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Equations resembling the Rayleigh-Plesset and Keller-Miksis equations are frequently used to

model bubble dynamics in confined spaces, using the standard inertial term RR
::
þ 3 _R2=2, where R

is the bubble radius. This practice has been widely assumed to be defensible if the bubble is much

smaller than the radius of the confining vessel. This paper questions this assumption, and provides a

simple rigid wall model for worst-case quantification of the effect on the inertial term of the specific

confinement geometry. The relevance to a range of scenarios (including bubbles confined in micro-

fluidic devices; or contained in test chambers for insonification or imaging; or in blood vessels) is

discussed. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3638132]

PACS number(s): 43.35.Ei, 43.25.Yw, 43.80.Ev, 43.80.Qf [CCC] Pages: 3333–3338

I. INTRODUCTION

The increasing need to model nonlinear bubble pulsa-

tions within microfluidic devices and blood vessels has led

to frequent use of the convenient Rayleigh-Plesset (RP)1,2 or

Keller-Miksis (KM)3,4 equations. Although these equations

sometimes include modifications to the terms that are tradition-

ally placed on the right of the equation (e.g., to introduce addi-

tional damping or stiffness), the inertial term (the factor

proportional to R R
::
þ3 _R2=2 which is traditionally on the left

of the equation, where R is the bubble radius) is usually

unmodified. Any justification for the use of R R
::
þ3 _R2=2 (or

the equivalent volume frame term)5 is usually limited to state-

ments that it is allowed if the bubble radius R is always much

less than the radius C1 of the tube (or similar geometry, e.g.,

ink jet printer nozzle, microscope slide, etc.). Such an argu-

ment, unqualified, can never be correct because it does not

refer to the length of the tube. Its continued use as a viable

approximation should be subject to quantitative testing for the

scenario in question. This paper provides a method for worst-

case estimations by examining the effect of a simple rigid-wall

model on the inertial term in the RP equation (extension to the

KM equation is straightforward) for bubbles contained in tubes

and between plates.

In this simple illustrative model for tubes, at ranges

from the bubble center greater than roughly the tube radius

C1, the liquid is assumed to be lossless and to move in a one-

dimensional6 manner, contributing an inertial component

that is proportional to the length of the tube. The effect on

the inertia is obvious if the bubble fills the tube,6,7 but it can

also be significant if the bubble is much smaller than the

tube radius,8 depending on the length of the tube.9–11

Although the earliest studies emphasized the often dom-

inant effect of the length of the tube on the inertia (both

when the bubble is comparable with,7,12 and when it is much

smaller than,8,9 the tube diameter), most subsequent studies

of bubbles in tubes stated that unbounded models are a good

approximation when the radius of the tube is much larger

than the bubble, without qualifying this with a discussion of

the tube length. Although the tube length was included ex-

plicitly in analyses of linear bubble pulsation,6,7,13 the equiv-

alent analysis for nonlinear8,9 bubble pulsation has been

adopted only rarely.14 Scenarios of interest might include,

for example, when in vitro data from contrast agents within

tubular vessels are compared to predictions from RP=KM

equations that have been comprehensively amended for the

shell properties (or deformation of the bubble and vessel

wall,15–17 even with the vessel wall inertia included)18 but

retain unchanged the R R
::
þ3 _R2=2 inertial term (or its KM

equivalent). The validity of this retention will depend on,

say, the degree of acoustic transmission through the tube

walls along their entire length,19–27 which should be

recorded. The next stage must be quantitatively to examine

such standard inertial terms, and this paper transparently pro-

vides researchers who consider using RP=KM-type equa-

tions with a method of doing so that clearly attributes

correction factors to the inertia of the various components of

the system. It provides simple corrections to allow quick

worst-case (“worst-case” in terms of having a rigid wall; if

axial waves reflected back from the tube ends towards the

bubble were not neglected, as here, greater discrepancies

could occur) assessments as to whether unbounded results

are applicable, providing modified inertia terms for RP equa-

tions should these be necessary. These could then be used as

the foundation for inertial corrections which include end

reflections and axial resonances, and wall compliance and

flexibility.28–30 The transparency of the inertial term allows

explanation of the effects seen when tube length is varied.31

A similar analysis is conducted for bubbles between cir-

cular plates with rigid walls. The paper closes with a discus-

sion of the relevance of these findings to microfluidic

devices, in vitro tests and blood vessels.
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II. THEORY

