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Summary

This memorandum describes a general theoretical model for coupled interior sound fields,

which are created by excitation due to a noise source, il one source room.

The pressure is explicitly described in terms of the acoustic and structural modal parameters
and structaral-acoustic modal coupling coefficients, which have a large effect on the noise

reduction values at the resonance frequencies.

Numerical predictions are presented considering the governing equations for general
acoustic-structural coupled systems. These procedures were evaluated by using a computer
program, which has been developed during the course of this study in MATLAB. Simulations
show the effect on noise reduction of several configurations for a flexible partition, at
different geometric arrangements in the common wall, and for various room geometry and

properties (i.e. size and absorbing walls).

In addition, transmission loss for the models examined, obtained via modal analysis, are

compared with those obtained by conventional approaches.
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1 Introduction

The initial aim of this work is to improve the understanding of the noise transmission
phenomenon in buildings, at low frequencies, using an acoustic-structural coupled model
(room—plate-robm). The model is represented by sets of integro-differential modal
equations of motion. The low-frequency range is defined as the modal domain, for which
the associated conservative system has a low modal density [1]. The effects of low-
frequency noise have been of particular concern because many kinds of structures have
proved inefficient in attenuating low-frequency noise, whereas other frequencies are less

problematic or can be analysed successfully using existing techniques.

The frequency range of human hearing is considered to be between 20 Hz and 20,000 Hz.
However, it has been shown that humans can perceive sounds below 20 Hz (if one
considers a signal that has a high sound pressure level) and also detect it through their

bodies [2].

Sound insulation requirements for buildings depend on the listener’s activities and also
on the background noise, which may be considered as part of the work or home
environment., The problem of sound transmission has become an important subject in
noise control in buildings. Usually a noise is communicated to rooms via many different
paths. Moreover, noise sources may be elsewhere in the building and/or outside the
building. In airborne sound transmission the noise originates in the air. This work
considers the insulation provided by a single-leaf partition for airborne sound. The

greater the sound insulation provided by a partition, the higher its sound reduction index.

The problem of calculating the sound transmission between rooms has been investigated
over many years [3-8]. The three main approaches have been the conventional Wave

Approach, Modal Analysis and Statistical Energy Analysis.

In the Wave Approach, infinitely extended panels are used as sound transmission models.
For the first group of these models, boundary effects are neglected and the walls are

assumed to be homogeneous and to have no leaks. The so-called mass law behaviour has



been successfully applied to many situations where frequencies are well below the
coincidence frequency. However, the assumptions provided are unsatisfactory in a large
number of real pancls whose dimensions are less than or equal to the wavelength of the
incident sound wave. In addition, the geometry of the system is not taken into account

and, at low frequencies, the assumption of an incident diffuse field is incorrect.

Alternatively, Modal Analysis allows the geometric parameters of the system to be
incorporated into the models and subsequent predictions. The frequency response of a
finite-system normally has peaks and dips, due to the resonance phenomenon which
involves modal behaviour and fluid-structure spatial coupling of plate and room modes.
The method also permits calculation of the radiation of small structures at low

frequencies, within a reasonable operational running time.

Finally, Statistical Energy Analysis considers the power flow balance between linear
coupled systems. Statistical Energy Analysis (SEA) has been applied to solve some
problems of noise transmission in buildings, aircraft, cars, etc. The estimates of
subsystem energies are obtained on the basis of known ‘a priori’ values for the loss

factors, coupling loss factors and the power inputs [9].

There has also been further investigation [3] with work closely related to this research.
The transmission of a reverberant sound field through a rectangular baffled partition, by
means of a mode expansion method, was analyzed. According to the formulae derived,
valid for non-resonant transmission, the problem was well predicted provided that the
mass of the partition was significant. In these conditions, it was observed that the
imaginary part of the fluid wave impedance is significantly greater than its real part.
Therefore it ensured that the forced vibration, or mass law contribution, dominated the
transmission factor. A detailed review in order to investigate acoustic-structural coupled
systems was also presented. A theoretical model was developed for arbitrary wall
motions using Green’s Theorem. From the point of view of applications, a simplified
formulation was also presented for sound level predictions in terms of acoustic and

structural parameters.



The effects of panel boundaries on sound transmission, including a comparison with an
infinite panel, were discussed in ref. [7]. A simple two-dimensional model was used for
evaluating the sound transmission characteristics of finite panels. The analysis of the
transmission, through a baffled plate of finite width and infinite length, was conducted
rigorously. The effects of panel size were verified in regions below, above and at the
critical frequency. Estimates of averaged response over a particular frequency range have
also been presented. Sound transmission in the diffuse field was hence obtained via

numerical direct-integration.

More recently Osipov et al [10] evaluated some numerical examples in order to verify the
influence of the dimensions of rooms and partitions on the transmission phenomenon.
The problem of low frequency sound insulation in buildings was identified as a growing
research area. Tn their work, three distinct theoretical models (infinite plate theory and
modal analysis for a baffled partition and for a room-plate-room system) were compared

with experimental results.

