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Abstract 

The tuning of a dynamic vibration absorber is considered such that either the kinetic 

energy of the host structure is minimised or the power dissipation within the absorber 

is maximised.  If the host structure is approximated as a lightly damped, single degree 

of freedom, system, simple expressions are obtained for the optimal ratio of the 

absorber natural frequency to the host natural frequency and optimal damping ratio of 

the absorber.  These optimal values are shown to be the same whether the kinetic 

energy of the host structure is minimised or if the power dissipation of the absorber is 

maximised. 

 



1. Introduction 

Dynamic vibration absorbers are single degree of freedom systems that are attached to 

a host structure to control its motion [1]. Such devices were originally patented in 

1911 [2]. They are widely used to control the vibration of civil [3-5], marine [6] and 

aerospace [7-9] structures and can operate in different ways depending on the 

application. The first way of operating such a device aims to suppress the vibration 

only at a particular forcing frequency, in which case the devices natural frequency is 

tuned to this excitation frequency. The damping of the device should also be as low as 

possible in this case, so that it presents the greatest impedance to the host structure at 

the operating frequency. The device is then often known as a “vibration neutraliser”, 

and considerable ingenuity has been put into tuning the natural frequency of the 

device to track variations in the excitation frequency [4, 7, 10]. 

Alternatively the device can be used to attenuate the vibration due to a particular mode 

of the structure over a range of frequencies, when it is sometimes referred to as a 

“tuned mass damper”. The optimum tuning of the natural frequency and damping ratio 

of the device then become less obvious and depend on exactly how the optimisation 

criterion is defined. The selected mode of the host structure is generally modelled as a 

single degree of freedom system for this optimisation, often without any inherent 

damping. 

A survey of tuning criterion for dynamic vibration absorbers when used as tuned mass 

dampers has been presented by Asami [11], and some of the results from this paper are 

presented in Table 1.  The original optimisation criterion used by Omondroyd and Den 

Hartog 1928 [12] was that the magnitude of the displacement was equal at the two 

peaks in the coupled displacement response after the device has been attached.  This is 

also known as mini-max or H∞ optimisation.  Another optimisation criterion would be 

to minimise the mean square displacement of the host structure when excited by a 

random force of uniform power spectral density, as first proposed by Crandall and 

Mark in 1963 [13] and also now known as H2 optimisation.  A third possibility is to 

adjust the natural frequency and damping of the device such that the poles of the 

overall system have the greatest negative value, so that the transient response decays as 

quickly as possible.  Asami et al. [11] attribute this result in Table 1 to Yamaguchi in 

1988 [14], although the same criterion was also considered by Miller and Crawley in 
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1985 [15]. Krenk in 2005 [16] proposed a further method to tune the parameters of a 

DVA. He tuned the frequency ratio of the two decoupled oscillators using the same 

criterion proposed by Omondroyd and den Hartog [12] and proposed a new criterion 

for the optimal damping ratio. The damping ratio was chosen by simultaneously 

minimising the displacement of the main mass and the relative displacement of the two 

masses calculated at the natural frequency of the system when the damper was blocked. 

He also demonstrate that for the frequency tuning proposed by Omondroyd and den 

Hartog [12], the complex locus of the natural frequencies has a bifurcation point 

corresponding to the maximum damping of the two modes. For lower damping ratio the 

two modes have the same modal damping. Warburton in 1982 [17] proposed the 

minimisation of the frequency averaged kinetic energy of the host structure as a tuning 

criterion. 

In this paper we consider a further criterion on which to optimise a dynamic vibration 

absorber based on the maximisation of the power dissipated by the absorber. It is found 

for a damped host structure that the maximisation of the power absorbed by the damper 

corresponds to the minimisation of the kinetic energy of the host structure. 

The natural frequency of the tuned mass absorber is generally not too difficult to design 

since the stiffness can be specified. It may be more difficult to tune the damping ratio, 

however, particularly if the damping mechanism is level dependant. It may be possible 

to measure the power dissipated in this damper, however, in which case the results 

below demonstrate that maximising this power dissipation will lead to the same tuning 

result as minimising the kinetic energy of a lightly damped host structure. 

