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FIGURE CAPTIONS 
 

 

Figure 2.1  Geometry of infinite liquid cylinder. Inner and outer radii are b and 

d respectively.   

 4

Figure 3.1  Normalized phase velocity of axisymmetric modes in the water-

filled PMMA (Perspex) pipe as a function of frequency. The material properties 

of PMMA are shown in Table 5.1. 

 

 10

Figure 3.2  Normalised group velocity of axiymmetric modes in the water-filled 

PMMA pipe as a function of frequency. 

 11

Figure 3.3 Phase and group velocities of ET2 mode. At the cut-off frequency, 

the phase velocity approaches infinity and the group velocity goes to zero. 

 13

Figure 3.4  Magnitude of the (a) radial displacement and (b) axial displacement 

of ET0 mode. Magnitude at this mode increases severely at the interface of the 

tube wall ( 1// 22 =+= byxbr ). 

 14

Figure 3.5  Magnitude of the (a) radial displacement and (b) axial displacement 

of ET1 mode. 

 14

Figure 3.6  Magnitude of the (a) radial displacement and (b) axial displacement 

of ET2 mode. 
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Figure 3.7  Magnitude of the (a) radial displacement and (b) axial displacement 

of ET3 mode. 

15

Figure 4.1  Normalized amplitude of the spectrum of the signal by Eq. (4.8) 

when the damping of the signal is chosen as 0.5 (blue curves), 1.0 (black 

curves), and 2.0 (red curves) m-1 respectively. Parameters of zNk ,0 and zΔ  are 

chosen as 100 m-1, 100, and 0.01 m respectively. Panel (b) is the magnified 

picture of panel (a) around the main spectral peak. 
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Figure 4.2  Change of the maximum amplitude of the spectrum as a function of 

the number of sequence, Nz, by Eq. (4.9) when the damping of the signal is 

chosen as 0.1 (green curves), 0.2 (magenta curves), 0.5 (blue curves), 1.0 (black 

curves), and 2.0 (red curves) m-1 respectively. The sampling interval, zΔ , is 

chosen as 0.01 m. The maximum number of sequence, Nz
max, is chosen as (a) 

 26 
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100 and (b) 200 in this calculation. 

Figure 5.1  Modal dispersion curves with different choice of the elastic 

constants of PMMA. The black curves are calculation based upon the values 

listed in Table 5.1. The blue curves are calculation obtained from the values of 

longitudinal and shear speeds of 2.604 km/s and 1.318 km/s respectively. The 

red curves are calculation obtained from the values of longitudinal and shear 

speeds of 3.033 km/s and 1.388 km/s respectively.  

 29 

Figure 5.2  Normalized phase velocities of the axisymmetric modes in the 

water-filled PMMA pipe as a function of normalized frequency. One subsonic 

mode named ET0 and one supersonic mode named ET1 exist up to zero 

frequency limit. Open circles are used to indicate lossless solution and solid 

lines indicate the results of calculations obtained from the real part of the 

complex solution. The material properties of the PMMA tube are shown in 

Table 1 (Hartmann and Jarzynski, 1972; Hefner and Marston, 2000). 

 30 

Figure 5.3  Normalized damping of the axisymmetric mode in the water-filled 

PMMA pipe as a function of normalized frequency. This was obtained from the 

imaginary part of the complex solution to Eq. (3.2). 

 31 

Figure 5.4  Normalized damping of the ET0 mode and the ET1 mode in the 

water-filled PMMA pipe as a function of normalized frequency.  Compared to 

Fig. 5.3, the damping of the ET0 mode is larger than other modes. 

 32 

Figure 5.5  Predicted normalized phase velocities of the axisymmetric modes in 

the mercury-filled steel pipe as a function of normalized frequency. 

 34 

Figure 5.6  Normalized group velocity of axisymmetric modes in the liquid 

mercury-filled stainless steel pipe as a function of frequency. Compare this with 

Fig. 3.2. 

 35 

Figure 5.7  Predicted normalized damping of the axisymmetric modes in the 

mercury-filled steel pipe as a function of normalized frequency. At the 

frequency range of 5.21 >bk , the attenuation of the ET0 mode is less than that 

of the ET1 mode which is opposite to the PMMA/water case. The magnitude of 

the attenuation is nearly 410  times smaller than that observed in the 

PMMA/water case.  
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ABSTRACT 
 



 vi

Theoretical investigations are undertaken with the propagation of sound inside the 

tube filled with liquid. Previous theoretical works by Del Grosso's, Lafleur and 

Shields, and Elvira-Segura are here reviewed and extended to the complex domain in 

order to predict the attenuation, as well as the sound speed, of the modes as a function 

of frequency. Phase velocity, group velocity, the attenuation, and cut-off frequencies 

of modes are obtained for the water-filled PMMA (Perspex) tube of internal radius, 

b=4.445 cm, and thickness, h=0.5 cm in the range of the wavenumber-radius product, 

bk1 , up to 18. The theory was then applied to the case of a stainless-steel pipe filled 

with mercury having the dimensions as used in the Spallation Neutron Source at Oak 

Ridge National Laboratory, Tennessee. 
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1 Introduction 

     The object of this investigation is to provide theoretical basis to measure bubble 

populations inside a pipe in the Spallation Neutron Source (SNS) at the Oak Ridge National 

Laboratory (ORNL). With respect to this, the phenomena of wave propagation inside a 

liquid-filled cylindrical tube encompasses the important mechanism of sound coupling 

between the fluid and the elastic pipe material. It is important that this phenomenon be 

understood, since many of the methods for inverting acoustical observables to determine the 

bubble population rely on interpreting the difference between the observable in the bubbly 

fluid, and its value in bubble-free conditions (Leighton, 2004). Critically, the ‘bubble-free’ 

value is almost always taken to refer to the value of the bulk liquid. However when the liquid 

is contained within a thin-wall pipe, the bubble-free value does not equal the value of the 

observable in an infinite body of liquid (Jacobi, 1948; Lin et al, 1956), and it is important that 

this difference is not interpreted in the inversion as being due to bubbles. The issue of 

coupling between the wall and the liquid affects the phase and group velocities and 

attenuation of the modes inside the tube. The theoretical formulations for these by Del Grosso 

(1971) and Lafleur and Shields (1985) have since been use in around two dozen later works 

(see for example Mert et al., 2004; Wilson, 2002; Wilson et al, 2003, 2007).  