Other alternatives have also been considered, e.g. the Finite Element Method [11,12], to
predict sound insulation considering the effect of partition edge conditions at low
frequencies. Furthermore, an interesting approach, considering impedance-mobility

representations, was adopted and applied to many sound and vibration problems [3].

In summary, a vast amount of research concerning acoustic-structural coupling has been
published. The literature survey has shown that a large amount of work has been
performed in the analysis of sound insulation phenomena. However, the combined effect
of parameters in noise control in buildings, in particular the sensitivity to geometry, has

not yet been fully explored.

With a point noise source placed in either of the rooms, the aim is to predict the noise
reduction of the system due to resonant coupling involving modal behaviour, spatial

fluid-structural coupling and non-resonant contributions. Moreover, some interesting



results in terms of transmission efficiency are examined when the weight of the partition

is increased.

The transmission of sound from rooms attached to corridors can also be predicted in this
research. An analysis of the position or arrangement of a flexible panel in the common
wall, considering that all other parts of the common wall are rigid, is predicted. The
results of analyses were converted to an approximate one-third-octave-band spectrum to

make comparisons with other data possible.

Finally, a general discussion, based on the findings of the results obtained, is presented,

with some observation concerning potential improvements that can be considered.



2 Theoretical Background of Sound Transmission Mechanism

The mechanism of sound transmission may be characterised as a radiated sound field from an
elastic partition itself excited by a sound field in a source room. The response of thin plates to
localised excitation results in free bending waves. Those waves intcract with plate edges
producing sound power radiation. In addition, another coniribution to the total radiated noise
comes from the in phase vibration of the plate in the vicinity of the excitation point.
Alternatively, when a sound wave is incident upon a partition, the response, which is
frequency dependent, is also dependent on the radiation impedance of the modes of the
partition. Thus, the air on the other side of the plate is excited, and a sound wave is then

propagated into the receiving volume.

In general, the sound transmission theory for uniform and unbounded panels has widely been
used to approximate the sound transmission loss of a bounded panel in a baffle. Of course,
some assumptions, such as the random-incidence field over the partition, as well as a limited
frequency range (in which the acoustical wavelength is smaller than the plate size), have been

considered.

A transmission efficiency parameter 1 defined as the ratio of transmitted to incident power, is

given by

T=—" 2.1

where
Wierans 18 the transmitted sound power;

Wine 18 the sound power incident on the source side of the test partition.

A classical index, known as Transmission Loss (TL), in some countries, or Sound Reduction

Index (SRI) has also been defined as

SRI=101ogje (1/7) (dB) (2.2)
A finite-size panel (bounded rectangular plate in a baffle) is a more realistic model than the
infinite one described above. The transmission is characterized by boundary effects, which

lead to the formation of standing-wave modes. Although simply supported edges will be



considered in this work for reason of simplicity, complex boundary conditions have also been

discussed in the literature as well.

An infinite set of in vacuo modes, represented by a functional basis, which is assumed to be

the solution of the equation of motion for the flexible plate, is given by
¢,(z, y)=sin(k,z)sin(k, y) (2.3)

This basis function, used in the expansion for the panel deflection, must not only ensure a
vanishing normal displacement on the contour of the panel but also respect the panel
boundary conditions. It satisfies the boundary conditions and the equation of motion as long

as

2 2
ki =kg, =k +ky = (fﬁﬁ} *{“Siﬁ] 2.4
Y

Z

where (kpr)2 — in vacuo eigenvalues
L, — length of the panel;
L, — height of the panel;

r, § — panel mode;

Furthermore, the infinite set of in-vacuo modes, defined by Equation 2.3, represents a set of

orthogonal functions, which satisfy the following orthogonality relationships

0 if p #q;
¢'q m(r,) ¢ dS={ .
! 4 Aplfp=q.
Qifp #q;
JDV2¢qV2¢pdS={ , p=d 2.5)
% o, A, ifp=gq.

A, =[m() ¢}dS
5

where m(r,) = mass per unit area of the partition;
Ap = modal-generalized mass;

®p = in vacuo natural frequencies of the plate;



D = bending stiffness of the partition;
V? = two-dimensional Laplace operator;

P, q = mode identifiers.

To determine the far-field sound intensity radiated and consequently the transmission, the
sound field generated by a harmonic vibrating surface has to be evaluated. The sound field
generated by a baffled harmonic vibrating surface S at position r in the fluid is given by a
particular form of Kirchhoff-Helmholtz integral equation, which is termed the Rayleigh

Integral [6]. The key function of this problem is to obtain the difference of pressure between

both sides of the panel.

The total surface pressure is hence the summation of the blocked pressure and the radiated
pressure. This blocked pressure is defined as the summation of the incident field and the
scattered field produced if the plate were rigid (infinite mechanical impedance). The radiated
pressure is the field produced as a result of the elasticity of the plate, and subsequently motion

producing sound radiation.

