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Abstract 

When analysing the coupled mechanics of the cochlea, due to the interaction between 

fluid coupling and basilar membrane motion, it is convenient to divide the cochlea 

longitudinally into a discrete number of sections. This report considers the fluid 

coupling in such a discrete model. The fluid coupling is analysed using a wavenumber 

formulation and is separated into long wavelength and short wavelength components. 

The short wavelength components are then seen as one of a number of sources of 

additional longitudinal coupling that could be incorporated into a modified model of 

basilar membrane dynamics. The effects of non-uniformity and asymmetry in the 

fluid chamber areas can then be taken into account to predict both the pressure 

difference between the chambers and the mean pressure. The results from the analytic 

formulation, in which the fluid is assumed to be incompressible, are also compared 

with those of an acoustic finite element model for the fluid coupling. Although the 

agreement is good at low frequencies, a resonance is observed at about 11 kHz due to 

the compressibility of the fluid, although this does not appear to affect the coupled 

cochlear response. 
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1. Introduction 

The modelling of a three-dimensional cochlea can be reduced to a single dimension 

by the definition of a radially-averaged basilar membrane, BM, velocity and a 

radially-averaged pressure difference acting upon it. For numerical computations it is 

then convenient to divide the longitudinal variation of these parameters into a number 

of discrete elements, which may be taken to be an accurate representation of the 

continuous system if there are at least six elements within the shortest wavelength 

present; a condition commonly used in finite element analysis (Fahy and Gardonio, 

2007). 

The coupled behaviour of the cochlear dynamics, which are assumed to be linear, can 

then be represented by matrix representations of two separate phenomena. First, the 

way that the pressure distribution is determined by the fluid coupling within the 

cochlear chambers when driven by the BM velocity, and second, the way in which the 

BM dynamics respond to the imposed pressure distribution. 

This kind of discrete model was used, for example, by Neely and Kim (1986), to 

simulate an early model of the active cochlea, and has been used by many authors 

since then. These discrete models have generally been applied to uniform and 

symmetric box models of the cochlea, using the finite difference method to represent 

only the long wavelength component of the fluid coupling. In this section a general 

approach is taken to the derivation of the discrete model, using modal BM velocity 

and modal pressure difference, which allows the definition of generic matrices 

describing the fluid coupling and BM dynamics. 

A widely used geometry for the three-dimensional cochlea is the rectangular box 

model, as discussed by de Boer (1996), for example, and illustrated in Fig. 1.1(a). The 

cochlea is assumed to be uncoiled and, for the time being, to be of uniform cross 

section and to have symmetric fluid chambers. The lower fluid chamber is the scala 

tympani, ST, and the upper fluid chamber represents both the scala media, SM, and 

the scala vistibuli, SV. It is assumed that Reissner‟s membrane is flexible enough to 

play no significant part in the dynamics of the fluid motion in the upper chamber. The 

cochlea is driven by the motion of the stapes at the oval window. At very low 

frequencies the cochlear fluids can flow along the upper chamber, through the gap in 
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the basilar membrane at the helicotrema, and back through the lower chamber to drive 

the motion of the flexible round window. At audio frequencies a “slow” wave is 

generated by the interaction between the fluid‟s inertia and BM stiffness, which 

propagates to a frequency-dependent characteristic place, beyond which it rapidly 

decays. In this report, the fluid coupling in a discrete model of the cochlea is 

considered by investigating the pressure distribution generated by the motion of the 

oval window and the elements of the BM. 

(a) 

 

(b)  

 

Fig. ‎1.1 The physical box model assumed to calculate the fluid coupling (a) together 

with the definition of the coordinate system and (b) the discrete approximation. 

The radial variation of BM velocity over the width of the cochlear partition, W, is 

assumed to be proportional to a single modal shape, ( )y , which is independent of 

the distribution of the pressure acting upon it. The analysis can be generalised to the 

case in which the radial BM velocity is the sum of a number of such modes (Neely, 

1985) but in practice the fluid coupling is relatively insensitive to the exact form of 

the radial BM velocity distribution and so it is reasonable to assume a single shape for 

this. Its upward modal amplitude at longitudinal position x is defined to be 
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0

1
( ) ( ) ( , ) ,

W

v x y v x y dy
W

         (1.1) 

where v(x, y) is the longitudinal and radial distribution of complex BM velocity, at a 

single frequency, the dependence on which is suppressed for notational convenience. 

Corresponding modal pressures (Steele and Taber, 1979) in the upper and lower 

chambers can also be defined as  

 1 1
0

1
( ) ( ) ( , ,0)

W

p x y p x y dy
W

  ,       (1.2) 

 2 2
0

1
( ) ( ) ( , ,0)

W

p x y p x y dy
W

  ,       (1.3) 

where p1(x, y, z) is the 3-D distribution of complex pressure in the upper fluid 

chamber and p2(x, y, z) is that in the lower fluid chamber, and the coordinate system is 

shown in Fig. 1.1(a). 

In understanding the form of the complex pressure in the two fluid chambers, p1(x) 

and p2(x), it is helpful to define two alternative pressure variables (Peterson and 

Bogert, 1950), which are the pressure difference across the BM,  p x , and the 

common-mode pressure M ( )p x , such that 

 
M

1 2
1 2

( ) ( )
( ) ( ) ( ), ( )

2

p x p x
p x p x p x p x


   .                 (1.4, 1.5) 

The two individual fluid pressures can be written in terms of these new variables as 

 1 M 2 M( ) ( ) ( ) / 2,    ( ) ( ) ( ) / 2p x p x p x p x p x p x    .     (1.6, 1.7) 

The boundary conditions that must be obeyed by the pressure difference and common 

mode pressures allow a simpler analysis of these two components than the individual 

pressures, as noted by Lighthill (1981), who descriptively termed M ( )p x  and  p x  

the even and odd parts of the pressure, and by de Boer (1996), who calls them the 

symmetric and anti-symmetric pressures. 



 4 

The boundary conditions for these two components are determined by their symmetric 

and anti-symmetric forms. For the mean pressure,  1p x  must equal  2p x  and so 

the volume excitations at the oval and round windows must be equal, i.e., both 

inwards, and the motion of the BM must be zero. For the pressure difference,  1p x  

must equal  2p x  and so the volume excitation at the round window must be equal 

and opposite to that at the oval window. Transverse BM motion is also allowed in this 

case since the resulting excitation of the upper chamber is equal and opposite to that 

of the lower chamber. It is thus only the pressure difference that interacts with the BM 

dynamics and generates the “slow” wave motion noted above. The chambers are 

connected at the helicotrema, which is, for now, assumed to equalise the pressures in 

the two chambers, so that the pressure difference must then be zero. 

If the single longitudinal variables, for modal pressure difference and modal velocity, 

are spatially sampled as finely as required, dividing the cochlea into N segments, we 

can define, at a single frequency, the vectors of complex pressures and velocities, p 

and v, to be  

      
T

1 , 2 ,p p p N   p ,             
T

1 , 2 ,v v v N   v ,        (1.8,1.9) 

whose elements are shown in Fig. 1.1(b).  

The BM, however, is assumed only to extend from element 2 to element 1N  . 

Element 1 is used to account for the effect of the stapes velocity, shown as us in Fig. 

1.1(b). The final element, N, is used to account for the behaviour of the helicotrema. 

With the stapes velocity set to zero, the vector of pressures due to the vector of BM 

velocities can be written as 

 FCp Z v ,              (1.10) 

where FCZ  is a matrix of impedances due to the fluid coupling. Similarly, the vector 

of BM velocities can be written as 

 BM v Y p ,              (1.11) 
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Where BMY  is a matrix of BM admittances. The first and last diagonal elements are 

zero, since the BM only extends from element 2 to element 1N  . If the BM reacts 

only locally, then BMY  is a diagonal matrix. In general, however, we do not need to 

place such restrictions on this matrix, as discussed in Section 7.  

We now define the vector of pressures due to the stapes velocity, us, and with a rigid 

BM to be s suz , where sz  is the vector of fluid coupling impedances from the stapes to 

each element along the cochlea. The total pressure vector due to both stapes motion 

and motion of the BM can then be written, using linear superposition, as 

 s s FCu p z Z v .       (1.12) 

Since the contribution to the pressure from the stapes motion is accounted for by the 

first term in equation (1.12), the first column of the FCZ  matrix is zero. Equations 

(1.11) and (1.12) can be combined to give 

 s s FC BMu p z Z Y p ,       (1.13) 

so that the vector of coupled pressure differences is given by 

  
1

FC BM s su


 p I Z Y z ,      (1.14) 

and the vector of coupled BM velocities by 

  
1

BM FC BM s su


  v Y I Z Y z .      (1.15) 

Fluid coupling in the box model is often described using a wavenumber analysis 

(Steele and Taber, 1979; de Boer, 1984). This is reproduced in the Appendix for 

completeness and is used in Section 2 to obtain the columns of the matrix FCZ  above, 

required to reproduce both long wavelength and short wavelength fluid coupling. 

Although a rectangular cross section for the fluid chambers is assumed here, de Boer 

(1991) has shown that similar results are obtained if the cross section is assumed to be 

semi-circular. 
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Section 3 then illustrates the effects of these different types of fluid coupling on the 

predicted distributions of BM velocity along the cochlea. 

The effect of fluid coupling in a non-uniform cochlea is discussed in Section 4. The 

discrete analysis method is then used to investigate the change in the passive response 

at the apical end of the cochlea when a short cochlear implant is inserted into the base. 

Section 5 compares the fluid coupling results from the analytic formulation with that 

of a finite element model. 

In Section 6 a modified form of the state space description of the cochlear mechanics 

is described, which includes acoustic modes in the fluid. 

Finally, in Section 7, the incorporation of short wavelength fluid coupling into the 

BM dynamics is discussed and is shown to allow a formulation which is numerically 

efficient. 
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2. Fluid coupling in a discrete model of the uniform cochlea 

In the Appendix, the conventional wavenumber analysis of fluid coupling in a 

uniform cochlea is briefly reviewed, following the approach of Steele and Taber 

(1979). The modal pressure difference in the wavenumber domain can be written as 

 FC( ) ( ) ( )P k Z k V k ,        (2.1) 

where ( )V k  is the wavenumber spectrum of the modal BM velocity distribution along 

the cochlea and FC ( )Z k  is the wavenumber representation of the fluid coupling 

impedance. It is convenient, de Boer (1984), to express FC ( )Z k  in the form 

  FC( ) 2Z k i Q k ,        (2.2) 

where  Q k  has the dimensions of length and has been termed the “equivalent height” 

(La Rochefoucauld and Olson, 2007). The factor of 2 is introduced here, compared 

with de Boer (1984), since the pressure difference is being used here rather than the 

pressure semi difference. Fig. 2.1 shows the variation of   /Q k H  with kH , where H 

is the physical height of one fluid chamber, calculated from the equations derived in 

the Appendix, for the parameters listed in Table 2.1. The BM is assumed to be located 

on one side of the cochlear partition and its width, B, is assumed to be 0.3 times that 

of the cochlear partition, W, in this example. The change in the fluid coupling when 

the ratio of B to W varies is discussed in the Appendix. 

The fluid coupling impedance may be decomposed into two components, one due to 

the long wavelength fluid coupling, L ( )Z k  and one due to the short wavelength fluid 

coupling, S( )Z k , so that 

 FC L S( ) ( ) ( )Z k Z k Z k  .       (2.3) 
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Fig. ‎2.1  The wavenumber description of the total fluid coupling in the box model of 

the cochlea (thick solid line) and its decomposition into long wavelength components 

(dot-dashed) and short wavelength components (faint solid line). 

It should be noted that the short wavelength term here is different from the “short 

wave” component discussed by de Boer (1996), for example, where the limit for large 

k is taken to yield a fluid coupling impedance proportional to 1/ k . The definition of 

S( )Z k  used here includes all the elements of FC ( )Z k  except the term L ( )Z k . This 

definition is, however, similar to that used by Nobili and Mammano (1993) for the 

long-range and short-range parts of their fluid coupling Green‟s function. This is 

because the long wavelength components are associated with the pressure response 

some distance from the source of excitation on the BM, and so could also be 

descriptively called the far field components, whereas the short wavelength 

components are, as we will see, associated with the pressure response close to the 

source of excitation and so could also be called the near field components. Note, 

however, that formally speaking both terms describe the behaviour in the 

hydrodynamic near field of the source, if the fluid is sufficiently incompressible that 

the wavelength is large compared with the length of the cochlea, so that it is the 

geometric near and far fields we are referring to here. 
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Table ‎2.1  Values of physical parameters used for the simulations in Sections 2 and 3. 