 

    Therefore in this report, propagation of the wave in water filled pipe is examined using 

theory to see how the coupling between the water and the tube wall changes the speed of 

sound and attenuation coefficient. The theoretical and experimental works done by Del 

Grosso (1971), Lafleur and Shields (1985), and Elvira-Segura (2000) are examined and re-

derived in Sections 2 and 3 (the re-derivation is important to gain understanding, and also 

revealed errors in the original publications). Section 4 explains how the complex solutions 

were obtained using the extended formulations referred in the previous sections and through 

consideration of the material properties and absorption. This section also highlights the 

numerical methods to find the phase speed and the attenuation of the modes in wavenumber 

space. The numerical prediction of the dispersion relation in the current PMMA pipe is also 

shown in Section 5. Through the theoretical investigation, it is possible to anticipate the 

results in the real mercury-based system and these are also shown in Section 5.  
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2 Characteristic equation to axisymmetric modes 
inside the elastic tube filled with viscous liquid 

    The early work by Del Grosso (971) provided the theoretical axisymmetric modal 

dispersion relation in an infinite liquid-filled cylindrical tube, which was proven 

experimentally by Lafleur and Shields (1985). Their results specifically calculated the 

dispersion relation of axisymmetric propagation mode in a water-filled elastic tube. Del 

Grosso denoted those axisymmetric modes as ETm where ‘E’ refers to elastic wall and ‘T’ 

refers to finite thickness, such that each axisymmetric mode is identified by only one integer 

m which indicates radial modes. The gauge transformation decouples the motion of the 

modes as purely longitudinal and shear. This can be expressed as ψφ
rr

×∇+∇=S  where S
r

 is 

a displacement vector, φ , the scalar potential, and ψ
r

, the vector potential. When the 

viscosity of the liquid is considered, displacement vector can be also expressed as the sum of 

these two potentials, and from the linearized Navier-Stokes equation, Elvira-Segura (2000) 

showed the resulting displacement vector in the liquid as follows: 
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In elastic solid, assuming the dependence of )](exp[ 0 tzqi m ω− , scalar potential, φ , and the 

vector potential, ψ
r

 satisfy the Helmholtz equation in cylindrical coordinates as follows: 
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(2.2b) 
 

(2.2c) 
 

(2.2d) 

 

where 

,, 2
0

222
0

22
msmmcm qkTqkP −=−=  

 

and cc Ck /ω= , ss Ck /ω= , and 11 / Ck ω= . The terms cC  and sC  represent the longitudinal 

speed and shear speed of the tube material respectively and 1C  is the intrinsic speed of sound 

in the liquid. 

The solution of the above equation is the well known Bessel function. The solutions of Eqs. 

(2.2a) and (2.2d} are zeroth order Bessel functions and the solutions of Eqs. (2.2b) and (2.2c) 

are first order Bessel functions. Each Bessel function can be expressed either in terms of 

)(xJ n , )(xYn , and Hankel functions. Thus, the displacement vector in elastic solid in 

axisymmetric case becomes: 
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Thus, radial displacement is composed of first order Bessel functions and the axial 

displacement consists of zeroth order Bessel functions. In cylindrical coordinates, the stress 

components are described in terms of displacement as: 
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(2.4a) 

(2.4b) 

(2.4c) 

 

where μ  and λ  are Lamé constants. In the axisymmetric cylindrical coordinates, all the 

terms derived with respect to angle θ  vanishes. Figure 2.1 shows the liquid-filled elastic tube 

with inner and outer radii b and d respectively.  

 

 
Figure 2.1 Geometry of infinite liquid cylinder. Inner and outer radii are b and d respectively. 

 

    In this geometry, the resulting pressure in the liquid and the element of the stress tensor in 

the tube wall calculated from Eq. (2.4) becomes: 
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where the superscripts ‘L’ and ‘E’ denote the terms relate to the liquid and the elastic tube 

respectively. The density of the tube, Eρ , Lamé constants, shear speed, sC , and Poisson's 

ratio ν  are related with each other as follows: 

 

                                                  .,
21

2 22
sEsE CC ρμρ

ν
νλ =
−

=    (2.6) 

 

 

In the expression of Eqs. (2.1), (2.3), and (2.5), the factor ( )[ ]tzqi m ω−0exp  is common to 

each term and it was omitted to simplify the notation  

 

    In Eqs. (2.1), (2.3), and (2.5), A, B, C, D, E, and F are constants determined from the six 

boundary conditions, that are described as the continuity of the normal displacement, the 

normal stress, and the shear stress tensor at both r=b and r=d in Fig. 2.1. Shear displacement 

was not considered in the lossless case. However, in the case of considering viscosity, a no 

slip condition is included and this requires continuity of the shear displacement and the shear 

stress at the liquid-tube interface. The continuity of the shear stress tensor at both r=b and 

r=d reveals that: 
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Continuity of the normal stress tensor gives: 
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Continuity of the normal and the shear displacement at the liquid-tube interface gives: 
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    Each term associated with the coefficient F in Eqs. (2.9a) and (2.9b) reveals typographical 

errors in Eqs. (12c) and (12d) respectively of Elvira-Segura's paper (Elvira-Segura, 2000). 

All the terms associated with the coefficient F in his paper were normalized by the 

wavenumber, a (equivalent to ε  in our study), which makes the dimensions of those terms 

([1/ m2]) different from the dimensions of the terms ([1/m]) associated with other 

coefficients, where [m] represents the dimension of length. However, this error does not 

affect the resulting characteristic equation (although he did not obtain an analytic expression 

for the characteristic equation like Eq. (2.11) in this report) for the following reason. Jumping 

to Eq. (2.11) and investigating the Bessel functions, ( )bJ εε 0  and ( )bJ ε1 , it is clear that those 

are always coupled with the denominator mK  defined in Eq. (2.10b). Thus, they appear in the 

equation in the form of ( ) mKbJ /0 εε and ( ) mKbJ /1 ε . Dividing both numerators and 

denominators of those by ε  does not affect the characteristic resulting equation, and this 
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means, using ( )bJ ε0  and ( ) εε /1 bJ  instead of ( )bJ εε 0  and ( )bJ ε1  does not affect the 

characteristic equation.    

 

    Although non-trivial solutions to Eqs. (2.7)-(2.9) are given by the determinant of a 66×  

matrix, this can be reduced to the determinant of a 44×  matrix by eliminating coefficients E 

and F from Eqs. (2.8a) and (2.9a)-(2.9b) which can be described as one equation with only 

four coefficients A, B, C, and D, as follows: 
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In the inviscid case where ∞→ε , all the quantities, AQ , BQ , CQ , and DQ  approach mQ  as 

explained in the next section and Eq. (2.10a) becomes identical to Eq. (4d) in the paper by 

Lafleur and Shields (1985), except that the latter has two typographical errors. Comparing 

Eq. (2.10a) in the inviscid limit with Eq. (4d) of Lafleur and Shields (1985), mP  should be 

added at the second term of the second line and d should be substituted as b at the second 
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term of the fourth line in Eq. (4d) of their paper. However, their typographical errors in Eq. 