The equation of motion of an elastic partition in the absence of sound radiation is given as

D{V“[w(z,y,m}]—kﬁ w(z,Y, 0))}= Py, (2. ¥, ) (2.6)

and
W (2,Y,0) =Y w,0, 2.7)
P =2, P8, dS 2.8)

where pyr, — modal-generalized force;
Po (2, v, ®) - incident field amplitude of pressure;
&, — basis function;
D - bending stiffness;
V- square of the Laplace operator;
k, — wavenumber of the free-bending wave;

w(z, v, @) — normal displacement of the plate surface;



In equation 2.6 the time term & is suppressed, as well as the damping influence. After
solving this equation, the power radiated into a half-space, due to the plate vibration, can be

obtained by
[ =%J;Rf{p(z,y,0) \;V(Z,yso)*}dS (2.9)

where [1(m) = total power radiated.

The real part of the radiation impedance (radiation resistance) may also be defined for the p

mode of the plate as

1
where the spatial-average mean-square normal velocity is given by
2
e Y=L f
2 25+

P
Finally, the full problem, considering fluid loading in the equation of motion, can be solved.

Wp

2

ds (2.11)

L

Wp

Thus, one may obtain some results in terms of coupled in vacuo modes.

Let p(x,y,7,t) be regarded as small amplitude perturbation (acoustic pressure variation) from

its equilibrium value. The wave equation which results from the linear acoustic equations 1s

given by [14]
1%
g;:() on therigid walls of theroom; (2.12)
%=—p0§{g on the flexible partition
where w = the displacement of the flexible partition in the normal direction (positive
outward).



The steady-state solution is obtained through the Fourier Transform of the time domain wave

equation, yielding the Helmholtz Equation

V2 p+k?p=0 2.13)

If pis expressed as an expansion of eigenfrequencies for the room, corresponding to the
resonances of a rigid boundary space, a Green’s function can be obtained satisfying the same

condition [6]

a—Gﬂ’—)—=0 reS,
dn
V3G(rlr,) + K*G(rlr,) =—8(r —1,) (2.14)

G(rlr,) =) A%, ()

where S, is the surface area of the rigid walls;

8(r —r,) is the three-dimensional Dirac Delta function representation of a point source.
G(rlr,) is the solution (Green’s function) of equation 2.14;

¥ =acoustic-pressure mode shape of the room.

The spatial form for the three-dimensional eigenfunctions Y, corresponding to the natural

frequency w, of the rigid-walled space, may be defined as

¥ =cos I | cos| =2 4 cos| HE (2.15)
L, L, L,

This set of modes satisfies the relationship

v, dv = {0 ym#En;
o A ifm=n. (2.16)

A, =[vi(xy2) dv
v

where A, = mean-squared volume averaged.



Since W, is an eigenfunction of the room, it has a correspondent eigenvalue &, which must

satisfy

VY + kP, =0 2.17)

Therefore, using the previous relationships, equation (2.14) can be written as

N A, (—k; +k)Y, ==8(—r,) (2.18)

Multiplying each side of equation (2.18) by Wm(x,y,2) and integrating over the volume of the

room one has [6]

11[;(xoa}’c)’z-:})
= 2.19
A Ak —E) @19

A review of velocity-potential concepts is also important if one uses an alternative
formulation. For an inviscid-flow (viscous effects are neglected), low-speed flows are

irrotational [15]. This means that

KVV=0 then V=VD

R . (220
]_]x.-..&(, uY ay’ uZ &’

where V - fluid velocity;
(ux, Uy, uz) - fluid velocity components;

& - scalar function termed velocity potential.

Therefore, the velocity potential function allows one to obtain all other acoustic parameters

through the relationship

0P
=—p — 2.21
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The equations defined above, describing uncoupled modal models, can therefore be used to

develop an acoustic-structural coupled model in order to predict the sound insulation.

Beranek [16] has suggested a simple formulation for SRY, in which the sum of the radiation
efficiency (in dB) of the sound-forced finite plate plus 3 dB, is subtracted from the value
obtained by normal incidence mass-law. In this approximation, the radiation efficiency used

was originally defined in ref. [17].

The transmission loss for a baffled panel has also been studied by Leppington [18,19]. His
predictions have been considered an improvement on previous theories. A random field was
considered as an infinite sum of uncorrelated plane-waves impinging on the finite-panel
surface. In contrast, an assumption usually adopted was to consider the random field as a
diffuse field, neglecting the presence of the boundaries. Moreover, the transmission problem
was described in terms of two distinct mechanisms. The first one is dominant at the region of
the spectrum above the critical frequency, where free bending waves interact to cause
resonance. In this frequency range, the partition is a good radiator. In fact, its radiation
efficiency is always greater than or equal to unity. For the second mechanism, free bending
waves are not generated, and in this frequency range (below the critical frequency), the

partition behaviour is as a poor radiator.