Variable Parameter Value 

L Length of cochlea 35 mm 

W Width of fluid chamber 1 mm 

B Width of basilar membrane 0.3 mm 

H Physical height of single fluid 

chamber 

1 mm 

h Effective chamber height for 

1D model 

4.1 mm 

 Density of fluid 1,000 kg.m
−3

 

 Number of elements in 

discrete model 

512 

= L/N Length of element 68 μm 

m0 BM mass, 1D model 0.29 kg.m
−2 

m3D BM mass, 3D model 0.05 kg.m
−2 

0 BM natural frequency 

distribution 

B e
−x/l

 

B BM natural frequency at base 2 × 20,000 rad.s
−1 

l Natural frequency length scale 7 mm 

s0(x) BM stiffness m00
2
(x) 

0  BM damping ratio 0.2 

r0 BM damping 0 0 02m     

d Characteristic distance 0.8 mm 

The long wavelength fluid component is defined so that it obeys the equation derived 

from a one dimensional analysis of the incompressible fluid coupling, derived as a 

limiting case of the general formulation in the appendix, equation (A29), and given by 

 
2

2

( ) 2
( )Lp x i

v x
hx


 


,        (2.4) 
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where h is the effective chamber height, assumed here to be independent of x, so that 

in the wavenumber domain 

 L L L2 2 2

2 2 1
( ) ( ), ( )   and    ( ) .

i i
P k V k Z k Q k

k h k h k h

 
                     (2.5, 2.6, 2.7) 

We can thus decompose  Q k  in equation (2.2) as in equation (2.3) and define the 

short wavelength component to be 

      S LQ k Q k Q k  .               (2.8) 

It is shown in the Appendix that the effective height can be expressed in terms of the 

physical height of the fluid chamber, H, its width, W, and the width of the basilar 

membrane, B, as 

 
2

8

WH
h

B


 ,         (2.9) 

so that for the ratio of B to W used here, 0.3, the effective chamber height is about 4.1 

times the physical chamber height. 

Fig. 2.1 shows the two components of  Q k  corresponding to the long wavelength 

and short wavelength components. For long wavelengths, small k, the short 

wavelength coupling,  SQ k , becomes a constant, which can be interpreted as an 

effective added BM thickness, T, whose value as a function of B/W is discussed in the 

Appendix. For short wavelengths, large k,  SQ k  is equal to 1/k, whatever the BM 

width. 

To illustrate the change in the pressure distribution with wavenumber, Fig. 2.2 shows 

the equipressure contours in a cross section of the box model for various values of kH.  
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Fig. ‎2.2  Contours of equal pressure, at 5 dB intervals, in a cross section of the box 

model of the cochlea when the BM, which is on the left hand third of the cochlear 

partition in this case, has a longitudinally sinusoidal variation with normalised 

wavenumbers of kH = 1.5 (left), kH = 3 (centre) and kH = 6 (right), corresponding to 

wavelengths 4H  , 2H   and H  , where H is the physical height of a single 

chamber. 

For low values of kH the wavelength of the longitudinal BM vibration is much greater 

than the height of the fluid chamber, and so  SQ k  is very small compared with 

 LQ k , which is proportional to 1/k
2
, and the pressure is almost uniform across the 

cross sectional area. As the wavelength becomes comparable with the height,  SQ k  

becomes comparable with  LQ k  and significant variation is seen in the pressure 

across the cross section. When the wavelength is small compared with the height, 

 SQ k  becomes equal to 1/k, which is large compared with  LQ k  and the pressure is 

much greater close to the BM than it is in the rest of the fluid chamber. The short 

wavelength component of the fluid coupling can thus be thought of as being due to 

the near field of the BM source, as opposed to the long wavelength component, which 

can be thought of as being due to the far field. 

The long wavelength component is often referred to as 1D fluid coupling, since it can 

be readily derived from a one-dimensional box model of the cochlea with the 

assumption that the wavelength is long compared with the height of the fluid chamber 

(de Boer 1996). The full fluid coupling model, including short wavelength 

components, is then referred to as 3D fluid coupling. It must be emphasised, however, 

that when the cochlear mechanics is formulated in terms of the longitudinal variation 

of a single velocity and a single pressure variable, as outlined in the Introduction, this 

formulation can clearly still incorporate 3D fluid coupling. It may thus be misleading 

to call this a 1D formulation, even though it does only have one dimension, and so we 
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have used the more clunky term “uniaxial” to describe this single axis model of the 

cochlear mechanics. 

The long wavelength component of the fluid coupling in the discrete model can be 

readily calculated using the finite difference approach used by Neely (1981) and 

Neely and Kim (1986), so that the spatial derivative in equation (2.4) is written as 

 L L L
2

( 1) 2 ( ) ( 1) 2
( ).

p n p n p n i
v n

h

   
 


            (2.10) 

The length of one element is denoted   and if the first and last elements, representing 

the boundary conditions at the base and apex, are assumed to have the same length as 

the BM elements, then /L H  , where L is the assumed length of the cochlea. 

The accuracy of this approximation for the long wavelength component of the fluid 

coupling can be assessed in the wavenumber domain by taking the Fourier transforms 

of the sequences on both sides of equation (2.10) (Rabiner and Gold, 1975), assuming 

the effective height is constant, so that 

 
2

( 2 ) 2
( ) ( )

ik ik
ik ike e i

P e V e
h

  
  
 


              (2.11) 

and so 

 
2( )

(1 cos )( )

ik

ik

P e i

k hV e








 
.               (2.12) 

This ratio is the fluid coupling impedance corresponding to the finite difference 

approximation, which can be written in a similar form to equation (2.2) to give the 

equivalent height in this case as 

 
2

FD ( ) .
2 (1 cos )

ikQ e
h k

 


 
                (2.13) 

In the limit when k is much less than unity, the series approximation to cosk  can 

be used to show that this is equal to  LQ k  in equation (2.7). The smallest 
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wavelength that can be unambiguously represented by this discrete formulation is 2 , 

corresponding to a wavenumber of /  . At this wavenumber, FD ( )ikQ e  is equal to 

2 / 4h , whereas  LQ k  in equation (2.7) is equal to 2 2/ h . The finite difference 

approximation thus overestimates the fluid coupling by a factor of about 2.5 at the 

smallest wavelengths that can be represented.  It provides a good representation of 

 LQ k , however, with less than 10% error, when there are at least six elements within 

the shortest wavelength present, which is the criterion for an accurate discrete 

representation quoted in the Introduction. Fig. 2.3 shows the finite difference 

approximation to the long wavelength fluid coupling, equation (2.7), together with the 

true value equation (2.13) up to kH equal to / .H   

 

Fig. ‎2.3  The wavenumber distribution of the long wavelength component of the 

normalised fluid coupling impedance,  LQ k , (dot-dash) and the long wavelength 

component using the discrete finite difference approximation, FDQ  (light solid). Also 

plotted is the short wavelength component (dashed), together with this multiplied by 

 sinc / 2k , to give the wavenumber distribution for this component in the discrete 

case. The maximum wavenumber that can be represented by the discrete model, for 

which kH is equal to /H  , is indicated by a thin vertical dashed line. 
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The boundary conditions at the base and apex of the cochlea are assumed to be 

determined by the velocity of the stapes, corrected for the difference between the 

stapes and the chamber area, su , and a zero pressure difference condition at the 

helicotrema, so that 

 L
0 s L L

( )
| 2 and     ( ) | 0.x x

p x
i u p x

x
 


  


     (2.14, 2.15) 

In the discrete representation, the finite difference method can be used at the base to 

express these boundary conditions as 

 L
L

(2) (1)
2 and ( ) 0.L

s

p p
i u p N


  


     (2.16, 2.17) 

The complete discrete model of long wavelength fluid coupling can thus be written in 

matrix form as 

 

L s

L

2

L

2
L

(1) 0

2 (2) (2) 0

0 21
2 2

2 ( 1) ( 1) 0

( ) 0 00 0

p u

h h h p v

h h h
i i

h h h p N v N

p N

 

        
       
       
       

         
        

         
       

           

  

                                                                                            (2.18) 

or, more compactly, as 

 L s= 2 [ ]i Fp v v ,                 (2.19) 

so that 

 L Ls L p p Z v ,                 (2.20) 

where LZ   is equal to 
12i  F and denotes the long wavelength fluid coupling 

matrix, and Lsp  is equal to  1
s2i  F v  and denotes the pressure vector due to the 

stapes motion. 
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Taking only the long wavelength components of the fluid coupling into account and 

using the expression for LZ  above, equation (1.14) for the vector of pressures in the 

coupled cochlea can be written as 

 
1

1
BM Ls2i


  

 
p I F Y p .              (2.21) 

Using the expression for Lsp  above and the properties of the matrix inverse, this can 

be written as 

  
1

BM s2i


 p F Y v ,                          (2.22) 

which is the form of equation originally suggested by Neely (1981) and used by Neely 

and Kim (1986). The matrix to be inverted in equation (2.22) is tridiagonal, for which 

the inverse can be efficiently computed, using Gaussian elimination, for example. 

Fig. 2.4 illustrates the spatial distribution of this long wavelength pressure difference, 

proportional to the columns of the matrix 1
F , for excitation at a number of different 

locations along the cochlea. The imaginary component has been plotted for the 

assumed velocity excitation here and below, but it would be real for an acceleration 

source. These distributions are very similar to those obtained from an analytic 

solution to the differential equation for the long wavelength fluid coupling, equation 

(2.4), with the appropriate boundary conditions, which can be obtained by assuming 

that v(x) is equal to 0v  between 0x   and 0x , and is zero elsewhere, and setting 

L /p x   equal to the slope of the linear fall off in pressure for x greater than 0x , and is 

given by 

 0
L 0 0

( )
( ) 2   for   0    

L x
p x i v x x

h



     ,    (2.23) 

L 0 0

( )
( ) 2     for

L x
p x i v x x L

h



    ,     (2.24) 

where, for continuity, it has been assumed below that  is very small compared with L. 
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Fig. ‎2.4  Distribution of the pressure difference along the cochlea due to the long 

wavelength component of the fluid coupling when only a single element of the discrete 

BM at x = 5 mm (light line), 15 mm (medium line) or 25 mm (dark line) is driven 

sinusoidally with a velocity of 10 mm∙s
−1

 at a frequency of 1 kHz. 

We now define the full fluid coupling matrix for the discrete model to be 

 FC L S Z Z Z ,        (2.25) 

where SZ  contains the terms due to short wavelength coupling. When transformed 

into the spatial domain, the Fourier transform of  SZ k  in equation (2.3) contains 

singularities, due to the implicit assumption of a velocity distribution equal to a spatial 

delta function. In the discrete model, however, the motion of the n-th single BM 

element represents a finite velocity distribution given by 

    nv x v n ,    for   1x n    to n  and zero elsewhere,  (2.26) 

where  v n  is independent of x. 

The wavenumber spectrum of this velocity distribution is 
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1
( )

2
sin / 2

( ) ( ) .
/ 2

ik n

n

k
V k v n e

k

  



      (2.27) 

The component of the pressure distribution generated by this velocity distribution due 

to the short wavelength fluid coupling is then 

 S( ) ( ) ( )n nP k Z k V k .        (2.28) 

The short wavelength component of the fluid coupling in the wavenumber domain, 

and that multiplied by  sinc / 2k  are shown in Fig. 2.3. 

Equation (2.28) can be numerically evaluated using the above variation for ( )nV k  and 

the fact that  SZ k  is equal to  FCZ k , derived in the Appendix, minus  LZ k  defined 

by equation (2.7). The Fourier transform of equation (2.28) can then be used to 

calculate the short wavelength component of the pressure in the spatial domain, as 

shown in Fig. 2.5 for excitation by a single element. Averaging this continuous 

pressure distribution over each element of the discrete model then provides the 

discrete pressure distribution due to the short wave coupling, as also shown in Fig. 2.5. 

Since the short wavelength component of the fluid coupling impedance is equal to a 

constant for kH less than about unity, as shown in Fig. 2.1, then for such small values 

of k,  SZ k  can be written as 2iT, where T is an effective fluid thickness, whose 

variation with B/W is discussed in the Appendix. The short wavelength pressure 

contribution, equation (2.28), for k = 0, Pn(0), is thus equal to 2iTv(n), where the 

limiting case of equation (2.27) has also been taken. Using the properties of the 

wavenumber transform, then Pn(0) is also equal to the integral of the short wavelength 

component of the pressure in the spatial domain, or, equivalently, to the sum of the 

elements of the discrete pressure distribution shown in Fig. 2.5. This observation can 

be used to provide an independent check on the magnitude of the short wavelength 

components. It also suggests that an approximation to the short wavelength 

component, which is valid if the wavelength of the slow cochlear wave is long 

compared with the 1 mm or so range of the short wavelength pressure shown in Fig. 

2.5, is a single pressure acting at the point of excitation having a magnitude 

2iTv(n). The variable T can thus be interpreted as the equivalent thickness of the 
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fluid loading on the BM due to the nearfield, short wavenumber, components of the 

pressure (Neely, 1985), further approximations of which are discussed in the 

Appendix. 

 

Fig. ‎2.5  Distribution of the modal pressure along the cochlea due to short wavelength 

fluid coupling (dashed line) and the average pressure over discrete elements of the 

BM used to calculate the columns of ZS (solid line), when excited by a single element 

at x = 15 mm with a velocity of 10 mm∙s
−1

 at a frequency of 1 kHz. Also shown is the 

approximation to the averaged pressure given by equation (2.30) (dot-dashed lines). 