(4d) do not affect the resulting characteristic Eq. (5) in their paper because it was calculated 

based upon the corrected expression for Eq. (4d).  

 

    The characteristic equation which describes the propagation of the wave inside the 

cylindrical tube filled with viscous liquid is obtained by expanding the determinant of a 44×  

matrix determined by Eqs. (2.7a), (2.7b), (2.8b), and (2.10a) and the result is as follows:  
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where, the Wronskian, mnL  is defined by ( ) ( ) ( ) ( ) ( ).dyYbyJbyYdyJyL mnnmmn −=  Equation 

(2.11) is equivalent to the formulation by Elvira-Segura which is given by the determinant of 

66×  matrix. 
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3 Lossless solution to axisymmetric modes in a 
inviscid liquid-filled elastic tube 

    The lossless case in the liquid corresponds to the situation where the viscous effect in 

liquid vanishes. Consequently, when the shear and bulk viscosity coefficients, η  and Bη , go 

to zero, ε  diverges accordingly. In this limit, the quantity mK  defined in Eq. (2.10b) 

approaches ( )bJ εε 0  and following approximation hold in Eq. (2.11): 

 

        
( ) ( )

( )
( ) ( )

( ) .limlim,0limlim
0

00

0

11 b
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bJ
bJ
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bJ

mm

→=→=
∞→∞→∞→∞→ εε

εεεε
εε
εε

εεεε
  (3.1) 

 

Thus, at this zero viscosity limit, 1k ′  defined in Eq. (2.1) converges to 1k  and all the 

quantities, AQ , BQ , CQ , and DQ  defined in Eq. (2.10b) approach mQ  which is obtained by 

replacing 1k ′  with 1k  in the expression of mQ′ . Therefore, in the lossless case, Eq. (2.11) is 

reduced to the following formulations given by Del Grosso (1971) and Lafleur and Shields 

(1985).  
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This characteristic equation cannot be solved analytically, but roots to mq0  can be found 

using numerical manipulation by appropriate mathematical software. Figures 3.1 and 3.2 

show the normalized phase and group velocities of axisymmetric modes in the water-filled 

PMMA pipe as a function of frequency. The material properties in the calculations are shown 
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in Table 5.1 (Hartmann and Jarzynski, 1972; Hefner and Marston, 2000). The phase velocity 

of each mode is calculated as mm qC 00 /ω=  from roots to mq0 . At the zero frequency limit, 

two modes (the subsonic mode-ET0 and the supersonic mode-ET1) exist at 343.0/ 100 =CC  

and 552.1/ 101 =CC . The phase velocities of other modes (ET2 and higher modes) become 

infinite at their cut-off frequency. As the frequency increases, the phase velocity of the ET1 

mode converges to 1C , the speed of sound in water, and the phase velocity of the ET0 mode 

approaches 63.0/ 100 =CC . Other higher modes can be seen, and their phase velocities 

decrease as the frequency increases.  

 

 
Figure 3.1: Normalized phase velocity of axisymmetric modes in the water-filled PMMA (Perspex) pipe as a 

function of frequency. The material properties of PMMA are shown in Table 5.1. 
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Figure 3.2: Normalised group velocity of axiymmetric modes in the water-filled PMMA pipe as a function of 

frequency. 

 

 

    Group velocities can be easily found from the calculated phase velocities using following 

relation where lc  is phase velocity and gc  is group velocity (Grigsby, 1961). 
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11 .                (3.3) 

 

Although ET2 and the higher modes have infinite phase velocities at the cut-off frequency 

limit, their group velocities approach zero at their cut-off frequencies. The consequence of 

this is that these modes do not exist at driving frequencies that are less than their cut-off 

frequencies. The cut-off frequency of the mode is obtained from Eq. (3.2) at the limit of 
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00 →mq . Multiplying both sides of Eq. (3.2) by mq0 , then eliminating vanishing terms as 

mq0  goes to zero, and arranging remaining terms, allows Eq. (3.2) to be reduced as follows: 

 

( ) ( ) ( ) ( )[ ] ( ) ( ) ,01412 11
2

0110
2

00
4 =++++− c

c
mcc

c
mcsccs kLbQkkLbQdkbLkkkLbdk     (3.4) 

 

where  

 

( )
( )bkJk

bkJk
Q

E

sLc
m

111

10
2

2ρ
ρ

=  

 

is the limiting form of mQ  as 00 →mq . The cut-off frequencies of the modes are given by the 

roots of Eq. (3.4) when it is solved with respect to frequency ω .  Table 3.1 shows the cut-off 

frequencies of the modes. The values of the frequencies are expressed in terms of 

dimensionless quantity bk1 . Thus, below the cut-off frequencies, ET2 and higher modes do 

not exist and are not observed. Figure 3.3 shows the phase and group velocities of ET2 mode 

with the indication of its cut-off frequency. As the driving frequency approaches the cut-off 

frequency, the phase velocity goes to infinity and the group velocity goes to zero. Except for 

the ET0 and ET1 modes, all other modes have the same pattern as those shown in Figs. 3.3. 

 

Table 3.1: Cut-off frequencies of the modes in water/PMMA pipes in dimensionless frequency bk1 . 

 
Mode ET2 ET3 ET4 ET5 ET6 ET7 

bk1  2.234 4.938 7.792 10.730 13.722 16.744 
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Figure 3.3: Phase and group velocities of ET2 mode. At the cut-off frequency, the phase velocity approaches 

infinity and the group velocity goes to zero. 

 

    It is helpful to understand the shape of each mode by investigating displacement profile of 

each mode. The displacement vector in the liquid is as shown in Eq. (2.1) with the constant E  

set equal to zero, which makes the terms associated with the viscosity vanish. The radial 

vector is described as the first order of Bessel function of the first kind and the axial vector is 

described as the zeroth order of Bessel function of the first kind. Normalization of the above 

with respect to the axial displacement at the center of the cylinder (r=0), generates the 

normalized displacement as follows: 

 

,ˆˆ 0001
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0 z
b
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b
rXJ

bq
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S mm
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r
 (3.5) 

 

Hence, for a given frequency, each mode has certain real value of mq0  and it is possible to 

depict the displacement profile as a function of radius r. Figures 3.4-3.7 show the normalized 
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displacements of ET0-ET3 modes at a certain frequency (as indicated on each picture). In 

each of these figures, panel (a) shows the magnitude of the normalized radial displacement 

and panel (b) shows the magnitude of the normalized axial displacement. From these figures, 

it is clear that the higher the order of the mode, the greater the number of local maxima or 

minima in the profile (as expected). One subsonic mode, ET0, shows higher magnitudes of 

displacements on the wall than any other location inside the liquid. This means the mode 

shape is more dependent on the acoustic coupling between the liquid and the elastic wall than 

is the shape of other modes. Therefore under conditions when the displacements on the 

liquid-wall interface are not sufficiently excited, this mode will not be observed. For the ET1 

and the higher modes, the radial displacement and the axial displacement are always out of 

phase at the center ( 0=r ). 