A. The inertia of an unbounded spherical pulsating
bubble

Consider a spherical gas bubble of radius R which

changes volume but remains spherical in an infinite volume

of incompressible liquid of density q0 as a result of an inso-

nifying field in the long wavelength limit. Conservation of

mass implies

q04pr2ðtÞ _rðtÞ ¼ q04pR2ðtÞ _RðtÞ ) _r ¼ _RR2=r2: (1)

This is a trivial solution to the continuity equation in the

incompressible limit, and shows that when the bubble wall

moves with speed _R, the kinetic energy invested in the entire

volume of the liquid (Vliq) is

uKE;sph ¼
1

2
q0

ð
Vliq

_r2dV ¼ 1

2
q0

ðr¼1

r¼R

4pr2 _r2dr

¼ 1

2
4pq0R3
� �

_R2 ¼ 1

2
mrad

RF
_R2: (2)

If the inertia of the gas is assumed to make a negligible con-

tribution, Eq. (2) indicates that the inertia (or “radiation

mass”) mrad
RF ¼ 4pq0R3 associated with this wall motion is fi-

nite because the integral converges as a consequence of the

inverse square fall-off of liquid velocity with distance from

the bubble wall given by (1) (for small pulsations, mrad
RF is

assumed to take a constant value mrad
RF ¼ 4pq0R3

0 where R0 is

the equilibrium bubble radius, and RF indicates use of the

radius-force frame since the expression varies between

frames).32 In two dimensions33 (e.g., a bubble trapped

between plates) the convergence is not so straightforward, and

in one dimension the inertia never converges unless the tube

length is finite.6,7 The simple model of this paper assumes that

such idealized fluid motions (neglecting turbulence, flow,

transition zones, etc.) occur several vessel diameters away

from the bubble. It gives worst-case predictions since the

model assumes rigid walls, which some important practical

scenarios do not possess (see Sec. III). This inertia enters the

Rayleigh-Plesset equation because, as the bubble radius

changes, kinetic energy is invested (primarily in the liquid)

because of the difference between the work done remotely

from the bubble by the liquid pressure far from the

bubble f p1 ¼ p0 þ PðtÞ, which includes both static (p0) and

dynamic PðtÞ½ � componentsg, and the work done by the pres-

sure pL at the bubble wall (ignoring hydrodynamic pressures

etc. which may occur in confined flow). From Eq. (2) this

energy balance is

ðr¼1

r¼R

ðpL � p1Þ4pR2dR ¼ 2pq0R3 _R2: (3)

Differentiation of this with respect to R, noting that

@ _R2=@R ¼ ð@ _R2=@tÞ= _R ¼ 2 €R, gives

R R
::
þ3 _R2=2 ¼ q�1

0 pLðtÞ � p0 � PðtÞ½ � þ Oð _R =cÞ: (4)

The term on the right in Eq. (4) arises from the difference in

work done at the bubble wall and that done remotely from

the bubble. The terms on the left arise from the kinetic

energy imparted to the liquid and represent the inertia associ-

ated with the motion.

B. Inertia of a spherical pulsating bubble in a tube

If a spherical bubble changes volume in the middle

of a rigid tube of radius C1 and length 2f1 where both the

acoustic wavelength and f1are� C1 � R (Fig. 1), then a first

order model (which ignores details of the transitional regime

and the effect of reflected waves from the tube ends) can

approximately subdivide8 the liquid in the tube into two

regions. In the first (C1 >� r > R), the range r is measured

from the center of the bubble, and the liquid motion is spheri-

cally symmetric. Further out from the bubble, and extending

in both directions, the liquid motion is 1D, following the

direction of the pipe axis, and range x is measured in this

direction out from that pipe cross section which passes

through the center of the bubble. The total kinetic energy

/KE;tube invested in the liquid in the tube is assumed to be the

sum of the kinetic energies of the liquid in both regions

(uKE;sph and uKE;1D, respectively). The total kinetic energy

uKE;Total 1 associated with bubble pulsation in the tube is

therefore /KE;tube plus the kinetic energy invested with the

inertia of the liquid associated with radiation of sound outside

of the tube ends (uKE;out):

uKE;Total 1 ¼ uKE;tube þ uKE;out

¼ uKE;sph þ uKE;1D þ uKE;out: (5)

