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Perhaps the most familiar concepts when discussing acoustic scattering by bubbles are the reso-

nance frequency for bubble pulsation, the bubbles’ damping, and their scattering and extinction

cross-sections, all of which are used routinely in oceanography, sonochemistry, and biomedicine.

The apparent simplicity of these concepts is illusory: there exist multiple, sometimes contradictory

definitions for their components. This paper reviews expressions and definitions in the literature for

acoustical cross-sections, resonance frequencies, and damping factors of a spherically pulsating gas

bubble in an infinite liquid medium, deriving two expressions for “resonance frequency” that are

compared and reconciled with two others from the reviewed literature. In order to prevent errors,

care is needed by researchers when combining results from different publications that might have

used internally correct but mutually inconsistent definitions. Expressions are presented for acousti-

cal cross-sections associated with forced pulsations damped by liquid shear and (oft-neglected)

bulk or dilatational viscosities, gas thermal diffusivity, and acoustic re-radiation. The concept of a

dimensionless “damping coefficient” is unsuitable for radiation damping because different cross-

sections would require different functional forms for this parameter. Instead, terms based on the ra-

tio of bubble radius to acoustic wavelength are included explicitly in the cross-sections where

needed. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3628321]

PACS number(s): 43.20.Fn, 43.20.Ks, 43.25.Yw, 43.30.Jx [CCC] Pages: 3184–3208

I. INTRODUCTION

The concepts of scattering (rs), extinction (re) and

absorption (ra) cross-sections are widely used in the context

of a lightly damped spherical gas bubble pulsating linearly

in a liquid about an equilibrium radius R0, and in response to

a sound pressure field of circular frequency x.1–3 The scat-

tering and absorption cross-sections are defined, for a plane

wave incident on a single bubble, as the ratios of the scat-

tered and absorbed powers, respectively, to the incident in-

tensity. The extinction coefficient is the sum of the two and

is proportional to the rate of work done by the incident wave

on the bubble. The following equations are often quoted for

the scattering and extinction cross-sections of a bubble

whose resonance frequency is xres:

rs ¼
4pR2

0

x2
res=x

2 � 1
� �2þd2

(1)

re ¼
4pR2

0

x2
res=x

2 � 1
� �2þd2

d
xR0=c

; (2)

where c is the speed of sound in the liquid, and the total

dimensionless damping coefficient (d) is characterized as the

sum of contributions from acoustic re-radiation (drad), liquid

viscosity (dvis), and thermal dissipation in the gas (dth). This

might be generalized to cover a more general environment

at the bubble wall by including an additional term (dother),

applicable to marine sediments, contrast agents, foodstuffs,

etc.:

d ¼ drad þ dvis þ dth þ dother; (3)

where for the present purpose, dother¼ 0 is assumed, in keep-

ing with many studies of gas bubbles in simple liquids. Simi-

larly, in addition to these other sources of damping,

complications associated with stiffness,4 elastic properties of

bubble walls,5,6 inertia,7,8 multibubble effects,9 departures

from bubble sphericity,10 and the proximity of bounda-

ries,10,11 which result in departures from the simple model of

a single spherical gas bubble in an infinite body of water, are

neglected except where stated otherwise. Examples of such

complications include bubbles in tubes,8,12–14 pores,15,16 tis-

sue,17 gels,18 fish flesh,19–21 sediment,22,23 and skins of

methane hydrate24,25 or polymer or lipid domestic and clini-

cal products.26–28 The absorption cross-section follows from

the definitions as

ra ¼ re � rs: (4)
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The apparent simplicity and familiarity of this scheme, intro-

duced by the benchmark publications of Medwin in the

1970s29,30 (and popularized, for example, by Ref. 31), belies

its potential for misinterpretation. The first indication of a

problem comes from the realization that there are two

choices for the dimensionless radiation damping compo-

nent,32 and the further realization that the answer to the

question “which one is correct?” depends on how other

terms (such as the bubble pulsation resonance frequency,

xres) are defined.33 Specifically, substitution of (3) in (1) and

(2) for applications requiring both creates inconsistency at

best and large errors at worst. Such applications include the

widely used standard technique of characterizing the bubbles

in a material by comparing the measured scattering and

attenuation from a sample and relating them to the theoreti-

cal cross-sections rs and re, typically by assuming that the

ratio rs/re equals the ratio drad/d. This erroneous approach

relies on expressing (2) [using (3)] in the form

re ¼
4pR2

0

ðx2
res=x

2 � 1Þ2 þ ðdrad þ dvis þ dth þ dotherÞ2

� ðdrad þ dvis þ dth þ dotherÞ
drad

; (5)

which, unless (5) is used to define xres, is untenable since

otherwise there is no single expression for drad that leads to

the correct expression for re when used in this equation.33

This misconception has been widespread for three decades,

with (5) adopted following the pioneering (and fruitful) com-

parison of scattering and extinction cross-sections through

comparison of (5) with (1).34,35 In many environments, bub-

bles do not conform to the idealized assumptions of free

non-interacting spherical bubbles with clean walls far from

boundaries that are inherent in many formulations. These

include bubbles rising from the seafloor,36,37 bubbles in ma-

rine sediments,22,38 and bubbles in food,39 industrial or pe-

trochemical products.40 If discrepancies between the

measured bubble properties (scatter, attenuation, damping,

etc.) and the predictions of idealized theories (for rs, re,

xres, and d, etc.), are attributed to asphericity, boundaries, or

dopants on the bubble wall, etc., and indeed the values of ad-

justable parameters (e.g., for dother) in a model are estimated

by fitting its predictions to measured data (as has been done

with contrast agents26,41), it is important that the baseline

ideal-bubble predictions are not based on misconceptions

such as are found in (5).

It is shown in Sec. IV A that use in (3) of the expression

drad¼ (xR0/c)(x2
res/x

2), which is the correct form for use

with Weston’s scattering model,19,42 and which therefore

gives the correct result for rs if substituted in (1), neverthe-

less introduces an erroneous factor in re that increases as (x/

xres)
2 at frequencies above the bubble resonance if substi-

tuted in (2). The maximum size of this error (see Sec. II E 1)

is quickly established by comparing the highest ensonifica-

tion frequency with the resonance of the largest bubble that

could be present in the sample. Such pitfalls are to be found

in even the most familiar concepts used when discussing the

scattering of sound by a bubble (the resonance frequency for

bubble pulsation, the damping of the bubble, and the scatter-

ing and extinction acoustic cross-sections). The parameter d
is referred to by some authors as the “damping constant.”

The term “damping coefficient” is adopted here, reserving

“damping constant” (or “damping factor” if a function of fre-

quency),43 denoted b, to mean half of the coefficient of the

dR/dt term in the equation of motion describing the time

evolution of the bubble radius R(t), as for example in Eq.

(62) of Sec. II C.

Linear models of bubble damping and cross-sections are

key to measuring oceanic bubble size distributions and pre-

dicting their acoustic effects, for example, by the use of

acoustical resonators,44 backscatter,45 and forward

propagation,46–48 with applications involving sonar

performance,49–51 wake acoustics,52,53 and surf zone acous-

tics.54,55 Furthermore, these concepts are not limited to

ocean sound. They are routinely cited in dozens of bubble

acoustics papers each year, covering fields as diverse as bio-

medical ultrasonics,4,56,57 sonochemistry,58 metamaterials,59

and the use of ultrasound for industries involving liquid

ceramics,60 metals,61 and foodstuffs.39

The purposes of this paper are: to review theoretical

scattering models, with particular attention to the definitions

of the damping coefficient and resonance frequency and the

implications of these definitions; to outline the levels of

understanding and precision required when defining and

applying these terms as foundations for theoretical develop-

ment or to interpret experimental measurements; and to indi-

cate the sort of errors that can occur if insufficient care is

taken. Section II summarizes the various expressions for

cross-section, damping factor, and resonance frequency

encountered in the literature. Several different and appa-

rently contradictory expressions for the resonance frequency

are encountered. The discrepancies in these are resolved in

Sec. III by showing that different authors adopt the term

“resonance frequency” to mean one of several conceptually

different quantities, with potential for confusion created by

them all being given the same name. Conclusions are listed

in Sec. IV in the form of expressions for the various cross-

sections, damping factors, and resonance frequencies.

II. SURVEY OF BUBBLE SCATTERING MODELS

This survey is ordered into three “threads,” referred to

as the “Wildt” thread, the “Devin” thread, and a third

“nonlinear” thread. All three threads assume steady state pul-

sations of spherical bubbles at low frequency, such that the

wavelength in the liquid medium is large compared with the

bubble size (xR0/c � 1), and the first two threads assume

further that the bubbles undergo sufficiently small pulsations

to warrant linear descriptions. The criterion for inclusion of

a paper in this review, which covers the period 1945 to 2010,

is that it should contain either a novel expression for the

scattering cross-section (rs), extinction cross-section (re),

resonance frequency (xres) or damping factor (b), or a novel

equation of motion that permits calculation of one or more

of these. Bubble size, normalized relative to various different

length scales, plays an important part in determining

its response to sound. These length scales are described in

Sec. II A, followed by the three threads in Secs. II B, II C,
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and II D, and in Sec. II E by a summary of the most impor-

tant equations.

The two linear threads (named after the originator of the

first publication in each, Wildt and Devin), each with its own

derivation for the scattering cross-section, have existed sepa-

rately for more than 30 years (the Devin thread is deemed to

have come into existence on publication of Ref. 29), and the

parallel existence of two unreconciled threads has infused

the literature with many opportunities for misunderstand-

ings. This survey explores these threads and shows how the

two derivations are reconciled.

The main focus of the present review, apart from the

cross-sections themselves, is on the resonance frequency and

the frequency dependence of the viscous, thermal, and

acoustic damping terms.

A. Bubble size and resonance

1. Bubble size regimes

The purpose of this section is to provide a framework

for clarifying otherwise ambiguous statements about the

properties of “small” and “large” bubbles. For example, for

each of the three explicitly identified damping terms of (3),

there exists a natural length scale on which the size of the

bubble can be measured. These length scales are: the acous-

tic wavelength

lacðxÞ ¼
2pc

x
; (6)

a viscous length scale proportional to the square root of the

shear viscosity coefficient, gS, and equal to the thickness that

would characterize the microstreaming boundary layer were

microstreaming to occur1,62–64

lvis xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2gS

qliqx

s
; (7)

where qliq is the equilibrium mass density of the liquid; and

the thermal diffusion length

lth x;R0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DPðR0Þ

2x

r
(8)

equal to the thickness of the thermal boundary layer, which

is proportional to the square root of DP, the thermal diffusiv-

ity of the gas inside the bubble. The diffusivity is defined in

terms of the equilibrium gas density qgas, its thermal conduc-

tivity Kgas and its specific heat capacity at constant pressure

CP as65

DPðR0Þ �
Kgas

qgasðR0ÞCP

; (9)

where the dependence on equilibrium bubble radius is

caused by the influence of surface tension on the gas pres-

sure (see p. 187 of Ref. 66). Some publications (notably

Refs. 19, 67, and 68) define the diffusivity in terms of the

specific heat at constant volume instead of at constant pres-

sure, i.e.,

DV �
Kgas

qgasCP=c
; (10)

where c is the specific heat ratio. However, Prosperetti now

prefers the more common definition (9) because factors of

DV/c simplify to DP (A. Prosperetti, personal communica-

tion, October 2010). The definition of (9) is adopted for use

throughout the present paper.

A bubble can be small or large in any of the acoustical,

thermal or viscous senses, independently of the others,

although attention is restricted throughout this review to

acoustically small bubbles (R0 � lac). Except where stated

otherwise, the bubble radius is also assumed large compared

to 4p l2vis=lac.