 

 

Figure 3.4: Magnitude of the (a) radial displacement and (b) axial displacement of ET0 mode. The magnitude of 

this mode increases dramatically at the interface of the tube wall ( 1// 22 =+= byxbr ). 

 

Figure 3.5: Magnitude of the (a) radial displacement and (b) axial displacement of ET1 mode. 



 15

 

Figure 3.6: Magnitude of the (a) radial displacement and (b) axial displacement of ET2 mode. 

 

 

Figure 3.7: Magnitude of the (a) radial displacement and (b) axial displacement of ET3 mode. 

 

    At the zero frequency limit, the small argument approximation of Bessel function may be 

applied (Abramowitz et al, 1965): 
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where δ  = 0.57721… is Euler-Mascheroni constant. Therefore, at zero frequency limit, the 

values of )(zLmn  (as defined in Eq. (3.2)) converge to: 
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b
d
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bzL

π
 (3.7d) 

 

    At zero frequency limit where 0→γ , the second terms in Eqs. (3.7b) and (3.7c) converge 

to zero. This can be easily shown by l'Hôpital's rule. Defining 1/ 22 −= bdy  and substituting 

this into Eq. (3.7), following expression is obtained. 

 

( ),1ln2)(00 +→ yzL
π

 
(3.8a) 

,2)(01 bz
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π
−→  (3.8b) 

,2)(10 dz
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y
yzL

π
 (3.8d) 

 

Therefore, applying Eq. (3.8) to Eq. (3.2) and taking the leading terms as 0→ω , the 

following equation is obtained which describes the solution at zero frequency: 
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where  
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This is fourth order polynomial equation and easy to solve because it has perfect quadratic 

form. Substituting 2xX = , the above equation is reduced to a simple quadratic equation. 

Consequently the maximum number of real solutions for X is two (which we will term a and 

b). Because 2xX = , the solution x becomes bax ±±= ,  if a and b are all positive. Because 

only positive solutions have meaning in the context of this study, the maximum number of 

real solutions to Eq. (3.9) is at most two (+a and +b).  The above equation, Eq. (3.9), 

corresponds to Eq. (6) in the paper by Lafleur and Shields (1985) and their equation contains 

a typographical error. Comparing Eq. (3.9) above with Eq. (6) of Lafleur and Shields (1985), 

it is clear that LW ρρ /  in the definition of the term γ  should be inverted in Eq. (6) of Lafleur 

and Shields (1985). One can simply check this typographical error because the subsequent 

Figs. 3 and 4 in their paper match up to the zero frequency solution only when this 

typographical error is corrected in Eq. (6) in their paper (Their Figs. 3 and 4 show correct 

calculations at zero frequency limit, which cannot be obtained from Eq. (6) in their paper 

since it contains typographical error). Otherwise, the uncorrected Eq. (6) gives incorrect zero 

frequency solutions, which are distinctly observed for the ET0 mode of their 

Aluminum/Water case in reference Lafleur and Shields (1985).  Although Eqs. (4d) and (6) 

of Lafleur and Shields contain typographical errors, their Eq. (5) does not (although readers 

should be aware that it has since been reproduced by later authors with typographical errors).  

  

 

4 Complex solutions to the characteristic 
equation and technique of attenuation measurement 

    Complex solutions can be obtained by setting the material properties in both the elastic 

solid and the liquid inside as complex quantities. As stated in Section 2, the complex 

wavenumber in the liquid, 1k ′ , is generated by the consideration of the viscosity of the liquid. 

Shear viscosity, η , and the bulk viscosity, Bη  are related to the complex wavenumber, 1k ′ , as 
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shown in Eq. (2.1). When the effects of liquid viscosity are small, the complex wavenumber 

1k ′  can be approximated as: 

 

⎟
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⎜
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⎛ ++≈′ B

LC
ikk ηη
ρ
ω

3
4

2 3
1

2

11 .  (4.1) 

 

The imaginary part of the complex wavenumber is equivalent to the expression for the 

classical absorption in liquid (Kinsler et al, 2000).  

 

    The material property in the elastic solid can be represented by expanding the real 

wavenumbers, sk  and ck , in Eq. (2.11) to complex wavenumbers, sk ′  and ck ′  as follows:  

 

                 ( ) ( ),1,1 c
c

cs
s

s i
C

ki
C

k γωγω
+=′+=′               (4.2) 

 

where sγ  and cγ  are the dimensionless ultrasonic shear and longitudinal absorption 

coefficients respectively. For PMMA, those are measured as 0034.0=cγ  and 0053.0=sγ  by 

Hartmann and Jarzynski (Hartmann and Jarzynski, 1972; Hefner and Marston, 2000). The 

complex wavenumber in liquid, 1k ′ , is already embedded in Eq. (2.11) from the consideration 

of the viscosity of the liquid which results in the viscous damping,  usually the dominant 

mechanism for acoustic absorption. However, inclusion of the ultrasonic absorption by the 

elastic solid is necessary in the case when the absorption occurs through the acoustic 

coupling between the liquid and the tube wall. The effect of the absorption by the solid on the 

attenuation of the modes is expected to be large in most plastic tubes since their walls are less 

brittle than those of the metal tubes. Thus, substituting Eq, (4.2) into Eq. (2.11), at a given 

frequency, the solution to [ ]mmm qiCq 000 Im/ ′+=′ ω  can be found in the complex domain and 

the imaginary part of the complex wavenumber, mq0′ , is mainly accounted for the complex 

wavenumbers, sk ′  and ck ′  in the PMMA tube. The real part of the mq0′  gives the phase 

velocities of the modes and the normalized phase velocity of the mode can be calculated 

through [ ]mm qkCC 0110 Re// ′= . The imaginary part of the mq0′  gives the damping of the 
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corresponding modes, and the attenuation coefficients, in the unit of dB per unit length, can 

be calculated by [ ] ( )eq m 100 logIm20 ′ .  

