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Abstract 

The purpose of the work reported here is to understand the vibro-acoustic 

behaviour of an infinite plate strip in terms of its point mobility, sound radiation and 

sound transmission loss. Moreover, it aims to provide a benchmark solution for such 

waveguide structures that can be used by other workers. 

Analytical models have been developed for the vibro-acoustic behaviour of the 

plate strip. The plate strip is assumed to be infinite in length but have a finite width 

where it is confined by parallel boundaries. Simply supported boundaries are 

considered for simplicity. The waveguide behaviour allows an analytical wave 

approach to be considered. This is used to find the free waves in an infinite waveguide, 

the point mobility, the sound radiation of the structure due to a point force excitation 

and the sound transmission loss due to acoustic excitation.  

From this study, it is shown that the point mobility of the plate strip subject to 

a point force excitation is stiffness-controlled at low frequency while it tends to be 

similar to that of an infinite plate at high frequencies. Peaks are found at cut-on 

frequencies where their magnitudes are dependent on the excitation position. 

Damping only has an effect around the cut-on frequencies.  

The finite width of the plate strip influences the sound power radiation at 

frequencies below the critical frequency. This leads to the presence of ‘edge modes’, 

waves with an axial component of wavenumber that is less than that of air. 

Accordingly, the presence of the edge modes causes the radiated power of the plate 

strip to be higher than that of the infinite plate in this acoustic short-circuit region. 

Additionally, the nature of the point force excitation leads to radiation due to the near 

field in the vicinity of the forcing point. 

Compared with an infinite structure, some dips or ripples related to various 

cut-on frequencies are present in the sound transmission loss curve of the plate strip. 

Moreover, the slope at low frequencies is modified from the result for an infinite plate 

when the width is less than half the acoustic wavelength. Apart from this, the sound 

transmission loss for normal incidence converges to the mass-law result at high 

frequencies and a stiffness-controlled region appears at frequencies below the first 

cut-on frequency.  For random incidence, the plate strip has a higher transmission loss 

than the infinite plate below the critical frequency but the results are similar above the 

critical frequency. 
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Nomenclature 

c  Sound velocity 

D  Bending stiffness 

D  Complex bending stiffness 

E  Young’s modulus 

f  Force 

yf  y  dependent force 

F  Force amplitude 

mF  Fourier coefficients 

h  Plate thickness 

1i    Imaginary unit  

, ,x y zk k k  Acoustic wavenumber in x , y  and z  directions 

1, 2,,x m x mk k  Wavenumber  in x - direction  for each  mode order m  

yl  Plate strip width 

p  Acoustic pressure  

ip  Incident sound pressure 

radp  Radiated pressure 

P  Fourier transform of p  

s  Stiffness per unit area 

v  Vibration velocity 

2

inf

( , )v x y  Spatial ‘average’ mean-square velocity 

V  Fourier transform of v  

w  Out-of-plane displacement 

mw  Complex amplitude of the m
th

 component 

radW  Sound power radiation 

Y  Structural mobility  

az  Acoustic impedance 

  Structural wavenumber in the x -direction 
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 p  Poisson’s ratio 

0  Fluid density 

  Plate strip density 

  Angular frequency 

m  m
th

 cut-on frequency 
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1. Introduction 

Complex waveguide structures are often found in practice, for example 

railway tracks, pipes, bridges, railway carriage floors and many other structures which 

have a large aspect ratio and constant geometry along the length. It is of importance to 

understand their dynamic vibro-acoustic behaviour for practical purposes such as 

noise control. A plate strip is considered here which is assumed to be infinite in length 

but have a finite width, where it is confined by parallel boundaries. Such structures 

can also be considered as waveguides [1]. Since such plate strips form a basic element 

of more complex lightweight structures, they are of importance to be considered first 

before proceeding to more complex waveguide structures.  

The focus of this report is to understand the vibro-acoustic behaviour of a 

plate strip in terms of its point mobility, sound radiation and sound transmission loss. 

For this, an analytical model is developed using a wave approach in order to find 

waves propagating freely along the waveguide. By combining this wave approach 

with a modal solution in the transverse direction, the response of the plate strip is 

obtained in the wavenumber domain using the Fourier transform method. This 

solution is then extended in order to solve more complex cases in which the 

interaction of the plate strip and the surrounding fluid is considered, i.e. for the case of 

radiated sound power and sound transmission loss.  

The framework for deriving the exact solutions is readily available in some 

references, e.g. in Ref. [1, 2]. In those references, the structural vibration response and 

its interaction with surrounding fluid are discussed from a wave phenomenon point of 

view. This wave approach has been applied to obtain solutions by utilizing a spatial 

Fourier transform for solving many basic cases e.g. beams, plates, pipes (or 

cylindrical structures), etc. For the case of a plate strip, some results have also been 

found for particular cases with a limited discussion.  

This report is devoted to a systematic procedure for obtaining solutions for the 

vibro-acoustic behaviour of the plate strip using the Fourier transform method with 

emphasis on how they are related to each other. Moreover, a detailed discussion of the 

implication of varying several parameters of the plate strip is also provided. It is 

expected that the resulting solutions, which are exact apart from their numerical 

evaluation, can be used as a benchmark solution for such waveguide structures, for 

example in validating waveguide finite element/boundary element approaches. 
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2. Vibration of a plate strip 

For a waveguide an analytical wave approach can be considered. This is used 

in this section to find the free waves in an infinite plate strip, and the point mobility. 

The sound radiation of the structure due to a point force excitation is considered in 

section 3 and the sound transmission due to acoustic excitation is studied in section 4. 

Simply supported boundaries on the two parallel edges will be considered throughout 

for simplicity.  

2.1 Undamped free vibration  

The plate strip under consideration is illustrated in Figure  2.1. It has width yl  

in the y  direction and is infinite in the x direction. It is assumed to be simply 

supported (pinned) along the edges 0y   and yy l . This condition allows the 

response to be written in a separable form. A travelling wave solution is used to 

describe the dependence of the displacement on the x direction while, for the 

y  direction, a modal solution can be utilized to describe the structural response. 

Only the out-of-plane response w  is considered here. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.1. A simply-supported plate strip. 

 

 

For a thin undamped plate, the out-of-plane displacement ( , , )w x y t  in the 

absence of external forces satisfies the following differential equation  

 

  
4 4 4 2

4 2 2 4 2
2 0

w w w w
D h

x x y y t


    
    

     
 (2.1) 
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w  

x
 Wave propagation 

yl

 



3 

 

 

where 
3

212(1 )p

Eh
D





 is the bending stiffness, E  is Young’s modulus, h  is the plate 

thickness, 
p  is Poisson’s ratio, and   is the mass density of the plate.  