The spherical component is approximately obtained by inte-

grating Eq. (2) out to the tube radius C1 using (1):

uKE;sph¼
1

2
q0

ðr¼C1

r¼R

4pr2 _r2dr¼ 2pq0
_R2R4ðR�1�C�1

1 Þ

¼ 1

2
_R2 4pq0R3ð1�R=C1Þ
� �

: (6)

The liquid in the tube at range x from the bubble wall where

f1 >� x>� C1, is assumed to move in 1D only with speed u1D.

Consequently the kinetic energy of the liquid that moves in

FIG. 1. Schematic showing the geometries discussed in this paper.
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1D in the tube is found by integrating up the kinetic energy of

disk-like fluid elements of area pC2
1 and thickness dx in both

directions away from the bubble (giving the factor of 2,

below):

uKE;1D ¼
1

2
q02

ðx¼f1

x¼C1

pC2
1u2

1Ddx

¼ 1

2
q02pC2

1ðf1 � C1Þu2
1D: (7)

In this first order calculation u1D is found by matching the

mass passing through cross-sections just before the two ends

of the tube (2q0pC2
1u1Ddt; see Fig. 1) with the mass moving

during the same time interval dt at the bubble wall

(q04pR2 _Rdt). This implies that u1D ¼ 2R2 _R=C2
1 [recovery of

Eq. (1) to resemble spherical spreading at r ¼ C1, but not

beyond, would require that the bubble be placed at the center

of a cross-roads where four identical tubes meet, e.g. in

directions which map out the vertices of a regular tetrahe-

dron; see Fig. 1]. Equations (6) and (7) therefore give

uKE;tube ¼ uKE;sph þ uKE;1D

¼ 1

2
_R2 4pq0R3ð1� R=C1Þ
� ��

þ 8pq0R4ðf1 � C1Þ=C2
1

� ��
; (8)

where the inertia of the liquid contained within the tube is

given by the term in curly {} brackets in Eq. (8). From Eq.

(5) there is in addition inertia associated with the radiation of

sound out of the ends of the tube. This might be due to tube

branching, opening into some larger vessel, or represent radia-

tion from both ends of the tube into unbounded liquid. Taking

the specific example where the tube is cut into a rigid planar

block such that both ends of the tube radiate from a baffled

opening in the block out into a semi-infinite half-space in the

manner described by Ref. 34, the extra inertia can be accounted

for34,35 by adding a virtual length 8C1=ð3pÞ to the tube in both

directions. Consequently the total inertia associated with such

assumed bubble pulsation in a rigid tube which radiates to free

space at both baffled ends is

m1¼4pq0R3 1� R

C1

� 	
þ8pq0R4

C1

f1

C1

1þ 8

3p
C1

f1


 �
�1

� 	
:

(9)

Most of the above inertial contributions do not depend on

tube length f1. These include the first term (the inertia of the

liquid close to the bubble, the subtraction of R=C1 indicating

that the spherical symmetry is limited to within about one

tube radius of the bubble wall); the 8=ð3pÞ associated with

radiation out of the tube ends; and the “�1” component of

the second term (i.e., the subtraction that must occur because

not all of the liquid in the tube—specifically the liquid

within about one tube radius of the bubble—moves in a 1D

manner). The remaining inertia (the first unity in the second

term) represents the inertia of the liquid moving in 1D. It

contains ðR=C1Þ
2

and it might be the presence of this ratio

which led to the misleading statements that the effect of the

tube can be ignored if the radius of the bubble is much less

than that of the tube. This term is multiplied by f1, and so

increases monotonically with tube length, which will eventu-

ally outweigh the smallness of ðR=C1Þ
2

for long non-

branching tubes of constant cross section.