 

    Although the complex solutions can be found by substituting Eq. (4.2) into Eq. (2.11), 

nearly the same results can be also found from Eq. (3.2) (which is the characteristic equation 

for lossless solutions) by substituting Eqs. (4.1) and (4.2) into Eq. (3.2). The latter method is 

usually easier for obtaining similar numerical precision in the complex solutions. In most 

practical cases, the viscosity coefficients, η  and Bη , are very small. This causes the complex 

wavenumber,ε , to be a complex quantity of which the imaginary part is much larger than the 

real component. Sometimes, such a situation makes the numerical implementation of the 

Bessel functions in complex space extremely difficult. Therefore, when the viscous effect is 

not large compared to the material absorption, Eq. (3.2) can be used instead of using Eq. 

(2.11) to obtain the complex solution by substituting ,, cs kk  and 1k  with ,, cs kk ′′  and 1k ′  into 

Eq. (3.2) where 1k ′ , sk ′ , and  ck ′  are defined in Eqs. (4.1) and (4.2) respectively. The complex 

solution for the PMMA/water tube and the Steel/mercury tube are shown in the next section. 

 

    In the practical situation, measurements of the phase speed and the attenuation of the 

modes are not easy since, theoretically, infinite numbers of modes are mixed together and 

they propagate with different speeds. Unless the tube is sufficiently long to separate the 

modes in temporal space (by exploiting the fact that each mode propagates with different 

speed), identification of the mode is not simple. One promising method of doing that is 2D 

Fourier transform of the sampled signals. In order to do that, signals should be sampled along 

the axis of the tube both in the temporal and the spatial domains. This generates a 2D array of 

data (denoted as ( )tzg ,  where z  is coordinates along the axis of the tube). A two 

dimensional Fourier transform of the array both in temporal and spatial space, ( )ω,zkG , 

decouples the modes in axial wavenumber – frequency space (which will here be referred to 

as ω−k  space). Since the phase speed of the mode is defined as zk/ω  (recall that zk  can be 

identified with the real part of the complex wavenumber, mq0′ , in the previous section), at 

given frequency, ω , different phase speeds cause different values of corresponding zk . 

Therefore, through the 2D Fourier transform of the sampled signal, ( )tzg , , each mode can be 

identified. Once a mode is identified in the ω−k  plot, the attenuation is calculated for the 
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slice of ω−k  map at given frequency. A spatial inverse Fourier transform performed on this 

slice (denote ),(~ ωzg ) gives the amplitude change along the axial direction, but with the 

complication that the modes are mixed. In the case where exponentially decaying oscillating 

modes are mixed, Prony’s method is usually applied to identify the modes with their 

components of the amplitude and complex wavenumbers. However, Prony’s method is 

sensitively affected by the noise and, sometimes, the results by the Prony’s method are ill-

posed so that the modified Prony’s method is used to minimize such errors (Osborne and 

Smyth, 1995; Vollmann et al, 1997; Dupuis et al, 2004). Use of Prony’s method for this 

problem is discussed by Baik et al., (2010). In this report, instead of Prony’s method, the 

complex wavenumbers of the modes are found through the Fast Fourier Transform (FFT). 

Suppose a mode exists with the form of )exp()exp()( 0 zikzAzg δ−= where A  is initial 

amplitude of the mode, δ  is associated damping, and 0k  is real wavenumber of the mode. 

The symbols, δ  and zk  are identical to [ ]mq0Im ′  and [ ]mq0Re ′  respectively in the previous 

section. Fast Fourier transform for this signal in discrete space can be expressed as: 
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where zΔ  is sampling interval and N is length of the calculation. If length of the sequence of 

)( zng Δ  is zN , then the number of padded zeros is zNN − . Since )( zng Δ  is zero after the 

zN -th element, m-th element of )(kG  is: 
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Summation of above series can be obtained as follows. 
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Therefore, the magnitude of ( )mkG  is: 
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where )/()1(2 zNmkm Δ−= π . This explains the shape of the spectrum of the oscillating 

signal which contains attenuation. In the above formulation, the unknown parameters are 

,, δA and 0k . Fitting ( )mkG  with the function in Eq. (17), by minimizing the errors 

estimates for the three unknowns, ,, δA and 0k  minimizing the errors can be obtained. 

However, those three parameters are not uniquely determined since δ  and 0k  also affect the 

magnitude ( )mkG . Therefore, it is necessary to reduce the number of unknown parameters. 

The real wavenumber, 0k , can be found easily since ( )mkG  is a maximum when 0kkm =  

and Eq. (4.6) becomes: 
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Hence, normalizing Eq. (4.6) by Eq. (4.7) (in practical use, this is done by dividing the 

obtained spectrum in wavenumber space by its maximum magnitude), the normalized 

magnitude, ( )mn kG  becomes: 
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    Therefore, Eq. (4.8) contains only one unknown parameter, δ , which is the attenuation of 

the mode. It can be obtained by fitting the normalized spectrum of the signal in wavenumber 

space by Eq. (4.8). Figure 4.1 shows Eq. (4.8) as a function of mk . The number of the 

sequence, zN , is chosen as 100 and the sampling interval, zΔ , is selected as a 0.01 m step. 

This corresponds to the actual situation that the signal is sampled along the axis of the tube 

by 0.01 m step and the total sampling length is 1 m (Baik et al., 2010). The real wavenumber, 

0k , is chosen as 0k  = 100 m-1 which is close to the wavenumber in the infinite body of pure 

water at the 23.5 kHz acoustic excitation frequency. Figure 4.1(b) is a magnified picture of 

Fig. 4.1(a) around the spectral peak. Blue, black, and red curves are calculations for when the 
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damping, δ , is selected to be 0.5, 1, and 2 m-1 respectively. As damping decreases, the 

subsequent peaks (secondary, tertiary, and so on) become sharper and the dips become more 

pronounced, and reach lower amplitudes at the minima. As damping increases and the peak 

of each mode broadens, it eventually merges with its neighbour to the extent that no local 

minima occur. When the attenuation of the mode is sufficiently high for this to occur, the 

spectrum has only one spectral peak and other subsequent peaks vanish. Fitting needs to be 

done with respect to the primary spectral lobe since subsequent lobes have much lower 

amplitudes and this makes the observation of the changes of the peaks be difficult. Another 

reason is due to the interference with other spectral components in the case several 

exponentially decaying modes are mixed in the system. Suppose in Fig. 4.1, (other than the 

current mode in Fig. 4.1), another mode exist which has spectral peak at 90 m-1. Then, the 

secondary peaks of the mode whose spectrum is peak at 100 m-1 may be buried by the 

primary lobe of the another mode whose spectrum is peak at 90 m-1. Therefore, fitting should 

be done with respect to the primary lobe.  
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Figure 4.1: Normalized amplitude of the spectrum of the signal by Eq. (4.8) when the damping of the signal is 

chosen as 0.5 (blue curves), 1.0 (black curves), and 2.0 (red curves) m-1 respectively. Parameters of 

zNk ,0 and zΔ  are chosen as 100 m-1, 100, and 0.01 m respectively. Panel (b) is the magnified picture of 

panel (a) around the main spectral peak. 
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    The other option for obtaining the attenuation of the mode is by investigating the 

amplitude of the spectral peaks by truncating the sampled signal. This is related to the 

number of the sequence, zN . The amplitude of the spectral peak is given by Eq. (4.7) which 

is a function of δ  and zN . Once the signal array is obtained, the controllable variable is zN . 