Harmonic motion is assumed at the angular frequency  , with a time 

dependence i te   which is omitted for brevity. Due to the use of simply supported 

boundaries, the response amplitude w  of the plate at position ( , )x y  may be separated 

into its x  and y  components and written as a summation over components with m  

half-sine waves across the width yl  

 
1

( , ) ( )sinm

m y

m y
w x y w x

l





 
  

 
 

  (2.2) 

 

where ( )mw x  is the complex amplitude of the m
th

 component that depends on the 

excitation. This series forms a complete set of functions which satisfy the boundary 

conditions on 0y   and yy l . Considering one term in the series, substituting this 

into Eq. (2.1) yields 

  

 

2 4
4 2

2

4 2
2 0m m

m m

y y

d w d wm m h
w w

dx l dx l D

  


    
       

        

 (2.3) 

 

Seeking solutions of the form ,( ) x mik x

mw x e


  gives 

 

 

2 4

4 2 2

, ,2 0x m x m

y y

m m h
k k

l l D

  


    
       

        

 (2.4) 

 

which can be written as 

 

2
2

2 4

,x m B

y

m
k k

l


  
   

    

 (2.5) 

 

 

where 

1 4

B

h
k

D



 

  
 

 is the free bending wavenumber of the plate. Eq. (2.5) has 

four solutions which can be divided into two fundamentally different wave-type 

solutions for each m  
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y
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l

m
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l




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 
 
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 

 (2.6) 

 

Real wavenumbers represent propagating waves; the wavenumber is the phase change 

per unit distance, equal to 2  , where   is the wavelength of vibration. Imaginary 

wavenumbers represent evanescent waves which decay with distance. At low 

frequency, B yk m l and all four wavenumbers in Eq. (2.6) are imaginary so that all 

four waves behave as evanescent or nearfield waves. In contrast, when B yk m l , 

1,x mk  is real but 2,x mk  remains imaginary. Therefore, both propagating waves and 

nearfield waves are present for the latter case. It may be noted that real positive or 

negative imaginary values of the wavenumber 1,x mk  and 2,x mk  correspond to waves 

travelling or decaying in the positive x direction while the opposite sign 

corresponds to those travelling or decaying in the negative x direction. The 

frequency at which Bk m l  is referred to as the m
th

 cut-on frequency m  and is 

given by  

 

 

2 1 2

m

y

m D

l h






   
        

 (2.7) 

 

The relation between the wavenumbers 1,x mk  and frequency   from Eq. (2.6) can be 

observed from the dispersion curves shown in Figure  2.2. These are calculated for the 

example parameters listed in Table  2.1. Clearly, the presence of the boundary 

constraint has modified the dispersion curves so that 1,x m Bk k . For each mode m , as 

frequency increases, the wavenumbers 1,x mk  change from imaginary values into real 

ones at the cut-on frequencies at which 1,x mk  = 0. Conversely, all the wavenumbers 

2,x mk  are negative imaginary with zero real part. Both 1,x mk  and 2,x mk  have the same 

values yim l  at  = 0. 
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Table ‎2.1. Material properties and dimension of the plate strip (unless 

otherwise stated). 

 

Properties Dimension 

Young’s modulus, E  (N/m
2
 ) 107.1 10  

Poisson’s ratio, 
p  0.332  

Thickness, h (mm) 6.0 

Width, 
yl  (m) 1.0 

Density,   (kg/m
3
) 32.7 10  

Damping loss factor (if used),   0.1  

 

 

 
 

Figure ‎2.2. The dispersion curves of a simply-supported plate strip (a) 1,x mk ; (b) 2,x mk . 

Bk  1m   

2m   

3m   

4m   

5m   

6m   

Bk  

1m   2m   3m   4m   5m   6m   
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The cut-on frequencies for this plate are listed in Table  2.2. It is noticeable that 

they are proportional to 2m  as indicated in Eq. (2.7).  

 

Table ‎2.2. Cut-on frequencies for each mode m  in Hz. 

 

m  mf  

1 14.8 

2 59.2 

3 133 

 4 237 

5 370 

6 533 

7 725 

8 947 

9 1198 

10 1479 

11 1790 

12 2130 

13 2500 

14 2899 

15 3328 

 

2.2 Inclusion of damping 

Up to this point, the equations have been derived for an undamped structure. 

In practice, however, all structures experience damping. In order to incorporate this, a 

damping loss factor   is included in the formulation by making the Young’s modulus 

complex. The bending stiffness becomes 

 

 
3

2

(1 )

12(1 )p

E i h
D






 


 (2.8) 

 

From now on, this complex bending stiffness D  will be used. 

Due to the introduction of the complex bending stiffness, the wavenumbers in 

Eq. (2.6) become complex. Therefore, there are no purely propagating waves or 

purely evanescent waves in this case as both of them are decaying oscillatory waves. 

Moreover, since Eq. (2.6) produces wavenumber values in which the imaginary part 
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can be either positive or negative, in the calculation process it must be ensured that 

the complex wavenumbers have imaginary values less than zero for positive-going 

waves in order to obtain waves that decay as x . 

Figure  2.3 shows examples of complex wavenumbers for   0.1 and the same 

parameters as previously, see Table  2.1. Results are shown for 1m   to 6m  . The 

wavenumbers 
1,x mk  can be seen to be predominantly imaginary at low frequency and 

then to become predominantly real above the cut-on frequency. However, this 

transition is more gradual than for the undamped case. The wavenumbers 2,x mk  are 

negative imaginary wavenumbers with a small negative real part. 

 

 

Figure  2.3. Complex wavenumber evolution against frequency (— real 

components;  ┅ imaginary components). 

1m 

 

2m 

 

3m 

 

4m 

 

5m 

 

6m 

 

1m 

 2m 

 3m 

 4m 

 5m 

 
6m 
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2.3 Response due to a point force  

2.3.1 Formulation  

There are four wave solutions for each m  in Eq. (2.6), allowing the complete 

solution to be written as 

 

  1, 2, 1, 2,

1, 2, 3, 4,( , ) sinx m x m x m x mik x ik x ik x ik x

m m m m

m y

m y
w x y A e A e A e A e

l

 
 

     
 
 

  (2.9) 

 

In order to determine the constants 1,mA , 2,mA , 3,mA  and 4,mA , boundary conditions are 

required. For a force applied at 0x   it should be noted that, to ensure that waves 

decay in both directions, 1,mA  and 2,mA  are zero in the region 0x  while 3,mA  and 

4,mA  are zero in the region 0x  . The external force can be written as a pressure 

( , )f x y  

 

 ( , ) ( ) ( )x yf x y f x f y  (2.10) 

 

where ( ) ( 0)xf x x   and 0( ) ( )yf y F y y   for a point force at  00, y . Since the 

Fourier transform of ( ) ( 0)xf x x   into the wavenumber domain is unity at all 

wavenumbers, it is sufficient to consider only ( )yf y . Due to the finite width of the 

plate and the simply supported boundary conditions, this can be expressed as a 

Fourier sine series as follows 

 

 
1

( ) siny m

m y

m
f y F y

l





 
  

 
 

  (2.11) 

 

where mF  are the Fourier coefficients which are given by 

 

 
0

2
( )sin

yl

m y

y y

m
F f y y dy

l l

 
  

 
 

  (2.12) 

 

Recalling 0( ) ( )yf y F y y  , Eq. (2.12) becomes 
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0

2
sinm

y y

F m
F y

l l

 
  

 
 

 (2.13) 

 

where F  is the force amplitude.  

Considering the continuity of displacement, rotation and bending moment and 

the force equilibrium condition at 0x  , the solution may be written as follows (see 

Appendix A for its detailed derivation) 

 

 
 

 

1, 2,

1, 2,

1,

2 2
1 2,1, 1, 2,

1,

2 2
1 2,1, 1, 2,

( 0, ) sin
2

( 0, ) sin
2

x m x m

x m x m

ik x ik xx mm

m x m yx m x m x m

ik x ik xx mm

m x m yx m x m x m

kiF m y
w x y e e

k lD k k k

kiF m y
w x y e e

k lD k k k










 



  
             

  
             





 (2.14) 

 

From this, the mobility Y i w F w F  for the infinite plate strip can be derived as 

 

 
1, 2,0 1,

2 2
1 2,1, 1, 2,

(2 )sin( )( , )
sin

2

x m x mik x ik xy y x m

m x m yx m x m x m

i l m y l kw x y m y
i e e

F k lD k k k

 



 



  
            

  (2.15) 

 

The point mobility for the structure can be found by setting 0x   and 0y y  

 

 
 

1, 2

02 2
1 2,1, 1, 2,

( ) 1 sin
x m

m x m yy x m x m x m

k m
Y y

k lD l k k k

 






  
            
  (2.16) 

 

 

Note that as an alternative formulation it is possible to apply the residue calculus 

method to obtain the point mobility Y [2].  

