﬂa;w (S a)) - Ba;‘iﬂ'j (S C'J)Ikxxj (aSXJj - a;‘('Bj )+ SOC (b;(Jj - b}szj )"‘ A:sg]

ey
]
_

P P
+6szﬁﬁ1§iUk(Sw)Uk925in¢k N:Z ﬁﬁmwc SCO)UkQ cos g,
k:] k:l

I I
+ 5MZ ﬁagib'k (Sw)Uk‘Q ? cos O — O 2 505;?;'0;% (Sa’)UkQQ sing, (Adc)
k=] k=1
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Defining
v Vi Vi1
| X N _ :
IR e
Vi
VxJn VxBn
_ ] 1 m m ]T
Vi = [X ori Gxn bxy axn  bxs
_ i 1 m m ]1‘
ViBi = [X omi Axm  bxm axp  bxpi
Similarly,
v Yin Vyr1
v = vl — : _ .
¥y Vg = Vg =
VyB
van van
— 1 1 ] m
Yy = [Y o i Dy Ayy bm]r
_ 1 1 . m m
Vimi = [YI)BE Ayp;  Dyg, Ayp; bysi]r

Equations (A1)-(A4) can collected into the following system

where:

Mxx — |:MXXJ - MXXJ
MxxB - MxxB
M, = Mo My
MyxB - MyxB
Migsn
Moy = ﬁ\dfx.]ij}_i' ﬁVIixJij}:
ngJnI

:| M _ = [MYYJ -M
’ ¥¥
Mﬁdln Mgchll
N E

(AS5)

(A6),(AT)

(A8), (A9)

(A10a)
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MiBll ngBln MixBll M::xBIn
Moy =B e Mg =l ¢+ ¢ 1 4] 8 (A10b)

Mgt Migu| |[Migar ° Mygm
Moy = MR g b MLk M = B0y i+ My (Al1ab)
My = B b ML L Mg = ME g b Mgy} (Al2a)b)
Myyy = 8+ MLy My = M3 f My ] (Al3ab)
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APPENDIX B

EXPERIMENTAL PROCEDURE DATA
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DISPLACEMENT TRANSDUCER CALIBRATION

All probes were “bench” calibrated using a micrometer screw gauge calibrator and a digital
voltmeter. Additionally, the calibration of the SFD probes (at J) was rechecked “on the job” ie.
when in position on the rig, using a digital voltmeter and a dial test indicator at J. The reason for
this was that the lateral clearance of the SFD probes from the bearing housing face was within the
limits of tolerance recommended by the manufacturer. The change in sensitivity over the bench
test value was found to be —1.0% for the x probe and — 2.7 % for the y probe. The calibration
curves and sensitivities are given in Figures B1(a),(b)-B4(a),(b). A least squares fit was used to

determine the sensitivities.

Bantly Nevada 3300 XL 8mm, Serial No.: Jul F456250
T

Banlly Navada 3200 XL 8mm, Serial No.: Jul F456253
T T

) T T T

s

-4
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© o
& 2
= S
2 _1of sensitivity: -7.935 Vimm 2 _1wof sensitivily: -7.027 Vimm
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-14f “14f 4
~1af 4 s B
18 . . L . _1a . . . L
25 1 15 2 2.5 0.5 1 1.5 2
gap imm) gap (mm)
(a) x probe (b) y probe
Figure B1: SFD position transducers: bench test calibration.
Bently Nevada 3300 XL 8mm, Serial No.: Jul F456250 24 Bently Nevada 3300 XL Brm, Sarial No.: Jul F456253
~38 T T T T T T -2, T T T T T T
T -25 ]
—28f
-4
a7t
Y]
= 528 E
& 4z sensilivity: ~8.012 Vimm 3
5 290 sensitivity: ~8.128 Wimm
a3k
-ak
44t
-31
-45 -3.2
-33 L .

25

L L L
.04 Q05 0.08
incrementaf gap {mm)

(a) x probe

1 L
001 .03

.09

.01

1 1 A 1 :
.04 0.05 0.08 0.07 0.08

incramantal gap {mm}

(b) y probe

L
0.02 0.03

Figure B2: SFD position transducers: calibration “on the job”.
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Benlly Nevada 3300 XL 8mm, Sarial No; Jul F458248

Benily Nevada 3300 XL 8mm, Serial No.: Jul F456252
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Figure B3: Disc position transducers: bench fest calibration.
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Figure B4: Mid-shaft position transducers: bench test calibration.