This rigid-wall worst-case formulation can be used to

quantify the magnitude of the discrepancy of the real inertia

from that assumed for an infinite volume of liquid. Dividing

Eq. (9) by mrad
RF ¼ 4pq0R3 from (2) gives

m1=mrad
RF � 1� R

C1

� 	
þ 2R

C1

f1

C1

1þ 8

3p
C1

f1


 �
� 1

� 
:

(10)

To recap, the first term (in round brackets) arises from the

inertia close to the bubble wall (C1 > r > R) where the

ð�R=C1Þ is proportional to the inertia subtracted away

because the spherical symmetry does not extend to infinity.

This subtraction can find approximate compensation by the

addition to the second bracketed term of 8=ð3pÞ which arises

from the radiation into two half spaces that is assumed here

to occur outside of the ends of the tube. This term would

change if the radiation out of the tube ends was into some

other form of space.36 In the baffled case assumed for (10), it

has value 16=ð3pÞ½ �ðR=C1Þ � 1:7ðR=C1Þ, the rigid baffles

overcompensating as expected for the R=C1 subtracted from

the first term.

Table I plots m1=mrad
RF as a function of the half-length of

the tube (normalized to its radius), f1=C1, for a bubble of

2 lm radius. The second column shows the multiplicative

factor by which the tube length must be increased to

account for the assumed radiation out of the two baffled

ends of the tube into the half-space. This is not a function

of the bubble size and decreases as the real tube length

increases. The departure of m1=mrad
RF from the value of unity

that it would take were the bubble not contained in a tube,

increases with decreasing tube radius and increasing tube

length.

Although the modeled geometry reduces the effect of

the standard R R
::
þ3 _R2=2 term in the Rayleigh-Plesset

equation (by removing the inertia of the spherically

spreading liquid further from the bubble than about one

TABLE I. The ratio of the inertia calculated from Eq. (9) to that assumed in

the standard Rayleigh-Plesset formulation for a bubble of 2 lm radius in

rigid-walled tubes of the radii and lengths shown.

Proportional

half-length

of tube

Normalized

end-correction

m1=mrad
RF for a

tube of radius:

(f1=C1) 8
3p

C1

f1
C1¼ 1 mm C1¼ 0.1 mm C1¼ 20 lm

5 0.1698 1.02 1.17 1.87

10 0.0849 1.04 1.37 2.87

20 0.0424 1.08 1.77 4.87

50 0.0170 1.20 2.97 10.87

100 0.0085 1.40 4.97 20.87

200 0.0042 1.80 8.97 40.87

500 0.0017 3.00 20.97 100.87

1000 0.0008 5.00 40.97 200.87
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tube radius), this will be approximately compensated by the

radiation out of the ends of the tube. More importantly, the

rigid wall tube geometry and fluid motion assumed here will

add a new term associated with the liquid that moves in 1D

along the vessel. For the tube model assumed here, the

assumption that the Rayleigh-Plesset inertial term of

R R
::
þ3 _R2=2 is appropriate is therefore never strictly correct,

although the limits of applicability for those models can be

assessed using worst-case estimations (Table I) or the RP=KM

equations can be adapted for such inertial effects. The appro-

priate RP equations consistent with this model (a central bub-

ble between rigid walls, with radiation out into half-spaces via

baffled exits at the tube extremities) can be found by equating

the work done on the bubble gas with the kinetic energy in the

liquid:

ðr¼1

r¼R

ðpL � p1Þ4pR2dR

¼ uKE;tot ¼
1

2
_R2

�
4pq0R3

�
1� R

C1

	

þ 8pq0R4

C1

�
f1

C1



1þ 8

3p
C1

f1

�
� 1

	
; (11)

the term in curly brackets fg being the inertia as taken from

(9). Differentiation of this with respect to R gives

R €R 1þ R

C1

2
f1

C1

1þ 8

3p
C1

f1


 �
� 1

� 	
� 1

� 
 �

þ 3

2
_R2 1þ 4R

3C1

2
f1

C1

1þ 8

3p
C1

f1


 �
� 1

� 	
� 1

� 
 �

¼ 1

q0

pLðtÞ � p0 � PðtÞð Þ þ OðR
:
=cÞ: (12)