2.3.2 Convergence 

 Theoretically, the response amplitude of the plate strip is obtained from an 

infinite number of the wave components. In practice, the summation in Eq. (2.2), (2.9), 

(2.14) and (2.16) is performed for 1m   to M , where the upper limit M  is 

determined based on some convergence criterion. In order to find a suitable criterion, 

the mobility was calculated at various representative frequencies (30 Hz, 200 Hz, 

400 Hz, 1 kHz, 2 kHz, and 3 kHz) for different values of M with excitation at the 

position (0, 0.433 yl ).  From Table  2.2, it can be seen that at 30 Hz a single wave has 
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cut on, at 200 Hz 3 waves, at 400 Hz 5 waves, at 1 kHz 8 waves, at 2 kHz 11 waves 

and at 3 kHz 14 waves. Results are shown in Figure  2.4 in terms of a relative 

difference in Y  compared with 400M  . From this, it can be concluded that M = 

81 will give results within 1% for 3 kHz which is the highest frequency considered. 

The required upper limit M  decreases for lower frequencies but the ratio of this to 

the number of waves that have cut-on at each of these frequencies tends to be constant. 

From this convergence study, a ratio of 6 (i.e. M  is taken as 6 times the number of 

cut-on modes) is found to be sufficient to estimate the mobility within 1% for a 

particular frequency of interest. 

 

 

Figure ‎2.4. Percentage difference relative to M  = 400 for different values of M . 

From lower to upper curve the results correspond to 30 Hz, 200 Hz, 400 Hz, 1 kHz, 

2 kHz, and 3 kHz. The dashed line indicates 1% difference. 

2.3.3 Results  

Figure  2.5 shows the point mobility of a plate strip with properties as in 

Table  2.1 for excitation at position (0,0.433 )yl . The mobility of an infinite plate with 

the same properties is shown for comparison. This is given by 1 8 ( )Y D h  [3]. 
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Figure ‎2.5. The point mobility of the plate strip excited at position (0,0.433 )yl . The 

dashed line indicates the mobility of an infinite plate. 

 

The features of the plate strip mobility in Figure  2.5 can be identified as follows 

1. At low frequencies, below the first cut-on frequency, the mobility is clearly 

stiffness-controlled as indicated by the phase of nearly 2  radians and the 

amplitude which increases in proportion to frequency. Note that the phase is 

less than 2  radians due to the presence of the damping loss factor which 

makes the stiffness complex. It is also seen from the point mobility formula 

where   B yk m l  at this frequency region hence Eq. (2.16)  reduces to  

 

  
 

2

0

1

sin

2

y

m y

m y l
Y i

D m m l




 





 
 
 
 

    (2.17) 

 

2. Peaks occur at each of the cut-on frequencies (see Table  2.2). 

3. At high frequencies, when a lot of waves have cut on, the mobility tends to be 

similar to that of an infinite plate. 
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2.3.4 Effect of plate thickness 

It is instructive to study the point mobility behaviour due to changes in the 

plate thickness. Three different plate thicknesses are considered, 3 mm, 6 mm and 

9 mm. The results are shown in Figure  2.6. It is clear that reducing the plate thickness 

leads to a higher mobility and a reduction in the cut-on frequencies.  

 

Figure ‎2.6. Effect of plate thickness on the point mobility excited at (0, 0.433 yl )  

(┄ h  = 3 mm; — h = 6  mm;  –  h = 9 mm). 

 

2.3.5 Effect of excitation position 

The peaks at the cut-on frequencies have magnitudes that are determined by 

the term  2

0sin ym y l  in Eq. (2.16). Figure  2.7 shows the point mobility for 

0 4yy l  and 0 2yy l . For the case of excitation at the centre position ( 0 2yy l ), 

the peaks only exist when m   1, 3, 5,…etc, as the even ones are missing since 

 0sin 0ym y l  . Meanwhile, for the case of 0 4yy l  the peaks are found for 

m  1, 2, 3, 5, 6, 7 etc while those for m  4, 8, etc are missing. Again, the term 

 0sin 0ym y l   for these values of m . For the latter case, the low frequency 
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stiffness-like behaviour corresponds to a higher stiffness (lower mobility) because this 

position is closer to the edge. 

 
Figure ‎2.7. Modulus and phase of point mobility for an infinite plate strip (― at 

 0, 2yl ;  at  0, 4yl ). 

2.3.6 Effect of damping loss factor  

To show the effect of the damping loss factor on the mobility, Figure ‎2.8  

compares results with   0.01 and   0.1 for excitation at the centre position. This 

figure shows that a lower damping loss factor causes a higher amplitude at the peaks, 

whereas a higher damping suppresses the peak amplitude. Away from the peaks, the 

response is similar. So, it is clear that the greatest damping effect on the point 

mobility can be seen in the region of the peaks which correspond to the cut-on 

frequencies. 
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Figure ‎2.8. Effect of damping loss factor on the point mobility (– – –   0.01; 

― 0.1  ).  

2.3.7 Average response of plate 

In this section the spatial average response of the plate is determined. The 

vibration of the plate surface in Eq. (2.15) can be expressed as a two dimensional 

Fourier transforms as follows 

 

 
( )
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( , ) ( , )
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x y x yv x y V k k e dk dk


   

 
    (2.18) 

 

 

The wavenumber transform of ( , )v x y  for a single mode m  is 
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  (2.19) 
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where the integration limit   in the y direction is replaced by 0 to 
yl  because it is 

assumed that the velocity is zero outside this range (for a plate set in a baffle).  

Eq.(2.19) has the following solution  

 

 
   2 22 2 2 2

1, 2,

( / )[( 1) 1]
( , )

[ ( / ) ]

y yik lm

ym
x y

y yx m x x m x

m l ei F
V k k

k m lD k k k k





 


  
 (2.20) 

  

 

The mean-square response at a given point is the integration of the squared 

velocity over time.  For harmonic motion with complex velocity amplitude  ,v x y , 

this is equal to  
2

, 2v x y . It can also be written in terms of the product of the 

complex velocity amplitude  ,v x y  and its conjugate ( , )v x y . A spatial ‘average’ 

mean-square response can then be obtained by integrating 2( , )v x y  over the plate strip 

area  

 2 2

inf
0

1
( , ) ( , )

yl

y

v x y v x y dxdy
l





    (2.21) 

 

where 
inf

 denotes a spatial ‘average’ over the width. Note that this is actually an 

integral over the length direction rather than an average due to the infinite extent of 

the plate strip. For convenience, an index inf is added to the angle brackets to indicate 

this. Recalling the definition of the mean-square response and substituting Eq. (2.18) 

into Eq. (2.21),  this yields 
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
' '

( )2

4
inf 1 1

( )' ' ' '

1 1
( , ) Re ( , )

32
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x y

x y

i k x k y

x y x y

m m y

i k x k y

x y x y

v x y V k k e dk dk
l

V k k e dk dk dxdy



      

 
   

  

 







    

 

 (2.22) 

 

where xk   and yk   are introduced to distinguish between the integration over xk  and 

yk  related to V  and V   respectively. If the integration order is changed so that 

integration is first performed over x  and y , use can be made of the Dirac delta 

function as follows 

 



16 

 

 
( )( ) 24 ( ) ( )y yx x

i k k yi k k x

x x y ye e dxdy k k k k  
    

 
      (2.23) 

 

   

where the integral is zero for '

x xk k  or '

y yk k and is infinite if '

x xk k  and '

y yk k . 