In summary, one can consider the transmission phenomenon as a summation of the non-
resonant or forced transmission, and the resonant transmission. In numerous cases, the
resonant transmission for frequencies below the critical frequency of the partition is rather

important [18,19].

il



3 Theoretical Model for the Fluid-Structural Coupled System

In the present analysis, the room-panel-room system is selected as the fundamental model,
which may represent a real situation in a building. The physical mechanisms involved in the
control of sound transmission in buildings can hence be evaluated. As mentioned previously,
the analytical modal model adopted [6] is based on a set of integro-differential equation
formulation of the interaction between a flexible plate and enclosed fluids. The acoustic and
the structural fields are expressed in terms of their uncoupled modes by means of differential
equations for each mode. Therefore, the structural motion has been expressed as a summation
over the response in the in vacuo natural modes driven by fluid loading. The acoustic-field of
the rigid-walled rectangular rooms has been determined by the summation of the acoustic
modes over the fluid volume. In fact, these acoustic modes were excited by a generalized

volume velocity source (whose value was set equal to unit).

Interaction analysis was conducted when two fluid volumes connected by a thin plate were
excited by a point monopole source placed in one of them. In addition, solid surfaces, which
bounded volumes of air Vy and V; were considered. The response of the coupled system to a
forcing harmonic function, can be represented in terms of the uncoupled modes of both

rooms and the uncoupled panel modes as [6]
ButBy @ ot 0F By =(2S/A)Y Wy Cppp —07Q, /A
wo+B, wot @lw, = —(p, . S/A)Y DuC,, +(p,S/A)Y, @ C,y, 3.1)

Qs +B,, P ot 0); D,,== (CZSIAnz)ZP wp C,zp

where indices nj, nz, and p refer to source room, receiver room and panel modes respectively.

According to Fahy F.J. [6], the correct convergence of the modal pressure on the partition

surface is obtained due to the Gibb’s phenomenon.

The spatial structural-acoustic coupling coefficient Cyp, assuming simply-supported edges for

the partition, is defined by

12



1
3 [w.#,ds (3.2)

where
Q = generalized volume velocity,
@ = modal velocity potential amplitude,

B = generalized modal-damping coefficient.

The numerical determination of the eigenvalues and eigenfunctions for the coupled system
has been obtained using a dynamic matrix formulation for the problem. The analysis was
applied to the free vibration problem of the coupled room-panel-room system in order to

determine the eigenvalues and eigenvector, and also to the forced-vibration problem.

An average absorption coefficient was firstly considered in terms of the corresponding modal
loss factor. In equation 3.1, the effect of the absorbing material has been approximated by
equivalent damping factors f, Then spatial averaged mean square pressures, whose
amplitudes were obtained directly from the linear plate equation and velocity potential

equations for the rooms, are also calculated.

The transmission parameters obtained from the modal room-panel-room model, finite-panel
predictions [3,18] and a classical approach can be compared graphically as a function of

frequency.

The ‘loading’ applied to the source room is represented by the generalized source strength as

[6]

0, =g, (x.y,2)dV (3.3)
vV

where

go — distribution of source volume velocity per unit volume.
Neglecting the cross-modal coupling terms introduced by the absorption on the boundary of

the volume, and assuming that a single room mode is dominant, the approximation for the

generalized modal damping may be given as [20]

13



A 4 z.

7

5 =(poc ] AN G

The real specific acoustic impedance z, for the wall surfaces, lined by a soft porous material,

on the assumption of light damping, with its reactive part not altering the resonance

frequency significantly, may be approximated by [18]

= M (35)
(24

2

where ¢ is the diffuse absorption coefficient for an internal surface A of the room.

This assumption is valid when [16]

Re| 2% << 1 (3.6)
z,
p.c |

Im| £= |«<1 (3.7)
Za)

The pressure field, which acts on the partition surface, may be expressed in the acoustic and
structural basis. At any particular point on the plate, which is located in the plane X = Xo, the
pressure values obtained from either the acoustic or structural basis function expansion are
equal. Therefore, the generalized force exerted on the pLh plate mode by the n™ acoustic mode

of the receiving room is expressed as [13]

F (3.8)

where

- n_mX,
Pu2=DPn2 (Xo, 1) = Py COS[ L }

X

p,, = the receiving room generalized modal pressure;

14



Cyzp = geometrical coupling coefficients between the panel modes and the receiving room

modes;
BR = generalized pressure over the partition in the receiving-room;
0, =invacuo plate modes (see equation 2.3).

The spatial-average mean normal intensity transmitted by the panel is defined as [16]

> = J Refp, v° JdS (3.9)

where
v = the complex conjugate of the particle velocity on the panel surface;

pr = pressure over the partition in the receiving-room.

As the particle velocity is equal to the normal velocity of the panel on its surface, equation

(3.9) can be evaluated using the orthogonality property of the plate modes (equation 2.5) as

<lp> = —;—zRe{ER va}gp (3.10)
P

where

wp = generalized normal panel velocity.