The distribution of the short wavelength component of the fluid pressure can also be 

derived using an analysis of the acoustic field due to an elemental source in a duct, 

following Doak (1973), as described in the Appendix. The modal pressure distribution 

is shown to be due to the contributions from a number of evanescent higher order 

modes in the duct, whose amplitudes decay exponentially, which can be written as 

   /
S

1

mr l
m

m

p x a e





 ,                 (2.29) 

where m denotes the order of the mode, am is its amplitude, r is equal to |x – x0| and lm 

its characteristic decay length. The characteristics length decreases as the mode order 

gets higher and so it is the lower order modes that dominate when some distance from 

the source. 
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In fact, a reasonable approximation to the averaged near field pressure in the discrete 

model, due to a single BM element, is obtained using only two terms of such a series, 

so that 

  1 2
/ /

SA 1 2 0( ) ,n l n lp n Z e Z e v
                     (2.30) 

where n  is equal to the number of elements from the position where the averaged 

pressure is evaluated to the exciting element, and is equal to |n – n0| for excitation of 

the 0n -th element,  is the length of one element and l1 and l2 are characteristic decay 

lengths. The near field pressure amplitudes are proportional to the impedance Z1 and 

Z2, to the 0n -th excitation velocity, v(n) in equation (2.26) and the effective fluid 

thickness, T. This approximation to the average pressure over the discrete elements is 

also shown in Fig. 2.5, with Z1 and Z2 equal to 201 Pa∙s∙m
−1

 and 522 Pa∙s∙m
−1

, l1 

equal to H/3.47 and l2 equal to H/12.8, and is seen to provide a good approximation to 

the result obtained from the inverse Fourier transform of equation (2.28).  

A position-shifted sequence of these pressure distributions, normalised by the 

velocities of each element, can then be used to define the columns of the matrix ZS, 

which determines the fluid coupling due to the short wavelength components in the 

discrete model. The total distributions due to both long- and short wavelength fluid 

coupling are then obtained by summing these two contributions, as illustrated in Fig. 

2.6. These distributions are similar to those shown by other authors, for example 

Pathasarathi et al. 2000, except that the singularity induced by assuming that the 

velocity is concentrated at a single point has been removed by assuming a finite value 

of the velocity distribution over the length of an element. 
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Fig. ‎2.6  Distribution of the total pressure difference due to both long and short 

wavelength components in the fluid coupling matrix along the length of the cochlea 

due to excitation of a single element on the BM at x = 5 mm, 15 mm and 25 mm with a 

velocity of 10 mm∙s
−1

 at a frequency of 1 kHz.  

Although only the pressure difference across the BM can drive it into motion, there 

will also generally be a common-mode component to the pressure distribution in the 

cochlea, as introduced in Section 1, so that, reiterating equations (1.4, 1.5), the 

pressure distribution in the two chambers can be written as 

      1 M / 2p x p x p x  ,                (2.31) 

      2 M / 2p x p x p x  ,                (2.32) 

where p(x) is the complex pressure difference at a given frequency, as above, and 

pM(x) is the common-mode pressure distribution. If the fluid is incompressible, the 

common-mode pressure is uniform throughout the cochlea, and is generally referred 

to as the mean pressure, which can be written as simply pM, with no longitudinal 

dependence. 

Peterson and Bogert (1950) argue that the magnitude of pM is determined by the 

boundary condition at the round window. If, as assumed by Peterson and Bogert, the 
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round window is sufficiently flexible that it provides a pressure release boundary 

condition, then 

  2 0 0p      and so     M 0 / 2p x p .        (2.33a,b) 

This equation, together with the variation of pressure difference shown in Fig. 2.6, 

allows the individual pressures in the two cavities to be calculated using equations 

(2.31) and (2.32), which are plotted in Fig. 2.7. 

 

Fig. ‎2.7  The individual pressures in the upper and lower cavities along the cochlea, 

p1(x) and p2(x), due to excitation of a single element of the BM at x= 15 mm with a 

velocity of 10 mm∙s
−1

 at a frequency of 1 kHz.  

It should be noted that these distributions of the individual pressures are considerably 

simpler than those shown by Peterson and Bogert (1950), since they are generated 

here by the motion of a single element along the BM, whereas Peterson and Bogert 

calculate the solution for the coupled problem where the whole BM interacts with the 

fluid. The BM motion has a considerably more complicated form in the coupled case, 

and includes phase variations along the length of the cochlea that are not present in 

either the pressure difference or the mean pressure calculated here. 
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In Fig. 2.7 we have assumed a perfect equalisation of the two pressures at the 

helicotrema, due to it having a zero impedance, but in practice a pressure difference of 

p(L) will exist, due to a finite helicotrema impedance 

H
( )

( )

p L
Z

v L
 ,               (2.34) 

where v(L) is the transverse velocity through the helicotrema. Assuming that the 

pressure difference is dominated by long wavelength components at the helicotrema, 

the transverse velocity at the helicotrema is related to the longitudinal velocity, u(x), 

by the continuity equation 

 
( ) ( )u x v x

x h





,                  (2.35) 

so that if u(x) is proportional to e
i(ωt-kx)

, then 

    v L ikhu L  .                 (2.36) 

The longitudinal velocity is related to the pressure distribution for a 1D fluid flow by 

the momentum equation 

 
( ) ( )

2 ,
p x u x

x t


 
 

 
                 (2.37) 

so that 

 
1 ( )

( ) | ,
2

x L
p x

u L
i x




 


                (2.38) 

and the pressure difference at the helicotrema is 

  H H
( )

( ) ( ) |
2

z L
kh p x

p L Z v L Z
x




 


.              (2.39) 

Differentiating equation (2.24) for the pressure distribution gives 

 0 0
( ) 2

|  ( )x L
p x i

v x
x h





  


,                (2.40) 
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for the pressure gradient due to excitation of a single BM element with velocity v0(x0) 

at position x0 but since equation (2.40) does not depend on x0 this can be written just 

as v0. The helicotrema pressure difference in this case is thus 

 H 0( ) ,p L iZ k v                    (2.41) 

and generally this pressure difference is proportional to the sum of all the elemental 

BM velocities. 

Assuming that the frequency is high enough for the BM to be mass dominated at the 

apex, then the wavenumber at the helicotrema is equal to 

 
2

( ) ,
( )

k k L
hm L


                  (2.42) 

where m(x) is the mass per unit area of the BM at the apex. Also assuming that the 

helicotrema impedance is dominated by the mass per unit length of the fluid within it, 

mH, then 

 H HZ i m .                  (2.43) 

Further assuming mH is equal to ρTH and that m(L) is equal to ρTBM, where TH and 

TBM are the effective thicknesses of the helicotrema and BM, then 

 

2
H

0
BM

2
( ) .

T
p L v

hT
                   (2.44) 

Assuming that both TH and TBM are 50 μm and h is 4.1 mm, this pressure is about 0.7 

µPa for a BM velocity of 10 mms
-1

 at 1 kHz and so is small compared with the 

pressure difference in Fig. 2.6, as expected. In practice, there will also be some 

damping due to viscosity in addition to the mass of the fluid in the helicotrema.  

In order to account for a finite value of the helicotrema impedance in the matrix 

formulation of Section 1, an additional term must be added to all the elements of ZFC 

in equation (1.10) equal to HiZ k  .  
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3. Effect of short wavelength fluid coupling on predicted BM 

distribution  

Fig. 3.1 shows a comparison of the predicted BM velocity in a uniform cochlea model 

having the properties listed in Table 2.1, with either 1D or 3D fluid coupling. In these 

models the BM mass per unit area has been assumed constant along the length of the 

cochlea, for simplicity. Its stiffness and damping have been adjusted to achieve an 

exponential distribution of natural frequency and a constant damping ratio. The value 

of the BM mass varies, however, between the models using 1D and 3D fluid coupling, 

since in the former case this must include the added mass due to the nearfield fluid 

loading, whereas in the latter case this is automatically included. The physical height 

of the fluid chamber is used in the 3D model, so that the effective chamber height is 

the same in both cases. These changes, which are similar to those assumed by de Boer 

(1996) in his “matched” model, for example, are made in order for the results using 

the 1D and 3D fluid coupling to be as consistent as possible, so that the effects of the 

fluid coupling can be seen most clearly. A discrete formulation of the fluid coupling 

and isolated BM dynamics is used, combined using the matrix method described in 

Section 1. 

Although a reasonable matching of the magnitudes can be obtained between 1D and 

3D models, the roll-off of the model with 3D fluid coupling is somewhat greater than 

that of the model with 1D fluid coupling. The accumulation of phase lag of the 1D 

model, however, is significantly less than that of the 3D model apical to the 

characteristic place as also observed by de Boer (1996) and Kolston (2000). This 

reflects the changes in the wavelength of the BM motion as it approaches the 

characteristic place, becoming comparable with the chamber height and invalidating 

the assumptions of the 1D model. There is then a reduction in longitudinal fluid flow 

and an increase in the local mass loading, slowing the wave and increasing the phase 

accumulation (Kolston, 2000). 

The source of the ripples in the response calculated with the 3D fluid coupling is not 

clear. They do not appear to be the result of numerical discretisation errors, since their 

form is almost unchanged if the number of elements is doubled. They are, however, 

reminiscent of the notches noted in numerical solutions of BM velocity with higher 
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order fluid coupling by de Boer and Viergever (1982) and Watts (2000) and attributed 

to multiple wave propagation by these authors. 

The accumulated phase lag at the characteristic place for a model with only long 

wavelength fluid coupling and passive, single degree of freedom, BM mechanics with 

very little damping (Schroeder, 1973; Zweig et al., 1976) is 

 radians cycles
2 4

n

l l

d d


   ,       (3.1) 

where l is the assumed exponential length scale of the characteristic frequency along 

the cochlea, which is about 7 mm for humans, as assumed here, and d is a 

characteristic distance that relates the fluid coupling and BM mass given by 

 0 ,
2

hm
d


          (3.2) 

which for the parameters assumed here is about 0.77 mm. The predicted phase lag at 

the characteristic place is about 2.3 cycles, which is somewhat greater than the phase 

shift at the positions where the BM velocity is greatest in Fig. 3.1, due to the effects of 

damping, but is reasonable agreement with the asymptotic phase shift for the 1D 

model. It is clear, however, that this estimate of accumulated phase is not appropriate 

for the case with 3D fluid dynamics. 
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Fig. ‎3.1  BM velocity, normalised to that of the stapes for the coupled model with 

either full 3D fluid coupling and a BM mass of 0.05 kg∙m
−2

 or 1D fluid coupling and a 

BM mass of 0.29 kg∙m
−2

, with excitation frequencies of (a) 500 Hz, (b) 1 kHz and (c) 2 

kHz. 
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4. Pressure difference and mean pressure in an asymmetric and 

non-uniform cochlea 

In this Section a one-dimensional analysis is used to derive the long wavelength 

component of the pressure in each of the fluid chambers for a model of the cochlea 

with asymmetrical and non-uniform fluid chambers and hence the long wavelength 

contribution to the pressure difference and mean pressure. Since the short wavelength 

components of the pressure are not significantly affected by the shape of the cochlear 

chambers, they will continue to be approximately equal and opposite in the two 

chambers and can be calculated using the wavenumber approach for a uniform 

cochlea described above. An example is then given of the calculated pressure 

difference and mean pressure for two assumed variations of the chamber volumes. 

The effect of this modified fluid coupling on the coupled response of the passive 

cochlear model is then illustrated. 

If areas of the upper fluid chamber (SM and SV) and the lower fluid chamber (ST) 

vary along the length of the cochlea as A1(x) and A2(x), the long wavelength 

component of the pressure will be determined by the continuity and momentum 

equations. Assuming that the longitudinal fluid velocity in a single chamber, averaged 

across its cross-sectional area, is ( )u x , and that the transverse BM velocity averaged 

across the width of the chamber is ( ),v x  then the continuity equation for this chamber 

can be written as 

 ( ( ) ( )) ( ) ( ),A x u x W x v x
x





       (4.1) 

where in general the BM width also varies along the cochlear as W(x). This is 

equivalent to the equation used by Peterson and Bogert (1950), except that the fluid is 

assumed here to be incompressible. 

The momentum equation can also be written in terms of the complex pressure 

averaged across the cross-sectional area, ( ),p x  as 

 
( )

( ).
p x

i u x
x




 


        (4.2) 
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Substituting ( )u x in equation (4.2) into equation (4.1) gives an expression for ( )p x  in 

terms of ( )v x  as 

 
( )

( ) ( ) ( ),
p x

A x i W x v x
x x


  

  
  

      (4.3) 

which is an incompressible form of Webster‟s horn equation, described by Fletcher 

and Rossing (1998), for example.  

We now assume that W is independent of x, although only minor modifications to the 

analysis are required to incorporate this dependence. Applying equation (4.3) to the 

upper chamber, it can be written in terms of the modal BM velocity, v(x), and the 

modal pressure p1(x), by noting that the velocity distribution in the radial direction at 

position x is equal to v(x)  (y), so that 

 
0

( )
( ) ( ) ,

Wv x
v x y dy

W
        (4.4) 

and since, in the long wavelength limit, the pressure is uniform over the BM, then the 

definition of the modal pressure gives 

 1
0

( )
( ) ( ) .

Wp x
p x y dy

W
        (4.5) 

If the BM velocity is a half sinusoid over a distance B on one side of the fluid 

chamber, as assumed in the Appendix, then in this case 

 
0

1 2 2
( ) .

W B
y dy

W W



         (4.6) 

The long wavelength fluid coupling equation in the upper chamber can thus be written 

in terms of the modal pressure, and modal velocity as 

 
 

 1
1 2

( ) 8
( ) ( ) .

p x i
A x v x B x

x x B x





   
    

   
  

    (4.7) 
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If B were independent of x, this could be written as  

1
1

( )
( ) ( ),

p x
h x i v x

x x


  
  

  
      (4.8) 

where h1(x) is the effective height of the upper chamber, which is equal to 

 
2

1
1

( )
( ) ,

8

A x
h x

B


         (4.9) 

in agreement with the limiting case of the wavenumber analysis presented in the 

Appendix. 