Consider the case in Fig. 4.1. The length of the signal sequence is 100. Figure 4.1 is the 

spectrum when the Fourier transform is performed on this sequence. If only half of the 

sequence is considered by truncating the array after 50th measurements or sampling 50 points 

among 100 measurements, zN  becomes 50 and the resulting spectrum must be different from 

Fig. 4.1. Thus, when repeating spatial Fourier transform by varying the number of sequence, 

zN , the amplitude change of the spectral peak should satisfy Eq. (4.7). In this case, the 

coefficient, A  is also unknown. However, as zN  increases, the resulting amplitude of ( )0kG  

becomes larger since the numerator increases accordingly. Therefore, normalizing Eq. (4.7) 

by the amplitude of ( )0kG  when the zN  is chosen as maximum, the result becomes: 

 

                                                 
( )
( )zN

zN
kG

z

z
n Δ−−

Δ−−
≈

δ
δ

max0 exp1
exp1

)( .                               (4.9) 

 

Thus, the attenuation also can be obtained through the nonlinear fitting of the change of the 

amplitude of the spectral peak as a function of the number of the sequence, zN , by Eq. (4.9). 

Figure 4.2 shows the normalized amplitude, ( )0kGn  described by Eq. (4.9) as a function of 

zN . In the extreme case, zN  can be 2, which is the minimum number degree sampling 

allowable to construct the spectrum (in the actual case, the constructing of the spectrum by 

sampling two points can be ill-posed). The sampling interval is chosen to be zΔ  = 0.01 m as 

in Fig. 4.1. Two different maximum number of the sequence, max
zN , are selected, specifically  

as 100 in Fig. 4.2(a)  and 200 in Fig. 4.2(b). The different colours of the solid curves 

correspond to the different choices for the damping as indicated in the picture. As damping 

increases, the curvature of the curve increases. However, when 100max =zN , although the 

1.0=δ  m-1 and 2.0=δ  m-1 cases are distinct, they are very closely separated. Hence, any 

fitting performed on the data set which lies along these curves may result in the error of 

factor 2. However, when the maximum number of sequence, 200max =zN  in Fig. 4.2(b), the 

differences between the 1.0=δ  m-1 and 2.0=δ  m-1 becomes significantly greater than in 
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the 100max =zN  case. Consequently the fitting done for this case can enhance the accuracy of 

the estimated attenuation. Therefore, in order to increase the accuracy with which the 

attenuation is estimated, it is recommended that the sampling encompasses as much of the 

signal as the measurement system permits. 
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Figure 4.2: Change of the maximum amplitude of the spectrum as a function of the number of sequence, Nz, by 

Eq. (4.9) when the damping of the signal is chosen as 0.1 (green curves), 0.2 (magenta curves), 0.5 (blue 

curves), 1.0 (black curves), and 2.0 (red curves) m-1 respectively. The sampling interval, zΔ , is chosen as 0.01 

m. The maximum number of sequence, Nz
max, is chosen as (a) 100 and (b) 200 in this calculation.  
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5 Results 

    Numerical calculations for the sound speeds and the attenuation are carried out in a water-

filled PMMA tube of 4.445 cm inner diameter, and 0.5 cm wall thickness. The published 

properties of PMMA and water are shown in Table 5.1 (Hartmann and Jarzynski, 1972; 

Hefner and Marston, 2000). These are the values that are used in the calculations reported in 

this report, although it is recognized that it is possible that the properties of the real materials 

may depart from these published values. Because the material properties of plastics can vary 

even in the same material, direct measurement would be required to ascertain precise and 

accurate values for the PMMA.  

 
Table 5.1: Elastic property of PMMA and water (Hartmann and Jarzynski, 1972; Hefner and Marston, 2000). 

 

Material 
Density 

(g/cm3) 

Longitudinal velocity 

(km/s) 

Shear velocity 

(km/s) 
Poisson’s ratio 

PMMA 

Water 

1.19 

1.00 

2.690 

1.479 

1.340 

 

0.335 

 

 

Wright et al. (1971) measured the elastic constants of the glassy polymers with several 

samples of the PMMA and the polystyrene. Their measurements showed that the density for 

PMMA is 1.19 g/cm3 which is identical to the value in Table 5.1. They also measured 

longitudinal and shear speeds both in isotropic and anisotropic PMMA at 25 °C. Poisson’s 

ratio can be calculated from the relationship between longitudinal and shear speeds. Isotropic 

PMMA had 2.689 km/s for the longitudinal velocity and 1.326 km/s for the shear velocity, 

which returns the corresponding Poisson’s ratio as 0.339. For the isotropic PMMA, the 

elastic properties match the values in Table 5.1 up to the first or the second decimal points. In 

the case of the anisotropic PMMA, those values were not consistent with the values in the 

table. One of their samples, which exhibited the greatest variation in the elastic constants, had 

a range for the longitudinal speed from 2.604 km/s to 3.033 km/s and a range for the shear 

speed from 1.318 km/s to 1.388 km/s. Hence, the Poisson’s ratio varies from 0.328 to 0.368. 

Thus, it is useful to investigate the sensitivity to change in the numerical calculations due to 

the variance of the elastic properties within this range. Figure 5.1 shows the modal dispersion 

curve (lossless solution by Eq. (3.2)) with different choice of the elastic constants both in 



 28

ET0 and ET1 modes. The black lines are calculations with our original values in Table 5.1. 

The blue curves are another calculation, this time obtained from the lowest values of 

longitudinal and shear speeds of 2.604 km/s and 1.318 km/s respectively in their samples. 