Further to these, an additional length scale of relevance,

denoted RLaplace and referred to henceforth as the “Laplace

radius,” is the bubble radius at which the Laplace pressure

2 s/R0, where s is the surface tension, is equal to the equilib-

rium liquid pressure Pliq, i.e.,

RLaplace ¼ 2s=Pliq: (11)

Throughout this paper reference is made to calculations for a

“standard bubble,” that is, an air bubble in water at tempera-

ture 10 �C and under atmospheric pressure with s¼ 0.072

N/m. For such a bubble, the Laplace radius is approximately

equal to 1.42 lm.

2. The Minnaert frequency and the diffusion radius

The natural frequency of a bubble that is large on both

thermal and Laplace scales was derived by M. Minnaert in

his 1933 classic On Musical Air-Bubbles and the Sounds of
Running Water.69 This natural frequency, which is denoted

fM ¼ xM/2p, where

xM �
1

R0

ffiffiffiffiffiffiffiffiffiffiffiffi
3cPliq

qliq

s
; (12)

is referred to henceworth as the “Minnaert frequency,” and

is plotted vs bubble radius in Fig. 1. For a “standard bubble”

of radius between 30 nm and 300 lm, the Minnaert fre-

quency varies from about 100 MHz to 10 kHz. It differs

from the true natural frequency if one or more of the follow-

ing conditions are not met: R0 � lac (i.e., the bubbles are

“acoustically small”); R0 � 4p l2vis/lac, (i.e., the geometric

mean of bubble radius and acoustic wavelength is large com-

pared to the viscous boundary layer); R0� lth (i.e., the bub-

bles are “thermally large”); R0 � RLaplace (i.e., the Laplace

pressure is much less than the equilibrium pressure in the liq-

uid); b� x (the logarithmic decrement is small).

It is stressed that Fig. 1 does not plot the resonance fre-

quency of the bubble, but rather the output of (12) (Minnaert’s

formulation) and the adiabatic resonance frequency xad,

defined in (17) below and used in Fig. 2(b) as a normalizing

parameter to obtain dimensionless frequencies in different
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conditions, including those outside the range of conditions for

which xad approximates the resonance frequency.

It is useful to introduce one final length scale, the

“diffusion radius,” denoted RD, as the bubble radius for

which the thermal diffusion length evaluated at the Minnaert

frequency, and in the absence of surface tension, would be

equal to that radius. Using (8), (9), (12) and the ideal gas law

relating the gas density qgas to absolute temperature T, this

definition gives

RD ¼
KgaskBT

2mgasPliqCP

ffiffiffiffiffiffiffiffiffiffiffiffi
qliq

3cPliq

r
; (13)

where kB is Boltzmann’s constant and mgas the average mass

of a gas molecule. For an air bubble in water at atmospheric

pressure and temperature, the diffusion radius is approxi-

mately 0.5 lm, comparable in magnitude to the Laplace ra-

dius. The implications of this coincidence in order of

magnitude are considered in Sec. II A 3 e.

3. Effects of thermal bubble size on resonance
frequency

a. General case. It is useful to introduce the “thermal

diffusion ratio” X(x, R0), defined as the ratio of the bubble

radius to the thermal diffusion length

X x;R0ð Þ � R0

lth x;R0ð Þ : (14)

The general case (arbitrary value of X) is considered first,

followed by situations for large, intermediate and small X.
For an arbitrary thermal diffusion ratio, the resonance fre-

quency, denoted xres, is the value of x that satisfies the

equation67,68

c
x2

x2
M

¼ 1þ RLaplace

R0

� �
Re C xð Þ � RLaplace

3R0

; (15)

where C is the complex polytropic index,31,70 which takes

the form67,71,72

C xð Þ ¼ c

1� 1þ ið ÞX=2

tanh 1þ ið ÞX=2½ � � 1

� �
6i c� 1ð Þ

X2

: (16)

b. Thermally large bubble. For bubbles that are ther-

mally large at resonance, the resonance frequency is approxi-

mately equal to xad, referred to as the “adiabatic resonance

frequency,” and defined by73

xad � xM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RLaplace

R0

1� 1

3c

� �s
: (17)

The approximation xres 	 xad holds if the diffusion ratio at

resonance is large, i.e., if X(xres,R0) � 1. This condition is

approximately equivalent to Xad� 1, where

FIG. 1. (Color online) Minnaert requency fM¼xM/2p and adiabatic reso-

nance frequency fad¼xad/2p vs bubble radius for a standard bubble

(Pliq¼Patm) and for increased pressures of 10 Patm and 100 Patm.

FIG. 2. (Color online) Approximations to the resonance frequency for a

standard bubble, normalized by dividing (a) by the adiabatic resonance fre-

quency xad and (b) by the true resonance frequency xres. Individual curves

are xM:(12); xiso:(27); xMac
2 :(26); xres:(19), converged solution; xad: (17);

xad
1 :(21); xiso

1 :(28).
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Xad � X xad;R0ð Þ: (18)

c. Bubble of intermediate thermal size. To obtain an

expression for the resonance frequency of bubbles of inter-

mediate thermal size, in the sense that order 1/X corrections

are small but not negligible, one can write an iterative solu-

tion to (15) in the form

 
xres

N

xad

!2

¼ 1� 1�
Re C xres

N�1

� �
c

� �
�; (19)

where � is the following dimensionless parameter related to

the Laplace radius and specific heat ratio

� ¼ � R0ð Þ �
1þ RLaplace

R0

1þ RLaplace

R0
1� 1

3c

� � : (20)

The exact value of xres, defined as the solution to (15), is

obtained by repeated application of (19) until it converges.

This converged solution is plotted (as a ratio, relative to xad)

in Fig. 2(a) for a standard bubble. Also shown is the Min-

naert frequency, normalized in the same way. Other curves

are explained below.

A possible choice of seed in (19) is the adiabatic reso-

nance frequency, i.e., xres
0 ¼ xad, which, using xad

1 to denote

the resulting value of xres
1 after a single iteration, gives

xad
1

xad

� �2

¼ 1� 1� Re C xadð Þ
c

� �
�: (21)

The value of xad
1 is plotted in Fig. 2(b), normalized by xres.

The approximation xres 	 xad
1 is a good one, incurring an

error of less than 1% for a standard bubble with radius

exceeding 100 nm.

An approximation to (16) that is accurate for thermally

large bubbles (say X> 6, such that tanh [(1þ i)X/2] 	 1) is

C xð Þ 	 c

1þ 3ðc� 1Þ
X

� 3i c� 1ð Þ
X

1� 2

X

� � ; (22)

the real and imaginary parts of which are given by

ReC xð Þ
c

	
1þ3 c�1ð Þ

X

1þ6 c�1ð Þ
X

þ18 c�1ð Þ2

X2
1� 2

X
þ 2

X2

� � (23)

ImC xð Þ
c
	

3 c�1ð Þ
X

1� 2

X

� �

1þ6 c�1ð Þ
X

þ18 c�1ð Þ2

X2
1� 2

X
þ 2

X2

� � : (24)

Using this approximation, the iteration produces a Maclaurin

series in powers of 1/Xad. Specifically, using the expansion

1þ
3 c� 1ð Þ

X

1þ 6 c� 1ð Þ
X

þ 18 c� 1ð Þ2
X2

1� 2

X
þ 2

X2

� �

¼ 1� 3 c� 1ð Þ
X

þ O
1

X3

� �
(25)

and choosing xres
0 ¼ xad as seed in (19), the second iteration

yields

xres
2

xad

� �2

¼1�3 c�1ð Þ
Xad

�þ9 c�1ð Þ2

4X2
ad

�2þO
1

X3
ad

� �
: (26)

The approximation to xres
2 resulting from the sum of the first

three terms of (26), denoted xMac
2 , is plotted in Fig. 2(b).

d. Thermally small bubble. For a thermally small bub-

ble, satisfying R0 � lth(xres), i.e., one that pulsates isother-

mally at resonance, the resonance frequency is obtained by

putting C¼ 1 in (15), that is73

xiso �
xMffiffiffi

c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s

3PliqR0

s
; (27)

referred to as the “isothermal resonance frequency” and plot-

ted in Fig. 2(a). The approximation xres 	 xiso can be seen

to hold for a standard bubble of radius in the range 300

nm<R0< 3 lm, which corresponds approximately to X< 3.

A better approximation is obtained by use of xiso as seed in

(19), i.e., xres
0 ¼ xiso, which gives after one iteration

xiso
1

xad

� �2

¼ 1� 1� Re C xisoð Þ
c

	 

�: (28)

The error using the approximation xres 	 xiso
1 is less than

0.4% for a standard bubble with radius exceeding 30 nm.

e. Which resonance frequency? Given the various dif-

ferent curves plotted in Fig. 2, the question arises of which of

them is appropriate for any given bubble size or range of bubble

sizes. Repeated application of (19) provides a converged solu-

tion to (15) under any conditions (any value of X). The compli-

cation of an iterative method can be avoided if desired by use of

simple approximations, for example if the value of X is suffi-

ciently large (xMac
2 for X> 5) or sufficiently small (xiso for

X< 3). Alternatively, xiso
1 provides an excellent approximation

(error< 0.4%) for all sizes of standard bubble exceeding 30 nm.

Figure 3(a) shows the diffusion ratio at resonance for a

standard bubble and variants, demonstrating that truly iso-

thermal conditions at resonance are never reached for bub-

bles of air in water. The effect of surface tension in

perturbing both the gas pressure (which stands as proxy for

the oscillator stiffness74) and the thermal diffusion length,

decreases as the equilibrium pressure in the liquid increases,

since both are dependent on how large 2s/R0 is compared to

Pliq. Also plotted [Fig. 3(b)] is X(x, R0) evaluated at x¼xad

and x¼xiso, each normalized by dividing by X(xres,R0).
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Notice that lth is itself a function of R0, a feature that

becomes strong when the condition R0 � RLaplace no longer

holds [Refs. 66 (p. 187), 75]. This feature arises through the

effect of the Laplace pressure on DP in (8) and contradicts

the widely held belief that, as bubbles become smaller, their

behavior tends ever more closely toward isothermal. More

specifically, the coincidence in order of magnitude between

RLaplace and RD for a standard bubble (see Sec. II A 2)

ensures that once the bubble is small enough to cause a

strong departure from adiabatic behavior, the effect of the

Laplace pressure increases, meaning that the diffusion ratio

increases with decreasing bubble radius for small bubbles

(Fig. 3). Consequently a standard bubble can never reach the

isothermal limit (in the sense of X � 1) at resonance. This

will be important with the expected future development of

submicron bubble-based ultrasound contrast agents.75,76

B. Wildt thread

The detailed survey of bubble scattering models begins

here. The “Wildt” thread is the first of three and encom-

passes results from Refs. 19, 20, 67, 77, 78, and Eqs. (25)

and (58) from Ref. 33.

1. Wildt 1946

Compared with pre-Second World War knowledge, Ref.