In general, however, the in the lower fluid chamber is similarly related to the modal 

BM velocity by 

 
 

 2
2 2

( ) 8
( ) ( ) .

p x i
A x v x B x

x x B x





   
   

   
  

             (4.10) 

The integral of ( )i v x with respect to x is thus equal to both of the expressions 

below 

  
   

2 1
2 12

0

( ) ( )8
( ') ' ( ) ( ) ,

x p x p xi
v x B x dx A x A x

x xB x B x






    
      
    
   

         (4.11) 

where the fact that both 1 2( ) /  and ( ) /p x x p x x     are zero when x is equal to zero 

has been used to eliminate any constants of integration. The pressure gradients in the 

two chambers are thus related by 

 
   

2 1 1

2

( ) ( ) ( )
.

( )

p x A x p x

x A x xB x B x

    
    
    
   

              (4.12) 

We can relate the long wavelength component of the modal pressure difference, pL(x), 

to the modal BM velocity, v(x), via the equivalent area Ad(x) in the expression 
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 

 
2

( ) 16
( ) ( ) ,L

d

p x i
A x v x B x

x x B x





   
    

   
  

               (4.13) 

where pL(x) is equal to p1(x) – p2(x). The integral in equation (4.11) is thus also equal 

to 

  
   

d 1 2
2

0

( ) ( ) ( )8
( ') ' .

2

x A x p x p xi
v x B x dx

x xB x B x






     
       

     
    

           (4.14) 

Using equation (4.12) and equating (4.14) to the final form of equation (4.11) allows 

the equivalent area for the pressure difference to be written (Zwislocki, 1953) as 

 1 2
d

1 2

2 ( ) ( )
( ) .

( ) ( )

A x A x
A x

A x A x



                 (4.15) 

Similarly, the component of the mean pressure pm(x), equal to    1 2 / 2p x p x   , 

due to the asymmetry of the cochlear chambers obeys the equation 

 
 

 
2

( ) 16
( ) ( ) ,L

m

p x i
A x v x B x

x x B x





   
    

   
  

             (4.16) 

where 

 1 2
m

2 1

4 ( ) ( )
( ) .

( ) ( )

A x A x
A x

A x A x



                (4.17) 

An analytic solution to the pressure difference can be obtained for excitation of a 

single BM element, having a velocity of v0 from 0x   to 0x , by integrating equation 

(4.13) and using the boundary condition that L( ) /p x x  is zero and assuming that B(x) 

is independent of x at x = 0 to give 

 
 

0

( )
0,                                  0 < Lp x

x x
x B x

 
    
 
 

,           (4.18) 
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 

 0
02

16( )
( )                  .

( )

L

d

i v B xp x
v x x x L

x A xB x





  
     
 
 

         (4.19) 

The boundary condition that pL(x) is zero at x = L and the fact that  is small 

compared with L can then be used to integrate these expressions again to give the 

pressure distribution of long wavelength pressure difference as 

    
0

L 0 0 0
d

1
( ) 16  ', 0

( ')

L

x

p x i v B x B x dx x x
A x

       ,         (4.20) 

    L 0 0 0
d

1
( ) 16 ', .

( ')

L

x

p x i v B x B x dx x x L
A x

               (4.21) 

Similar expressions can be derived for the mean pressure in equation (4.16). 

If the areas of the fluid chambers in the cochlear models are divided up into N discrete 

sections, as for the BM, equations (4.8), (4.10) and (4.15) can be used to calculate the 

equivalent area for the pressure difference at the nth discrete element as Ad(n). The 

integrals in equations (4.20) and (4.21) can then be approximated by summations to 

give the pressure at the nth element as 

    
0

2
L 0 0 0

' d

1
( ) 16 , 0 1,

( ')

N

n n

p n i v B n B n n n
A n



              (4.22) 

    2
L 0 0 0

' d

1
( ) 16 , ,

( ')

N

n n

p n i v B n B n n n N
A n



              (4.23) 

where n0 = x0/ 

Alternatively, the full matrix of long wavelength fluid coupling impedances can be 

calculated by using a generalisation of Neely‟s finite difference method. 

Differentiating equation (4.13) by parts, in the case it is assumed that there is no 

variation of B with x, gives 

 
2

dL L
d 2

( )( ) ( )
( ) 2 ( ).

h xp x p x
h x i v x

x xx


 
  

 
         (4.24) 
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where hd is equivalent height and given by 

 1 2
d

1 2

( ) ( )
( ) .

2( ( ) ( ))

h x h x
h x

h x h x



              (4.25) 

Approximating 2 2
L( ) /p x x   as in equation (2.10), using the boundary conditions in 

equations (2.16) and (2.17), and now taking the finite difference approximation 

  d L
L L2

( ) ( ) 1
( 1) ( ) ( ( 1) ( )),

h x p x
h n h n p n p n

x x

 
    

  
          (4.26) 

allows the complete described model of fluid coupling to be written, by analogy with 

equation (2.19), as 

 1 2 L s( ) 2 ( ),i   F F p v v               (4.27) 

where now 

d d d

d d d

1 2

d d d
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0

(2) 2 (2) (2)

0 (3) 2 (3) (3)1

( 1) 2 ( 1) ( 1)

0 0

h h h

h h h

h N h N h N

  
 


 
 

  
  

    
 
  

F          (4.28) 

and 

d d d d

d d d

2 2

d d d d

( (1) (2)) ( (2) (1))

0 ( (2) (3)) ( (3) (2))

1

( ( 1) ( )) ( ( ) ( 1))

0 0

d

h h h h
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 

 
 
 

  
  

    
 
 

F
. 

                  (4.29) 

Fig. 4.1 shows an assumed variation of A1 and A2 along the length of the human 

cochlea, together with corresponding assumed variations in the width of the fluid 
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chamber, W, and BM width, B. These are based on the areas in the cross sectional 

figures published by Zakis and Witte (2001), which are interpolated using a cubic 

spline function. They are reasonably consistent with the measurements of Thorne et al 

(1999) and the earlier estimates shown in Fig. 79 of Fletcher (1953) and Fig. 4.5 in 

Zwislocki (2002). The equivalent heights for the two fluid chambers calculated from 

equations (4.8) and (4.10) and the effective heights for the pressure difference and 

mean pressure, equations (4.15) and (4.17) are also shown in Fig. 4.1. The equivalent 

height for the mean pressure is significantly larger than that for the pressure 

difference since the difference between the areas of the two chambers is small 

compared with their average value. The equivalent height for the mean pressure also 

changes sign about 33 mm along the cochlea since at this point A1 becomes greater 

than A2.  

 

Fig. ‎4.1  The first assumed variation in (a) the area of the upper, A1, and lower, A2, 

fluid chambers as a function of longitudinal position in the asymmetric model, 

together with (b) the assumed variation in the width of the cochlear partition, W, and 

BM width, B, (c) the calculated effective area for the pressure difference and (d) the 

calculated effective area for the mean pressure Am. Note that Am becomes negative for 

x equal to about 33 mm. The dashed line for A2 shows the modified area, A2′, and 

corresponding area Am′ if a short cochlea implant is introduced into the lower 

chamber, having a length of 16 mm and an area tapering from 0.18 mm
2
 to 0.07 mm

2
. 
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Equations (4.22) and (4.23) can be used to calculate the long wavelength contribution 

to the pressure difference in the non-uniform cochlea and a similar expression can be 

used to calculate the mean pressure variation due to asymmetry in two fluid chambers. 

Although the short wavelength component is assumed to be unaffected by the size of 

the fluid chambers, it will depend on the proportion of the chamber width occupied by 

the BM. The variation of the short wavelength component with the ratio B/W is 

illustrated in Fig.A.4, although there is not much variation over the range B/W = 0.2 to 

B/W = 0.5, as required in this case. The distribution of modal pressure difference with 

both long and short wave components, due to BM excitation by a single element of 

the BM at 5 mm, 15 mm or 25 mm is shown in Fig. 4.2(a), with the corresponding 

mean pressure distributions in Fig. 4.2(b). The curvature in the pressure difference 

distribution for x greater than x0 is due to the reduction of the equivalent height with 

distance, as shown in Fig. 4.1(d), and also seen in Fig. A1 of Shera et al. (2004), for 

example, which was calculated using a Green‟s function approach.  

 

Fig. ‎4.2  The calculated total variation in the modal pressure difference (a) due to 

both long and short wavelength components for the model of the first asymmetrical 

cochlea, (b) the calculated mean pressure due to the difference in chamber areas 

when only a single element of the discrete BM at x = 5 mm, 15 mm or 25 mm is driven 

sinusoidally with a velocity of 10 mm∙s
−1

 at a frequency of 1 kHz. Also shown (c) are 

the pressures in the two individual chambers when only the element at x=15mm is 

excited. 



 35 

Fig. 4.3 shows the calculated distribution of BM velocity calculated by combining the 

results shown in Fig. 4.2 (c) for the fluid coupling term with the passive BM 

dynamics along the length of the cochlea in the discrete model. These coupled 

responses do not, however, look significantly different from those shown in Fig. 3.1 

for the uniform cochlea. The dashed lines in Figs. 4.1 show the corresponding area 

functions and cochlear responses if a short cochlea implant, having a length of 16 mm 

with an area tapering from 0.18 mm
2
 down to 0.07 mm

2
, is introduced into the lower 

chamber. These dimensions are based on the Cochlear Hybrid™ implant (Cochlea, 

2008). This small change in area has a negligible effect on the passive behaviour of 

the cochlear model and the results with and without the implant in Fig. 4.3 cannot be 

distinguished. The area of the implant needs to be made about ten times larger than 

that assumed above for the response to change by 1 dB, and this change then only 

occurs for the response at 2 kHz, whose characteristic place is closest to the end of the 

implant.  

 

Fig. ‎4.3  Coupled BM velocity distribution in the model of the non-uniform cochlea at 

excitation frequencies of 500 Hz, 1 kHz and 2 kHz. Although the results are shown 

with and without the effects of the short cochlear implant, the results cannot be 

distinguished on the scale of this graph. 

The mean pressure shown in Fig 4.2 (b) is significantly less than the pressure 

difference, since the difference in the effective areas of the two chambers is 

significantly less than their average value. The effect of this additional component of 
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mean pressure on the distributions of the pressures in the individual fluid chambers, as 

shown for the uniform cochlea in Fig. 2.7, is to generate a small asymmetry in the two 

pressures near the apex, as shown in Fig 4.2 (c).  

The effect of this spatially-varying component of the mean pressure is more 

significant in the case of the guinea pig, for example, since according to the data 

presented by Fernandez (1952), the difference between the areas of the two chambers 

at the base of the cochlea is comparable with their average value. This data has been 

used to generate a second example of an assumed area and BM width variation, as 

shown in Fig. 4.4. Fig. 4.5 shows the resulting distributions of pressure difference, 

mean pressure and the pressures in the two chambers in this second case. The 

component of the mean pressure due to the asymmetry is now more comparable with 

the pressure difference, causing a clear asymmetry in the pressures in the two 

chambers. 

 

Fig. ‎4.4  The second assumed variation in (a) the area of the upper, A1, and lower, A2, 

fluid chambers as a function of longitudinal position in the asymmetric model, 

together with (b) the assumed variation in the width of the cochlear partition, W, and 

BM width, B, (c) the calculated effective area for the pressure difference, Ad, and (d) 

the calculated effective area for the mean pressure, Am. 
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Fig. ‎4.5  The calculated total variation in the modal pressure difference for the second 

example of an asymmetrical cochlea (a) due to both long and short wavelength 

components, (b) the calculated mean pressure due to the difference in chamber areas 

when only a single element of the discrete BM at x = 5 mm, 10 mm or 15 mm is driven 

sinusoidally with a velocity of 10 mm∙s
−1

 at a frequency of 1 kHz. Also shown (c) are 

the pressures in the two individual chambers when only the element at x=15 mm is 

excited. 
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5. Finite element model of fluid coupling 

In order to compare the fluid coupling impedances derived above with those derived 

using an alternative method, a finite element (FE) model of the fluid coupling has 

been constructed. As well as providing an independent check of the behaviour of the 

fluid coupling in the uncoiled rectangular box model of the cochlea used above, the 

finite element model has the advantage that more complicated and realistic geometries 

can also be analysed. 

The finite element model assumes a rigid walled enclosure within which the BM has 

an imposed velocity contained in the vector qFE, having dimensions of mass 

acceleration. The vector of pressures at all of the nodes pFE, which should not be 

confused with the vector of modal pressures along the cochlea in equation (1.8), is 

related to qFE by the equation 

 FE FE FE+ =Qp Hp q         (5.1) 

where Q is the mass matrix and H is the stiffness matrix in this case, as discussed, for 

example, by Fahy and Gardonio (2007). The imposed velocity at the BM has the half 

sinusoidal form shown in Fig. A1(b) and the discrete approximations to the modal 

velocity in equation (1.1) and modal pressure (1.2) are calculated from the relevant 

elements of qFE and pFE respectively. In fact, due to the symmetry of the assumed 

model, only the upper chamber needs to be modelled and the modal pressure 

difference is calculated as twice the modal pressure in this chamber. 
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Fig. ‎5.1  Grids used for finite element calculation of fluid coupling for a cross section 

of the cochlea. (a) 8 1 elements; (b) 8   2 elements; (c) 8   4 elements and (d) 8   

8 elements. 