Therefore, according to equation 3.8 the transmitted intensity can be expressed as

<1 > =-—22Re{ i2y-Paz- W } (3.11)

The mean sound intensity incident on the partition is approximated by

1 nnil nml
<L > = Y S Re{p.:. C ook Dl ) (3.12)
o m=0n=0
and
C.i= —;—J' cos (k,,z)cos (k ,y)cos (k,,z)cos (k,.y)dzdy (3.13)
8
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k, =4k* -k (3.14)
k, =4k}, +k;, (3.15)

where

nm1 = total number of modes considered in the source room.
Kyn; Kzn -~ wavenumber components in the y and z directions respectively;

pni — reverberant sound field amplitude in a source room due to a point source having unit

volume velocity [16];

Finally, one can evaluate the SRI (Sound Reduction Index) and the NR (Noise Reduction) as

)
0 (3.16)

(p"] ) 3.17)

NR is dependent upon the absorption in the room whilst it is assumed that SRI is independent

SRI =10log,,

NR =10log,

of the room absorption.

The theoretical routines were developed according to the chart below:

Geometry and material properties

|

Room-Panel-Room Modal Analysis
]

Evaluate uncoupled eigenvalues
I
Evaluate geometrical coupling
|
i |
Evaluate coupled cigenvalues Evaluate forced excitation

16



4 Numerical Results

4.1 — General description of models

The models adopted comprised of three subsystems: a source room, a common wall and a
receiving room (Figure 1). The source room was defined as an acoustic volume excited by a
broadband acoustic point source placed in a specific position, and the receiving room was
defined as the acoustic volume connected to the source volume through a common rigid wall
with a flexible elastic partition. The results obtained from numerical examples provided
important information about the sensitivity of the Sound Reduction Index to some
parameters, such as different positions for the flexible pahel, not normally considered in the
design of buildings. The geometric dimensions of the models are shown in Figures 2a and 2b.
Predicted incident intensity (actual field) on the flexible common wall was used for the SRI
calculations rather than assuming a diffuse sound field assumption. Nevertheless, the actual
field values tend to those for the diffuse field as the frequency increases. Spatial averaged

mean square pressures were obtained directly from the linear Euler’s equation.

The system properties are described as follows. For a partition made of plasterboard material,
avalue of V=024 and E = 2.12E9(N/m2) were assumed for the Poisson’s ratio coefficient
and Young’s Modulus respectively. Also a density value of ps = 806 (kg/m”) and a thickness
of 0.025 m [21] were assumed for the material. Therefore, the assumption of only pure
bending waves propagating in the panel remains valid. When varying the other parameters,
the receiving and source room surfaces were considered as being covered by a soft material
with a constant modal frequency-average absorption. coefficient.. The material properties
considered here were extracted from ref. [16] and [21]. The absorption coefficients for the
volume surface were chosen as an averaged value of 0.05 (live rooms) over the whole
frequency range. Nevertheless, as mentioned previously, an important approximation
considered here is that the mode functions to be used have been chosen as the mode shapes of

a volume bounded by rigid walls.
Moreover, the acoustic source strength applied to the source room was a unit volume velocity

(1 m*/s). The source was placed at position 1 (corner of the room) for all simulations other

than that for analyzing the influence of source position on SRL

17



The transmission loss parameters obtained from the modal and classical approaches [16,18]
were compared graphically as a function of frequency. It was verified {18] that Leppington’s
prediction is the one, which approaches the values obtained via infinite theory when the non-

resonant transmission is characterized.

The results are organized as follows. In section 4.2, the calculated values of the acoustic and
structural natural frequencies are presented. They are also compared with the coupled and
damped coupled natural frequencies. In section 4.3, normalized spatial coupling coefficients
illustrate the contributions of modes at the frequency range of interest (Figures 4a-4b). In
section 4.4, the influence of depth of source room (in both models) on SRI is described. The
area of absorption surfaces remained the same. In real buildings, the flat floor is normally
divided into rooms, with the same height. The influence of panel positions (Figures 6a —6b)
on SRI is discussed in section 4.5. Three and five different positions were considered for
models | and 2 respectively. The results are compared with Leppington’s prediction [11] and
the field-incidence mass law theory [6]. In section 4.6, the influence of increasing absorption
on the walls of receiving room is assessed (Figures 7a-7b). Finally, the effects of altering

noise source location (Figures 8a-8b) in the source room are also discussed in section 4.7.

4.2 —Acoustic and Structural modes of the system

It may be verified that the location of the resonance peaks and dips for the harmonic forced
response approximately coincided with the eigenvalues obtained from the coupled analysis.
For room dimensions of 2x2x5 m’ and 2x2x2 m>, 90 and 39 modes were respectively
obtained (see table 1) for a frequency range up to 300 Hz. For panel dimensions of 2x5 m?,
2x2 m* and 1x1 m?, a total of 110, 41 and § modes were considered respectively for the same

frequency range (see table 2).

The absorbing material on the room walls and the internal loss factor of the plate had little
effect on shifting the eigenfrequencies, whereas the geometrical coupling coefficients played
a leading role. It can be confirmed by the natural frequency values obtained for the first 10
modes of the system (see table 3). For instance, the average difference between the coupled

and damped coupled natural frequencies for the large panel (2 x 3 m?) was irrelevant.