77 shows an impressively detailed understanding of a diffi-

cult problem. Chapter 28 of that report, though anonymous,

is referred to here as “Wildt 1946” because it was edited by

R. Wildt (and published in 1946). Wildt 1946 considers a

plane pressure wave (pi) of amplitude A traveling

towardþ1 in the Cartesian x axis:

pi ¼ A exp ix t� x=cð Þ½ � (29)

and incident on a bubble at the origin, such that the scattered

field may be described by a divergent spherical pressure

wave (ps) whose amplitude is inversely proportional to dis-

tance r from the bubble center:

ps ¼ B=rð Þ exp ix t� r=cð Þ½ �: (30)

If (29) and (30) accurately represent the incident and scat-

tered waves (implying, for example, spherical symmetry and

an infinite uniform inviscid liquid) then the scattering cross-

section can be related to the normalized amplitude of the

scattered wave jB=Aj through the ratio of the scattered power

4pr2 jpsj2=(2qliqc) to the incident intensity jpij2=(2qliqc),

giving

rs ¼ 4pjB=Aj2: (31)

The ratio B=A is obtained through the following steps. First

Euler’s equation is applied to the scattered wave and the

result evaluated at the bubble wall, yielding an equation for

the volume velocity.79 A second equation for volume veloc-

ity is found by differentiating the ideal gas law with respect

to time. The two equations so derived are solved for the pres-

sure in the interior of the bubble, which is then matched to

the sum of incident and scattered pressures, evaluated at

the bubble wall. The resulting equation is then rearranged

for B/A, giving Wildt’s result

rs ¼
4pR2

0

x2
res=x

2 � 1
� �2þd2

Wildt

; (32)

where

dWildt 	 eþ x2
res

x2
bth þ

bvis

qliqce
; (33)

and e is the dimensionless frequency

e ¼ e xð Þ � xR0=c: (34)

Wildt’s scattering cross-section rs and damping coefficient

dWildt, calculated using (32) and (33), are plotted in Fig. 4

and Fig. 5(a), respectively. If the random error is not quanti-

fied, deviations of measured damping from predictions

FIG. 3. (Color online) (a) Diffusion ratio X(xres, R0) vs R0 evaluated for a

standard bubble and variants. Surface tension s is 0.072 N/m for the first

three curves in the legend, with pressure between Patm and 100 Patm as

shown. The final two curves show the effect of halving and doubling the sur-

face tension for Pliq/Patm¼ 1. (b) X/Xres vs R0 for a standard bubble.
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should not be attributed to it, and indeed careful quantifica-

tion of such errors shows that they can be much less than the

discrepancy (see for example Fig. 6 of Ref. 80). Hence there

is a more important source of discrepancy to consider. This

arises because the conditions of theory (a single spherical

bubble in an infinite body of liquid) are rarely realized in

practice: Fig. 5(b) shows that the apparent discrepancy

between the measured data points and the damping theory of

Devin (solid line) are due to the radiation damping departing

from its free field value as a result of the failure to achieve

free field conditions during the experiment, as predicted by

the dashed curve [Fig. 5(b)].81–83 This illustrates the follow-

ing more general point: The idealized conditions implied by

the simple bubble scattering models described in this review

(a single spherical bubbles in free field in an infinite body of

liquid) are extremely difficult to produce in a controlled

manner, making it necessary to understand departures from

these conditions for studying even the simplest real-world

scattering situations, for which a pre-requisite is a clear

understanding of the single free-field bubble theory itself.

The parameter bvis in (33) (denoted C1 by Wildt) is “a

constant measuring the effect of friction, which is assumed to

be proportional to the radial velocity dR/dt of the bubble.”77

The parameter bth (denoted b by Wildt) is introduced to take

into account the “phase shift between pressure and tempera-

ture on one hand, and volume and radial velocity of the bub-

ble on the other hand [by] inserting a complex factor 1 – ibth

in the right-hand side of [the equation relating the radial ve-

locity of the bubble wall to the rate of change of incident pres-

sure].”77 For the extinction cross-section, Wildt 1946 gives:

re ¼ rs 1þ 1

e
x2

res

x2
bth þ

bvis

qliqce

 !" #
: (35)

The relationships between the parameters bth and bvis used

by Wildt, and physical parameters such as shear viscosity gS

and thermal diffusivity (via the complex polytropic index)

are described in Sec. II E.

Wildt 1946 shows that for thermally large bubbles with

a negligible Laplace pressure, the resonance frequency is

equal to the Minnaert frequency, and states further that “For

very small bubbles, with radii less than [10 lm], surface ten-

sion becomes important and the compressions and expan-

sions of the gas in the bubble become isothermal instead of

adiabatic.” He also states that under these conditions xres is

given by xiso, attributing this theoretical result to Spitzer,84

although this assertion neglects the effect of surface tension

on thermal diffusivity, requiring that the bubbles concerned

be large on the Laplace scale and small on the thermal scale.

However, as the bubble size tends to zero, the Laplace pres-

sure increases, thus increasing the gas density and decreasing

FIG. 5. (a) Damping coefficient at resonance vs resonance frequency

xres/(2p) in kilohertz. Measured values (symbols and solid curve) exceed

theoretical predictions (dashed curve dWildt). (from Ref. 77). (b) Quality

factor (reciprocal of damping constant at resonance) vs resonance fre-

quency xres/(2p) in hertz. Measured values (symbols) are scattered

around uncorrected theoretical predictions (solid black curve) due to

effects of reverberation (dashed curve, the limits of uncertainty being

indicated by the gray curves above and below this line). The experimen-

tal error is much less than the discrepancy between measurements and

free field theory (from Ref. 82).

FIG. 4. Scattering cross-section of a single bubble in the form

log10[rs/(p R0
2)], plotted vs dimensionless frequency e (from Ref. 77).
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its diffusivity and diffusion length, potentially making the

bubble thermally large as it becomes smaller and smaller in

an absolute sense [Ref. 66, p. 187]. Nevertheless, examina-

tion of Fig. 2(b) demonstrates that xiso is a good approxima-

tion to the resonance frequency for a standard bubble with

radius in the range 300 nm to 3 lm.

2. Andreeva 1964

The scattering model proposed by Andreeva,78

intended for application to a fish swimbladder (approxi-

mated as a spherical gas bubble surrounded by fish flesh),

is of the form

rs ¼
4pR2

0

x2
res

x2 � 1

� �2

þ 1

Qrad

xres

x
þ 1

Qth

xres

x
þ 1

Qvis

xres

x

� �2
;

(36)

where the Q-factors, which Andreeva attributes to Devin85

(see Sec. II C 1), are

1

Qrad

¼ xresR0

c
; (37)

1

Qth

¼ 3ðc� 1Þ
R0

ffiffiffiffiffiffiffiffiffiffiffi
DP

2xres

r
; (38)

1

Qvis

¼ 4Iml

qfleshR2
0x

2
res

; (39)

and where l and qflesh are the shear modulus and density of

fish flesh.

Including the effect of flesh rigidity on resonance fre-

quency here by exception [for consistency with (39)], the

resonance frequency is given by

x2
res

x2
M

¼ 1þ 4Rel
3cPflesh

; (40)

where Pflesh is the equilibrium pressure in the fish flesh.

3. Weston 1967

Weston19 laid the foundation for nearly all subsequent

work on scattering and absorption due to fish with a swim-

bladder. Based partly on Ref. 78, Weston’s model provides a

theoretical framework for describing scattering from large

bubbles (that is, R0 � lth and R0 � RLaplace, although R0 �
lac), accounting for both thermal and radiation damping.

Corrections due to the non-spherical shape of a fish

bladder are excluded here. With this and other simplifica-

tions, Weston’s expression for the scattered pressure, as

described in an unpublished report [D. E. Weston,

“Assessment methods for biological scattering and attenua-

tion in ocean acoustics,” BAeSEMA Report C3305/7/TR-1,

April 1995], can be written

AR0=B ¼ x2
res=x

2 � 1� idWeston; (41)

where

dWeston ¼
1

Qrad

xres

x
þ 1

Qth

xres

x

� �5=2

þ 1

Qvis

xres

x

� �2

: (42)

The Q-factors Qrad, Qth and Qvis are given by (37), (38), and

(39) (as Andreeva). It follows from (31) and (41) that

rs ¼
4pR2

0

x2
res=x

2 � 1
� �2þd2

Weston

: (43)

The extinction cross-section is

re ¼ rs 1þ Qrad

Qth

xres

x

� �7=2

þQrad

Qvis

xres

x

� �3
	 


: (44)

4. Chapman and Plesset 1971

Chapman and Plesset67 calculated the damping constant b
for unforced pulsations, taking into account acoustic, vis-

cous, and thermal damping. Their full method, not

FIG. 6. (Color online) Dimensionless thermal damping parameter 2x bth/x0
2

vs diffusion ratio X: (a) Effect of specific heat ratio and (b) Effect of

dimensionless bubble radius R0/RLaplace.
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reproduced here, is valid for any value (large or small) of the

ratio 2pb/xnat (the logarithmic decrement43), where xnat is

the natural frequency. If the logarithmic decrement is small,

their result simplifies to

b ¼ R0x2
nat

2c
þ 3Pgas

2qliqR2
0xnat

ImCþ 2gS

qliqR2
0

; (45)

where Pgas is the equilibrium pressure inside the bubble

Pgas ¼ Pliq þ
2s
R0

: (46)

Neglecting thermal and acoustic damping, the natural fre-

quency derived by Chapman and Plesset is

xnat ¼
1

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

qliq

3Pgasj�
2s
R0

� �
� 4g2

S

q2
liqR2

0

s
; (47)

where j is the (real) polytropic exponent, that is,

j ¼ Re CðxnatÞ; (48)

the value of which is obtained by Chapman and Plesset using

an iterative method and plotted vs radius for a standard bubble.

5. Love 1978

Love20 built on Weston’s work by including a more re-

alistic model of the fish flesh surrounding its swimbladder. A

subtle but important novelty is that, in contrast to the com-

plex shear modulus introduced by Andreeva, Love modeled

the fish flesh as a viscous liquid medium (with shear and

bulk viscosities coefficients gS and gB and surface tension s).

Love’s model is presented here, simplified—by extending

the (liquid) flesh properties to occupy the entire medium—in

order to facilitate comparisons with other models. It is the

first bubble scattering model known to the present authors to

introduce an explicit term associated with bulk viscosity.

Thermal losses are included in the damping coefficient,

while the resonance frequency—like Weston’s—is not

adjusted for thermal effects, probably because these were

considered unimportant for a fish bladder. The scattering

cross-section [Love’s Eq. (63)] is

rs ¼
4pR2

0

x2
res

x2
� 1

� �2

þ 2
bth þ bvis

x
þ e

� �2
; (49)

with [Love’s Eq. (61)]

2
bvis

x
¼ 2

3

4gS þ 3gB

xqliqR2
0

; (50)

2
bth

x
¼ 1þ 2s

qliqx2R3
0

 !
3ðc� 1Þ
Xðx;R0Þ

; (51)

where X(x,R0) is the thermal diffusion ratio given by (14).

The damping factors bth and bvis are contributions due

to thermal and viscous damping to the total damping factor

b, which is defined as half of the coefficient of the dR/dt
term in the differential equation (62) describing the motion

of the bubble wall R(t). Love’s Eq. (58) approximates the

resonance frequency as xad from (17).

6. Ainslie and Leighton 2009

a. Wildt-Weston method. The procedure followed by

Ainslie and Leighton33 to derive their Eq. (25) is identical to

that of both Wildt and Weston, except for the introduction of

a (complex) polytropic index31,70 C to describe net heat flux

across the bubble wall, and setting of the shear viscosity and

surface tension to zero to aid clarity. The surface tension

term is reintroduced here, giving

B

A
¼ R0

ð1þ ieÞX2=x2 � 1
 �

e�ie
; (52)

where X is related to the equilibrium gas pressure Pgas, from

(46), and the complex polytropic index C, from (16), via

qliqR2
0

3
X R0;xð Þ2¼ C R0;xð ÞPgas �

2s
3R0

: (53)

The right hand side of (53) is the bubble’s bulk modulus,86

the imaginary part of which represents the phase lag of the

bubble’s response to the applied pressure.

This procedure leads to the following equation for the

scattering cross-section

rs ¼
4pR2

0

x2
0

x2
� 1� 2

bth

x
e

� �2

þ 2
bth

x
þ x2

0

x2
e

� �2
; (54)

where

x0ðR0;xÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re XðR0;xÞ2
h ir

(55)

bthðR0;xÞ �
Im XðR0;xÞ2
h i

2x
: (56)

The frequency x0 is closely related to the bubble’s reso-

nance frequency xres, but it is not correct to state that x0 is

equal to the resonance frequency except in conditions for

which X is independent of frequency. Furthermore, the pres-

ence of damping can shift the resonance peak away from the

undamped resonance frequency, although the size (and

direction) of this shift depends on the precise definition of

“resonance frequency.” See Sec. III for details.