The rectangular box geometry was used in order to ensure compatibility with the 

analytic results above, and this was divided into 512 longitudinal sections for the 

same reason. The meshing in the cross section has to be finer than this in order to 

capture the near field pressure variation close to the vibrating BM, and four different 

mesh sizes were used to investigate the effect of this on the predicted result. Fig. 5.1 

shows the geometry of the FE meshes used in these calculations for a cross section of 

the cochlea. 

Fig. 5.2 shows the distribution along the cochlea of the computed modal pressure 

difference on the BM, when driven by a single longitudinal BM segment at different 

locations, for various mesh sizes in the FE model. It can be seen that with relatively 

few elements, the FE model reproduces the long wavelength behaviour of the pressure 

reasonably well, but a larger number of elements are required to reproduce the 

nearfield pressure on the BM and hence the additional short wavelength component of 

the modal pressure. The results with the smaller mesh size are in good agreement with 

those computed from the analytic model and shown in Fig. 2.6. 
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Fig. ‎5.2  Modal pressure difference on the BM calculated using the FE model for 

excitation of a single longitudinal segment of the BM at x equal to 5 mm, 15 mm and 

25 mm with a velocity of 10 mm∙s
−1

 at a frequency of 1 kHz with 8 1 elements 

(dotted), 8   2 elements (dashed), 8   4 elements (dot-dashed), 8   8 elements (sold). 

An advantage of the finite element method is that since the fluid is modelled using 

acoustic elements, the compressibility of the fluid, as well as its inertial properties, are 

taken into account. The widely-used theoretical model described in the Appendix and 

used in Section 2 assumes that the fluid is incompressible. The effects of 

compressibility are expected to be greater at higher frequencies as the inertial forces 

become larger. Fig. 5.3 shows the magnitude of the modal pressure difference 

calculated using the finite element model, with the BM driven at equal accelerations 

on a single element at x equal to 5 mm, for excitation at 1 kHz, 10 kHz, 15 KHz and 

20 kHz. In the incompressible model the fluid pressure would be independent of 

frequency. It is clear, however, that the magnitude and shape of the fluid pressure 

changes significantly with frequency in the finite element model. The magnitude 

increases at 10 kHz and the distribution of fluid pressure is no longer linear away 

from the excitation point.  
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Fig. ‎5.3  Magnitude of the modal pressure difference on the BM calculated using the 

finite element model for excitation of a single longitudinal element at x equal to 5 mm, 

normalised to the acceleration of the driving position at frequencies of (a) 1 kHz, (b) 

10 kHz, (c) 15 kHz, (d) 20 kHz. 

Fig. 5.4 shows the predicted magnitude of the modal pressure at the base of the 

cochlea as a function of frequency. The peak at about 10.7 kHz can be associated with 

a resonance in the fluid column, which for the pressure difference has a rigid 

boundary condition where it is driven at the stapes and a pressure release boundary 

condition at the helicotrema. The cochlea length, 35 mm, thus corresponds to a 

quarter of a wavelength at this frequency, for an assumed wave speed of 1,500 ms
-1

, 

which is the speed of a “fast wave” in the cochlea. This acoustic resonance increases 

the magnitude of the average pressure across any cross section of the cochlea, but 

does not influence the short-wavelength components which are unaffected by the 

compressibility of the fluid (Lighthill, 1981). In order to limit the pressure magnitude 

at this peak, the finite element model has been modified to include a small imaginary 

component in the elements of the H matrix in equation (5.1) so that each element is 

multiplied by 1 + i, where  is the loss factor. The loss factor was set equal to 0.03 

for these simulations. The resonant peak at 10.7 kHz is accompanied by a phase 

change, so that the pressure distributions for excitation frequencies between 10.7 kHz 

and 20 kHz are almost entirely out of phase with those below 10.7 kHz. 
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Fig. ‎5.4  The magnitude (a) and phase (b) of the modal pressure difference at the base 

of the cochlea as a function of excitation frequency, calculated using the finite 

element method for excitation of a single longitudinal element at x equal to 5 mm. 

Also shown (c) is a sketch of the box model with the antisymmetric pressure driven by 

the BM velocity and the resulting pressure distribution when L is one quarter 

wavelength with the rigid boundary condition at the oval window and zero pressure 

difference at the helicotrema. 

It is interesting to compare the predicted frequency of this quarter wavelength 

resonance with the upper frequency of hearing in several species (Greenwood, 1990; 

Le Page, 2003), as in Table 5.1. This resonance appears to occur, perhaps 

coincidentally, at about half the upper frequency limit of hearing in each of these 

cases. 

 

 

 

 

 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30
(a)

|p
/

V
0
|

f [kHz]

0 2 4 6 8 10 12 14 16 18 20

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

f [kHz]

C
y
c
le

s

(b)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [mm]


1
(x

)

(d)

(c)



 43 

Table ‎5.1  Cochlea length, upper frequency limit of hearing and calculated frequency 

of quarter wavelength resonance in fluid coupling for several species. 

Species Length of cochlea 
Characteristic 

frequency at base 

Frequency of /4 

resonance 

Human 

Guinea Pig 

Gerbil 

Mouse 

35 mm 

18.5 mm 

12.1 mm 

6.8 mm 

21 kHz 

44 kHz 

63 kHz 

105 kHz 

10.7 kHz 

20.3 kHz 

31.0 kHz 

55.1 kHz 

Although this acoustic resonance is, in retrospect, simple to predict, its existence for 

the pressure difference component and its effect on cochlea mechanics does not 

appear to have previously been widely considered. Peterson and Bogert (1950) and 

Lighthill (1981) discuss a quarter wavelength resonance in the mean pressure 

component, but this is associated with a pressure source driving the cochlea as a 

closed duct, in order to match the pressure release boundary condition at the round 

window, and does not appear to be to the same as the quarter wavelength resonance in 

the pressure difference seen here. 

If the cochlear fluid is assumed to be compressible (Peterson and Bogert, 1950), then 

the one-dimensional continuity equation (A30) becomes, in terms of the complex 

variables used here 

 
2

0 0

( ) 2 ( )
( )

u x i v x
p x

x hc






 


,       (5.3) 

where 2
0 0c  is the bulk modulus of the fluid. Combining this with the equation for 

the conservation of momentum, (A31), 

 
( )

2 ( )
p x

i u x
x




 


,        (5.4) 

gives a wave equation, which is the generalisation of the fluid coupling equation (2.4) 

for a compressible fluid, given by 
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p x i
p x v x

hx c

 
  


      (5.5) 

The pressure is assumed to be uniform over the cochlear cross section in this analysis, 

giving a long wavelength solution, which in this case is the superposition of plane 

acoustic waves. 

Assuming a zero pressure gradient at the stapes, a zero pressure difference at the 

helicotrema and continuity at x0, where there is an assumed BM velocity of v0 over a 

length , then by assuming forward and backward travelling fast waves in the two 

regions of the cochlea the pressure difference can be shown to be 

 0 0 0
0

0 0

sin ( )cos2
( )

cos

k L x k xi
p x v

k h k L

 
   for 00  <   x x     (5.6) 

and 

 0 0 0
0

0 0

cos sin ( )2
( )

cos

k x k L xi
p x v

k h k L

 
   for 0     x x L  ,   (5.7) 

where k0 is equal to 0/ c  and 0c  is the compressional wave speed, assumed here to 

be 1,500 m∙s
-1

. Viscous losses can be taken into account in this case, where the 

viscous boundary layer is thin compared with the dimensions of the fluid duct, by 

defining a complex wavenumber with a real part still equal to 0/ c  to a first 

approximation and an imaginary part of  so that 

 0
0

.k i
c


           (5.8) 

An estimate of the attenuation coefficient,  can be obtained by noting that it is 

proportional to the square root of the coefficient of viscosity, which is approximately 

47 10  kg m
-1

s
-1

 for cochlea fluids, compared with a value of 52 10  kg m
-1

s
-1

 for 

air, and that for air in a circular duct,   is about 53 10 /f a where f is the 

frequency and a is the radius of the duct. Assuming that the equivalent cochlea duct 

has an area of W
2
, then in this case 
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 42 10 .
f

W
           (5.9) 

A complete analysis would involve the thermal as well as the viscous losses as 

described, for example, by Fletcher and Rossing (1998). These authors also discuss 

how numerical methods can be used to calculate the acoustic properties of a non-

uniform duct by dividing it up into a large number of segments. The complex 

wavenumber in equation (5.8) can also be written as 

0
0

(1 / 2),k i
c


                  (5.10) 

where 

 02 c



                   (5.11) 

is the loss factor in the bulk modulus, assumed to be small compared with unity, that 

was used to introduce damping into the finite element model above. Although this 

loss factor clearly depends on frequency, the loss factor only significantly affects the 

response around resonance, so the frequency was set to 10 kHz in equation (5.11) to 

calculate the value of loss factor, 0.03, used in these simulations. 

The effect of the fluid compressibility on the wavenumber of the slow cochlear wave 

is also predicted by the analysis of Peterson and Bogert (1950). Noting that their 

equation (14) denotes a dynamic stiffness, which in our notation can be written as 

 BM/ Yi i  , and setting their s0b equal to h, equation (16) in Peterson and Bogert 

(1950) can be used to show that the modified wavenumber is equal to 

2

BM 2
0

2
( , ) Y ( , ) ,

i
k x x

h c

 
 


                (5.12) 

where c0 is the speed of sound in the fluid. The wavenumber is thus not significantly 

affected by the compressibility since the maximum speed of the slow wave is about 

70 m/s, which is much smaller than the 1,500 m/s speed of the fast wave. 
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Figure 5.5 compares the coupled BM velocity, calculated using the elemental 

approach outlined in Section 1, when the fluid coupling is assumed to be 

incompressible, as in Section 2, and compressible, as in this section. For simplicity, 

the short wavelength components have not been considered in either case here and the 

BM mass for the passive BM model has been set to include the additional fluid 

loading, as in Section 3. The columns of the fluid coupling impedance, ZFC, used in 

the solution to the coupled dynamics, equation (1.14), are obtained either from 

samples of the analytic form of the pressure for the incompressible case given by 

equations (2.23) and (2.24) or from samples of the analytical form of the pressure for 

the compressible case given by equations (5.6) and (5.7). 

Despite the very significant change in the pressure distributions in the fluid coupling 

calculations due to fluid compressibility, as shown in Fig. 5.3, this hardly appears to 

have any effect on the coupled cochlea response at all. This surprising result can 

perhaps be understood by returning to the way in which the coupled model is 

formulated in Section 1. The fluid coupling effects are first calculated independently 

of any BM motion by defining the fluid coupling impedance matrix, equation (1.10), 

for the fluid chambers having rigid walls. It is this assumption that leads to the quarter 

wavelength resonance in the uncoupled fluid column. When the BM is allowed to 

move, in the coupled response, however, this resonance does not get a chance to 

become established since the BM is sufficiently mobile that it substantially equalises 

the pressures in the two fluid chambers well before the wave reaches the end of the 

cochlea. 
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Fig. ‎5.5  The coupled BM velocity calculated for high frequency excitation using the 

passive BM dynamics and long wavelength fluid coupling with the assumption that the 

fluid is either incompressible (solid lines) or compressible (dashed lines). 
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6. State Space Representation 

Both the short wavelength components of the fluid coupling and the effects of fluid 

compressibility can be accounted for by representing the pressure distribution as a 

modal series in a generalisation of the state space formulation for the coupled 

cochlear mechanics (Elliott et al., 2007). The state space formulation can be used both 

to determine whether a linear model is or is not stable, and as the basis for time 

domain simulations of nonlinear models. In this report, the BM dynamics are assumed 

to be both passive and linear, so that stability is guaranteed and frequency domain 

methods are always valid. In the more general case of an active BM model, however, 

stability cannot be guaranteed and must be checked before the results of frequency 

domain calculations can be relied upon. 

In this section the modal analysis of long wavelength coupling is first presented, since 

it is directly comparable to the plane wave analysis for a compressible fluid presented 

in the previous section. The more general case is then considered in which cross 

modes are also incorporated in the modal summation. This allows inclusion of the 

nearfield pressure close to the BM, and hence the short wavelength component of 

modal pressure difference, although the large number of acoustic modes required for 

convergence may not be the most efficient representation of these effects. Finally, the 

modal series representation for the fluid coupling is written in the time domain, which 

allows the derivation of a state space form for the fluid coupling. This can then be 

combined with a description of the BM dynamics to provide a state-space formulation 

for the coupled cochlear dynamics. 

The complex pressure in an enclosure can be represented in terms of the sum of the 

contributions from a number of acoustic modes (Morse, 1948; Nelson and Elliott, 

1992), so that the one-dimensional pressure distribution in one fluid chamber is given 

by 

 
0

( , ) ( ) ( ),c m m
m

p x a x  




         (6.1) 

where am() is the complex modal amplitude and m(x) is the one dimensional 

acoustic mode shape for a single fluid chamber. Although, in principle, the 
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summation should be taken over an infinite number of terms, very good 

approximations to the pressure distribution can be obtained in practice by using a 

finite number of terms. 