18



Another important point is that the fundamental natural frequency of the panel (1x1 m?) was
greater than the lowest natural frequency of the source room (34 Hz). Hence, the
corresponding panel mode contributed with an equivalent stiffness. The coupled natural

frequency of the system was about 32.9 Hz (see table 4 and 5).

Some simplifications, considering ‘poor” spatial coupling of higher order modes, have been
suggested by some authors [8]. Although this option was not considered here, table 4 and 5
show that generally the higher the order of the coupled modes, the less significant the

influence of different panel positions.

4.3 — Coupling coefficients

Considering that the structural-acoustic coupling characteristics of the room-plate-room
model are quite complex, all modes below 300 Hz, including non-resonant contributors, have
been considered. Even though there were many ‘weak coupling coefficients’ (Figures 4a and
4b), their summation might be significant to the total coupling. The geometrical coupling
values were obtained according to equation 3.2. When an acoustic wave-number k coincided
with a structural one (ky), the geometrical coupling coefficients Cyp Were set to zero for the
whole wall problem (m; = r; and/or n; = p;.). However, for a flexible panel in the common
wall, C,p were surely dependent upon panel position and size. These coefficients were
normalized by their maximum absolute value in order to compare both models. The peak
value is 4/n° for the coupling between uniform pressure acoustic mode across the panel and

its fundamental mode.

The results show that strongly excited structural modes generate low values for the SRI,
which are determined by the structural-acoustic modal coupling coefficients as well as the

damping factors.

Tor a panel located at the centre of common wall, a reduced coupling condition was found.
According to results, the relationship between uncoupled structural and acoustic mode shape

functions showed large values at the lower order modes.
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4.4 - Influence of source room dimensions on the SRI parameter

The depth of the source room (x direction) was modified from 2 m to 5 m in both models.

The results (figure 5a and 5b) show that for model 1 the SRI value varies by about 15 dB and
for model 2 it varies by about 10 dB. The difference between the values reduces at higher
frequencies than those which are being considered here. Similar rooms are strongly coupled
at the interface (common wall) due to their identical acoustic mode shapes and resonance
frequencies. Two types of acoustic modes, the panel-controlled mode and the room-
controlled mode, appear distinctly at low frequencies. The lowest SRI value corresponds to a
panel-controlled resonance frequency of the system. Alternatively, for a system composed of
rooms of different volumes (model 2), a higher sound insulation is obtained. These situations

might also be described in terms of the acoustic impedance mismatching of the rooms.

4.5 - Influence of Panel Position on the SRI parameter

The sensitivity of the SRI relative to the flexible panel positions, with the rest of the common
wall rigid, is shown in figures 6a and 6b compared to Leppington’s prediction [11] and field
incidence mass law [6]. The latter two agree probably because the resonant terms of the
equation were negligible compared to the non-resonant contribution, due to the low radiation
efficiency of the corresponding modes. The transmission behaviour becomes complex and

dependent on the panel position.

For model 1, a distinct dip in the SRI was verified at about the resonance frequency of the
room (34 Hz). It is known that at panel-controlled resonance, SRI is not dependent on room
impedance, but upon geometrical coupling factors. At low frequencies, the spatial distribution
of room modes varies mainly along preferential directions (e.g. the z axis direction). Hence,
below 100 Hz, the SRI curve (figure 6a) exhibits distinct dips for the panel at the corner,
where the tangential modes in the receiving room were fully excited. For the partition in the
middle of the common wall, higher SRI values are obtained due to the very weak excitation
of the anti-symmetric source room modes. When the frequency increased, oblique modes
tended to be dominant in the rooms and the difference between the positions became less

important on sound insulation.

For model 2, the effects of panel position were also significant on noise insulation only at
very low frequencies. However, the variation of SRI values was less pronounced than that for

the model 1, due to the mismatch of the resonance frequencies of both rooms. Above about
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170 Iz, the wavelength of the waves assumed values less than the heights of the rooms. In
this situation, the geometry of the ‘corridor’ had no influence on the interaction between
modes and therefore the system behaved like two similar rooms. If the dimension ratio of the
rooms in the z direction were at least an integer value, the panel performance would tend to

be quite similar at either position 2 or position 4.

In summary, transmission behaviour becomes complex and dependent on both panel position
and panel size. With the panel located at the centre of the common wall, only few structural
modes were excited. However, as the panel location was moved into the corner of wall, most
of its even and odd modes were excited. This occurred because of the response of a large

number of in vacuo panel modes to oblique fields excited by the point source.

Another important point is that when the panel-controlled modes are excited below the room-
controlled modes, the mass law behaviour may tend to dominate the transmission. However,
for the opposite situation, when the panel-controlled resonance frequency is higher than the
room-controlled resonance frequency, a non-resonant stiffness behaviour may then dominate.

It is also important to mention that SRI is usually inversely proportional to panel size in the
non-resonant transmission region. Below the critical frequency, the effect of the panel size is
significant when the wall size is entirely flexible. In fact, SRI curves approximate to the

mass-law curve.