Thus, the average mean-square response can be obtained in terms of the 

surface velocity in the wavenumber domain as follows 

 

 
2

2

2
inf 1

1 1
( , ) ( , )

8
x y x y

m
m y

v x y V k k dk dk
l 

 

  

    (2.24) 

 

 

where 
2

( , )x y
m

V k k  is defined as 
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
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    

       

 (2.25) 

 

 

which reflects the energy spectrum of ( , )x yV k k . The derivation of Eq. (2.25) is given 

in Appendix B.  In determining the squared-amplitude of the surface velocity for each 

mode order in Eq. (2.25) the cross-term contributions have been neglected. 

 Figure  2.9 presents the average response of the plate strip with different 

damping loss factors. It is clear that the damping loss factor has a significant impact 

above the first cut-on frequency with the largest influence found around the cut-on 

frequencies. In this frequency region, away from the cut-on frequencies, it can be seen 

that the average response is inversely proportional to the damping loss factor. Hence, 

increasing of the damping loss factor gives reduction of the average response. Below 

the cut-on frequency, the response is largely unaffected by the damping.  
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Figure ‎2.9. Average response of the plate strip with different damping loss factor   

( ━   = 0.01; ┅  = 0.03; •–•–•   = 0.1) 

 

 The effect of thickness on the average response can be observed from 

Figure  2.10. In general, the thinner plate has lower average response compared with a 

thicker one.  The peak associated with the first cut-on frequency shifts to a lower 

frequency as the thickness of the plate strip is reduced. The implication of these 

results will be discussed further in section ‎3 where the radiation ratio, which is the 

sound radiation normalized to the average response of the plate, is investigated. 

 
 

Figure ‎2.10. Average response of the plate strip due to different thickness with 

damping loss factor equal to 0.1 and excited at (0, 0.433 yl ) (┄ h = 3  mm; — h = 6 

mm; –  –  h = 9 mm). 
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2.4 Summary  

The point mobility behaviour of the plate strip is stiffness-controlled at low 

frequency and then tends to the mobility of an infinite plate at high frequencies. Peaks 

are found in the mobility curve associated with the cut-on frequencies while their 

magnitude is determined by the term  2

0sin ym y l . The damping has a significant 

effect at the cut-on frequencies while in other areas there is little effect on the point 

mobility. However the spatially averaged response is affected by the damping at all 

frequencies above the first cut-on frequency. Moreover, the average response is also 

affected by the thickness of the plate strip. 

 To get an acceptable accuracy, a sufficient number of waves should be 

incorporated in the calculation, indicated by the upper limit M . It has been shown 

that the ratio of M  to the number of waves that have cut-on should be at least 6 to 

obtain the response within 1%. 
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3. Sound radiation of a plate strip  

A vibrating plate in contact with a fluid will radiate sound by producing 

acoustic waves that propagate away from the plate surface. In this section, the sound 

radiation from the plate strip is evaluated by means of an analytical model. The 

analytical model uses a wave-domain approach in two dimensions.  

In order to understand the sound radiation mechanism for an infinite plate strip, 

a two-dimensional spatial (or wavenumber) Fourier transform is used for predicting 

the sound radiated in the wavenumber domain. In this evaluation, a wave approach as 

above is used to determine the velocity distribution of the plate strip in the infinite 

direction. The basic concept of using the wavenumber domain approach for the sound 

radiation is introduced through an infinite plate case. It is then extended to the plate 

strip case by imposing simply supported boundaries on the two parallel edges while 

assuming that the plate strip is set in an infinite rigid baffle. A detailed explanation of 

the radiated power calculation in the wavenumber domain can be found in  [1, 4, 5]. 

3.1 Infinite plate 

Consider first an infinite, uniform plate which is in contact with a semi-infinite 

fluid domain 0z  , as shown in Figure  3.1. A plane transverse wave is assumed to 

travel in the plate in the x -direction with arbitrary frequency   and wavenumber  . 

The velocity amplitude with the implicit time dependence i te   is expressed by 

 

 ( ) i xv x Ve   (3.1) 

 

Subsequently, sound is radiated by the vibrating plate into the fluid with the same 

wavenumber component in the x direction.  

In terms of the acoustic field, a plane wave propagates with a component in 

the x direction and a component in the z direction 

 

 
( )

( , ) x zi k x k z
p x z Pe

 
  (3.2) 
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The acoustic plane waves must have a wavenumber component in the x - direction 

equal to that of the wave in the plate xk  . This leads to the wavenumber in the 

z direction being given by 

 2 2 1 2( )zk k     (3.3) 

 

where k c  is the acoustic wavenumber in the fluid at frequency   and c  is the 

wave speed in the fluid. 

 

 
 

Figure  3.1. Transverse wave in a plate in contact with a fluid. 

 

 

The appropriate sign of the square root in Eq. (3.3) depends on the values of k  

and  . For the case k  , a real zk  is obtained and plane sound waves will travel 

away from the plate surface with 0zk  . Meanwhile for the case k   an imaginary 

zk  is obtained which can be conveniently expressed as 2 2 1 2( )zk i k   . In the latter 

case, the disturbance of the fluid decays exponentially with the distance normal to the 

plate. For the opposite sign it would grow exponentially which is not allowed as a 

solution. Therefore in the plate-fluid interaction, propagating sound waves only exist 

due to the plate wave when k  . In other words the plate wave phase speed must be 

greater than the sound wave phase speed (supersonic velocity) in order to radiate 

energy into the far field. 

The radiated pressure field caused by the plate vibration can then be calculated 

by the use of the specific acoustic wave impedance az  which is defined as the ratio of 

the complex amplitudes of pressure and normal particle velocity. At the plate-fluid 

interface, the particle velocity in the z direction zv  is equal to the surface normal 

velocity of the plate v . Hence [1] 

x  

w  

fluid 

2   

z  
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( )
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ckp
z

v k k

 




 
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 
 (3.4) 

 

where p  is the pressure amplitude, zv  is the particle velocity in the z direction, 0  

is the fluid density. 

Using the spatial Fourier transform, an arbitrary velocity distribution ( )v x  

can be transformed into the wavenumber domain using  

 

 ( ) ( ) xik x

xV k v x e dx



   (3.5) 

 

and its inverse Fourier transform 
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( ) ( )
2

xik x

x xv x V k e dk






   (3.6) 

 

A similar expression can be written for the sound pressure. Therefore, from Eq. (3.4)

the sound pressure at 0z   can be expressed in the wavenumber domain as  

 

 0
0 2 2 1/2
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( )

x z a x x x

x

ck
P k z k V k V k

k k


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
 (3.7) 

 

3.2 Plate strip 

Now, consider a simply supported plate strip of infinite length (in the 

x direction) and of finite width (in the y direction) vibrating harmonically in an 

infinite rigid baffle. The vibration of the plate surface and the resulting pressure can 

be written as a two dimensional Fourier transform analogous to Eq. (3.6) as follows 
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where 
xk  and 

yk  are the wavenumbers in the x  and y  directions. 