The orthonormal mode shapes for the uniform box model that meet the boundary 

conditions for the pressure difference, so that there is zero pressure gradient at the 

stapes and zero pressure at the helicotrema, are 

 
(2 1)

( ) 2 cos .
2

m
m x

x
L





        (6.2) 

The first mode, m = 0, corresponds to having a quarter wavelength along the cochlea, 

the second, m = 1, to three quarter wavelengths, etc. The corresponding natural 

frequencies for these modes are thus 

 0(2 1)
.

2
m

m c

L





         (6.3) 

To calculate the pressure distribution due to a single element of the BM, we assume 

that the excitation is concentrated at the position x0 and has a volume velocity of q(x0). 

The complex model amplitude can then be written as 
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
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 

 
,      (6.4) 

where m is the modal damping ratio, V is the volume of the enclosure, which is equal 

to LWH, where H is the physical height of the fluid chamber. The volume velocity can 

be calculated by multiplying  by the integral of the radial velocity distribution over 

the BM width. The assumed radial velocity distribution is 

 0( ) ( ),v y v y          (6.5) 

where v0 is the modal velocity and ( )y is the normalised velocity distribution given 

by equation (A21), with C equal to zero in this case. Integrating this distribution over 

the BM width gives the volume velocity at x0 as 
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         (6.6) 

Since the first natural frequency is about 10.7 kHz, the response below about 5 kHz 

can be estimated by taking the low frequency approximation for the mode amplitude, 

given by 
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so that using equation (6.3) for m, 
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The total pressure distribution in each chamber is then 
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     (6.9) 

The modal pressure difference required here can be written as 

4 ( )2 2
( ) ( ) ( ) .c

c
p x B

p x p x y dy
W W




                (6.10) 

Using equation (6.6) for q(x), and equation (6.2) for the mode shapes, the modal 

pressure difference at the base of the cochlea due to a source at the base, can be 

written in the low frequency limit as 
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The infinite sum at the end of this equation is equal to 
2
/8, allowing equation (6.11) 

to be written in the same form as the long wavelength pressure derived from the 

analysis above, assuming an incompressible fluid, in equation (2.23) as 

 0 02
(0)

i L v
p

h
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 ,                 (6.12) 
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where the effective height, h, can again be written as 

 
2

.
8

WH
h

B


                   (6.13) 

This modal analysis thus provides an independent check on the equation for the 

equivalent height from the wavenumber analysis in the Appendix. 

The general form of the fluid pressure distribution in the upper chamber, 

incorporating the nearfield contributions can also be written as 

0

( , , , ) ( ) ( , , ),c m m
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p x y z a x y z  



                (6.14) 

where m now denotes the trio of integers, m1, m2, and m3 that characterise the modes 

in the x, y and z directions and in practice this infinite summation can again be 

truncated to arbitrary accuracy by a finite number of terms. 

The orthonormal mode shapes of a rectangular enclosure that satisfy hard walled 

conditions on all sides of the fluid chamber, except for a pressure release condition at 

x equal to L are 

 
2 3

31 2(1 2 )
( , , ) 2 cos cos cos

2
m m m

m zm x m y
x y z

L W H

 
  


 ,        (6.15) 

where 
2

m and 
3

m are normalisation constants equal to 1 if m2 or m3 equals zero and 

are otherwise equal to 2, with corresponding natural frequencies 
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.        (6.16) 

Interestingly, Neely (1985) uses a similar modal expansion for the pressure in his 

derivation of the three dimensional fluid coupling, although he assumes a zero 

velocity boundary condition at the apical end of the cochlea rather than the pressure 

release one here. 
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The modal amplitudes in this case, when excited by a BM element of length , which 

is assumed to be small compared with L, and radial velocity equal to ' ( )nv y  at 

position 'nx  is equal to 
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where for half sinusoidal radial velocity distributions the integrals are similar to those 

evaluated in equations (A22) and (A23). 

The modal pressure difference at position xn, again assuming  is small compared 

with L, is then 
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The modal pressure at the n-th BM element, including near field components, can 

thus be calculated due to the modal motion of the n-th BM element, as required for 

the discrete model. 

This set of frequency domain expressions for the modal pressure can also be 

expressed in matrix form. The vector of complex modal pressures,  
T

1 2, , Np p p , 

can be written as 

 ( ) ( ) p Φa ,        (6.19) 

where the m, n-th element of Φ corresponds to the integral in equation (6.18) and 

a(is the vector of M modal amplitudes. These complex modal amplitudes can also 

be written as 

 T( ) ( ), a BΦ v         (6.20) 

where B is a diagonal matrix whose m-th element can be deduced from equation (6.17) 

and v() is the vector of N velocities, including the first element equal to the 
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normalised stapes velocity, the N – 2 BM velocities and the N-th element equal to 

zero at the helicotrema. 

The vector of complex modal pressures can thus be written in terms of the complex 

driving velocities as 

 T ,p ΦBΦ v         (6.21) 

where T
ΦBΦ constitutes the matrix of fluid coupling impedances ZFC in this case. 

The general form of the modal series for the fluid coupling can now be put into state 

space form by assuming that only a finite number of modes are considered. In the 

continuous spatial domain, the modal pressure difference as a function of frequency is 
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where m(x) is either the one dimensional mode shape or the result of the integral over 

the three dimensional mode shape shown in equation (6.18). 

If the fluid chambers are excited by a modal BM velocity of ( )nv   at a position nx  , 

the modal amplitude is 
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where 
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The expression for the complex mode amplitude may be written as 

 2 2
' '( ) 2 ( ) ( ) ( )m m m m m m mn na i a a i A v            .        (6.25) 
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With a slight abuse of notation, this expression for the modal amplitude in the 

frequency domain can be written in time domain form as 

 2
' '( ) 2 ( ) ( ) ( ).m m m m m m mn na t a t a t A v t             (6.26) 

This may be written in state space form as 
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The complete state vector for the fluid modes can be written as 

  
T

0 0 1 1( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ,F M Mt a t a t a t a t a t a tx         (6.28) 

so that the dynamics of all the fluid modes can be expressed as 

 ( ) ( ) ( ),F F F Ft t t x A x B v         (6.29) 

where AF has diagonal blocks for each pair of modal states, as above, BF has elements 

'mnA  or zero and v(t) is the vector of velocities along the BM, 

        
T

2 3 1, , Nt v t v t v t   v ,        (6.30) 

where as above, the BM extends from the 2
nd

 to (N – 1)-th element to account for the 

stapes and helicotrema dynamics at the 1
st
 and N-th element, respectively. 

The complex pressure difference at the n-th location along the cochlea can thus be 

written, assuming  is very small compared with L, as 
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
         (6.31) 

where m(xn) has the same generalised meaning as above. In the time domain the 

pressure difference at this location is, again with a slight abuse of notation, 
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0

( ) ( ) ( ).
M

n m m n
m

p t a t x

         (6.32) 

The vector of pressure time histories at the N locations along the cochlea can thus be 

written as 

    F Ft tp C x ,        (6.33) 

where CF contains elements m(xn) that pick out the corresponding modal amplitudes. 

The dynamics of the BM elements can also be represented in a general state space 

form (Elliott et al., 2007) and written as 

 ( ) ( ) ( ),E E E Et t t x A x B p         (6.34) 

where xE(t) is the vector of state variables associated with the displacements and 

velocities of all the masses involved in the BM dynamics, and AE and BE contain the 

mechanical parameters of the BM dynamics and also those of the middle ear and 

helicotrema. The BM velocities driving the fluid can also be written as 

    E Et tv C x ,        (6.35) 

where CE picks out the relevant elements of xE(t). The BM accelerations are thus 

 ( ) ( ),E Et tv C x         (6.36) 

where ( )E tx is given by the state space model of the BM elements above, equation 

(6.34), so that 

( ) ( ) ( ),E E E E E F Ft t t v C A x C B C x                (6.37) 

where the expression for p(t) in terms of the fluid state variables, equation (6.33), has 

also been used. 
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The dynamics of the fluid states, equation (6.29), can thus be written as 

  ( ) ( ) ( ).F F F E E F F F E E Et t t  x A B C B C x B C A x             (6.38) 

If the vector containing both the fluid and BM dynamics states is defined as 

 ,
E

F

 
  
 

x
x

x
                  (6.39) 

the coupled behaviour of the cochlea can be described by the overall state space 

equations 

 ,  x Ax Bp v Cx ,                (6.40) 

where 

 
E

F E E F F E E F

 
  

 

A 0
A

B C A A B C B C
,              (6.41) 

 ,        .  
E E   

    
   

B C
B C

0 0
      (6.42, 6.43) 
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7. Incorporation of short wavelength fluid coupling into a 

modified BM admittance 

One disadvantage of incorporating short wavelength fluid coupling into the fluid 

coupling impedance of a discrete model is that the inverse of this impedance is no 

longer tri-diagonal, as it is in the case of long wavelength fluid coupling in equation 

(2.18) above. There can be significant numerical advantages to retaining this tri-

diagonal form for the inverse of the fluid coupling matrix, in both a frequency domain 

(Neely, 1981) and a time domain (Moleti et al., 2009) formulation. In this section we 

demonstrate how the short wavelength fluid coupling can be incorporated into a 

modified form of the BM admittance matrix. 

We initially return to the matrix form of the solution for the vector of modal pressure 

differences along the length of the cochlea, derived in the introduction, where, at a 

single frequency, 

 s FC p p Z v      and        BM v Y p ,        (7.1, 7.2) 

so that 

  
1

FC BM s


 p I Z Y p ,       (7.3) 

where ZFC is the total fluid coupling matrix, YBM is the matrix of BM admittances, 

which is diagonal if the BM is assumed to be locally reacting, and ps is the vector of 

modal pressure differences due to the motion of the stapes in the cochlea, with a rigid 

BM, which is written as zsus in equation (1.12) above. The first column of ZFC is zero, 

since the contribution of the stapes velocity to the pressure is accounted for by ps. and 

the final column of ZFC is also zero due to the pressure release boundary condition at 

the helicotrema. Although the first and last diagonal terms of YBM were set to zero 

above, we note that they can take arbitrary values and not affect the product ZFCYBM 

because the first and last columns of ZFC are zero. Suitable small values are assumed 

to be inserted here to ensure that the YBM matrix can be inverted.  

The vector of pressures is now divided up into long and short wavelength components 

so that  
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 p = pL + pS,         (7.4) 

where  pL = pLs + ZLv ,        (7.5) 

and pS = pSs + ZSv,        (7.6) 

so that pLs and pSs are the long wavelength and short wavelength components of the 

pressure difference due to the stapes motion and ZL and ZS are the corresponding 

components of ZFC, as defined in Section 2. 

The long wavelength component of the pressure thus satisfies the differential equation 

(2.4) and plays a similar role to the average pressure used by Shera et al (2005) in 

another transformation of general fluid coupling into an equivalent one-dimensional 

form. 

We now explore the assumption that the BM velocity, v, is generated only by the 

vector of long wavelength components of the pressure via a modified BM admittance, 

BMY , so that 

 BM L. v Y p          (7.7) 

Combining this with the equation above for pL, gives 

  
1

L L BM Ls


 p I Z Y p .       (7.8) 

In order for this equation to have more than just a formal significance, however, we 

need to put some physical interpretation on the modified BM admittance, BMY . This 

can be achieved if it assumed that the stapes motion does not generate a substantial 

component of short wavelength pressure, so that pSs in equation (7.6) is much less 

than that generated by the BM motion, ZSv, in which case the short wavelength 

pressure is given by 

S Sp Z v .         (7.9) 

This assumption may be less valid at very high frequencies when the moving part of 

the BM is close to the stapes, but seems reasonable at most frequencies. The 
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expressions for the velocity in terms of the total and long wavelength pressures in 

equations (7.2) and (7.7) above can also be written as 

 BM L BMand ,   p Z v p Z v       (7.10, 7.11) 

where ZBM is the inverse of YBM and BM
Z  is the inverse of BM

Y , assuming it is not 

singular. This allows the expression for the total pressure in terms of the long- and 

short wavelength components, equation (7.4), to be written as 

 BM BM S   Z v Z v Z v ,                (7.12) 

so that provided v is not zero, 

 BM BM S  Z Z Z .                 (7.13) 

The modified BM admittance, BMY , which is the inverse of this, thus incorporates the 

BM dynamics and the short wavelength components of the fluid coupling. 

In general, however, ZS will not be diagonal and so this matrix will introduce 

longitudinal coupling into the modified BM dynamics. It must be noted, however, that 

the locally-reacting assumption that originally led to the diagonal form of ZBM is only 

a first approximation to the true dynamics of the BM, and so the short wavelength 

mass coupling can be added to a list of other sources of longitudinal coupling that 

perhaps should be included in a complete model. These include BM damping 

(Mammano and Nobili 1993), TM elasticity (Zwislocki and Kletsky, 1979 ; Aranyosi 

et al., 2008), longitudinal electrical coupling (Parthasarathi et al., 2000, for example), 

all of which have recently been compared by Meaud and Grosh (2010) and the 

feedforward action of the outer hair cells (Steele et al., 1993; de Boer 1996). 
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Fig. ‎7.1  Array of 3 elements of the passive BM when damping is assumed to be 

locally-reacting (a), and when relative damping is assumed (b). 