The red curves are the other calculation obtained from the highest values of longitudinal and 

shear speeds of 3.033 km/s and 1.388 km/s respectively. The allowed ranges for the variation 

of the elastic parameters of PMMA shown in Table 5.1 are translated in Fig. 5.1 into 

variations in the predicted sound speeds for the ET0 and ET1. For the range of frequencies 

covered by the plot, the two modes show opposite trends in response to this variation in input 

parameters. As shown in Figure 5.1, when introducing this variance of the elastic constants, 

the sound speed change in each mode is negligible over most of the range. For the ET1 mode, 

the phase velocities at the higher frequency range of 3≥kb  for three cases are nearly the 

same. The ET1 mode shows about 10% variation at the lowest frequencies, the variation 

reducing at the higher frequencies. The phase velocities for ET1 show very little variation in 

the plot at frequencies greater than those at the ‘knee’ for the mode which occurs for ET1 at 

kb ~ 3 (which corresponds to a drive frequency of 16 Hz). In contrast the ET0 mode shows 

small variation at the lowest frequencies. However the variation in the predicted sound speed 

tends to increase with increasing frequency as one approaches the highest frequencies shown 

on the plot (reaching ~5% at kb ~ 18, which corresponds to a drive frequency of 95 Hz). 

Although the differences between the calculated wave speed for the ET0 mode are increasing 

with increasing frequency at the high-frequency limits of Fig. 5.1, the variance in the phase 

velocity of ET0 mode is less than 5 percent at these frequencies. This is smaller than the 

~10% differences that can be seen at the low frequency range of 3≤kb  for ET1 mode. 

Therefore, it is sufficient to use the values in Table 5.1 in this frequency range of  18≤kb . 
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Figure 5.1: Modal dispersion curves with different choice of the elastic constants of PMMA. The black curves 

are calculation based upon the values listed in Table 5.1. The blue curves are calculation obtained from the 

values of longitudinal and shear speeds of 2.604 km/s and 1.318 km/s respectively. The red curves are 

calculation obtained from the values of longitudinal and shear speeds of 3.033 km/s and 1.388 km/s 

respectively.  

 

    The shear viscosity of water is 0.89 cP and  the bulk viscosity of water is 3.09 cP 

(approximately 3 times of the shear viscosity; Litovitz et al, 1964). These values are used in 

the implementation of Eq. (4.1) to obtain the complex solution. Substituting of Eqs. (4.1) and 

(4.2) into Eq. (3.2) generates the complex solution, the real part of which gives the 

information on the phase speed and the imaginary part of which is related to the attenuation 

of the modes. The solid curves in Figure 5.2 show the calculated normalized phase speeds of 

the modes for the PMMA tube filled with water as a function of dimensionless frequency, 

bk1  obtained from the real part of the complex wavenumber, mq0′ . The inner radius of the 

tube is 4.45 cm and the thickness is 0.5 cm. The material property of the PMMA is shown in 

Table 5. 1. For the comparison with the lossless  case, the lossless solutions are superposed as 
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open circles. This superposition shows that the phase speeds obtained from the complex 

solutions implemented in this paper are exactly the same as the lossless solutions throughout 

the frequency range including zero frequency limit and the cut-off frequencies of the ET2 and 

higher modes. 

 

 
 

 

Figure 5.2  Normalized phase velocities of the axisymmetric modes in the water-filled PMMA pipe as a 

function of normalized frequency. One subsonic mode named ET0 and one supersonic mode named ET1 exist 

up to zero frequency limit. Open circles are used to indicate lossless solution and solid lines indicate the results 

of calculations obtained from the real part of the complex solution. The material properties of the PMMA tube 

are shown in Table 1 (Hartmann and Jarzynski, 1972; Hefner and Marston, 2000).  
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Figure 5.3  Normalized damping of the axisymmetric mode in the water-filled PMMA pipe as a function of 

normalized frequency. This was obtained from the imaginary part of the complex solution to Eq. (3.2). 

 

    While the real part of the complex solution gives the phase speed of the mode, its 

imaginary part gives the attenuation of the mode as shown in Fig. 5.3. This figure shows the 

corresponding imaginary part normalized by the wavenumber 1k  as a function of 

dimensionless frequency. Each mode exhibits a dip in attenuation across a limited frequency 

range. For example, this trend is observed in 9.23.2 1 << bk  for ET2 mode, 5.69.4 1 << bk  

for ET3 mode, 3.108.7 1 << bk  for ET4 mode, and so on. Near the cut-off frequencies of ET2 

and the higher modes, their attenuation diverge where corresponding phase speeds become 

infinite and the group speeds vanish as explained in Fig.  3.3. However, attenuation of the 

ET1 mode approaches 0.00304 which is the similar order of magnitude as the normalized 

absorptions defined in Eq. (4.2). The damping of the ET0 mode not plotted in Fig. 5.3 since 

the damping of the ET0 mode is larger than any other modes over most of the frequency 

range so that superposing the ET0 damping suppresses the display of the detail structure of 

the attenuation for other modes. Instead, the ET0 damping is drawn in Fig. 5.4 with the ET1 

damping for comparison. From this, the magnitude of the ET0 attenuation is at least three 

times larger than that of the ET1 mode. It has the maximum attenuation around 7.01 ≈bk . At 
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zero frequency limit, the attenuation of the ET0 mode approaches 0.01335 which is about 4 

times larger than the attenuation of the ET1 mode. 

 

 
 

Figure 5.4  Normalized damping of the ET0 mode and the ET1 mode in the water-filled PMMA pipe as a 

function of normalized frequency.  Compared to Fig. 5.3, the damping of the ET0 mode is larger than other 

modes. 

 

 

    In this way, the complex solutions for the modes inside the PMMA tube filled with water 

were implemented in this report. This method can be applied to stainless steel pipe filled with 

liquid mercury that is actually used in the SNS (Spallation Neutron Source) at the ORNL 

(Oak Ridge National Laboratory) (Baik et al., 2010). Gas bubbles contained in liquid 

mercury could generate the cavitation damage inside the steel pipe which would cause 

potential problem of the leakage of toxic and hazardous liquid.  To detect such bubbles, the 

measurements of the phase and group speeds and attenuation are useful. In order to observe 

the additional attenuation due to the presence of bubbles, the understanding of the attenuation 

in bubble-free liquid in pipe is important. Hence, the numerical method implemented in this 

paper can be applied to predict the attenuation along the stainless steel pipe filled with 

bubble-free liquid mercury. 
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    The actual dimension of the stainless steel pipe in SNS is 6.41 cm for the inner radius and 

0.655 cm for the wall thickness. The type of the stainless steel is ss304 and its density is 

assumed for the purposes of this report to be 7.9 g/cm3. The longitudinal and shear speeds of 

the sound in the steel are 5.675 km/s and 3.141 km/s respectively, and the corresponding 

Poisson’s ratio is about 0.28. The ultrasonic absorption of the steel is heavily dependent on 

the grain size of the metal alloy, frequency, and the temperature. However, in the frequency 

range used in the calculation in this report, the ultrasonic absorption of the steel is expected 

to be less than 410− (Darbari et al, 1967). Thus, the corresponding cr  and sr  defined in Eq. 