2. Analysis 

The dynamic vibration absorber (DVA) is a passive vibration control device which is 

attached to a vibrating host structure often called primary structure. A single mode of 

the structure is often modelled as a single degree of freedom primary system, which is 

shown with the DVA in Figure 1 where m1 and m2 are the masses k1 and k2 are the 

stiffness values and c1 and c2 the mechanical damping values of the primary system 

and the DVA respectively.  The primary system is subjected to a random excitation fp, 

which is assumed to have a flat power spectral density and u1 and u2 are the velocities 

of mass m1 and m2. 
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Figure 1: Scheme of the SDOF system with the DVA 

The steady state response of the system can be expressed in terms of the five 

dimensionless parameters defined by: 

� = ��/�� : mass ratio ν = 	��/��: natural frequency ratio � = �/��: forced frequency ratio �� = ��/(2����) : primary damping �� = ��/(2����) : secondary damping 

(1) 

where  

�� = ���/�� : natural frequency of the host / primary system 

�� = ���/�� : natural frequency of the DVA 

(2) 

Many way of tuning the natural frequencies of the two systems and optimal damping 

of the DVA have been proposed with the scope of reducing the vibration of the 

primary system. A summary of various type of optimisations when the primary 

system is undamped (�� = 0) are summarised in Table 1. 
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Table 1: optimisation criteria of the dynamic vibration absorber on a lightly damped 

SDOF system 

 
Optimisation 

criterion 
Performance index Objective Proposed by: Optimal parameters 

1 
�� 

Optimisation 
���� = !"�"#$!��  

Minimise the 

maximum 

displacement of 

the primary mass 

Ormondroyd 

& Den Hrtong 

1928 [12] 

�%&' = ( 3�8(1 + �) 
�%&' = 11 + � 

2 

�� 

 Optimisation 

of the mean 

squared 

displacement 

,� = -["��]01��/��� 

Minimise the total 

displacement of 

the primary mass 

over all frequency 

Iwata 1982 

[18], 

Warburton 

1982 [17]  

�%&' = ( �(4 + 3�)8(1 + �)(2 + �) 
�%&' = 11 + �(2 + �2  

3 
Stability 

Maximisation 
Λ = −max8(Re[;8]) Minimise the 

transient vibration 

of the system  

Yamaguchi 

1988 [14], 

Millers et 

al.1985 [15] 

�%&' = ( �1 + � 

�%&' = 11 + � 

4 

�� 

Minimisation 

of relative 

displacement 

���� = !"�"#$!��  

���� = !"� − "�"#$ !��  

Minimisation of 

displacement  of 

the main mass and 

relative 

displacement   

Krenk 2005 

[16] 

�%&' = ( �2(1 + �) 
�%&' = 11 + � 

5 

�� 

Minimisation 

of kinetic 

energy 

,� = -["<��]2=01��/�� 

Minimise the total 

kinetic energy of 

the primary mass 

over all 

frequencies 

Warburton 

1982 [17] 

�%&' = √�2  

�%&' = 1�1 + � 

6 

�� 

Maximisation 

of the 

absorbed 

power 

,? = ��-[|"<� − "<�|�]2=01��/��  

Minimise the total 

kinetic energy of 

the primary mass 

over all 

frequencies 

This study 

�%&' = √�2  

�%&' = 1�1 + � 

 

The equation of motion of the system shown in Figure 1 can be written in the matrix 

form as: 

ABC (D) + EB< (D) + FB(D) = G(D)    (3) 

Where M is the mass matrix, K is the stiffness matrix and C is the damping 

matrix given by: 

A = H�� 00 ��I,  F = H�� + �� −��−�� �� I,  E = J�� + �� −��−�� �� K,    (4) 

B(D) = ["�(D) "�(D)]L is the column vector containing the displacements of 

the two masses x1 and x2 and G(D) = [M&(D) 0]L is the column vector of 

primary excitation. 
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Assuming the excitation to be harmonic for the time being and expressing the 

force and the steady-state response in exponential form, equation (3) 

becomes: 

N(j�)P(j�) = Q(j�)   (5) 

where  

N(j�) = −��A+ j�E + F   (6) 

is the dynamic stiffness matrix. The solution of equation (5) can be obtained 

as: 

P(j�) = NR�(j�)Q(j�) (7) 

Integrating equation (7) to obtain the velocities yields: 

S(j�) = T(j�)Q(j�) (8) 

where	S(U�) 	= j�P(j�) and T(j�) 	= j�NR�(j�)  is the mobility matrix. 