The frequency dependence of the radiation damping

term in the denominator of (54) is the same as that in West-

on’s expression for the scattering cross-section, i.e., (42)

from Sec. II B 3 above, as can be seen by setting bth¼ 0.

Equation (56) is consistent with Weston’s thermal

damping. Its consequences for the calculation of thermal

damping are explored next. Specifically, combining it with

(55) and (53) gives
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2xbth

x2
0

¼ ImC

Re C� 1

3 1þ R0=RLaplace

� � ; (57)

the right hand side of which is a function of the following

three parameters: diffusion ratio X, specific heat ratio c and

the ratio R0/RLaplace. Figure 6 shows this function plotted vs

X, first with c as a variable parameter and negligible surface

tension (RLaplace/R0¼ 0) [Fig. 6(a)] and then with R0/RLaplace

as a variable parameter and fixed specific heat ratio (c¼ 1.4)

[Fig. 6(b)]. The complex polytropic index from Ref. 72 is

used, in the form of (16).

b. Breathing mode method. A weakness of the

approach pioneered in Wildt (1946) and improved by

Weston is the need to assume small e early on in the deriva-

tion, casting possible doubt on the validity of subsequent

expansions in this parameter. This weakness is addressed in

Ref. 33, at the expense of neglecting thermal and viscous

effects, by considering the first term only in Anderson’s

expansion for the scattered field87 (referred to as the

“breathing mode” because of its spherical symmetry) and

delaying the small e expansion to the end.

This breathing mode derivation for the complex ratio

B/A, based on Anderson’s normal mode expansion, and

incorporating the effect of a non-zero gas density, gives

A

B
R0¼

x2
0

x2
esine� 3

n2
1� n

tann

� �
�

x2
0

x2

	 

cose

x2
0

x2
coseþ 3

n2
1� n

tann

� �
�

x2
0

x2

	 

sine
e

þ ie; (58)

where

n ¼ x
x0

ffiffiffiffiffiffiffiffi
qgas

qliq

s
: (59)

Taking the squared modulus of (58) and expanding numera-

tor and denominator separately about e¼ 0 gives [Eq. (58) of

Ref. 33]

rs 	 4pR2
0

1� e2

3
1þ 2

x2
0

x2

� �
þ 2

15

qgas

qliq

x2

x2
0

x2
0

x2
� 1� 1

15

qgas

qliq

x2

x2
0

 !2

þe2 x4
0

x4

; (60)

the denominator of which is again consistent with Weston’s

radiation damping, as can be seen by substituting qgas¼ 0 in

(60) and comparing the result with (42). The resonance fre-

quency based on (60) is

x0

xres

� �2

¼ 1� ðx0R0=cÞ2

2
þ

qgas

15qliq

: (61)

The magnitudes of the two correction terms on the right

hand side of (61) are in the ratio 45kBT ReC/(2mgasc
2), which

by a curious numerical coincidence, for a standard bubble is

close to unity.33 The correction terms therefore approxi-

mately cancel.

C. Devin thread

The “Devin” thread encompasses results from Refs. 29, 68,

and 85 and Eqs. (43) and (67) from Ref. 33. The requirement

for a result to be included in the Devin thread is for it to origi-

nate from a linear differential equation relating the bubble radial

displacement to the forcing pressure. This equation can be writ-

ten in terms of the damping factor b and a stiffness parameter K

€Rþ 2b _Rþ KðR� R0Þ ¼ Feþixt; (62)

where the forcing term is

F ¼ � A

qliqR0

: (63)

The stiffness parameter K is a function of frequency approxi-

mately equal to x0
2 (see Sec. III C 2), which from (55) is the

real part of X2, by definition.33

1. Devin 1959

Devin’s paper85 is partly based on pioneering work by

Pfriem,88 who calculated the effect of a gas bubble’s thermal

diffusivity on its resonance frequency and damping factor.

Devin developed the first comprehensive bubble damping

model by extending Pfriem’s calculations of thermal damp-

ing to include acoustic and viscous effects. Devin’s stiffness

and damping terms are described below.

a. Stiffness term (K). Devin’s Eq. (65) for the stiffness

parameter K in (62) is

K ¼ 3

qliqR2
0

PgasRe C� 2s
3R0

� �
: (64)

The ratio c/ReC (denoted a by Devin) is

c
ReC

¼ 1þ 9ðc� 1Þ2

X2
fðXÞ2

" #
1þ 3ðc� 1Þ

X

sinh X� sin X

cosh X� cos X

	 

;

(65)

where

fðXÞ� sinhXþ sinX�2ðcoshX�cosXÞ=X

coshX�cosXþ3ðc�1Þðsinh X� sinXÞ=X
; (66)

and the diffusion ratio X is given by (14).

For thermally large bubbles (X> 10), (65) becomes

[from Devin’s Eq. (58), which corrects Pfriem’s Eq. (17a)]

c
Re C

	 1þ 3ðc� 1Þ
X

þ 9ðc� 1Þ2

X2
; (67)

and Devin’s Eq. (66) gives the corresponding resonance fre-

quency as

x2
res 	x2

M 1þ 2s
R0Pliq

1� 1

3Re C

� �	 


� 1þ 3ðc� 1Þ
X

þ 9ðc� 1Þ2

X2

" #�1

; (68)
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where the approximation requires R0� RLaplace and X� 1.

A practical difficulty with the use of (68) is that the terms X
and C on the right hand side are both functions of frequency,

which for consistency with the left hand side would need to

be evaluated at the resonance frequency xres, making it an

implicit equation, requiring iterative or graphical solution.

By contrast, Eqs. (21), (26), and (28) of Sec. II A 3 are all

explicit equations, for xad
1 , xres

2 , and xiso
1 , respectively, as

their right hand sides are functions of bubble radius R0 only

(and not frequency).

For smaller values of X (say X< 3) (65) becomes

[Devin’s Eq. (59)]:

c
Re C

	 c� X4

1890
1� 2:1

ðc� 1Þ2

c

" #
: (69)

The condition X< 3 requires the bubble radius to be less

than a third of the thermal diffusion length, but this does not

require the bubble to be small in an absolute sense. One rea-

son for making this distinction is that, for fixed bubble ra-

dius, the thermal diffusion length increases with decreasing

frequency. Another is that, even if interest is limited to

effects at resonance, because of the effect of surface tension

on gas density (and therefore on its diffusivity), for very

small bubbles the value of X(xres) starts to increase with

decreasing bubble size, causing the polytropic index to

recede from its isothermal value of unity (see Sec. II A).

b. Damping factor (b). Devin provided a comprehen-

sive treatment of bubble damping by consolidating Pfriem’s

theoretical analysis of thermal damping, including correc-

tions for the surface tension, and combining this with expres-

sions for acoustic radiation and viscous damping. His

equation for the damping factor b in (62) is

b ¼ bth þ bvis þ
x
2

e; (70)

where

bvis ¼
2gS

qliqR2
0

(71)

and the thermal damping factor is [Devin’s Eq. (54)]

bth ¼
x
2

3ðc� 1Þ
X

fðXÞ K

x2
: (72)

Approximate forms for thermal damping are [Devin’s Eq.

(55), valid for bubbles satisfying X> 6]

bth 	
x
2

3ðc� 1Þ
X

1� 2=X

1þ 3ðc� 1Þ=X

K

x2
; (73)

and [Devin’s Eq. (56), valid for bubbles satisfying X< 2]

bth 	
x
2

c� 1

30c
X2 K

x2
: (74)

The dimensionless thermal damping parameter 2 x bth/x0
2

is calculated using (72) and (74), with the approximation

x0
2 	 K, and the result plotted as a function of the diffusion

ratio X in Fig. 7(a). The purpose is to see how these two

approximations compare with the more accurate expression

obtained by combining (57) with (16) for C, and evaluated

for the situation s¼ 0 in order to permit a like comparison

with the other two curves. The result is ImC/ReC, which is

the third curve plotted in this graph. The effect of a non-zero

surface tension would be to increase the value of 2 x bth/x0
2

by an amount that depends on bubble size and liquid

pressure.

The graph demonstrates that (74) is in good agreement

with ImC/ReC for small X (the error is less than 3% for

X< 2 and less than 1% for X< 1.5). Similarly, (72) agrees

with ImC/ReC to within 1% for X> 4.5. At intermediate val-

ues of X, (57) is needed for accurate results, for example if

1% accuracy or better is desired in the range 1.5<X< 4.5.

Approximations for large X are compared in Fig. 7(b).

For X> 6, (73) [Devin’s Eq. (55)] is accurate to within 0.5%

FIG. 7. (Color online) Dimensionless thermal damping parameter 2xbth/x0
2

vs diffusion ratio: Approximations for (a) small X and (b) large X. Plots are

shown for: ImC/ReC given by Eq. (57) with s¼ 0; Devin’s Eq. (54) [Eq. (72)

of this paper]; Devin’s Eq. (56) [Eq. (74) of this paper]; Devin’s Eq. (55)

[Eq. (73) of this paper]; 3(c� 1)/X [Eq. (75) of this paper].
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of ImC/ReC and (76), [Devin’s Eq. (54)] to within 1%. The

single term approximation [large X limit of (73)]

bth 	
x
2

3ðc� 1Þ
X

K

x2
; (75)

is accurate to first order in 1/X, with errors exceeding 10%

for X< 30.

2. Medwin 1977

Medwin29 realized that Devin’s results could be used to

obtain expressions for scattering and extinction cross-sec-

tions that are uniformly valid across the entire range of ther-

mal bubble sizes from isothermal to adiabatic. Substituting

Devin’s expressions for the damping factors (in the form

used by Eller for quantifying off resonance effects89) into

Wildt’s expression for rs, he obtained

rs ¼
4pR2

0

x2
res=x

2 � 1
� �2þd2

(76)

and

re ¼ rs

d
e
; (77)

where

d ¼ 4gS

qliqR2
0x
þ 3ðc� 1Þ

X
fðXÞ K

x2
þ e: (78)

Here K is the bubble stiffness, given by (64) and f(X) is

given by (66).

3. Prosperetti 1977

Prosperetti68 derived expressions for radiation, thermal

and viscous damping, as well as for the extinction cross-sec-

tion. His equation of motion for the increase in radius from

equilibrium is given by (62) with

K ¼ 3
Pgas

qliqR2
0

Re C� 2s

qliqR3
0

þ e2

1þ e2
x2 (79)

and

b ¼ 2
gS þ gth

qliqR2
0

þ x
2

e
1þ e2

: (80)

It follows from (56) that

gth ¼
qliqR2

0

4x
Im X2
� �

: (81)

The extinction cross-section (correcting here a factor 2 error

in Prosperetti’s unnumbered equation for re at the top of

p. 19 of Ref. 68) is

re ¼
4pR2

0

K=x2 � 1ð Þ2þ 2b=xð Þ2
2b=x

e
: (82)

4. Ainslie and Leighton 2009

It is useful here to visit the discrepancy in the frequency de-

pendence between Weston’s radiation damping coefficient

(proportional to x�1) and that of Wildt or Medwin (ostensi-

bly proportional to x). The discrepancy was pointed out first

by Weston himself, even before his 1967 paper42 and later

by Anderson and Hampton.22 It then went unnoticed for a

further quarter of a century until it was highlighted32 and

finally resolved by Ainslie and Leighton33 by showing that

the Weston and Wildt derivations are in essence identical:

their outcomes differ only because of an omitted O(e2) term

in one of the power expansions used in Ref. 77.