In each of the square brackets, the first unity term is from the

standard RP equation term ðR R
::
þ3 _R2=2Þ for spherical sym-

metry from the bubble wall out to infinity. The fourth unity

term in each square bracket arises from the “lost” inertia that

must be subtracted because the spherical symmetry does not

extend to infinity. The second unity term in each square bracket

arises from the liquid moving in 1D in the tube [noting that de-

parture in radiation conditions outside of the tube from those

assumed here will require a change to the end-correction

ðC1=f1Þ8=ð3pÞ]. The third unity term in each square bracket

arises from the fact that the liquid close to the bubble wall does

not undergo 1D motion and so a term must be subtracted from

the inertia associated with 1D motion in the tube.

C. Inertia of a spherical pulsating bubble
between disks

A 2D equivalent of this simple formulation (with the

same limiting assumptions) considers a central bubble

between two rigid disks of radius f2 separated by 2C2 (Fig.

1). At the extreme of the disks there is radiation into some

outer environment (which might be constrained or uncon-

strained). The fluid motion between the disks is subdivided

into a spherically spreading region from the bubble wall to

range r � C2 beyond which transition region the particle

velocity _e and range e measurements are normal to the axis

of symmetry that passes through the center of the bubble

and the disks. If the liquid is incompressible then in time dt
the mass q04peC2 _edt of liquid passing through a cylindrical

control surface in this regime equals the mass q04pR2 _Rdt
passing through a spherical control surface at the bubble

wall, from which equality _e ¼ _RR2=ðeC2Þ. This can be used

to obtain the kinetic energy of the axisymmetric motion:

uKE;2D ¼
1

2
q02C2

ðe¼f�2

e¼C2

2pe _e2de

¼ 1

2
q02C2

ðe¼f�2

e¼C2

2pe
_RR2

eC2

� 	2

de

¼
_R2

2

� 	
4pq0R4

C2

ln
f�2
C2

� 	
; (13)

where f�2 represents the artificially enhanced disk radius that

also accounts for the inertia associated with the liquid

motion outside of the disks. Combining this with the spheri-

cal inertia resembling (6) gives a total inertia of

m2 � 4pq0R3 ð1� R=C2Þ þ ðR=C2Þ lnðf�2=C2Þ
� �

, so that the

ratio m2=mrad
RF is ð1� R=C2Þ þ ðR=C2Þ lnðf�2=C2Þ. In this, the

first R=C2 is proportional to the inertia subtracted away from

mrad
RF because the spherical symmetry does not extend to in-

finity, and the R=C2 lnðf�2=C2Þ is proportional to the inertia

in the axisymmetric section (the C2 in the natural log

accounting for the absence of 2D motion in the region

C2 > r > R where spherical motion occurs). Note that f�2,

the enhanced version of f2, is being used to include the iner-

tia of the liquid outside of the disks. For a bubble of radius 2

lm placed centrally between two 1-cm radius coins spaced

100 lm apart, m2=mrad
RF equals �1.17, the discrepancy as

expected being less than that when the bubble is confined in

a tube because of the fall-off of particle velocity with range.

From Eq. (13) the equivalent energy balance to Eq. (11) for

this coin-confined geometry37 (resembling some in vitro
arrangements, resonant chamber bubble detectors, microflui-

dic devices, microscope wells and sonic traps) isð
ðpL � p1Þ4pR2dR

¼ uKE;tot ¼
1

2
_R2m2

� 2pq0 R3 _R2 � R4 _R2

C2

1� ln
f�2
C2

� 	
 �
: (14)

Differentiation of this with respect to R gives

R €R 1þ R

C2

ln
f�2
C2

� 1

� 	
 �

þ 3

2
_R2 1þ 4R

3C2

ln
f�2
C2

� 1

� 	
 �

¼ 1

q0

pLðtÞ � p0 � PðtÞ½ � þ Oð _R =cÞ (15)

the additions and subtractions from the standard RP equation

being transparent in a manner that is similar to the

3336 J. Acoust. Soc. Am., Vol. 130, No. 5, Pt. 2, November 2011 T. G. Leighton: Inertia of bubbles in vessels

Downloaded 16 Nov 2011 to 152.78.128.149. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



description after Eq. (12). As with bubble pulsation in a

tube, volume changes in bubbles close to plates (and other

bubbles) can induce loss of sphericity,38–45 and Klaseboer

and Khoo46 indicated how these, and other real-word effects,

might be incorporated into an RP-like formulation.