Using the expression of M, K and C of equation (4) the velocity per unit 

input force of the two masses is given by: 

V��(U�) = u�f& =
= U��� − c��� − Z���[���� + Uc���� + Zc���� − c�c��� − ������ − ������ − ������ − Uc����[ −Uc����[ − Zc����[ +�����\

 

V��(U�) = u�f& =
= U��� − c������� + Uc���� + Zc���� − c�c��� − ������ − ������ − ������ − Uc����[ −Uc����[ − Zc����[ +�����\

 

(9) 

 

 

 

 (10) 

The five dimensionless coefficients defined in equations (1) and (2) can be written as: 

� = ��R���   

ν = 	���/���R�/���R�/����/� 

� = ����/���R�/� 

�� = 2R�����R�/���R�/� 

�� = 2R�����R�/���R�/�  

(11) 

and thus a generic dimensionless term can be written as: 

]ν^�_�`��a��1 = 2RaR1��̂/�b_/�R`R1/���R^/�R_/�R1/���R^/�b`R_/���̂ /�Ra/���a��1�_ (12) 
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Each of the coefficient in equations (9) and (10) can be expressed in non dimensional 

form by setting each of them equal to equation (12) and solving for the parameters a, 

b, c, d, e, f, so that equation (9) and (10) can be written as: 

Γ = �����Y��(U�) = ef + (U�)e� + (U�)�e� + (U�)[e[�f + (U�)�� + (U�)��� + (U�)[�[ + (U�)\�\ 

Θ = �����Y��(U�) = hf + (U�)h� + (U�)�h� + (U�)[h[�f + (U�)�� + (U�)��� + (U�)[�[ + (U�)\�\ 

(13) 

 

 (14) 

where 

�f = μ�� �� = 2���� + 2����� �� = μ�� + μ + μ��� + 4������ �[ = 2���� + 2����� + 2��� �\ = � 

ef = 0 e� = μ�� e� = 2���� e[ = μ 

 

hf = 0 h� = μ�� h� = 2���� h[ = 0 

 

3. Tuning the dynamic vibration absorber 

3.1.  Definition of the performance criteria 

If the aim of the DVA is to minimise the integral of the kinetic energy of the primary 

mass calculated over the frequency-band ±∞, the performance index to be minimised 

can be defined by: 

,k = ��-[|u�|�]2=0l��/��  (15) 

where E[ ] denotes the expectation value. The performance index Ik represents the 

ratio of the kinetic energy of the primary system to the excitation force with a uniform 

spectrum density 0l(�) . The unit of 0l(�) is N
2
s/rad. The constant 2=��/��  is 

introduced to ensure that the performance index is dimensionless. The mean squared 

value of the velocity of the primary mass can be written as: 

-[|u�|�] = 0l������m |Γ|�b�
R� d� (16) 

Substituting equation (16) in equation (15) yields: 

,k = 12=m |Γ|�b�
R� d� (17) 

Thus, substituting equation (13) in (17) yields: 

,k = 12πm p ef + (U�)e� + (U�)�e� + (U�)[e[�f + (U�)�� + (U�)��� + (U�)[�[ + (U�)\�\p
� dλb�

R�  (18) 

Equation (18) can be integrated using the formula in reference [19] leading to: 
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,k = ��(4���(�[ + �) + ��[) + ��(4����� + (� + 1)�\ − 2�� + 1) + 4�������4(���(4���((� + 1)�[ + �) + ��[) + ����(4���(� + 1)�� + (� + 1)��\ − 2�� + 1)+����� + 4����[��)
 (19) 