Starting from the differential equation of Prosperetti,68

Ref. 33 obtains the following equation for the ratio of inci-

dent pressure to the bubble’s radial velocity dR/dt

A

dR=dt
¼ iqliqce

K

x2
� 1þ 2i

b
x

� �
: (83)

Applying Euler’s equation to the scattered pressure field and

eliminating the radial velocity results in

AR0

B
exp ieð Þ ¼ x2

0

x2
� 1� 2

b0

x
eþ i 2

b0

x
þ x2

0

x2
e

� �
; (84)

from which the scattering cross-section follows as

rs ¼
4pR2

0

x2
0

x2
� 1� 2

b0

x
e

� �2

þ 2
b0

x þ
x2

0

x2
e

� �2
; (85)

which has the same form as (54), derived using Wildt’s

method.

An alternative (and equivalent) form to (85) (for rs) is

given by Eq. (42) from Ref. 33,

rs ¼
4pR2

0 1þ e2ð Þ�1

K=x2 � 1ð Þ2þ 2b=xð Þ2
; (86)

where68

K ¼ x2
0 þ

e2

1þ e2
x2; (87)

and

b ¼ b0 þ
e

1þ e2

x
2
: (88)

The extinction cross-section obtained using the same

approach is

re ¼ rs

2b0=x
e

1þ x
2b0

eþ e2

� �
: (89)

An alternative (and equivalent) form to (89) (for re) is given

by Eq. (64) from Ref. 33, which is identical to (82) above,

demonstrating that (89) is consistent with Prosperetti’s

derivation.
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The damping factor b0 in (88) includes all forms of

damping other than acoustic radiation. Thus, considering vis-

cous and thermal damping it would be

b0 ¼ bth þ bvis; (90)

where

bvis ¼
2gS

qliqR2
0

; (91)

bth ¼
3Pgas

2qliqR2
0x

Im C (92)

and C is given by (16).

The parameter x0, which through Re C(x) is a function

of frequency, is given (including surface tension explicitly)

by

x2
0 ¼ 3Re C

Pgas

qliqR2
0

� 2
s

qliqR3
0

: (93)

In situations for which x0 is independent of frequency, such

as for bubbles that are either thermally large or thermally

small, and if b0 is assumed to be constant, the resonance fre-

quency is given by

x2
0

x2
res

¼ 1� 2b2
0

x2
0

� e2
0

2
; (94)

where e0 is the dimensionless bubble radius, defined as

e0 � e x0ð Þ ¼ x0R0=c (95)

and not to be confused with the dimensionless frequency of

(34).

D. Non-linear thread

The “non-linear” thread encompasses results from Refs.

5, 6, 90, and 91. The models discussed so far assume steady

state spherical bubbles in the long wavelength limit (x R0/c
� 1), where the bubbles undergo sufficiently small ampli-

tude pulsations to warrant linear descriptions. The basic defi-

nitions (such that in the long wavelength limit, the scattering

cross-section equals the ratio of the time averaged radiated

power to the incident plane wave intensity) also hold in other

circumstances. One such is the time during ring-up of bubble

pulsations prior to reaching steady state, for which scattering

cross-section may be defined by averaging over single pulsa-

tion cycles between successive times of zero displacement,92

becoming undefined during ringdown after the cessation of

ensonification.93 Another circumstance for which the cross-

section has received particular attention is when the bubble

pulsation amplitude becomes sufficiently great to generate

nonlinear effects, such as the generation of higher harmonics

or combination frequencies. This is in part because of the

use to which such signals (which could only very rarely be

generated by linear processes) can be used to distinguish

between scattering from bubbles and scattering by other

bodies (such as the seabed94–96 or biological tissue97,98) that

generate only linear scattering, or much lower levels of non-

linearity than do bubbles.74 A typical source of nonlinearity

is the amplitude dependence of the bubble stiffness.74 Small

amplitude perturbation expansions to second order have

been undertaken to calculate the steady state amplitude-de-

pendent scattering of sound at, say, the second harmonic of

the ensonifying field.99 However, emissions involving higher

harmonics, or generated by driving fields or bubble

responses that are too great or too brief to be modeled by

perturbation expansions, generally appear in the literature as

numerical solutions to the appropriate equation of

motion,100,101 or are reported as empirical observa-

tions.97,102,103 Relating either result to some nonlinear cross-

section requires further consideration, as follows.

There are several options for defining the acoustic cross-

section when bubbles pulsate nonlinearly by expanding the

above definition in different ways. The nonlinear cross-sec-

tion can be based on the ratio of the total power scattered by

a single bubble at all frequencies to the intensity of the inci-

dent plane wave, which can locally peak when that plane

wave is at a frequency that is some harmonic of the bubble

resonance. Figure 8 (from Ref. 104) demonstrates the results

of such an approach where the nonlinearity clearly increases

in the expected way with increasing drive amplitude.

However, the most popular method has been to define a

cross-section for each harmonic as the power scattered

within the bandwidth of the harmonic in question divided by

the intensity of the incident plane wave with which the bub-

ble is ensonified. This appeals directly to users who are char-

acterizing how much enhancement bubbles give to scattering

at a particular harmonic or combination frequency [e.g.,

when second-harmonic scattering from ultrasonic contrast

agents (UCAs) is used to monitor blood flow]. This approach

is at odds with the usual power scaling property of the linear

cross-section that follows if the sources are incoherent, so

FIG. 8. Extinction cross-section for a single bubble, as a function of bubble

radius, for ensonification by a 1 ms duration sinusoidal pulse of 33 kHz cen-

ter frequency and zero to peak sound pressure in the range 0.5 kPa to 50

kPa. The cross-section calculated by the formulation of Ref. 93 varies over

time, and the figure plots its mean value. Although the 0.5 kPa and 5 kPa

lines differ (particularly close to the fundamental resonance at bubble radius

10�4 m), they are barely distinguishable on this scale. (from Ref. 104).
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that when bubbles in a cloud scatter, the entirety of the scat-

tered energy is found through simple addition of the cross-

sections of the individual bubbles. While this property is still

maintained for a given harmonic when using the above defi-

nition, the cross-sections can no longer be used to describe

all the energy scattered from the cloud. Even for a single

bubble, a summation of its harmonic cross-sections does not

describe the whole field scattered by that bubble, because

there is a fixed phase relationship between, say, the scatter-

ing at the fundamental and the scattering at the second har-

monic from an individual bubble.

Despite this contradiction, the latter version of the

cross-section has proved by far the most popular, probably

because it appeals to the scenario of a single-frequency input

generating a range of harmonic emissions from a bubble

cloud (although in practice the requirement for range resolu-

tion means that the incident pulses are short enough to have

significant bandwidth and to generate bubble pulsation that

is dominated by ring-up and ringdown, rather than steady

state). Furthermore, if the bubble population is close to

monodisperse, as is often assumed with UCAs, then the

measured power in each harmonic can readily be converted

into an empirical cross-section for that harmonic.105 The dis-

advantage of such an empirical approach is that these empiri-

cal cross-sections must vary with the amplitude of the

ensonifying field and so cannot readily be transferred from

one situation to another, or used as the basis for generically

applicable formulations.

The drive to provide analytical cross-sections that would

be generically applicable came originally from those using

nonlinear scattering to detect the presence of bubbles99,106

(since other entities in the liquid would only generate nonlin-

ear scattering to a much smaller extent).107–109 Perturbation

expansions of a nonlinear equation of bubble dynamics were

undertaken for an assumed sinusoidal driving pressure.

Steady state solutions were found for the bubble wall dis-

placement. The radius R can be assumed to take the form

R¼R0 (1þ v) with

v ¼v0 þ A1 cos xtþ uc1ð Þ þ B1 sin xtþ us1ð Þ
þ A2 cos 2xtþ uc2ð Þ þ B2 sin 2xtþ us2ð Þ � 1 (96)

to examine the second harmonic emission. Sometimes the

phase factors / and the dc perturbation v0 were ignored (ex-

ponential notation is inappropriate in a description of non-

linear behavior). In other circumstances two frequencies (x1

and x2) were incident on the bubble to allow its detection

through scattering of the difference frequency,81,110,111 the

relevant expansion being:

v ¼ v0 þ A1 cos x1tþ uc1ð Þ þ B1 sin x1tþ us1ð Þ þ A2 cos 2x1tþ uc2ð Þ þ B2 sin 2x1tþ us2ð Þ
þW1 cos x2tþ #c1ð Þ þ N1 sin x2tþ #s1ð Þ þW2 cos 2x2tþ #c2ð Þ þ N2 sin 2x2tþ #s2ð Þ
þWs cos x1 þ x2ð Þtþ #cs½ � þ Ns sin x1 þ x2ð Þtþ #ss½ �
þWd cos x1 � x2ð Þtþ #cd½ � þ Nd sin x1 � x2ð Þtþ #sd½ � � 1: (97)

The power scattered at each harmonic in the steady state

would then be related to a cross-section. However, such

expansions need to be treated with care. For example, just

because the frequencies of interest in the two examples

quoted above are generated by a quadratic nonlinearity, such

an expansion will not capture all the energies up to second

order, since higher terms will also generate energy at

lower frequencies (for example, the fourth power

contributes to both dc and quadratic terms through the iden-

tity 8 cos4 xt: 3þ 4 cos 2xtþ cos 4xt). Such an expansion

approach needs a suitable nonlinear equation describing the

wall response of the bubble. In the former Soviet Union,

nonlinear expansions of the bubble volume, with an ad hoc
approach to including all damping, were used,106 while in

the English language literature99,107 radial expansions of the

Rayleigh-Plesset equation were favored, which explicitly

formulated the viscous losses, but no other dissipation. Rec-

onciliation of the two approaches has been explored.112–114

Yang and Church5 undertook a radial expansion of a

Keller-Miksis type equation, including wall effects, for

application to some ultrasonic contrast agents. This provided

the lynchpin in a series of important papers expanding on

this approach, as detailed below.

1. Church 1995

Church6 derived a generalization of the Rayleigh-Plesset

equation that takes into account the effect of an elastic solid

layer separating a gas bubble from a surrounding viscous liq-

uid medium. The expression derived for the scattering cross-

section, obtained by linearizing the complete non-linear

model, simplifies for the case of a free bubble to

rs ¼
4pR2

0

x2
0=x

2 � 1
� �2þ 2bvis=xð Þ2

; (98)

where x0 is given by (93) and bvis is the viscous damping

factor of (71). Church’s novel derivation of this standard

result laid the foundations for important later work, as

described below.