STATIC MISALIGNMENT ADJUSTMENT

The cold (25°C) and hot (33°C) static misalignment conditions for the two chosen settings are
shown in Tables B1, B2. In Table B1, the grand means, to one decimal place, are £y,; =0.0,

Eoyr = ~0.6. In Table B2, the grand means, to one decimal place, are £,,; = 0.0, Eoyy = —0.8.

These values where used in the simulations.
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0 Eoxs
)

0 0.03
90 0.08
180 0.01
270 0.00
€0zt 0.03

(al) x direction, 25°C

0 Eoxs
()

0 0.08
90 0.10
180 0.06
270 0.01
€017 0.06

(b1) x direction, 33°C

Table B1: Static eccentricity adjustment for £,,;, =0.0, €,,; =—0.6

6 Eoyr
)

0 -0.39
90 -0.64
180 -0.78
270 -0.55

Eoys -0.59
(a2) y direction, 25°C

g Eoys
)

0 -0.39
90 -0.66
180 -0.79
270 -0.60

€0y -0.61
(b2) y direction, 33°C

0 Eoxs
)

0 -0.03
90 0.03
180 -0.03
270 -0.07

Eont -0.03
(al) x direction, 25°C

0 Eoxs
)

0 0.02
90 0.05
180 0.07
270 -0.05
€01 0.02

(b1) x direction, 33°C

Table B2: Static eccentricity adjustment for €,,; =0.0, €y,; =—08

e €0y
)

0 -0.63
90 -0.84
180 -0.96
270 -0.77

oy -0.80
(a2) y direction, 25°C

6 €0y
)

0 -0.66
90 -0.91
180 -1.00
270 -0.86

Eoyr -0.86
(b2) y direction, 33°C
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MEASUREMENT OF “DC” COMPONENTS

A data acquisition with the rig stationary had to be performed. This was done after the rig had
been run for about 30 minutes for the oil temperature to reach 25°C. With the rig stationary, the
voltages {V(,x JQ,VOy 0 }, Jﬂ/Oxyg,VOyUa }, {%xMG,VOyMG} at the locations J, U and M respectively
were acquired with the analyser for the four angular positions of the shaft 8 = (0°, 90°, 180°,
270°. This allows for the run-out of the shaft. The average static dc voltages in the x and y
directions at locations J, U and M were then obtained as:

vV . +V .tV . +V .
7 Vowe TVouor TVouise FVoume i _ Yowor TYowsr TVopnse T Yoo
oxs = s Yoy =
4 4
(Bla,b)
: 1% .tV .+V . +V .
7 = Yowe Vower Mounse Vowme 5 oo T ower T roywise T Yo,uam
0t = - A T 4
(B2a,b)
Vv .tV .+V . +V .
17 _ VOxMO" + VOxM90° +VOxM180° +VOxM 270" i __OyMO 0yM90 0yM180 0yM 270
OxM — 4 »TOyM T 4
(B3a,b)

The rig was then run and the x, y voltage measurements {Voﬂ (t),VOyJ (I)}, {VOxU (t),VO},U (t)},
{VOxM (t),VGyM (t)} at J, U, M respectively were then taken at each speed. Let {yﬂ,yﬂ },
{'yxu,'yyu } Jg/xM ,yyM} be the sensitivities of the x, y probes at J, U, M respectively. Let x;, y;
be the non-dimensional displacements of J from B. ILet (x,, y;), (%3, Y4 ) be the non-

dimensional displacements of U and M from their respective static equilibrium positions. Then

_V V., (t)-V,
Xy =g + Ve (6)=Vow Y =gy +M (B4a,b)
yxjc Ty]c
-7 V., ()=,
X, = Vo (0 Vour ’ Yy :M (B5a,b)
’},xUC ’},yUC
— VxM (‘t)_ ‘70xM Yy = M (Bﬁa b)
yxM c yyMC

The above displacements are hence directly comparable with the predictions. For added
precision the static voltage acquisition was repeated at the end of each experiment with the rig
hot. The static voltages used in equations (B4)-(B6) where in fact the averages of the cold and
hot values.
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