The incorporation of relative BM damping into the BM impedance matrix can be used 

to illustrate how the BM impedance matrix can become non-diagonal if the BM 

dynamics are not locally reacting. Fig. 7.1(a) shows an array of 3 locally acting 

elements of a passive model of the BM, for which 
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Z ,            (7.14) 

where 

 BM( ) ( ) / ( ) ( )Z n s n i r n i m n                  (7.15) 

and m(n), s(n) and r(n) are the mass stiffness and damping of the n-th BM element, so 

that ZBM is diagonal. 

If damping in the BM is assumed to be primarily generated by relative motion of the 

individual elements, as suggested by Mammano and Nobili (1993), then the discrete 

elements take the form shown in Fig. 7.1(b). The pressure on the n-th element can 

now be written as 

( ) {[ ( ) / ( )] ( ) [ ( )( ( ) ( 1)) ( 1)( ( 1) ( ))]}p n s n i i m n v n r n v n v n r n v n v n             ,    

                    (7.16) 

          
(a) 

 r(n – 1)          r(n)          r(n + 1)        

 

 

 

 

 

  

          

 

  

 

(b) 
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so that 

BM( ) {Z ( ) ( ) ( ) ( 1) ( 1) ( 1)}p n n v n r n v n r n v n         ,            (7.17) 

where 

 BMZ ( ) ( ) / ( ( ) ( 1)) ( )n s n i r n r n i m n        .            (7.18) 

and ( )r n  is the value of the relative damper. 

The matrix of BM impedances now takes the form 

 

BM

BM
BM

BM

0 0 0

(2) (2) (3)

0 (3) (3) (4)

( 1) ( 1) ( )

0 0 0

r Z r

r Z r

r N Z N r N

 
    
 

    
  
 
      
 
 

Z . 

           (7.19) 

The effect of relative damping on the coupled BM response is illustrated in Fig. 7.2, in 

which the value of the relative damping has been adjusted to give the same peak response 

as that for the local damping. The numerical value of ( )r n when used for relative damping 

is about four times that for local damping, r(n), to achieve this condition in these 

simulations, even though, it is acknowledged that the units of r(n) and ( )r n  are not same. 

The velocity responses with local and relative damping are surprisingly similar, apart from 

the more abrupt phase behaviour just beyond cut-off in the latter case, which can cause 

numerical problems if the damping is very light and an insufficient number of elements is 

used in the simulations. The pressure responses have similar phase behaviour and also 

show a small magnitude difference at the characteristic place. 
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Fig. ‎7.2  The BM velocity in the passive cochlea when damping is assumed to depend 

on the absolute motion of the BM elements, solid, and the relative motion of the BM 

elements, dashed, where the value of the damping has been adjusted in the former 

case to match the peak response of the latter. 

If the fluid coupling is approximated by a long wavelength term and a constant added 

mass, as discussed at the end of the Appendix, the modification of the BM impedance 

by an “added mass” is well known (de Boer, 1982; Neely, 1985). This modification of 

the assumed BM impedance would not affect the diagonal properties of ZBM. The 

analysis above has demonstrated how a complete description of short wavelength 

fluid coupling can be incorporated into a modified BM impedance matrix, thus 

generalising the “added mass” idea. The fact that ZBM is then no longer diagonal 

reflects the fact that short wave fluid coupling gives rise to relatively local 

longitudinal coupling along the BM, in a similar way to relative damping. Although 

the effective BM impedance matrix is no longer diagonal, it is fairly tightly banded 

and so not too many terms need to be considered for an accurate solution in either the 

frequency or the time domains. These additional terms may not add significantly to 

the computational time, compared with the computational savings obtained by 

retaining a tridiagonal fluid coupling matrix, which can then be efficiently inverted. 
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8. Conclusions 

An important simplification of the analysis between the fluid coupling and BM motion 

in cochlear mechanics can be obtained by defining a single longitudinal variable for the 

pressure difference and for the BM velocity. This reduces the three-dimensional fluid 

coupling problem down to a uniaxial one. If the coupling analysis is then performed in 

the continuous spatial domain, however, using the Green‟s function approach for 

example, singularities appear in the representation of the short wavelength fluid 

coupling due to the implicit assumption of a spatial delta function for the driving 

velocity. 

By dividing up the uniaxial formulation into a discrete number of longitudinal sections, 

the problem becomes more tractable numerically, since it can be described using linear 

algebra. The singularity in the short wavelength fluid coupling term also disappears 

since the assumed BM velocity distributions remain finite. Realistic longitudinal 

variations in the geometry, including asymmetric fluid chambers, can also be readily 

incorporated. The short wavelength fluid coupling terms could then be readily 

incorporated into the fluid coupling matrix. Several authors have emphasised the 

numerical advantages of having a tridiagonal inverse of the fluid coupling matrix in 

order to obtain a solution in the frequency or time domain, however, which would 

imply that only long wavelength fluid coupling was included. It is shown that provided 

the stapes motion does not significantly contribute to the short wavelength pressure 

distribution, the matrix formulation with the full fluid coupling matrix can be recast 

into an equivalent formulation with only long wavelength fluid coupling. The effects of 

the short wavelength fluid coupling are then incorporated into a modified matrix of BM 

admittances, which is no longer diagonal even if the BM dynamics are locally reacting. 

Short wavelength fluid coupling then forms an additional longitudinal mass coupling 

term on the BM, together with distributed stiffness and damping. 

In summary, three-dimensional fluid motion can be fully incorporated into the uniaxial 

formulation obtained from a simple box 1D model of the cochlea provided: 

(1) Careful definitions of the „modal‟ BM velocity and pressure difference are used. 
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(2) An effective height of the box model is used in the long wavelength coupling, 

which is greater than the physical height. 

(3) The short wavelength effects of the fluid coupling are incorporated, with any 

other longitudinal coupling effects, as a modified BM admittance. 

A modal model of the fluid coupling allows a generalisation of a previous state space 

description on the cochlear mechanics. A finite element model of fluid coupling is also 

used to provide an independent check of the results of the analytic model. The 

agreement between the incompressible analytic model and the finite element model is 

good for excitation frequencies below about 5 kHz, but the finite element model then 

predicts a more complicated pressure distribution, whose magnitude has a resonance at 

about 11 kHz. This is due to the fact that, unlike the analytic model, the finite element 

model takes into account the compressibility of the fluid, which thus has a finite speed 

of sound. The peak in the pressure difference response is associated with a quarter 

wavelength resonance in the cochlea, which is rigidly terminated at the oval window 

but has a pressure release boundary condition at the helicotrema.  This resonance in the 

fluid coupling does not appear to significantly affect the coupled cochlear response, 

however, since the BM dynamics are then strongly coupled with the fluid dynamics and 

the rigid walled resonance does not become established. 
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Appendix: Wavenumber formulation for fluid coupling in the symmetric 

cochlea 

In this Appendix the pressure difference across the BM is calculated, following Steele 

and Taber (1979), in the wavenumber domain for the box model of the cochlea, 

assuming it is symmetric, i.e., the two fluid chambers above and below the BM are of 

equal area. The pressure distributions in the two chambers are thus equal and opposite 

and it is convenient to work with the single distribution p(x, y, z), equal to the pressure 

difference, which is twice the pressure in the upper chamber. The fluid is assumed to 

be incompressible and inviscid and so the conservation of fluid mass then leads to the 

equation 
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The fluid chamber has a width of W and height H. Hard boundary conditions are 

assumed on the sides and the top of the cochlear channel above the BM, so that we 

must have 

0
),,(






y

zyxp
  at y = 0 and W       (A2) 

and 

0
),,(






z

zyxp
  at z = H.       (A3) 

The fluid velocity at z = 0 must match that of the BM, so that 

BM

( , , )
2 ( , )

p x y z
i v x y

z



 


     at  z = 0,     (A4) 

where the factor of 2 is due to the pressure doubling when p(x, y, z) is defined as the 

pressure difference. The BM velocity is now assumed to have a given distribution 

across its width, and in the longitudinal direction it has a sinusoidal variation with 

wavenumber k, so that 
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BM ( , ) ( ) ( ) ( ) ( ) ikxv x y v x y V k y e    ,      (A5) 

where v(x) is the “modal” BM velocity distribution along the cochlea and )(y is the 

BM velocity distribution in the transverse direction. The velocity distribution )(y is 

normalised such that 

2

0

( )
W

y dy W  ,        (A6) 

so that v(x) can be calculated from vBM(x, y) as  

BM
0

1
( ) ( , ) ( )

W

v x v x y y dy
W

  .       (A7) 

The pressure field is assumed to be described by a summation of modes of the form 
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( , , ) ( , ) ikx
n n

n
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





  ,       (A8) 

where each mode shape, ),( zyn , must satisfy the boundary conditions above. A 

suitable choice of pressure mode shape (Steel and Taber, 1979; Neely, 1985) is 

))(cosh(cos),( Hzm
W

yn
zy nn 




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





 .     (A9) 

In order for each term in the model expansion to satisfy the equation for mass 

conservation, equation (A1), then the real parameter mn must satisfy the equation 

  
2

22
22

W

n
kmn


 .                (A10) 

The coefficients Bn are determined by the boundary condition at the BM, so that using 

equation (A4) with (A5) and (A8) gives 
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
 at  z = 0.              (A11) 

If ),( zyn  is given by (A9), then equation (A11) can be written as 
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0
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            (A12) 

Multiplying each side of (A12) by  cos /n y W  and integrating from 0 to W over y, 

the orthogonality of the cos( / )n y W function yields 
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
 ,              (A13) 

where the coupling coefficient for n = 0 is defined as 
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                 (A14) 

and for n   1 is 
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We now explicitly define the “modal” pressure difference to be 

0

1
( ) ( , ,0) ( )

W

p x p x y y dy
W

  .               (A16) 

The longitudinal pressure distribution is defined to have this modal form so that the 

ratio of pressure to BM velocity is equal to the BM impedance, and the product of 

modal pressure and BM velocity is equal to acoustic power.  The modal pressure can 

be written using (A8) and (A9) as 
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,            (A17) 

so that using equations (A13), (A14) and (A15) and writing the modal pressure by 

analogy with the modal velocity in equation (A5) as 

( ) ( ) ikxp x P k e ,               (A18) 

then 
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where the equation in brackets is equal to Q(k) for the symmetric cochlea, which is 

thus equal to 
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

                 (A20) 

To proceed further, the form of the BM vibration across the cochlea has to be 

assumed, to define )(y in equation (10).  We assume here that BM takes a half 

sinusoidal form across its width, B, and although we initially consider the case where 

the BM is positioned arbitrarily across the cochlear partition, most of the simulations 

are performed assuming that the BM is positioned at the side, as both shown in Fig. 

A1. 

 

Fig. A 1  General form of the velocity distribution across the partition (a) and specific 

case used in the simulations here (b). 

Thus for the general case, in our coordinate system, 
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,                (A21) 

for y = C to B + C  and )(y = 0 for y = 0 to C and B+C to W. 

where the factor of 
2W

B
 ensures that )(y is normalised in the way defined in 

equation (A7). 

In this case it can be shown that the coupling coefficient defined in equations (A14) 

and (A15) is equal to  

0
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for n = 0 and for n   1 is equal to 
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In the special case where the BM is to one side of the cochlear partition, so C  is equal 

to zero, then  
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The coupling coefficients in this thus only depend on the mode order, n, and the BM 

width relative to the overall width of the cochlear, B/W, which is often written as , so 

that 
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  (A25, A26) 

As  becomes smaller, the amplitude of the higher order modes is more pronounced. 

Fig. A2 shows the variations of Q(k)/H with kH for various values of The choice of 

the values of    used to illustrate these curves is driven by the desire to ensure that n
2 

 is never zero in the range of summation used, which otherwise causes numerical 
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problems in equation (A26). A total of 30 terms have been used in the series 

approximation of Q(k) in equation (A20) to produce the graphs shown in Fig. A2, but 

the results are almost indistinguishable if twice this number of terms is used, 

suggesting that the series has converged. 

 

Fig. A 2  The normalised fluid coupling impedance Q(k)/H as a function of 

normalised wavenumber, kH, for B/W 

(d). The results are plotted for the BM both at the edge and at the centre (dashed) of 

the cochlear partition, together with the low wavenumber limit of Q(k) equal to 1/k
2
h 

(dot-dashed) and the high wavenumber limit (dotted) of Q(k) equal to 1/k. The short 

wavelength component, derived by subtracting the long wavelength component, 1/k
2
h, 

from the total impedance is also shown as a faint solid line. 

The pressure associated with the first term in equation (A20) corresponds to the n = 0 

mode shape in equation (A9) and has no radial variation. It thus corresponds to that of 

the two-dimensional model described by de Boer (1991), for example. Using equation 

(A22), this term can be written in the present case as 

2D 2

8
( ) coth( ).

B
Q k kH

Wk
                 (A27) 
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Further using the long wavelength approximation, that the wavelength is large 

compared to H, so that kH is significantly less than unity, equation (A26) reduces to 

that for the one-dimensional fluid model, 

1D 2 2

8
( ) .

B
Q k

W H k
                  (A28) 

The differential equation for the one-dimensional fluid coupling model in the 

symmetric cochlea can be written as 

2

2

( ) 2
( ),

p x i
v x

hx


 


                 (A29) 

where h can be considered as the “effective” height of the cochlear channel.  