4.6 - Influence of absorption on SRI parameter

When the modal overlap of rooms is rather low, the cross-modal damping terms (equation
3.4) are generally neglected. In spite of that, the cross-modal terms of the radiation efficiency
matrix dominate the resonant contribution, providing that the air is considered a ‘light’ fluid.

[18].

According to Figure 7a and 7b, the effect of increasing the absorption coefficient
significantly affected the SRI values. For instance, when the reverberation time is decreased,
the modal overlap factor is increased and vice-versa. There is a higher probability of better
coupling between modes with distinct eigenfrequencies. Therefore, an increase in absorption
coefficient for the materials in the receiving room {for both models) led not only to better
coupling but also to lower sound insulation at very low frequencies (approximately below

100 Hz). However, when the frequency increased, the modal pressure in the receiving room
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(and therefore the transmitted intensity) was significantly reduced for both models.

Consequently, the SRI became larger.

4.7 - Influence of source position on the SRI parameter

In this analysis, the whole common wall is used in each model as the elastic structural
partition. A point source is placed at the positions shown in Figure 1. Values of SRI obtained
for three different source positions are shown in Figures 8a and 8b. The lower value of SRI
corresponds to the source located in the middle of the source room, as was expected. With the
source situated at this position, only symmetric room modes were excited. In the middle of

room, SRI achieved low values compared to the values obtained for the source placed at

position 1 {corner) and 2.

For a shallow source room, similar modes are excited in both positions whereas for dissimilar
rooms, SRI values may differ due to the coupling with the cubic receiving room (model 2).
The three curves tended to differ in the frequency range between 100 and 250 Hz. This
reveals that the incident sound field was not yet becoming diffuse. In addition, the
performance of panel insulation is generally affected by the power input into the source
room. It is also evident that the source position does not alter the coupling factors between

the modes of the subsystems [11].

22



5 Conclusions

A comparison between numerical modal analysis and theoretical predictions has been
performed. A narrow bandwidth (0.1 Hz) and a maximum frequency (300 Hz) were used
for the frequency response of the systems to a volume velocity point excitation. Above
this frequency limit, the computational storage requirerﬁents for variables as well as the
operational running time on a personal computer became extremely problematic. At the
expense of some complexity, the program might be extended to large problems by
developing additional routines. The effect of being selective in eliminating some modal
contributions has not been considered here. Although there were many ‘weak coupling
coefficients’, it has been shown that their summation were significant to the total
coupling. Hence, all possible natural frequencies and their respective modes were

included in this analysis.

These results may help the understanding of the model, with a group of subsystems
directly related to physical elements such as rooms and flexible partitions. They can also
provide an initial discussion for the investigation of a SEA model, which can be useful
for practical building acoustics. Although this problem (the coupling between the panel
and the acoustic fields) has been solved in previous work by several authors, the main
originality of this initial research is to offer guidance on the comprehension of important
parameters in a real case of architectural acoustic design. Nevertheless, this is yet to be
vatidated experimentally. All the parameters, which affected the modal composition of
the sound field in the subsystems, were fundamental in the determination of the Sound
Reduction Index. The results may also be used to predict measurement in-situ at low
frequencies, where the classical definition of SRI in ISO140 for diffuse sound fields may
not be reliable. Although the assumption of uncoupled ‘rigid-walled’ acoustic modes for
the rooms [6] has been assumed for many years, the boundary condition, which is due to
the velocity of the partition, could not be replicated. The convergence problem might be
rather sensitive at low frequencies. Hence, the next stage of this research is to develop an
alternative model for prediction of noise reduction in terms of Component Mode

Synthesis (CMS) method. It will be applied to acoustic-structural coupled rooms.
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7 Tables

The natural frequencies of the first 10 room modes
Number of modes = 90 Number of modes = 39
Room 1(2x2x5) m’ Frequency | Room 2 -(2x2x2) m’ Frequency
Mode (1,m,n} (Hz) Mode (1,m,n) (Hz)
0 0 0O 0.00 0 0 0 0.00
0 0 1 34.00 0 0 1 85.00
0 0 2 68.00 010 85.00
0 1 0 85.00 1 0 0 85.00
1 0 0 85.00 0 1 1 120.21
0 1 1 91.55 1 01 120.21
1 0 1 91.55 1 1 0 120.21
0 0 3 102.00 1 1 1 14722
0 1 2 108.85 0 0 2 170.00
1 0 2 108.85 0 2 0 170.00

Table 1: Summary of the natural frequencies of ‘rigid-wall’ acoustic volumes

Panel modes First 08 panel modes First 08 panel modes
Dimension: (1x1) m? Dimension:{(2x2) m’ Dimension: (2x5) m’
Mode (p,q) Frequency Mode Frequency | Mode (p,q) | Frequency

(Hz) §:Xs)) (Hz) (Hz)
11 37.88 11 9.47 11 549
1 2 94.69 1 2 23.67 1 2 7.76
21 94.69 21 23.67 13 11.55
2 2 151.51 2 2 37.88 1 4 16.86
13 189.35 13 47.35 21 19.70
31 18939 31 47.35 22 21.97
2 3 24620 2 3 61.55 15 23.67
3 2 246.20 32 61.55 23 25.76