2. Khismatullin 2004

Khismatullin90 derived an expression for the scatter-

ing cross-section of a microbubble encased in a solid

shell. Setting the shell thickness to zero, this expression

simplifies to
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rs ¼
4pR2

0

x2
0

x2
� 1þ e2

1þ e2

� �2

þ 2
bvis

x
þ e

1þ e2

� �2
; (99)

which generalizes Church’s result to the case of a compressi-

ble liquid, and is consistent with (86). Khismatullin’s deriva-

tion for the scattering cross-section is the first example

known to the present authors of one whose starting point is

the differential equation describing the motion of the bubble

wall, and that results in the correct frequency dependence of

the radiation damping term. At the time of writing Ref. 33,

the authors were unaware of Khismatullin’s work, which

was consequently (and regrettably) omitted from the review

element of that paper. The resonance frequency quoted by

Khismatullin is

x2
res ¼ x2

0 � 2b2
vis: (100)

3. Yang and Church 2005

Expanding on the approach used in Ref. 6 to incorporate

viscoelastic bubble wall properties in a Rayleigh-Plesset

equation, Yang and Church5 added such properties to a Kel-

ler-Miksis type equation, with viscous, acoustic radiation

and thermal damping, including corrections to the bulk mod-

ulus due to surface tension and elastic forces. By linearizing

a fully non-linear equation of motion, and supplementing the

result with heuristic corrections for thermal and radiation

damping, they obtained the most comprehensive linear

model of bubble scattering known to the authors. Although

Ref. 5 also incorporates terms to show the effect of tissue,

these are set to zero in the present review to allow ready

comparison with the other formulations. Yang and Church

derived linearized differential equations, with the same form

as (62) with

F ¼ � A

qliqR0

1þ 4gS

cqliqR0

 !�1

(101)

for the forcing term and, neglecting rigidity (and multiplying

the radiation stiffness term from Eq. (24) of Ref. 5 by a fac-

tor e2 for consistency with Ref. 68)

K

x2
M

¼ c�1 1þ 4gS

cqliqR0

 !�1

Re Cþ 2s
3R0Pliq

3Re C� 1ð Þ
	

þ
qliqc2

3Pliq

e4

1þ e2



(102)

for the stiffness. Neglecting all contributions to damping

other than viscosity, thermal diffusion and acoustic radia-

tion, the damping factor simplifies to

b ¼ bvis þ bth þ
e

1þ e2

x
2

1þ 4gS

cqliqR0

 !�1

; (103)

where

bvis ¼
2gS

qliqR2
0

1þ 4gS

cqliqR0

 !�1

(104)

and (dividing the right hand side of Eq. (23b) of Ref. 5 by

eRe C=ImC for consistency with Ref. 115)

bth ¼
3PgasImC

2xqliqR2
0

1þ 4gS

cqliqR0

 !�1

: (105)

The factor (1þ 4gS/cqliq R0)�1 in the damping, stiffness and

forcing terms accounts for the possibility of the bubble not

being large (in the sense that, in Sec. II D 3 only, the require-

ment for 4p lvis
2 � lacR0 is lifted) by means of a correction

to the added mass of the liquid medium.

4. Doinikov and Dayton 2006

The main thrust of Ref. 91, an analysis of the dynamics

of an encapsulated gas bubble, is outside the present scope.

For the special case of a free bubble, Doinikov and Dayton

derived the following expression [their Eq. (57)] for the reso-

nance frequency

x2
res ¼

x2
0

3e2
0

1þ 8
bvis

x0

e0 þ 2e2
0 3þ 2

b2
vis

x2
0

� �	 
1=2
(

� 1þ 4
bvis

x0

e0

� ��
: (106)

The derivation of (106) omits terms of order e2 and higher,

which means that such terms (order e0
4 terms in the curly

parentheses) may be discarded from this equation without

loss of accuracy. An alternative derivation that is accurate

up to and including O(e0
2) terms is presented in Sec. III C 2.

E. Which scattering or extinction cross-section?

Up to this point, this review provides a historical

description of the increasing understanding with time of the

physical processes involved with scattering and extinction

from a single bubble undergoing spherically symmetric

pulsations, and the increasing sophistication of the mathe-

matical models used to describe the corresponding cross-

sections. The purpose of this section is to offer advice on

which equations are applicable if either the liquid’s viscosity

(Sec. II E 1) or its compressibility (Sec. II E 2) is negligible,

and to describe the challenges remaining when neither is

(Sec. II E 3).

1. Negligible liquid viscosity

If the liquid viscosity is negligible (bvis� bthþ e0 x0/2),

the damping is limited to thermal conduction across the bub-

ble wall and acoustic radiation, in which case (85) [or (86)]

and (89) apply for the scattering and extinction cross-sections,

respectively, with b0 equal to the thermal damping factor bth

from (92) and x0 calculated using (93). The result, expressed

in a form designed to highlight and clarify the potential for
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confusion referred to in the Introduction, can be written (using

bvis¼ 0 here)

rs ¼
4pR2

0

x2
0=x

2 � 1� 2ebth=x
� �2þdWeston

2
; (107)

where dWeston is obtained by generalizing (42) while drop-

ping the viscosity term, as follows:

dWeston ¼ 2
bth

x
þ x2

0

x2
e: (108)

The terms x0, given by (93), and bth, by (92), are both func-

tions of frequency through the (complex) polytropic index C
from (16).

The extinction cross-section is related to rs according to

(89):

rs

re

¼ e
dMedwin þ 2e2bth=x

; (109)

where

dMedwin � 2
bth

x
þ e: (110)

These equations hold if the logarithmic decrement is small,

which is equivalent to requiring dMedwin to be small. The

method of Chapman and Plesset67 is applicable to any value

of the logarithmic decrement, large or small.

The ratio rs/re, calculated using (109), is plotted in

Fig. 9 (solid curves) for two different values of bth/x0.

Although both dWeston and dMedwin are correct when used with

their corresponding equations, (107) and (109), it is essential

that dMedwin and not dWeston be used in (109). This point is

illustrated with a second calculation (dashed curves), obtained

by replacing dMedwin with dWeston in the right hand side of

(109). This second calculation underestimates the value of re

by a factor of (x/xres)
2 at frequencies above resonance.

(Below resonance a smaller error is made, and in the opposite

direction.) In order to compensate for this error, and citing a

personal communication by Anderson, Ref. 38 justifies a mul-

tiplication by (xres/x)2 compared with AH32 (adopting the

shorthand AHn to denote Eq. n from Ref. 22), with the accom-

panying explanation “There is no special off-resonance

behavior of the radiation damping term [e], and hence the

(x0/x)2 term should be omitted.” This arbitrary correction,

the need for which is created by use of the ambiguous damp-

ing coefficient (d), is avoided by making use of (85) and (89),

with (4) for ra, which express the cross-sections instead in

terms of the unambiguous damping factor (b). Doing so

avoids the confusion caused by mixing expressions that imply

use of dMedwin on the one hand (AH32, AH54, and AH56) and

dWeston on the other (AH43 and AH55).

Comparing (57) with (33), it can be seen that the param-

eter bth introduced by Wildt is

bth ¼
3PgasImC

qliqR2
0x

2
res

: (111)

2. Negligible liquid compressibility

Neglecting viscosity limits the applicability of the resulting

equations to bubbles that are sufficiently large for thermal or

acoustic radiation losses to dominate. An alternative simpli-

fication is to neglect the liquid compressibility instead,

requiring that the bubble be sufficiently small for acoustic

radiation damping to be neglected (e � 2 b0/x), and result-

ing in

rs ¼
4pR2

0

x2
0=x

2 � 1
� �2þ4b2

0=x
2
; (112)

and

re ¼ rs

2b0=x
e

; (113)

with b0 given by (90) to (92), with (91) for the viscous

damping factor bvis. The singularity in (113) as e ! 0

reflects the fact that no sound energy can be radiated, so all

of the incident acoustic power is absorbed (either by thermal

conduction across the bubble wall or by viscous processes in

the surrounding liquid), and the ratio re/rs tends to infinity.

Comparing (71) with (33), it can be seen that the param-

eter bvis introduced by Wildt is

bvis ¼
4gS

R0

: (114)

These equations hold if the logarithmic decrement is small,

which close to resonance is equivalent to requiring 2 b0/x0

to be small. Here, as in Sec. II E 1 above, the method of

Chapman and Plesset67 is applicable to both small and large

values of the logarithmic decrement.

FIG. 9. (Color online) Ratio of scattering to extinction cross-sections versus

dimensionless frequency e [(109) solid lines]. Also shown (dashed lines) is

the result of an incorrect calculation obtained by replacing dMedwin with

dWeston in the right hand side of (109). Values used for the parameter 2 bth/x0

are as marked, with e0¼ 0.014. Errors grow rapidly above the resonance

frequency (vertical dotted line).
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3. Viscous damping in a compressible liquid

The introduction of viscosity in a compressible medium

brings with it three complications. The first is that both inci-

dent and scattered waves decay exponentially in a viscous

medium. The assumption made so far in this paper that A
and B are constants needs to be revisited. It might be justi-

fied, for example, by arranging for any measurements to be

made at a sufficiently short distance from the bubble that any

exponential decay may be neglected.

The second complication is the need identified by Yang

and Church5 for a viscous correction to the added mass of

the liquid medium, modifying the equations for stiffness,

(102), and damping factors, (103)–(105). The correction

term accounts for the effect of shear viscosity (bulk viscosity

is not considered).

The third is of a more fundamental nature. As the bubble

pulsates, the liquid molecules in contact with it must rear-

range themselves to accommodate the contractions and dila-

tions. If the liquid is incompressible, the resulting motion is

translational in nature, with layers of molecules sliding over

one another to permit an increasing number of liquid mole-

cules to come into contact with the bubble gas as it expands,

and a decreasing number as it contracts. The viscous forces

that act in these circumstances are controlled by shear vis-

cosity alone.116 Elements of a compressible liquid, on the

other hand, have the freedom to accommodate the pulsating

bubble by occupying more or less volume themselves (for

example, by permitting more or less empty space between

adjacent molecules of that liquid). Under these conditions,

the viscous forces are affected also by additional contribu-

tions due to dilatational viscosity gD,73,117,118 also known as

“second viscosity.”119 The related bulk viscosity gB is120

gB ¼
2

3
gS þ gD: (115)

The assumption of incompressible conditions allows both

bulk and dilatational viscosities to be dropped from early

work leading to the Rayleigh-Plesset equation.66,114,121 Exten-

sion into other regimes such as the compressible liquids of the

Herring-Keller equation122–126 did not result in a re-introduc-

tion of bulk or dilatational viscosity. For example, in Ref. 17

it is stated that “Liquid compressibility effects do not substan-

tially alter the effects of the… viscoelasticity of the surround-

ing medium.” Doinikov and Dayton91 pointed out that the

dilatation term is identically zero for an incompressible me-

dium, but did not provide a similar justification for omitting a

term representing bulk or dilatational viscosity from their Eq.

(31), describing the motion of a pulsating bubble in a com-

pressible liquid. In fact, the radiation and viscous damping

enter Eq. (31) of Ref. 91 by different routes, one (radiation)

via the kinetic energy of a slightly compressible liquid, and

the other (viscosity) via the dissipative function of a viscous,

incompressible liquid. According to A. A. Doinikov (personal

communication, November 2010), the introduction of com-

pressibility in the dissipative function would result in the

appearance of a bulk viscosity term in Eq. (31) of Ref. 91.

To understand the possible effects of combining viscos-

ity with liquid compressibility, it is useful to consider the or-

igin of the term that expresses viscous dissipation in the

Rayleigh-Plesset equation [4gS
_R= qliqR
� �

if written in terms

of radius114], readily derived from the Navier-Stokes equa-

tion in the form118

qliq

@v

@t
þ qliq v 
 rð Þv�

X
Fext þrPbody

¼ gS þ gDð Þr r 
 vð Þ þ gSr2v; (116)

where Pbody is the pressure on a boundary contained within

the body of the liquid, and where the vector sum of all body

forces
P

Fext is usually assumed to be zero in bubble acous-

tics. If the medium is incompressible, the divergence term

r 
 v is zero. If, further, the Navier-Stokes equation is used

to describe a spherically symmetrical scattering problem, as

in the present situation, r2v is also zero,1 so the right hand

side of (116) vanishes for any non-infinite magnitude of gS,

gD, and gB. In a compressible medium, for which the diver-

gence r 
 v is no longer neglected, the question then moves

from one of the dilatational viscosity being multiplied by a

zero term (specifically r 
 v), to the possibility that the dila-

tational viscosity will affect the bubble dynamics if the sum

gSþ gD does not equal zero. Finite shear viscosity does not

manifest itself in the dynamics of spherical bubbles in

incompressible liquids through the Navier-Stokes equation.