(4.2) were set to as zero. The value used for the density of the mercury is 13.5 g/cm3 which is 

more than the density of the tube wall. The shear and bulk viscosity coefficients for the 

mercury are 1.53 cP and 1.90 cP respectively (Jarzynski, 1963). The magnitude of the 

viscosity coefficients for the mercury are of similar order of magnitude as those for water. 

However, before finding the complex solutions, the modification of Eq. (4.2) is inevitable in 

mercury due to the metallic property of the mercury. In most liquids, the absorption by heat 

conduction is negligible compared to the viscous damping. However, the heat conduction in 

mercury causes larger attenuation than the viscous damping. This can be easily identified 

from the Prandtl number that indicates the viscous effect with respect to the thermal 

conductivity. Hence, the greater the Prandtl number, the more dominant the effect of the 

liquid viscosity. The Prandtl number of water is 6.75 is high compared to the Prandtl number 

of mercury, 0.0266 (Kinsler et al, 2000). Therefore, in water, the effect of thermal conduction 

on the damping is at least 1000 times smaller than the viscous effect. In contrast, in mercury, 

the effect of thermal conduction on the absorption is greater than the viscous effect in 

mercury. Therefore, in mercury/steel pipe case, the complex wavenumber, 1k ′ , should include 

the viscous and thermal effects and Eq. (4.2) is modified as follows (Kinsler et al, 2000): 
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where, for mercury,γ  is the ratio of the heat capacities, pc  is the specific heat at constant 

pressure, and κ  is the thermal conductivity. For mercury, the additional term inside the 

parenthesis, ( ) pc/1κγ − , is calculated as 7.62 cP which is about 4 times larger than the 

viscous coefficients of the mercury. 
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    As stated in Section 4, when the contribution by the viscosity is minor, using Eq. (3.2) is 

simpler and it gives the nearly the same numerical precision as using Eq. (2.11). Therefore, in 

stainless steel tube filled with liquid mercury, substituting the expression of 1k ′  in Eq. (5.1) 

and sk ′  and ck ′  which have 0== cs γγ  into Eq. (3.2), the complex solutions inside the steel 

tube filled with liquid mercury can be obtained.  

 

 
 

Figure 5.5  Predicted normalized phase velocities of the axisymmetric modes in the mercury-filled steel pipe as 

a function of normalized frequency. 

 

    The phase and group velocities of the modes inside the stainless steel tube filled with 

liquid mercury are shown in Figure 5.5 as a function of dimensionless frequency. The phase 

velocities of the modes are normalized by the speed of sound in bulk mercury which is about 

1.451 km/s. Comparing these with Figs. 5.2 (or Fig. 3.1) and 3.2 which are the phase and 

group speeds in PMMA/water tube, many similarities between two cases can be observed. 

The behaviors of the phase velocity and group velocity at both the zero and high frequency 

limits are similar. Although the numerical values are different, the frequency dependence of 

the modes is very similar between two cases. Hence, the acoustical coupling between 

mercury and the steel (metal) is similar as that between water and the PMMA (plastic). At the 
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zero frequency limit, the normalized modal phase speeds approach 0.499 for the ET0 mode 

and 3.577 for the ET1 mode. 

 
 

Figure 5.6: Normalized group velocity of axisymmetric modes in the liquid mercury-filled stainless steel pipe as 

a function of frequency. Compare this with Fig. 3.2. 

 

As with the case in PMMA/water tube, at the cut-off frequencies, the phase speed becomes 

infinite while the group velocity vanishes. The cut-off frequencies for this mercury/steel pipe 

can be found from Eq. (3.4) and are listed in Table 5.2. 

 

Table 5.2: Cut-off frequencies of the modes in mercury/steel pipes in dimensionless frequency bk1 . 

 
Mode ET2 ET3 ET4 ET5 ET6 ET7 

bk1  2.530 5.330 8.249 11.215 14.213 17.235 

 

 

    The predicted attenuation in the steel/mercury pipe obtained from the imaginary part of the 

complex solution is shown in Fig. 5.7 as a function of a dimensionless frequency. The 

attenuation is normalized by the real wavenumber in the infinite body of the liquid mercury. 
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Comparing this with Figs. 5.3 and 5.4, the PMMA/water case, the attenuation of the ET0 

mode is less than that of the ET1 at 5.21 >bk . The attenuation in the mercury/steel system is 

predicted as at less 1000 times smaller than in the PMMA/water case in the frequency range 

depicted here. Since the attenuation in bubble-free liquid mercury contained in the steel pipe 

is so small, the additional damping due to the presence of gas bubbles is predicted to be 

dominant and easily detected than in PMMA/water case. 

 

 

 

Figure 5.7  Predicted normalized damping of the axisymmetric modes in the mercury-filled steel pipe as a 

function of normalized frequency. At the frequency range of 5.21 >bk , the attenuation of the ET0 mode is 

less than that of the ET1 mode which is opposite to the PMMA/water case. The magnitude of the attenuation is 

nearly 410  times smaller than that observed in the PMMA/water case.  

 

 

6 Conclusions 
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     Theoretical works by Del Grosso (1971), Lafleur and Shields (1985), and Elvira-Sugura 

(2000) that describe the propagation of the sound wave inside the elastic tube filled with the 

bubble-free liquid have been rederived, reviewed and corrected to predict the phase velocity 

and damping of the modes, and hence to estimate dominant modes and order of magnitudes at 

a given frequency range in a PMMA tube which is filled with water. In order to obtain the 

complex solution, complex wavenumbers in liquid and the elastic solids were implemented 

into the Del Grosso’s formulation by introducing the ultrasonic absorption of the liquid and 

the tube material. The solution was found in complex space and the phase speed was obtained 

from the real part of the solution which matches with the lossless solution. The damping of 

the mode was found from the corresponding imaginary part of the complex solution. The 

method of finding complex wavenumber of the mode in 2D wavenumber-frequency space 

was theoretically examined which can be implemented in practical case. In a PMMA/water 

tube with the dimension of the tube described in this report, the attenuation of one subsonic 

mode, ET0, is predicted to be larger than other modes throughout the frequency. The theory 

was also applied to the case of mercury-filled steel pipes and the similar features was 

observed in the phase and group speeds as the PMMA/water case while the attenuation of the 

modes are much different.  
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