Table 2: Summary of the in vacuo natural frequencies of partitions used into the models.
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First 10 natural frequencies (model 1) | First 10 natural frequencies (model 2) Panel
Panel dimension: (2 x §) m’ dimension: (2 x 2) m”
Coupled Coupled frequency Coupled Coupled frequency
Frequency (damping included) Frequency (damping included)
0.0000 0.0000 0.0000 0.0000
7.2641 7.2639 12.5531 12.5427
10.0209 10.0236 23.1829 23.1827
13.1633 13.1529 23.1999 23.1996
16.4268 16.4267 34.3852 34.3821
19.2544 192541 37.4325 37.4321
21.5426 21.5423 46.9924 46.9918
234503 23.4498 47.1532 47.1525
25.3602 25.3599 61.0946 61.0939
30.6787 30.6783 61.1387 61.1379

Table 3: Summary of the first 10 coupled natural frequencies of model 1 and 2

First 10 natural frequencies of model 1 - Panel dimension-(1 x 1) m”
Fei Fac1 Fo Fae Fes Facs
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 0.0000
32.9489 | 32.9491 | 33.5497 | 33.5488 | 33.9988 | 33.9955
33.9999 | 33.9967 | 34.0000 | 339967 | 34.0000 | 33.9967
384513 | 38.4473 | 38.0286 | 38.02570 | 374711 | 37.4706
68.0000 | 67.9984 | 68.0000 | 67.9984 | 68.0000 ! 67.9984
68.1311 | 68.1295 | 68.0049 | 68.0032 | 68.2140 | 68.2124
84.9693 | 84.9674 | 849353 | 84.9334 | 849177 | 849158
84.9999 | 84.9981 | 84.9999 | 84.9981 | 85.0000 | 84.9981
85.0000 | 84.9981 | 85.0000 | 84.9981 | 85.0000 | 84.9981
85.2046 | 85.2026 | 85.1686 | 85.1666 | 85.1581 | 85.1562

Table 4: Summary of the coupled natural frequencies - panel at positions 1, 2 and 3-

Natural frequencies: F, - coupled freq; Fy. - coupled damped frequencies.;
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First 10 natural frequencies of model 2 -Panel dimension(1 x Dm”

Fai Fac1 Fa Fae Fes Fycs
(Hz) (Hz) (Hz) (1z) (Hz) (Hz)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
334195 | 33.4190 | 33.5849 | 33.5838 | 33.7592 | 33.7575
38.0269 | 38.0235 | 38.1341 | 38.1313 | 37.7291 | 37.7268
68.0651 | 68.0634 | 68.0024 | 68.0008 | 68.0022 | 68.0006
84.9361 | 84.9432 | 84.8567 | 84.8686 | 84.9364 | 84.9434
849639 | 84.9673 | 84.8977 | 84.8951 | 84.9642 | 84.9675
85.0000 | 84.9845 | 85.0000 | 84.9836 | 84.9999 | 84.9846
35.0000 | 84.9998 | 85.0000 | 85.0055 | 84.9999 | 84.9998
854459 | 85.4393 | 85.2729 | 85.2628 | 854513 | 85.4448
91.4461 | 91.4444 | 913872 | 91.3855 | 91.5051 | 91.5031

Table 5:

Summary of the coupled natural frequencies - panel at positions 1, 3, and 5 -

Natural frequencies: F, - coupled freq.; Fy. - coupled damped freq.;
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8 Figures
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9 Appendix - List of symbols

¢, - ambient (equilibrium) speed of sound;

p(zy,0) - Pressure over the panel surface;

k, - tracc wavelength of the panel at the z direction;

ky - trace wavelength of the panel at the y direction;

ki, - trace wavelength of free-bending waves propagating in a infinite panel;
k,r - trace wavelength of the panel in vacuo;

w - normal displacement of the panel surface;

Ca1p - geometrical coupling between the source room and the panel;

Cy2p - geometrical coupling between the receiving room and the panel;

F,® - generalized force exerted on the p™ plate mode by the n'™ acoustic mode of the
receiving room;

G(r | r,) - Green’s Function — solution to equation (2.14);

P,JR - receiving room modal pressure;

Q, - generalized volume velocity; see equation (3.3);

Z. - real specific acoustic impedance; see equation (3.5);

oo - constant diffuse absorption coefficient;

Bps Bny - Modal damping parameter of the panel and of the acoustic space respectively;
Oy » Oy - function basis for the eigenfunctions of a simply-supported plate;

M - Internal loss factor;

po - density of air (equilibrium};

1 - transmission efficiency — see equation (2.1);

o - forced angular frequency;

W, - function basis for the mode shapes of an acoustic volume boundary by rigid walls;
[I{w) - Power radiated into a half-space due to the plate vibration in the frequency domain;
V - Laplace’s operator;

®,1.2 - Potential velocity function corresponding to the source and receiving rooms;
A, - Generalized modal mass for the panel;

A, - Generalized modal mass for the the acoustic volume;
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