III. DISCUSSION

When bubbles pulsate in real vessels, there will be

departures to a greater or lesser extent from the rigid wall

boundary conditions and assumed 1D=2D particle velocities

(with simple transition zones between these and the spherical

conditions near the bubble) that are inherent in the preceding

theory. Hence the above formulations provide a way of mak-

ing worst-case estimates of the effect of the enhanced inertia:

if such calculations show negligible effect then standard in-

ertial terms can be used, but if not the implications need to

be considered. Enhancement of the inertia could affect the

measurement or exploitation of the bubble dynamics and res-

onance in a microfluidic device,47,48 or in a chamber or Petri

dish for cell treatment,49,50 or in a glass=plastic capillary

tube, or in a chamber on a microscope slide. This will reduce

the resonance frequency of the, contrast agent6,7 (confine-

ment can also affect the damping)51,52, with commensurate

implications for fitting parameters to free field models to

match data obtained from confined bubbles. If the

R R
::
þ3 _R2=2 terms do need to be amended, this will affect

not only the bubble dynamics but also the predictions of

scattered pressure for confined bubbles,19,22,53 since this

depends on such terms.32 In the limit of long vessels, the

inertia becomes huge, so that the vessel (not the liquid col-

umn) provides the compliance for bubble growth.6,7,25,54

This hydrodynamic constraint will also be important for

large bubbles in terms of loss of sphericity.15,18,55

Blood vessels depart significantly from the conditions

assumed by the theory. Blood vessels will branch, although a

pairwise branching into identical daughter vessels will only

double the area with distance, which provides less spreading

loss than the inverse square law associated with spherical

spreading. More importantly, blood vessel walls are compli-

ant, and (unless next to gas or bone) they readily transmit

sound from within the blood out into the surrounding tissue,

which will incur commensurate spreading losses, and

absorption will also occur. As such, the above theory can

only be used with in vivo blood vessels for the worst-case

estimations described above, or as the basis for the develop-

ment of a more complete theory specifically for such vessels.

With the increasing attention paid to measurements of

confined bubbles, these worst-case calculations allow assess-

ment to be made as to whether the left (inertial) sides of the

RP and KM equations require attention to complement the

work to date that has focused on amending the right (stiff-

ness, elasticity and damping) sides of these equations. The

bulk of bubble dynamics is based on stationary bubbles in

the free field, e.g., through simplification of the Navier-

Stokes equation and boundary conditions. Other areas where

use of established theory could be critically assessed for their

applicability to bubbles within vessels containing flowing

viscous liquids, are neglect of the convective terms; neglect

of the vector summation of all body forces; neglect of the

term �r� �r� �u which encompasses the dissipation of

acoustic energy associated with, amongst other things, vor-

ticity; and (perhaps most immediately given that the dynam-

ics of contrast agents in compressible liquids are now being

simulated) the terms associated with the bulk viscosity.56

IV. CONCLUSIONS

The statement that the use of the standard R R
::
þ3 _R2=2

inertial term in the RP equation is justified for bubbles con-

tained in a tube if the bubble is much smaller than the vessel

diameter can never be correct, since it makes no mention of

the tube length. The size of the discrepancy will depend on

the transmissivity and compliance of the walls, the tube ge-

ometry, and details of the particle velocity both inside and

outside of the tube. Whether this is important for a given sce-

nario can be assessed using the simple rigid-walled model to

give a worst-case estimate of the effect on the inertia. It is

directly applicable to some circumstances (bubbles within

thick-walled steel tubes) and would provide the foundation

for more sophisticated models of bubbles contained within

compliant walls with detailed transition zones. Future work

will consider the effect of the key assumptions, and indeed

greater discrepancies than are forecast by the “worst case”

model of this paper may be predicted when the effect on the

bubble of reflections from the tube boundaries, and the

occurrence of axial resonances, are included.
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