 

The power radiated by the plate strip is given by 
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where   indicates the complex conjugate. By substituting Eq. (3.8)-(3.9) into Eq. 

(3.10), this gives 
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where xk   and yk   are introduced to distinguish between the integration over xk  and 

yk  related to P and V . Referring to Eq. (3.7), the surface pressure for the two 

dimensional case can be replaced by the plate velocity distribution in two dimensions 

multiplied by the wave impedance, as follows 
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 (3.12) 

 

   

Further simplification can be made using the Dirac delta function in Eq. (2.23).  

Therefore Eq. (3.12) can be simplified as 
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where 
2

( , )x yV k k  is the square of the plate velocity in the wavenumber domain. It is 

possible to limit consideration to wavenumbers satisfying the necessary condition for 
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plate waves to be able to radiate sound energy, that is 2 2 2

x yk k k  ; elsewhere the 

term 2 2 2 1/2( )x yk k k   is imaginary. Therefore, the range of integration can be limited 

to give 
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3.2.1 Radiation due to point force 

The normal velocity distribution ( , )v x y
1
 due to the point force can be found 

from the displacement solution in section  2.3 using 

 

 ( , ) ( , )v x y i w x y  (3.15) 

 

where ( , )w x y  is the surface displacement of the plate strip which is given by Eq. 

(2.14). Now the normal surface velocity is  
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The modulus squared 
2

( , )x yV k k  of Eq. (2.20), which reflects the energy spectrum of 

( , )x yV k k , is given by 
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 (3.17) 

 

 

For the time being, it is assumed that each transverse order m  of the transverse 

velocity ( , )x yV k k  radiates sound independently, i.e. cross terms are ignored for 

simplicity. This allows the radiated power of the plate strip due to a point force 

excitation to be expressed as 

 

                                                 
1
 Note that some publications use index n  for the variable v  to indicate the velocity in the normal 

direction nv . In this report, it does not appear explicitly but the velocity v  is actually the velocity 

distribution in the z - direction so that this is the normal velocity. 
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Note that the radiated sound power can be determined using a different approach e.g. 

Junger and Feit [6] and Sakagami et al. [7] use a far-field solution to calculate the 

radiated power of a plate strip or waveguide structure. 

 The radiation ratio   is used to indicate how much sound power is radiated on 

the basis of the actual vibrating surface compared with the infinite flat surface 

vibrating in phase with the same mean-square velocity. It is thus defined as [1, 2, 8, 9] 
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
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where 0  is the fluid density, c  is the sound velocity, S  is the surface area and 2v  

is the spatially averaged mean-square velocity. For the plate strip case, the ‘average’ 

is an integral over the x  - direction so the area is replaced by the width yl : 
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rad
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W
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where 2

inf

v  now represents the integral of the mean-square velocity over the length 

and the average over the width. 

 Figure  3.2 presents the radiated sound power and radiation ratio of the plate 

strip considered in the previous section due to a point force excitation at position (0, 

0.433 yl ). The total number of modes 81M   is the same as used in the mobility 

calculation in section  2.3. The radiated power has peaks at the various cut-on 

frequencies. The critical frequency is 2 kHz at which the radiation ratio reaches its 

maximum value. 
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(a) 

 
(b) 

Figure  3.2. (a) Sound power radiation of the plate strip due to a unit point force at (0, 

0.433 yl ); (b) its associated radiation ratio. 

 

3.2.2 Effect of finiteness and point force excitation on the plate strip 

 It is interesting to see the effect of the finite plate width and the effect of the 

point force excitation in the case of the plate strip. The plate strip differs from an 

infinite plate, on the one hand, and a finite plate on the other hand. In the infinite plate 

above the critical frequency cf , sound is radiated effectively by the plate vibration. 
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However, as seen in section  3.1 there is no radiated power from a plane wave in an 

infinite plate below the critical frequency because of acoustic short-circuiting. For a 

point force excitation radiation will occur from the nearfield in the vicinity of the 

forcing point. In contrast, a finite plate experiences non-zero radiation below the 

critical frequency due to the influence of edges and corners [10]. The plate strip has a 

finite width but infinite length which makes the problem more complex, especially for 

the case below the critical frequency. 

In principle, referring to [1, 4], whenever the trace wavenumber in a 

particular direction in a structure is higher than the acoustic wavenumber k  at the 

same frequency, acoustic short-circuiting will occur. In the case under consideration, 

the acoustic short-circuiting occurs when the characteristic wavenumber in the y  

direction y yk m l is higher than the acoustic wavenumber k  i.e.  ym l k  . 

Under this circumstance, because the adjacent anti-nodal regions in the plate strip are 

separated by much less than the acoustic wavelength in the surrounding medium, the 

fluid displaced outward by one region will compensate for the inward motion in the 

adjacent region[10]. However, the finite width of the structure means that the acoustic 

short-circuiting is incomplete at the edges. The combination of  ym l k   and the 

structural wavenumbers in the x  - direction which are smaller than the acoustic 

wavenumber ( 1.x mk k ) would create radiating modes along the edge in the x  - 

direction. Commonly, on a finite plate such modes are termed edge modes.   

The acoustic short-circuiting is also present in the x  - direction. When the 

condition 1,x mk k  is fulfilled, the cancellation takes place completely along the plate 

as it is infinite in length. Hence only the radiating component due to the nearfield 

wave and the discontinuity introduced by the point force exist. This means neither 

edge modes nor corner modes are found in this direction. However, not all free 

propagating waves undergo the short-circuiting because this depends on the mode 

order, which determines the wavenumbers 1,x mk  and 2,x mk . As mentioned in 

section  2.1, 1,x mk  relates to the propagating waves which carry vibration energy above 

their cut-on frequencies while 2,x mk  corresponds to the nearfield waves. As shown by 

the dispersion curves of the plate strip in Figure  3.3, in this example only the first five 

propagating waves have wavenumbers higher than the acoustic wavenumber k . The 
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rest of the modes have wavenumbers that are lower than the acoustic wavenumbers 

(
1,x mk k ) and hence contribute to the sound power radiation. Peaks are associated 

with the cut-on frequency behaviour for every mode order m  as all the dispersion 

curves start below the diagonal line representing k .  

To provide a visual description of the radiation components of the plate strip, 

a classification can be made intuitively by considering the wavenumber distribution 

over the frequency range of interest. Figure  3.3 presents dispersion curves 

corresponding with the wavenumbers in the x direction 
1,x mk  and primary 

wavenumber components
2

 in the y  direction y yk m l  respectively with the 

absence of the damping loss factor. The acoustic wavenumber values and an 

indication of the critical frequency are added to each graph to help identifying the 

various regions where the radiation components can be described based on their 

values relative to the acoustic wavenumber k . Regions A and B indicate regions in 

which 1,x mk k  and  1,x mk k  respectively. Meanwhile, regions C and D are assigned 

for the corresponding wavenumber area for yk . Hence, yk k  occupies the region C 

and  yk k  can be found in region D. Following the explanations from the previous 

paragraphs, some combinations of these regions can thus be identified as follows 

1. The combination of regions A and C causes a zero radiation ratio as there 

are no corner modes present due to the complete acoustic short-circuiting 

along the infinite direction. 