On the other end the power absorbed by the DVA is the power dissipated by the 

damper c2 and so the absorbed power can be written as:    

r�^#(�) = 12Resft∗(j�)[u�(j�) − u�(j�)]v (20) 

Where * denotes complex conjugate and the force ft  is the force produced by the 

damper given by: 

ft(j�) = ��(u�(j�) − u�(j�)) (21) 

Substituting equation (21) in (20) the absorbed power becomes: 

r�^#(�) = 12 ��|u�(j�) − u�(j�)|� (22) 

In this case the non-dimensional performance index is defined by: 

,& = ��-[|u� − u�|�]20l��/��  (23) 

which represents the ratio of power absorbed by the DVA to that generated by 

excitation force with a spectrum density Sf acting on a damper of value ��/��. The 

mean squared value of the relative velocity times the mechanical damping c2 can be 

expressed as follow: 

��-[(w� − w�)�] = 0l���� 2���� m |Γ − Θ|�x�b�
R�  (24) 

Thus the performance index becomes: 

,& = ����m p yf + (U�)y� + (U�)�y� + (U�)[y[�f + (U�)�� + (U�)��� + (U�)[�[ + (U�)\�\p
� x�b�

R�  (25) 

where  

yf = �f − ef = 0 y� = �� − e� = 0 y� = �� − e� = 0 y[ = �[ − e[ = μ 

The integral over the frequency band between ±∞ of equation (25) can be calculated 

using the expression given in reference [19], leading to: 

,? = =(��μν(�� + 4��ζ��ν + 4ζ��ζ��ν� + ��(1 + μ)ν[))2(���(4���((� + 1)�[ + �) + ��[) + ����(4���(� + 1)�� + (� + 1)��\ − 2�� + 1)+����� + 4����[��)
 (26) 

Although the denominators are the same in equations (19) and (26), the dependence of 

their numerators on �� and � is clearly different. 
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3.2. Minimisation of the total kinetic energy and maximisation of the power 

absorbed 

In order to minimise the total kinetic energy of the primary mass m1, the following 

conditions have to be satisfied: 

z{
|					

},k}�� = 0
},k}� = 0 (27) 

while to maximise the total power absorbed by the DVA the following conditions 

have to be satisfy: 

z{
|					

},&}�� = 0
},&}� = 0 (28) 

Differentiating the performance index Ik expressed in equation (19) with respect to ζ� 

and ν, and setting these equal to zero, yields a pair of simultaneous equations: 

−��[(����(� + 1)�~ + ���(4�����(4����� + (2� − 3)�� + 2) + (� + 1)�\ − 2�� + 1)+ 2������[(4����� + 1) + 4(4��� − 1)��\�� + 8����[�(4����� − 2��+ 1))] = 0 

 −���[(����(� + 1)�~ + ���(4�����(4����� + (2� + 1)�� + 2) − 3(� + 1)�\ + 2�� + 1)+ 2�����[(4���(� + 1)�� − 2(� + 1)�� + � + 2) + 4(4��� − 1)��\��+ 8����[�(4����� − �� + 1))] = 0 

(29a) 

 

 

 

(29b) 

Following the same procedure, the partial derivates of the performance index Ip 

expressed in equation (26) are given by: 

=����[����(� + 1)�~ + ���(4�����(4����� + (2� − 3)�� + 2) + (� + 1)�\ − 2�� + 1)+ 2������[(4����� + 1) + 4(4��� − 1)��\��+ 8����[�(4����� − 2�� + 1)] = 0 

 ��μν[(����(� + 1)�~ + ���(4�����(4����� + (2� + 1)�� + 2) − 3(� + 1)�\ + 2�� + 1)+ 2�����[(4���(� + 1)�� − 2(� + 1)�� + � + 2) + 4(4��� − 1)��\��+ 8����[�(4����� − �� + 1))] = 0 

 

 

(30a) 

 

 

(30b) 

 

Simultaneous equation (29) and (30) are both satisfied for ζ� = 0  and ν = 0 

corresponding to maximising Ik and Ip. The other solutions can be found setting to 

zero the terms in squared brackets. If ζ� ≠ 0 the term in square brackets in equation 

(29a) is equal to the term in square brackets in equation (30a) and the term in square 
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brackets in equation (29b) is equal to the term in square brackets in equation (30b) 

which means that minimum of the total kinetic energy and the maximum of the total 

power absorbed correspond.  