Instead, it applies a correction to the normal stress, propor-

tional to the principle rate of strain in the radial direction,

the constant of proportionality being 2gS, such that the pres-

sure applied by the liquid on the bubble wall, denoted Pwall,

becomes (see p. 304 of Ref. 1, and Ref. 114):

Pwall ¼ Pbody þ
4gS

R

dR

dt
; (117)

and it is by this boundary condition route that shear viscosity

enters into the Rayleigh-Plesset equation.1,114 However,

even in spherically symmetric conditions, if the assumption

of liquid incompressibility does not hold, then the simple

relationship given by (117) does not hold either, and the

direct translation of such terms, which neglect the dilata-

tional viscosity, into Herring-Keller type equations needs to

be critically assessed. Both Devin85 and Chapman and Ples-

set67 explicitly stated that their derivations for viscous damp-

ing neglect any effect of liquid compressibility. Devin

derived his well-known viscous damping factors using

(117).

The first serious attempt known to the authors to evalu-

ate the viscous damping of a gas enclosure in a compressible

medium appears in the pioneering work of Love,20 who

included the bulk viscosity of fish flesh in his model for the

scattering cross-section of a swimbladder, resulting in (50).

However, Love’s result, originally intended to apply to scat-

tering from a fish swimbladder, is rarely, if ever, used for

gas bubbles in water. Instead, Devin’s viscous damping

term, (71), is typically added heuristically to treatments of

compressibility in an inviscid medium.5,91

The question of consistency between the two models of

viscous damping due to Devin85 for an incompressible me-

dium and that of Love20 for a compressible one is now
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addressed. Comparing (71) with (50) reveals an apparent

factor 2/3 difference between the coefficient of the gS term

in the damping models of Love and Devin, giving the

impression of an inconsistency. However, before drawing

such a conclusion, it is important to consider the relationship

between the shear (gS), bulk (gB) and dilatational (gD) vis-

cosity coefficients of a viscous fluid (115), subject to the

condition127

gB � 0: (118)

It has been pointed out to us (R. H. Love, personal communi-

cation, November 2010) that substituting (115) in (50) gives

bvis ¼
2gS þ gD

qliqR2
0

; (119)

which has the same gS coefficient as (71), implying that had

Devin considered his dilatational viscosity to be zero, the

apparent contradiction between (71) and (50) would be

resolved. However, the present authors do not perceive this

assumption in Devin’s derivation.

Stokes117 argued that for some fluids (e.g., monatomic

gases128) the bulk viscosity might be zero or negligible

(referred to henceforth as the “Stokes condition”), in which

case it follows from (115) that

gD ¼ �
2

3
gS; (120)

which can only be zero if the shear viscosity vanishes. It is

known that (120) does not hold for water,119,128,129 and that

the bulk viscosity makes an important contribution to

absorption of ultrasound in water130 and in other

liquids.131,132 Liebermann130 reports that for water, the ratio

gD/gS is approximately equal to 2.2, a value confirmed by

modern measurements.133

For the theories of Devin and Love to be consistent,

Love’s version must simplify to Devin’s in the limit of an

incompressible liquid medium. As they differ only by a term

proportional to gD, consistency requires gD to vanish in the

incompressible limit.134 Regardless of whether this might

hypothetically be the case, the dilatational viscosity of water

(a compressible medium),119,128,129 or of any viscous liquid

satisfying the Stokes condition117,118 is not zero, so in prac-

tice (71) and (50) result in different values of bvis. Therefore,

even if the two theories are somehow consistent, they cannot

both provide a correct description of viscous damping of a

gas bubble either in water or in any viscous liquid satisfying

the Stokes condition.

III. RESONANCE FREQUENCY REVISITED

A. Introduction

Ever since Minnaert’s pioneering work,69 the natural

frequency of a single spherical bubble, and the related reso-

nance frequency, have been among the most widely used

concepts in the development of an increasingly sophisticated

understanding of linear bubble acoustics. Advances are

described by Refs. 1, 5, 6, 19, 20, 22, 29, 33, 66–68, 73, 77,

85, 86, 88, 90, 91, 115, and 135–137. Despite this central

role, examination of the expressions for xres in Sec. II

reveals that there is no single widely accepted expression for

the resonance frequency. For example, (100) (see also Ref.

73) includes a viscosity dependent correction to the square

of the resonance frequency that reduces it by 2b2
vis from its

nominal value of x2
0, whereas (94), originally from Ref. 33,

features a correction of the same magnitude but in the oppo-

site direction. Similarly, Houghton’s viscosity correction136

has the same sign as that of Khismatullin, but only half its

magnitude.

The present authors are not aware of any previously

given explanation for the above-mentioned discrepancies.

This section will show that the differences are entirely due to

the use in different publications of different definitions of

resonance frequency. Given the importance of the use of a

consistent set of definitions and assumptions in any analysis,

this section considers the options. Several definitions are

possible, although the choice made by individual authors is

rarely elaborated on. In this section, four alternative interpre-

tations of the term “resonance frequency” are examined, all

consistent with the 1994 American National Standards Insti-

tute (ANSI) definition.138 These are preceded by Sec. III B

on the natural frequency of unforced oscillations. The sec-

tion ends with a summary (Sec. III H) of which equations

are appropriate in different circumstances.

B. Natural frequency of unforced oscillations

The vibration frequency of a system undergoing

unforced oscillations is known as its “natural frequency.” In

the following, this quantity is denoted xnat.

1. Constant stiffness and damping factor

Damping is modeled by introducing a force proportional

to _R in the differential equation for R(t):

€Rþ 2b _Rþ K R� R0ð Þ ¼ 0; (121)

where b is the damping constant. The solution is

R� R0 ¼ a exp ixnattð Þ exp �btð Þ; (122)

where (if K is also constant)

xnat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � b2

q
(123)

and the complex constant a is determined by the boundary

conditions.

2. Application to a bubble (frequency dependent
stiffness and damping factor)

If K and b are functions of frequency, as is in general

the case for a pulsating bubble, the natural frequency satis-

fies the equation

x2
nat ¼ K xnatð Þ � b xnatð Þ2; (124)
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which (if b0, x0 are both constant) can be written as the fol-

lowing quadratic in x2

5e2
0

4x2
0

1þ O e2
0

� � �
x4

nat þ 1þ e0b0

x0

� 2e2
0 1� b2

0

x2
0

� �	 

x2

nat

� x2
0 � b2

0

� �
¼ 0; (125)

where x0, b0 and e0 are given by (55) (with C equal to a con-

stant such as 1 or c), (90) and (95), respectively. Noting that

in the limit of e0! 0, xnat
2 is equal to x0

2 – b0
2, and retain-

ing all terms up to O(e0
2) in (125), the natural frequency is

given by

x2
nat¼ x2

0�b2
0

� �
1� b0

x0

e0þ
1

4
3þ b2

0

x2
0

� �
e2

0þO e3
0

� �	 

; (126)

which in the limit of small e0 simplifies to the expression

derived by Houghton136 for the “frequency of radial

pulsation.” It is also consistent with (47), the expression

derived by Chapman and Plesset for the natural frequency.

The correction terms proportional to e0 and e0
2 are due to the

frequency dependence of the stiffness and damping terms in

(124), through (87) and (88).

C. Frequency of displacement resonance

The resonance frequency of a system in forced oscilla-

tion is the frequency at which “any change in the frequency

of excitation results in a decrease in the response of the sys-

tem.”138 In the present section, this is interpreted as the fre-

quency of maximum displacement amplitude for fixed

forcing pressure amplitude, and denoted xR.

The particular solution to (62) is

R� R0 ¼
Feixt

K þ 2ibx� x2
: (127)

The general solution is the sum of the particular solution and

the unforced result from (122).

1. Constant stiffness and damping factor

Differentiating the expression for the squared magnitude

of the displacement amplitude

R� R0j j2¼ F2

K � x2ð Þ2þ4b2x2
; (128)

and setting the result to zero gives the following simple

expression for the displacement resonance frequency

x2
R ¼ K � 2b2: (129)

This is the resonance frequency that maximizes the bubble

wall displacement for fixed forcing pressure amplitude

2. Application to a bubble (frequency dependent
stiffness and damping factor)

Now consider K(x) and b(x) as variables, in which case

the condition for a displacement resonance becomes

1

2

d

dx
F2

R� R0j j2
¼ x2 � K
� �

2x� dK

dx

� �

þ 4xb bþ x
db
dx

� �
¼ 0: (130)

Rearranging (130), retaining terms to O(e2) and using the

approximations

K 	 x2
0 þ e0=x0ð Þ2x4 (131)

b 	 b0 þ e0=2x0ð Þx2; (132)

such that

dK=dx 	 4 e0=x0ð Þ2x3 (133)

db=dx 	 e0=x0ð Þx; (134)

it follows that

1þ4
e0b0

x0

� �
x2¼x2

0�2b2
0�e2

0 2�3

2

x2

x2
0

� �
x2þO e3

0x
2

� �
:

(135)

Substituting

x2 ¼ x2
0 � 2b2

0 þ O x2e0

� �
(136)

in the right hand side of (135) and using xR to denote the so-

lution to the resulting equation for x, it follows that

x2
R

x2
0

¼ 1� 2
b2

0

x2
0

� �
1� 4

b0

x0

e0 �
1

2
1� 26

b2
0

x2
0

� �
e2

0 þ O e3
0

� �	 

:

(137)

To first order in e0 this equation is consistent with (106). It is

not consistent to second order because not all order e2 terms

are retained in the derivation of Ref. 91. To zeroth order in

e0 it is also consistent with Ref. 73 [specifically, with (100)].

This observation explains the difference between (100) and

Houghton’s result, which was for the natural frequency (Sec.

III B 2).

D. Frequency of velocity resonance

In the present section, the ANSI definition of “resonance

frequency”138 is interpreted as the frequency of maximum

amplitude of the bubble wall velocity for fixed forcing pres-

sure amplitude and denoted xu.
Differentiating (127) with respect to time and defining

input impedance Z as

Z � pi= dR=dtð Þ; (138)

it follows that

ix
Z

qliqR0

¼ x2 � K � 2ibx: (139)
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1. Constant stiffness and damping factor

The rate of change of input impedance with frequency is

given by

d Zj j2

dx
¼ 2q2

liqR2
0x 1� K

x2

� �
1þ K

x2

� �
; (140)

and the maximum radial wall velocity occurs when this

quantity is zero. Thus, if K and b are both independent of

frequency

xu ¼
ffiffiffiffi
K
p

: (141)

2. Application to a bubble (frequency dependent
stiffness and damping factor)

The general condition for velocity resonance is

d

dx
Zj j2

q2
liqR2

0

¼ 2

x
x2�K
� �

1þ K

x2
� 1

x
dK

dx

� �
þ 4bx

db
dx

	 

¼ 0;

(142)

which can be written in the form

x4 ¼ K2 þ x2 � K
� �

x
dK

dx
� 4bx3 db

dx
; (143)

the solution of which is the velocity resonance frequency xu.
Using (131) to (134), the right hand side of this equation is

equal to x4
0 [1þO(e0)]. Substituting this result back into the

right hand side of (143), it follows that

x4
u

x4
0

¼ 1� 4
b0

x0

e0 þ O e2
0

� �
: (144)

E. Frequency of bubble pressure resonance

In the present section, the ANSI definition of “resonance

frequency”138 is interpreted as the frequency of maximum

amplitude of the internal bubble pressure for fixed forcing

pressure amplitude and denoted xp.