2. The combination of regions A and D leads to a similar situation. The 

structural wavenumber in the y direction is smaller than the acoustic one 

would result in radiation. However, there is a complete short-circuiting 

along the x direction, hence a zero radiation occurs. 

3. The combination of regions B and C clearly leads to the edge modes along 

the x direction where the acoustic short-circuiting takes place along the 

direction normal to this axis. 

                                                 
2
 It should be borne in mind that the finite extent over width produces modal wavenumber spectra with 

the spectrum peaks found at  ym l  rather than single wavenumber as found in an infinite plate. 

Therefore, in this study, y yk m l is termed the primary wavenumber. The same terminology is 

also found in [1]. 
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4. The combination of regions B and D is related to surface radiation 

component where the radiation ratio tends to unity at high frequency. Note 

that region B and D can occur below 
cf  but mostly occurs above this 

frequency. 

 

  

  

Figure ‎3.3. Dispersion curve of the plate strip (— bending wavenumbers for different 

mode orders ( 1xk ) and wavenumber for each mode m ( yk ); – – – acoustic 

wavenumbers).  

 

cf  

cf  

A B 

C 

D 
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Figure  3.4 compares the radiated power of the plate strip and the infinite plate. 

The radiated power of the infinite plate due to a point force 
infW was calculated based 

on a formulation proposed in [2] but neglecting the fluid loading contribution as 

follows 
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where 2 2 2

r x yk k k  . If the frequency range of interest is limited to well below the 

critical frequency ( r Bk k ) so that  4 41 1r Bk k  , this gives 
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which is independent of frequency. 

 It is clear that the radiated power of the plate strip is higher than the infinite 

plate result for frequencies above the first cut-on frequency and below the critical 

frequency. The presence of the edge mode radiation component has caused more 

power to be radiated compared with the infinite plate for the same amplitude of force. 

Conversely, only the radiated power of the nearfield around the forcing position can 

be found from the infinite plate for this frequency region. Below the first cut-on 

frequency, the radiated power of the plate strip is less than that of the infinite plate as 

the stiffness characteristic of the plate strip determines its radiated power whereas in 

this frequency region that of the infinite plate depends on the square of the mass per 

unit area as indicated in Eq. (3.22). Above the critical frequency the results of both 

models are similar.  
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Figure ‎3.4. Radiated power of plate strip and infinite plate excited at position 

 0,0.433 yl  with force amplitude 
0 1F   (━ plate strip; ┅ infinite plate). 

3.2.3 Effect of damping loss factor 

Figure  3.5 indicates the effect of the damping loss factor on the radiated sound 

power. In general, its effect mostly appears at the cut-on frequencies at which the 

peak amplitude increases as the damping loss factor decreases. However, the effect 

significantly increases at the frequencies where there are several bending 

wavenumbers which are lower than the acoustic wavenumbers i.e. above about 

500 Hz (see Figure  3.3). In contrast, at low frequencies where the bending 

wavenumbers are generally higher than the acoustic wavenumbers for most 

frequencies, the damping only affects the radiated power close to the cut-on 

frequencies. In this lower frequency region, away from the cut-on frequencies, only a 

small part of the vibration, which corresponds to nearfield or evanescent waves, 

radiates into the fluid medium. Therefore, as the nearfield is almost independent of 

the damping values, the damping loss factor has a negligible effect in this region 

except at the cut-on frequencies [2]. 

 

 

 

 

 



31 

 

 

 

Figure ‎3.5. Comparison of sound power radiation for different damping loss factors 

for plate strip excited at (0, 0.433 yl ) (—   = 0.01 ; – – –    = 0.03; ––   = 0.1). 

  

The corresponding radiation ratios are shown in Figure  3.6. The greatest 

damping effect is found in the acoustic short-circuiting region while the effect is 

negligible at frequencies below the first cut-on frequency and above the critical 

frequency. It is clear that the radiation ratio in the short-circuiting region is 

proportional to the damping value as the average mean-square velocity decreases with 

increasing damping (see section  2.3.7).  
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Figure ‎3.6 Comparison of radiation ratio due to different damping loss factor excited 

at (0, 0.433 yl ) (—   = 0.01 ; – – –    = 0.03; ––   = 0.1). 

3.2.4 Effect of plate thickness 

The effect of the plate thickness can be observed from Figure  3.7(a). It is clear 

that the sound power level increases across the frequency range considered as the 

thickness of the plate strip is reduced. Moreover, the first cut-on frequency is reduced 

and the critical frequency is increased as the thickness reduces. Therefore the 

frequency region between the first cut-on frequency and the critical frequency 

becomes wider and the acoustic short-circuiting effect is increased.  This is seen in the 

radiation ratio which is plotted in Figure  3.7(b). The radiation ratio decreases as the 

thickness reduces in the acoustic short-circuit region. Below the first cut-on frequency 

and above the critical frequency the radiation ratio is largely unaffected. 
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(a) 

 

 
(b) 

 

Figure ‎3.7. (a) Comparison of sound power radiation due to different thickness with 

damping loss factor equal to 0.1 and excited at (0, 0.433 yl ); (b) its associated 

radiation ratio (– – –  h = 3 mm ; ━h = 6 mm; –  –  h = 9 mm) . 
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3.2.5 Inclusion of the cross-terms  

In the formulation of the previous section, the radiated sound power is 

calculated on the basis of individual modes generating sound independently. In fact, 

there is an interaction between the resulting pressures produced by one mode of a 

vibrating structure and vibration of other modes. Hence it is of importance to assess 

the cross-term contributions to the resulting radiated sound power. This has been 

studied in [11] for a finite plate where it is shown that neglecting the cross modal 

contribution can lead to under- or over-estimates of the radiated power even at 

resonance frequencies. They are frequently disregarded in the radiated power 

formulation due to the computational burden they introduce in calculation.  

To include the cross-terms in the radiated sound power formulation, Eq. (3.18)

needs to be modified. It becomes  
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where 
mV  and 

nV  are defined by Eq. (2.20) with m  and m  the mode index of 

velocity corresponding to pressure and velocity respectively. 

Figure  3.8 presents a comparison of the radiated power calculated with only 

self-modal radiation and including the cross modal radiation using the same material 

properties as listed in Table  2.1 with excitation at position (0,0.433 yl ). It is clear that 

the cross-terms contribute to the radiated sound power mainly away from the cut-on 

frequencies in the acoustic short circuiting region between the first cut-on frequency 

and the critical frequency. Below the first cut-on frequency and around the critical 

frequency, both formulations agree well. 

 



35 

 

 

Figure ‎3.8. Effect of the cross-terms contribution in radiated power due to a point 

force excitation at (0, 0.433 yl )  (— the cross-terms modal radiation incorporated 

along with the self-modal one ; ┅ only self- modal radiation considered). 

 

As pointed out earlier, the resulting radiated power using Eq. (3.23) increases 

calculation time considerably. Using Matlab on a personal computer powered by an 

Intel Pentium Quadcore 2.8 GHz processor and 4 Gbyte memory, it requires 24.6 

hours to get the result. This is around 78 times the calculation time required to obtain 

the results where the cross-term contribution is neglected. 

 

3.3 Summary  

Unlike an infinite plate, a plate strip still radiates sound at frequencies below its 

critical frequency due to the finite extent in one dimension. Therefore, edge modes 

effectively contribute to the radiated sound power even though the wavenumbers in 

the y - direction, yk , are higher than the acoustic wavenumber in this frequency 

region. In the infinite dimension, that is in the x - direction, the radiated power is also 

present at frequencies below the critical frequency when 1,x mk k . For the opposite 

condition sound radiation occurs which is only significant in the area close to the 
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excitation position. Peaks found in the radiated power curve are associated with the 

cut-on frequencies which always have 
1,x mk k . 