If ζ� is equal zero the primary system is undamped. Equations (29a) and (29b) for },k/}�� and  },k/}� then reduce to: 

−1 + (2 + 4ζ��)ν� − (1 + μ)ν\ = 0 −1 + (−2 + 4ζ��)ν� + 3(1 + μ)ν\ = 0 

(31) 

Solving the two equations simultaneously the two positive real optimal values of  ��%&' and �%&' are obtained as: 

z�{
�|					 ��%&' = √�2�%&' = 1�1 + �

 (32) 

In this case the performance index Ip, however, becomes equal to =/2 if �� is exactly 

zero. The absorbed power is then independent on ��  and ν , as can be seen from 

equation (30a) and equation (30b), since they both are proportional to ζ�. 

4.  Comparison of tuning strategies 

Provided that ζ� has a very small value thus singular condition will not occur, these 

optimum values of �� and ν will be the same for maximising power absorption as ζ� 

tends to zero. Figure 2 shows the performance index Ip as function of �� when ν is 

equal ν%&' (top plot) and Ip as function of ν when �� is equal ζ�%&' (bottom plot) for 

different values of the primary damping ration �� . The plot shows that when ��  is 

equal zero the absorbed power is constant. As �� is increased the absorbed power has 

a maximum. 
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Figure 2: Ip as function of �� when ν = �%&' (top plot) and Ip as function of ν  when �� = ��%&' (bottom plot) for μ = 0.1. 

 

Figure 3: Ik as function of �� when ν = �%&' (top plot) and Ik as function of ν  when �� = ��%&' (bottom plot) for μ = 0.1. 

Figure 3 shows the performance index Ik as function of �� when ν is equal ν%&' (top 

plot) and Ik as function of ν when �� is equal ζ�%&' (bottom plot) for different values of 

the primary damping ration ��. The plot shows that Ik is minimised for a single value 

of �� and ν. As �� is increased the gradient of Ik around the minimum decreases. 

Figure 4(a) and (b) show the PSD of the velocity and displacement respectively of the 

primary mass in dimensionless form for five different strategies of tuning the DVA. In 

Figure 4(a) the area under the curve is minimised when the minimisation of kinetic 

energy is implemented. Figure 4(b) show that the �� optimisation set the two peaks 

at the minimum magnitude and the area under the curve is minimised when the H2 
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optimisation is implemented. The minimisation stability optimisation is not designed 

to minimise the steady state response but only the transient response. 

(a) (b)

Figure 4: Optimal PSD a) of the dimensionless velocity and b) the displacement of 

the primary mass in dimensionless form when the four different criteria are 

implemented (ζ� = 0, μ = 0.1) 

Figure 5 and Figure 6 show the optimal values of the frequency ratio and the damping 

ratio as function of the mass ratio for five different tuning strategies. The five tuning 

strategies give similar optimal values when μ is small. For grater values of μ  the 

optimal conditions diverges. It is interesting to notice that for the minimisation of 

kinetic energy the optimal damping always increases for increasing values of μ. For 

all the other strategies the optimal damping ratio converges to a finite value. 

 

Figure 5: Optimal frequency ratio ν as function of the mass ratio µ for the 5 different 

tuning strategies 
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Figure 6: Optimal damping ratio ζ� as function of the mass ratio µ for the 5 different 

tuning strategies 

 

Figure 7: Performance index Ik as function of the mass ratio µ for the 5 different 

tuning strategies 

Figure 7 shows the performance index Ik as function of the mass ratio μ when the 

optimal values for the different strategies are implemented. The curves in Figure 7 are 

obtained substituting the optimal value in Table 1 in equation (19). The plot shows 

that the lowest curve is the one obtained when the DVA is set to minimise the kinetic 

energy of the primary mass as one would expect. 