The complex time-varying acoustic pressure pb (assumed

to be spatially uniform inside the bubble) is related to the

incident wave amplitude A according to [see Eq. (20) from

Ref. 33]

pb

A
¼

1þ ieð Þ x2
0 þ 2ixb0

� �
1þ ieð Þ x2

0 þ 2ixb0

� �
� x2

exp ixtð Þ; (145)

and therefore

A

pb

����
����
2

¼
1þ 4b2

0

x2
0

�2þ e2
0

 !
x2

x2
0

þ 1þ e0

2b0

x0

� �2
x4

x4
0

1þ 4b2
0

x2
0

þ e2
0

� �
x2

x2
0

þ e2
0

4b2
0

x2
0

x4

x4
0

: (146)

The condition for (bubble pressure) resonance is that the

right hand side of (146) be independent of frequency, which

results in the quadratic equation (neglecting terms of order

e0
3 and higher)

4b2
0

x2
0

þ e2
0 1þ 2

4b2
0

x2
0

� �	 

x4

x4
0

þ 2
x2

x2
0

� 2 1� 2e0

2b0

x0

þ 4e2
0

4b2
0

x2
0

� �
¼ 0; (147)

with solution

x2
p

x2
0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2 4b2

0=x
2
0þ 1þ8b2

0=x
2
0

� �
e2

0

 �q
�1

4b2
0=x

2
0þ 1þ8b2

0=x
2
0

� �
e2

0

þO e3
0

� �
: (148)

The right hand sides of (145) and (146), and the first term

of that of (148) are symmetrical to interchange of e0 and

2b0/x0, implying that the pressure amplitude inside the

bubble is insensitive to whether damping is caused by

acoustic radiation or by some other mechanism.

F. Frequency of far-field pressure resonance

In the present section, the ANSI definition of “resonance

frequency”138 is interpreted as the frequency that maximizes

the amplitude of the far-field pressure for fixed forcing pres-

sure amplitude, and denoted xr. Ainslie and Leighton33

showed that this frequency is given by

x2
0

x2
r
¼ 1� 2b2

0

x2
0

� e2
0

2
: (149)

This explains the differences compared with Houghton’s

result for the natural frequency (Sec. III B 2) and that of

Khismatullin for the displacement resonance frequency (Sec.

III C 2), respectively. Thus, all of the differences mentioned

in Sec. III A are explained by the use by different authors of

different definitions of resonance frequency.

The right hand side of (149) exhibits the same symmetry

property as (145) and (146), as does the right hand side of

(84), from which it is derived. Therefore, the amplitude of

the far-field scattered pressure exhibits the same insensitivity

to the damping mechanism as does the bubble pressure.

G. Resonance frequency for frequency-dependent
stiffness

Consider a velocity resonance with b db/dx¼ 0. If e0 is

neglected, then (142) simplifies to

x2 ¼ x2
0 xð Þ; (150)

with (93) for x0. The solution of (150) is discussed in Sec. II

A 3. For similar treatments of the resonant bubble radius at a

fixed frequency, see Refs. 86 and 139.

H. “Which resonance frequency?” revisited

Equations for a bubble’s natural pulsation frequency are

described in Sec. III B. The natural frequency is the pulsa-

tion frequency of an unforced bubble and, if b0 and x0 are

independent of frequency, is given by (126). In general,
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however, both b0 and x0 are functions of frequency, through

(90) to (92) and through (93), respectively.

The selection of comparable equations for the resonance

frequency is complicated by multiple possible definitions of

that term, as described in Secs. III C to III G. The answer to

the question “Which equation should I use?” depends on the

application. If one’s purpose is to evaluate any one of the

acoustical cross-sections rs, re, or ra, there is no need to

evaluate the resonance (or natural) frequency at all. Instead

it is sufficient to evaluate the parameter x0 at the frequency

of interest using (93) and substitute the result into the appro-

priate equation for the cross-section (Sec. II E).

The various definitions depend on which physical property

is chosen to quantify the amplitude of a bubble’s pulsations for a

fixed incident plane wave amplitude. The chosen resonance can

then be used to determine the correct formula to use in place of

the generic resonance frequency xres to apply the findings of

Sec. II to the case in hand. The frequency of maximum far-field

response (149) and maximum wall displacement (137) are both

in use, although the choice is rarely made explicit. The conse-

quence of choosing the frequency that maximizes the far-field

pressure when a maximum wall displacement was intended (or

vice versa) would be a fractional error of approximately 2 b0
2/

x0
2 in the design frequency of (say) a drug delivery system.

The resonance frequencies for maximum wall velocity and

maximum (internal) bubble pressure are derived in Sec. III and

given by (144) and (148), respectively. All of these expressions

for the resonance frequency require x0 to be independent of

frequency, in which situation all definitions considered result in

the same value for the undamped resonance frequency, equal to

x0. The presence of damping increases some resonance fre-

quencies and decreases others. Most of the expressions derived

also require the dimensionless bubble radius e0 (defined, for sit-

uations in which x0 is a constant, as the dimensionless fre-

quency evaluated at x¼x0) to be small, the non-acoustic

damping factor b0 to be independent of frequency (but not nec-

essarily small) and the gas density to be negligible.

The effect of relaxing the requirement for constant x0 is

considered in Sec. II A 3 (see also Sec. III G), where the effect

on the velocity resonance of varying the polytropic index

between its isothermal and adiabatic limits is explored. Good

approximations for the resonance frequency of bubbles whose

radius is between 30 nm and 300 lm, under the conditions

considered in this review, are xres 	 xad
1 (21) and xres 	 xiso

1

(28). Finally, the effect of non-zero gas density on the far-field

pressure resonance with b0¼ 0 is given by (61).

IV. CONCLUSIONS

The apparent simplicity of the widely used concepts of

bubble cross-sections, resonance frequency and damping is

illusory. There exist multiple definitions for their component

terms, some of which are contradictory, leading to a risk of

large error if inconsistent combinations are used.

A. Scattering, extinction, and absorption cross-
sections

Equations for the scattering and extinction cross-sec-

tions for a gas bubble in a compressible inviscid or an

incompressible viscous liquid are summarized in Sec. II E.

The absorption cross-section is given by (4).

As yet unresolved problems for a compressible viscous

medium are described in Sec. II E 3. For example, the mod-

els of Devin85 and Love20 are inconsistent with one another

when applied to a gas bubble in an incompressible viscous

liquid, a situation for which ostensibly both seem applicable.

Use of the dimensionless damping coefficient d results in

ambiguity, partly because different researchers adopt different

definitions for this quantity, and partly because these defini-

tions are rarely made explicit. Sometimes more than one defi-

nition is used in the same publication. For this reason the

equations in Sec. II E are cast in this paper either in terms of

damping factor b, or with an accompanying definition for d.

B. Natural and resonance frequencies

The natural frequency of Sec. III B is given by (123) or

(126). For the resonance frequency, multiple definitions are

in use, depending on which physical property is chosen to

quantify the amplitude of a bubble’s pulsations for a fixed

incident plane wave amplitude. Each definition results in a

different equation for the resonance frequency (see Sec. III

for details).
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NOMENCLATURE

A amplitude of incident plane wave

A1, A2 dimensionless constants in (96) and (97)

B amplitude of scattered spherical wave

multiplied by distance from center of

symmetry

B1, B2 dimensionless constants in (96) and (97)

bth constant in (35) (b in the notation of

Wildt 1946; related to thermal damping)

bvis constant in (35) (C1 in the notation of

Wildt 1946; related to viscous damping)

c speed of sound in liquid

CP specific heat capacity at constant pres-

sure (gas)

DP gas diffusivity defined by (9)

DV gas diffusivity defined by (10)

F coefficient of eþixt in (62), representing

the forcing term proportional to ampli-

tude A of incident pressure wave.

K(x) coefficient of (R – R0) in (62), represent-

ing stiffness to mass ratio

kB Boltzmann’s constant

Kgas thermal conductivity (gas)

lac acoustic length scale (wavelength), (6)

lth thermal diffusion length, (8)

3204 J. Acoust. Soc. Am., Vol. 130, No. 5, Pt. 2, November 2011 M. A. Ainslie and T. G. Leighton: Bubble cross-sections and resonance frequencies

Downloaded 17 Nov 2011 to 152.78.128.150. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



lvis length scale associated with viscous

forces, (7)

mgas average mass of a gas molecule

p acoustic pressure

P total pressure

pb time-varying complex acoustic pressure

within the bubble gas (assumed to be

spatially uniform)

Pbody total instantaneous pressure in body of

liquid medium

Pflesh equilibrium pressure in fish flesh

Pgas equilibrium pressure inside gas bubble

pi acoustic pressure of incident plane

wave

Pliq equilibrium pressure of liquid

ps acoustic pressure of scattered spherical

wave

Pwall total instantaneous pressure applied by

liquid to bubble wall

Q Q factor

Qrad Q factor (acoustic radiation damping)

Qth Q factor (thermal damping)

Qvis Q factor (viscous damping)

r distance from center of bubble

R(t) instantaneous bubble radius

R0 equilibrium bubble radius

RD diffusion radius, defined by (13)

RLaplace Laplace radius, defined by (11)

t time

T absolute temperature

us acoustic particle velocity associated with

scattered spherical wave

v acoustic particle velocity

X(x, R0) diffusion ratio, defined as the ratio of

bubble radius to thermal diffusion

length; see (14)

Xad diffusion ratio evaluated at the adiabatic

resonance frequency xad

Z input impedance at bubble wall, defined

by (138)

b damping factor, defined as half of the

coefficient of dR/dt in (62)

b0 sum of non-acoustic contributions to the

damping factor b
bth contribution to the damping factor b due

to thermal conduction across the bubble

wall
bvis contribution to the damping factor b due

to liquid viscosity
c specific heat ratio (gas)

C complex polytropic index

d dimensionless damping coefficient

dMedwin dimensionless damping coefficient

defined as 2 b/x
dother contributions to d other than those

resulting from acoustic radiation, viscos-

ity, and thermal dissipation, which are

included specifically in drad, dvis, and dth,

respectively

drad contribution to dimensionless damping

coefficient due to acoustic radiation

dth contribution to dimensionless damping

coefficient due to thermal diffusion in

the gas bubble

dvis contribution to dimensionless damping

coefficient due to liquid viscosity

dWeston dimensionless damping coefficient

defined as 2 b0/xþ e x0
2/x2

dWildt dimensionless damping coefficient

defined as Im(A R0/B)

e dimensionless frequency xR0/c
e0 dimensionless bubble radius x0R0/c,

defined by (95); this notation is only used

when x0 is independent of frequency,

making e0 a function of radius only

f(X) function of X defined by (66)

gB bulk viscosity coefficient (liquid)

gD dilatational viscosity coefficient

(liquid)

gS shear viscosity coefficient (liquid)

gth equivalent thermal viscosity coefficient;

see (80) and (81)

j real polytropic exponent, defined by (48)

l shear modulus of fish flesh

� dimensionless function of bubble radius

defined by (20)

qflesh equilibrium mass density of fish flesh

qgas equilibrium mass density of gas

qliq equilibrium mass density of liquid

ra absorption cross-section

re extinction cross-section

rs scattering cross-section

uc1, uc2, us1, us2 phase terms in expansion for change in

bubble radius (96) and (97)

v dimensionless change in bubble radius

in (96) and (97)

v0 dimensionless constants in (96) and (97)

x angular frequency of driving acoustic

field
x0 frequency dependent parameter, closely

related to the resonance frequency and

defined by (55)

xad
1 approximation to resonance frequency

obtained by a single iteration of (19),

using xad as seed

xiso
1 approximation to resonance frequency

obtained by a single iteration of (19),

using xiso as seed
xMac

2 approximation to resonance frequency

equal to the sum of the first three terms

in the Maclaurin expansion obtained af-

ter two iterations of (19), using xad as

seed; see (26)
xad adiabatic resonance frequency; see (17)

xiso isothermal resonance frequency; see

(27)

xM Minnaert frequency multiplied by 2p;

see Eq. (12)
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xnat natural frequency

xp resonance frequency (bubble pressure)

xR resonance frequency (radial displacement)

xres resonance frequency (generic); the

expression for this parameter depends on

whether the resonance is for a maximum

response in velocity, pressure, or some

other parameter; this notation is used to

indicate that the precise nature of the

maximum is unspecified

xu resonance frequency (radial velocity)

xr resonance frequency (far-field pressure)

X frequency dependent parameter, closely

related to the resonance frequency and

defined by (53)
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