The greatest effect of damping on the radiated sound power appears at the cut-on 

frequencies. The damping also has a broadband effect for higher frequencies at which 

the bending wavenumbers 1,x mk  are lower than the acoustic wavenumbers k . 

Considering the related radiation ratio, it is clear that the damping loss factor affects 

the results significantly in the acoustic short-circuiting region between the first cut-on 

frequency and the critical frequency. 

A thicker plate strip will radiate less power as the average mean-square velocity 

reduces for a thicker plate. On the other hand it will reduce the frequency range of the 

acoustic short-circuiting area which increases the radiation ratio.  
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4. Sound transmission loss of a plate strip 

 In this section the sound transmission due to a plane acoustic wave acting on 

the simply supported plate strip (waveguide) is considered. The incident plane wave 

impinges on the plate strip with elevation angle   and azimuth angle   as shown in 

Figure  4.1. The sound transmission loss (STL) is determined by considering the 

bending waves in the plate. The bending stiffness therefore influences the STL 

calculation inherently. Moreover, the finite width and the boundary conditions of the 

plate strip on its two edges are expected to give useful insights of those effects in the 

transmission loss prediction where they are not considered explicitly in most classical 

theory based on infinite plates, e.g. in Ref.  [1, 10, 12]. 

4.1 Pressure and velocity functions  

Since the structure is finite in the y direction a modal solution can be utilized 

to describe the structural response in terms of y  as in section  2. Meanwhile, for the 

x direction, as the structure is infinite, a travelling wave solution is suitable to 

describe the dependence of displacement on x . Therefore, the general solution for the 

radiated pressure p  and the plate velocity v  can be decomposed into terms of the 

form  

 

 ( , ) sin ,     ( , ) sini x i x

m m

y y

m y m y
p x y p e v x y v e

l l
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where m  is an integer and   is the (real) wavenumber in the x direction. 
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Figure  4.1. Direction of a plane wave incident on an infinite plate strip 

 

 

 Before proceeding to the mathematical formulation and solution for the 

transmission coefficient, some simplifying assumptions should be noted as follows: 

1. As in previous sections, the plate strip is modelled with the thin-plate theory 

and it is set in a rigid baffle.  

2. The thickness of the baffle and the plate is neglected. 

3. The amplitude of the reflected sound pressure is initially assumed equal to the 

incident sound pressure so that the blocked pressure field at the plate surface is 

equal to twice the incident pressure. 

4. Simply supported boundaries are assumed. 

5. The acoustic medium on both sides of the plate is assumed to be identical. 
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Figure  4.2. Elevation and azimuth angle convention and trace wavenumbers in the 

fluid. 

 

Considering Figure  4.2 the incident sound pressure is considered as a plane 

wave expressed by 

 ( , , ) yx z
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i ip x y z p e e e
   (4.2) 

 

where time harmonic dependence i te   is omitted for clarity. The wavenumbers in x , 

y  and z  directions can be defined as follows: 
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x y zk k k k    is given by k c  with   the angular frequency and c  

the sound velocity. 

For a rigid, uniform and infinitely extended plate, the pressure field in 0z   
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wave. At the plate surface they add in phase to give the so-called blocked pressure 

blp . When the plate motion is considered, the plate radiates in the negative and 

positive z  directions. The radiated pressure in the positive z  direction is then 

called the transmitted sound pressure 
tp . The total pressure on the plate surface at 

0z   consists of the superposition of the blocked pressure field and the radiated 

pressure field on both sides of the plate.  The radiated pressure terms in the total 

pressure will impose a fluid loading at the plate surface. An implication of this is that 

it will introduce a damping to the plate strip in addition to the internal damping loss 

factor. Due to the finite width, the radiated field on either side of the plate strip does 

not consist of a plane wave. 

The two-dimensional bending wave equation subject to the applied acoustic 

pressure field and the radiated acoustic pressure produced by the plate velocity is 
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 (4.4) 

 

The distribution of the pressure ( , )p x y  may be expressed by the combination of a 

Fourier integral and a Fourier series. This yields 
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and 
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where m  is an integer corresponding to each mode of the pressure in the y direction 

and   is the (real) wavenumber in the x direction. 

As stated earlier, it is assumed that a blocked reflected sound pressure is 

generated equal to the incident sound pressure at the plate surface. The total pressure 

on the plate surface at 0z   consists of the superposition of the blocked pressure field 

and the radiated pressure field due to plate motion on both sides of the plate. Hence 

the pressure for mode m  is given by 
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ik y ik x ik x
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and Eq. (4.6) becomes 
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Similarly, because the plate strip is uniform and infinite in the x direction, 

its transverse velocity may be written in the form  
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Using the same argument as above 
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where m  is an integer designating each mode of the plate vibration. Eq. (4.12) can be 

conveniently written as 
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where 
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. This transverse velocity is only defined for 0 yy l   

and is zero otherwise. Subsequently, it can be expressed in terms of an infinite set of 

simple harmonic waves travelling in the y direction, with wavenumber denoted as 

  in order to distinguish it from the incident wavenumber yk , as follows 
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The solution for , ( )y mV   is 
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In order to solve the coupled vibration-radiation problem, some conditions must be 

satisfied, i.e. the fluid particle velocity must be equal to the normal plate velocity and 

the fluid particle velocity v  and the pressure p  must satisfy Euler’s equation 

0i v p   . Therefore, the (normal) plate velocity v  in Eq. (4.13) is related to the 

radiated pressure by 
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Hence the radiated pressure field, assuming the fluid on both sides is the same, is 
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or as a function of y , the radiated pressure can be written as 
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where 2 2 2

zk k     . Note that 
rad radp p   . 

 

Therefore, 
mA  in Eq.(4.10) becomes 
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  (4.20) 

 

where ( ) ( )m ma a    as the modal displacement function is real. 

 

Substituting Eq. (4.9) and Eq. (4.12) into Eq. (4.4), this gives 
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Using the orthogonality of the mode shapes  

 

 
0

0   

sin sin
 

2

yl

y

y y

m m
m y m y

dy l
l l m m

 


    
           


   (4.22) 

 

Eq. (4.21) can be written for a single term in the series; to obtain this, it is multiplied 

with sin
y
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l

 
  
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 and integrated over the length yl  yielding  
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and substituting mA  from Eq. (4.20) into Eq. (4.23) after some simplifications, it is 

found that 
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where 2 2 2

zk k     . In the above simplification, the inter-modal coupling 

between the pressure modes and the transverse velocity of the plate strip modes in Eq. 

(4.20) is neglected in the derivation indicated by the term  
2

ma   in Eq. (4.24). 

4.2 Transmission coefficient 

 The transmission coefficient   is defined as the ratio of the transmitted sound 

power tranW  to the incident sound power incW . The sound power transmitted through 

the plate strip is equal to the sound power radiated into the region 0z  , hereafter 

denoted by 2radW . For clarity and consistency in defining the radiated power of the 

plate strip, an arbitrary length of plate strip 
xL  is retained in the following derivation. 