5.  Effect of damping in the host structures 

It has not been possible to solve equations (29a) and (30a) when ζ� ≠ 0 in order to 

find analytical expression for ��%&' and ν%&'. 
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In this case only an approximate solution of the location of the minimum of the total 

kinetic energy and thus the maximum of the total absorbed power can be found using 

the perturbation method. First of all it is assumed that the primary damping �� is so 

small that it is regarded as a perturbation. To emphasize that �� is small a new symbol � instead of the parameter �� is introduced: 

�� = � (33) 

Next, the solutions of equation (29a) and (30a) (which it has been shown to be the 

same if ζ� ≠ 0) are assumed in the form of a power series of �: 

� = �f + ��� + ����+. .. � = ��f + ���� + ����� +. .. (34) 

Finally, equations (34) is substituted into equations (29a), and collect terms of like 

powers of �  and equate them to zero (starting with the constant terms, the terms 

containing �, the terms containing ��, and so on) so that the equation is satisfied for 

all values of � . As a result, we have a series of equations from which we can 

determinate the unknown coefficients in equation (34) successively. The zero-order 

approximation leads to the result where �f  and �f  are the optimal values found in 

equations (32) when �� = 0. Equating first order terms to zero, yields to: 

]�ζ�� + ]�ν� + ][ = 0 ��ζ�� + ��ν� + �[ = 0 
(35) 

where 

]� = 2 + 2μ 

]� = �μ(1 + μ) + μ[ �⁄ �1 + μ 

][ = −2μ�1 + μ 

�� = 2�μ(1 + μ) 
�� = 4 + 5μ + μ� 

�[ = −2�μ − 2μ[ �⁄  

In equations (35) the values of νf and ζ�f have been already substituted. The solution 

of equitation (35) is given by:  

ν� = √μ2 + 2μ 

ζ�� = 3μ4�1 + μ 

(36) 

The first order approximate solution of equations (29a) and (30a) is therefore given by: 

υ%&'� = 1�1 + � + �� √μ2 + 2μ 

ζ�%&'� = √�2 + �� 3μ4�1 + μ 

(37) 
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Figure 8 a and b show the performance indexes Ik and Ip as function of the damping 

ratio �� and the frequency ratio � respectively when �� = 0.2 and � = 0.1. Figure 8 

shows that Ik has a global minimum which corresponds to the global maximum of Ip 

represented by ○.  The symbol  × in Figure 8a and b mark the position of the optimum 

conditions when ζ� = 0 while □ mark the first order approximate optimum given by 

equation (37). 

 

Figure 8: a) Ik and b) Ip when �� = 0.2 and � = 0.1. The solutions given by equations 

(32) are shown as ×, the approximate solutions given in equation (37) are shown as □, 

and the true minimum and maximum are shown as ○ 
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6. Discussion and Conclusions 

It is shown that even if the damping of the host structure is not very light, the ratio of 

natural frequencies and absorber damping ratio that maximise the power dissipation in 

the absorber are the same as those that minimise the kinetic energy of the host structure.  

This may provide a method of self-tuning such a dynamic vibration absorber.  If the 

power dissipation in the absorber could be measured and the disturbance was stationary, 

a tuning strategy might be used that is similar to that used for feedback controllers by 

Zilletti et al. (2010) [20].  This might be important if the damping mechanism of the 

absorber or the host structure were level dependant, for example, when subject to 

stationary disturbances. 

One method of measuring the power dissipation within the absorber may be to measure 

its temperature.  If the tuned vibration absorber was implemented with an efficient 

inertial electromagnetic actuator, most of the mechanical power dissipation could then 

be arranged to be the electrical power generated in a tuneable shunting impedance. It 

may be possible to use this power both to tune the absorber, by adjusting this electrical 

impedance, and also, using energy harvesting techniques, to power the electronic 

system used to implement the self-tuning. 
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Appendix A - Wolframe Mathematica programs 

In this appendix there are the Wolframe Mathematica scripts to verify equations: 

(9), (10), (13), (14), (19), (26), (29), (31), (30) and (32) 
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