Equation (A29) is most often derived by assuming that the pressure difference, p(x), 

and longitudinal fluid velocity, u(x), are uniform across the cochlear cross section, 

and that the longitudinal fluid velocity is related to the transverse BM velocity by the 

conservation of mass equation, which for an incompressible fluid can then be written 

as 

 
( ) ( )

.
u x v x

x h





                  (A30) 

Combining this with the equation for conservation of momentum in this case, 

 
( )

2 ( ), 
p x

i u x
x




 


                 (A31) 

by differentiating equation (A30) with respect to x and substituting into equation 

(A31), yields equation (A29). 

Assuming that p(x) and v(x) are again expressed as P(k)e
-ikx

 and V(k)e
-ikx

 and that the 

ratio of P(k) to V(k), ZFC(k) is written as i2Q(k), then Q1D(k) in this case is equal to 

1D 2

1
( ) .Q k

hk
                   (A32) 
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Comparing equations (A32) and (A28), the effective height can be expressed as 

2

,
8

WH
h

B


                   (A33) 

where WH is the area of each channel. The assumed BM motion in equation (A21) 

corresponds to that of a beam with hinged boundary conditions. Steele and Taber 

(1979) also consider clamped beam boundary conditions, for which the transverse BM 

mode shape is proportional to sin
2
(y/B), in which case the equivalent value of h, in 

our notation, is 3WH/2B. The effective height, h, is thus again proportional to WH/B 

but with the constant of proportionality being 1.5, instead of about 1.23 in equation 

(A33). This illustrates how the results are relatively insensitive to the exact mode 

shape of the transverse BM velocity, which is, in fact more closely modelled as 

having a hinged boundary condition at one end and a clamped boundary condition at 

the other (Homer et al. 2004). 

Instead of using a single term in the expansion of the coth(kH) term in Q2D(k) to get 

Q1D(k), we could use the two-term approximation (Neely, 1985) to give the 

approximation 

 2D 2D2

1
Q T

k h
  ,                 (A34) 

where 

 2D 2

8
,

3

BH
T

W
                   (A35) 

which is the thickness of an added mass which acts only locally. This can be 

interpreted in the same way as the end correction that is used to represent the near 

field effect of a number of higher-order terms in the acoustics of an organ pipe, and, 

like the end correction, T is proportional to the characteristic length of the vibrating 

system, which is the BM width, B, in this case. The constant of proportionality is 

equal to 8/3if we assume that W is equal to H, i.e., about 0.27. In fact if all the 

terms in equation (A20) are taken into account in this series, we can express the 
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thickness of the added mass, using equation (A23) when the edge of the BM is a 

distance C from one side of the cochlear partition, as 

2

2 3 2 2 2
1

8 4 cos( / ) cos( ( ) / )
coth

3 1 /n

BH B n H n C W n C B W
T

WW n n B W
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 





   
     

  
,          (A36) 

so that T is about 0.22W or 0.8B when B = W/3 and the BM is on the edge of the 

cochlear partition. This thickness also corresponds to the limiting value of QS(k) in 

equation (2.8) as k tends to zero, so that, as seen in Fig. 2.1, 

S
0

lim ( ) .
k

Q k T


                   (A37) 

The value of the effective thickness, normalised by both W and B, is plotted in Fig. 

A3, as a function of the normalised BM width, B/W, for the BM at the edge and at the 

centre of the cochlear partition dividing the fluid chambers. These results were 

calculated using equation (A36), although the numerical results obtained from 

individual evaluation of equation (A37) using curves such as those in Fig. A2 are in 

excellent agreement. Although only about 30 terms are again required for 

convergence of the series in equation (A36) when B/W is above about 0.1, as required 

for convergence of equation (A20) to get Fig. A2 above, rather more terms are 

required for convergence when B/W is smaller than 0.1. This is because of the very 

large number of higher order modes that are excited when the source becomes small 

compared with the size of the duct.  

When B/W is equal to unity the BM extends over the whole width of the fluid 

chamber so that the problem becomes almost two-dimensional and both T/W and T/B 

tend to about 0.27, as calculated above. When B/W becomes much less than unity, 

however, and the BM is in the centre of the cochlear partition, both sides of the BM 

element are essentially radiating into a three-dimensional space. The effective 

thickness is then equal to about twice the end correction for a piston in a baffle, which 

is about 1.7B (Kinsler et al., 1982), assuming an equivalent radius of B, which is 

similar to the value observed in Fig. A3. Also, when B is much smaller than W but the 

BM is on the edge of the cochlear partition, the effect of the side wall will be to 

double the pressure in front of the vibrating BM element and hence to approximately 

double the value of T/B, as also observed in Fig. A3. 
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Fig. A 3  Variation of the effective thickness of the fluid loading, normalised by the 

width of the fluid chamber, T/W(left), and when normalised by the BM width, T/B 

(right) as a function of the normalised BM width, B/W, for the BM both at the edge 

(solid) and the centre (dashed) of the cochlear partition. 

 

The corresponding variation of the short wavelength pressure in the cochlear with 

B/W is shown in Fig. A4. This extends the range of short wavelength contributions 

that can be calculated over the results shown in Fig. 2.5, which was calculated for 

B/W equal to 0.3, so that it can be used in Section 4 to calculate the full fluid coupling 

at different positions along a non-uniform cochlea. In fact, apart from the amplitude 

variation, the shape of these short wavelength components is relatively independent of 

B/W. As noted in Section 2, however, their magnitude is determined by the fact that 

the integral of the continuous pressure or the sum of the discrete pressures must add 

up to that given using the thickness of the equivalent mass in equation (A36). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B/W

T
h
ic

k
n
e
s
s
/W

 

 

Edge

Centre

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

B/W

T
h
ic

k
n
e
s
s
/B

 

 

Edge

Centre



 75 

 

Fig. A 4  The variation of the modal pressure due to the short wavelength component 

of fluid coupling along the cochlea for B/W = 0.11, 0.3, 0.55, 0.99(dashed curve) 

together with the average pressure over the discrete elements (solid lines). 

An alternative method of calculating the short wavelength component of the model 

pressure is to move away from the assumption that the longitudinal distribution of the 

BM velocity is sinusoidal, as in the wavenumber analysis above, by assuming that 

only one element of the BM is moving. The analysis of acoustic modes in a duct, 

developed by Morse and Ingard (1968) and Doak (1973), can then be used to 

calculate the near field pressure distribution and hence the modal pressure due to this 

discrete source distribution. 

Following Doak (1973), we first express the complex pressure due to a point 

monopole source of volume velocity q0 at location x = 0, y = y , z = z  within a 

single cochlear chamber, modelled as a hard walled duct, as 
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where only a forward travelling wave is assumed, m denotes a duo of modal integers, 

m1 and m2, km is the modal wavenumber and m(y, z) represents the assumed acoustic 

mode shapes, which are orthonormal so that 

 
0 0

( , ) ( , ) ,
W H

n m
y z

y z y z dydz WH 
 
                  (A39) 

only if n is equal to m and is otherwise zero. The modal amplitude is given by 

 0 ( , )
2

m m
m

q
B y z

Ak


   ,                (A40) 

where A is the cross-sectional area of the chamber, which is WH in this case. For a 

rectangular chamber with rigid walls the mode shapes can be written as 
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m y m z
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W H

 
  
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    

   
             (A41) 

where 
1 2
 and m m   are normalisation constants equal to 1 if m1 or m2 equal zero and 

are otherwise equal to 2. 

The difference between this formulation and that in equation (A8), apart from the fact 

that the driving source is now assumed to be a monopole rather than the longitudinally 

sinusoidal distribution given by equation (A5), is that instead of the wavenumber 

being a specified value in the analysis above, it is now a variable that changes with 

the modal order, and the sum of a number of contributions with different 

wavenumbers goes to make up the pressure in equation (A38). 

In the incompressible case assumed here, the modal wavenumber becomes 

 

2 2
1 2 ,m

m m
k i

W H

    
     

   
              (A42) 

which can be written as / .mi l  Provided m1 and m2 are not both zero, corresponding 

to a fast wave of infinite speed, the modal contributions are thus all evanescent, with a 

longitudinal dependence that can be written as 
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 /
,m m

ik x x l
e e
 

                 (A43) 

where lm is a modal decay length, assuming that the appropriate root of km is chosen 

so that the pressure decays moving away from the source. 

The pressure in the chamber due to the velocity distribution of a whole element of the 

BM in the discrete model can now also be calculated from equation (A38) by 

generalising equation (A40) to give the modal amplitude for a distribution of 

monopole sources (Doak, 1973), which in this case is given by the elemental BM 

velocity distribution, so that the mode amplitude becomes 

 
0

/0

0

( ) ( ,0) ,
2

m

W
x l

m m
y xm

v
B y y dy e dx

Ak


  

 
               (A44) 

where the first integral is proportional to the parameter An defined above. 

The modal pressure difference, in equation (A16), due to the near field, or short 

wavenumber, components, can then be calculated by integrating this pressure over the 

BM width, to give 
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where the integral is again proportional to An above. The modal pressure due to the 

near field of this vibrating element of the BM can thus be written as 
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( ) ,m
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p x a e





                 (A46) 

where ma  is the overall modal amplitude, and has a different meaning from the 

definition in equation (6.14). Each mode has its own decay length lm, and it is clear 

from equation (A42) and the definition of lm that these get increasingly small as m 

becomes larger, resulting in a more local response, which is enhanced by the fall off 

in the mode amplitude, am, with m. The lowest order evanescent mode, for which m1 = 

0 and m2 = 1, has a decay length lm, which is equal to H/. 
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Expressing the integrals in equations (A44) and (A45) in terms of Am1 and further 

integrating pS(x) over the width of an element, the averaged near field pressure at the 

discrete location n´ is 

/
S 0
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( ) ,m
n l

m
m

p n v Z e
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                   (A47) 
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where n =|n – n0| for an excitation of the 0n -th element. 

A reasonable approximation to the averaged pressure across the BM elements, which 

is the result needed to incorporate this near field component of the pressure into the 

discrete model, is given by taking only two terms in this modal summation and setting 

x equal to  where n  is the elemental length so that 

  1 2
/ /

SA 1 2 0( ) ,n l n lp n Z e Z e v
                    (A49) 

To fit the results shown in Fig. 2.5 for B/W equal to 0.3, Z1 and Z2 are equal to 201 

Pa∙s∙m
−1

 and 522 Pa∙s∙m
−1

, l1 is equal to H/3.47 and l2 to H/12.8. The pressure 

amplitudes are selected so that the sum of all the elements, which is equal to  
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            (A50) 

is equal to i2Tv0, where T is the equivalent thickness of the fluid loading, as 

defined above, and v0 is the velocity of the element. 

This analysis also suggests an alternative form for the short wavelength value of Q(k), 

in the wavenumber domain, obtained by taking the Fourier transform of each 

exponential term in equation (A46). By noting that pS(x) must be an even function of 

x, and so QS(k) must be entirely real, this can be written as 
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where the sum of all the values of bm must equal T. A reasonable approximation to 

this series can be obtained by only taking a single term in this series, to that 

 SA
2 2

( ) ,
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T
Q k

k T
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
               (A52) 

which tends to T as k becomes small and tends to 1/k as k becomes large, in agreement 

with the properties of QS(k). 

The sum of the long wavelength component in equation (A32) and this approximation 

to the short wavelength component is thus 

 A 2 2 2
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Q k

k h k T
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
.                (A53) 

The accuracy of this approximation to Q(k) is discussed below, but it is not as good a 

fit to equation (A20) for values of kH about unity as the polynomial approximation 

used by de Boer and van Bienema (1982), for example, which can be written as 
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                (A54) 

where b0 and d0 are fitted parameters. Equation (A53) does, however, have the 

advantage of limiting to 1/k
2
h + T for small k, of having no fitted parameters, and of 

being valid for both positive and negative values of k. 

The accuracy of equation (A52) for describing short wavelength fluid coupling is 

illustrated in Fig. A5, which shows the computed value of QS(k)/QSA(k) as a function 

of k for various values of B/W This ratio is unity for very low and very high values of 

k, as expected since equation (A52) tends to the correct values in these limits. The 

maximum error is quite large for small values of B/W, the near field of which would 

require many modal components to approximate, but is only about 12% for B/W equal 

to 0.3, although the maximum error unfortunately occurs in the wavenumber region 
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corresponding to the wavelength of the cochlear wave in the active case, 10kH   in 

this case. 

This approximation is also illustrated in Fig. A6, which shows the normalised values 

of Q(k) computed using the full series expression, equation (A20) and the 

approximation QA (k) given by equation (A53) as a function of normalised 

wavenumber for various values of B/WThe approximation is again better for B/W = 

0.30 compared with 0.11, and looks quite reasonable on this rather large logarithmic 

scale. 

 

 

Fig. A 5  Ratio of the true short wavenumber component of the normalised fluid 

coupling impedance, QS(k) and the approximation given by QSA(k) equal to equation 

(A52) as a function of normalised wavenumber for various normalised BM widths, 

B/W, with the BM on the edge of the cochlear partition (above) and at the centre 

(below). 
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Fig. A 6  The normalised fluid coupling impedance, Q(k)/H as a function of 

normalised wavenumber, kH, for B/W equal to 0.11(a), 0.30 (b), 0.55 (c) and 0.99 (d), 

calculated using the full series formula, equation (A20), and the approximation given 

by equation (A53). 
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