Thus, the radiated sound power of the plate strip 2radW  per unit length in the 

x direction is given by 
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in which the range of the integration 0 to yl  has been extended to   because the 

form of ( )yV   ensures that yv is zero outside 0 yy l  . Substituting Eq. (4.15) and 

Eq. (4.18) into Eq. (4.25) for the radiated sound power per unit length, this yields 
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Hence the total radiated sound power  with the necessary condition 2 2 2

xk k   is  
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The incident power per unit length for the plate strip can be expressed as 

follows 

 

 

2

0

cos1

2

i

inc y

p
W l

c




  (4.28) 

 

The transmission coefficient is given by 
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Substituting Eq. (4.27) and (4.28) into Eq. (4.29) gives  
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The sound transmission loss R  is found from 
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The model was used to evaluate the effect of changing the incident angle, thickness 

and structural loss factor with a total number of modes M = 150 taken into account in 

calculation. In the present case, the number of the modes is increased from that 

considered in section  2 as the frequency range is extended to 10 kHz where 25 waves 

have cut-on.  

 Figure  4.5 presents a comparison of the predicted transmission loss calculated 

using the transmission coefficient in Eq. (4.30) and the transmission coefficient of an 

infinite plate for a normal incidence which is calculated using Eq. 5.14 of  [1]  
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where s  is the stiffness per unit area and  0 s h  . 

In general, at frequencies above 100 Hz, the STL of the plate strip tends to the 

infinite plate result which typically follows the mass-law behaviour. Hence, for this 

region the STL of the plate strip is mass-controlled. Some dips or ripples in the curve 

are related to cut-on frequencies and the corresponding modal behaviour while such 

features are not present in the infinite plate model. At low frequency, or 
1  , a 

stiffness-controlled behaviour appears where a slope of -30 dB/decade occurs rather 

than -20 dB/decade as indicated by the infinite plate model. At the first cut-on 

frequency 1 , the transmission loss has a negative value rather than zero as the lowest 

value which appears in the infinite plate model. This happens as a consequence of the 

normalization area introduced in the transmission coefficient. Hence the ratio of 

radiated sound power and incident power can be greater than unity for the case of the 

plate strip which has a finite dimension in one direction. A more detailed discussion 

on this issue is given in [13].  

 

Figure ‎4.3. STL comparison of the plate strip and the infinite plate for normal incident 

case (━ plate strip; ┅ infinite plate) 
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The slope of -30 dB/decade in the stiffness-controlled region can be 

demonstrated by considering  1   in Eq. (4.24). Hence mv   reduces to 

 

 

  
2

2
2 2

( )4

1

i m y

m

y
x y

p a k
v

l
D k m l



 



 

 (4.33) 

 

 

In this frequency range  
22

2xk m l  so that the transmission coefficient in 

Eq. (4.30) is finally proportional to the cube of frequency or 3   which results in a 

slope of -30 dB/decade. If 
1  , where the mass-controlled region is found, mv  in 

Eq. (4.24) becomes  
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m
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Accordingly, the transmission coefficient in Eq. (4.30) now is inversely proportional 

to frequency or 1  . This indicates that a slope of 10 dB/decade applies in this 

frequency range. However, above the subsequent cut-on frequencies it is found that 

   m y ma k a   in  yV   is proportional to 1   or     1m y ma k a    hence 

causing 2  . Thus, the slope of the STL curve increases to 20 dB/decade at high 

frequency. It should be noted that the transition from 10 dB/decade to 20 dB/decade 

depends on the incident angle and the width of the plate strip as both variables are 

contained in the ma  term. For example for normal incidence case, it is found that the 

transition occurs at about 340 Hz for 0.5 m width, 170 Hz for 1 m width and 85 Hz 

for 2 m width. Hence, comparing this with the acoustic wavelength it can be identified 

as 2 yl  . A comparison of the STL curve and these slopes is given in Figure  4.4. 
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Figure ‎4.4. STL slope of the stiffness-controlled region and the mass-controlled 

region. 

 

Figure  4.5 shows results for different angles of incidence. The coincidence 

frequency depends on the incident angle, with a higher angle corresponding to a lower 

coincidence frequency. These results have a similar tendency as those obtained by the 

infinite plate model where the transmission coefficient is calculated using Eq. 7.74 of 

[2] 
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However, in the area close to the coincidence frequency the STL of the infinite plate 

tends to be higher than that of the plate strip. This difference is affected by the 

presence of edge mode radiation and cut-on frequencies in the plate strip response. 

However, when the incident wave is almost parallel to the structure with increasing 

incident angle, for frequencies below the coincidence frequency it can be seen that the 

STL of the infinite plate is lower than that obtained by the plate strip model. This is 

caused by the radiation ratio of the infinite plate which is given by inf 1 cos  . 

Therefore, it increases when the incident angle increases and becomes infinite when 

-30 dB/decade 

10 dB/decade 
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transition  
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90  while that of a finite structure remains finite [14]. Meanwhile, above the 

coincidence frequency, the results of both models are in good agreement.  

 

 Figure  4.5. STL comparison of the plate strip and the infinite plate for obliquely 

incident case (━ plate strip; ┅ infinite plate). 

 

Results for different thicknesses for normal incidence are shown in 

Figure  4.6(a).  Here the analytical model again behaves as expected with the first 

panel resonance (cut-on frequency) becoming lower and the STL values reducing 

when the thickness reduces. The same situation also appears when the plate strip is 

obliquely excited as can be seen from Figure  4.6(b). However, the corresponding 

coincidence frequency now also exists and it shifts to a lower frequency with 

increasing thickness. 

 = 30 

 = 45 

 = 60 

 = 80 

 = 85 
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(a) 

 

 

(b) 

 

Figure ‎4.6. Effect of changing thickness of the plate strip on the sound transmission 

loss: (a) normal incidence; (b) oblique incidence (┅ h = 3 mm ; ━ h = 6 mm ; –  –   

h = 9 mm). 

 

Figure  4.7(a) presents the effect of the structural damping loss factor on the 

sound transmission loss values for normal incidence. It is clear that this factor has a 
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large influence at the cut-on frequencies but negligible effect elsewhere. The same 

tendency is also found for oblique incidence as shown in Figure  4.7(b). 

 

(a) 

 

(b) 

Figure  4.7. Effect of structural loss factor of the plate strip on the sound transmission 

loss: (a) normal incidence ; (b) oblique incidence at angle 45º ( ━  = 0.01 ; ┅ = 

0.03, – –   = 0.1) 
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4.3 Diffuse sound field 

The diffuse sound field excitation is formulated as the superposition of 

uncorrelated plane waves with equal amplitude in all direction. The sound 

transmission is then obtained by integrating the response of all incident plane waves 

over the incident angle and weighting them with the solid angle to account for the 

directional distribution. Therefore, the sound transmission loss for a diffuse field 

excitation is expressed as 
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 (4.36) 

 

 

where lim  is the upper elevation angle which is typically taken equal to 78º for field 

incidence case and which is 90º  for the full random incidence case [10]. Historically, 

the upper elevation angle, i.e. the field incidence case, was motivated to provide a 

better fit to measurement results so this is actually an empirical approach. However, 

some physical explanations of this which justify it as acceptable are available by 

realizing that the incident energy at grazing incidence is difficult to produce in real 

situations [15, 16].  

 Figure  4.8 presents a comparison of the sound transmission loss between the 

plate strip and the infinite plate for the diffuse field case. The plate strip and the 

infinite plate are calculated under the random incidence excitation ( 0 90  ) and 

the field incidence one ( 0 78  ). It is clear that the dip at around 2 kHz is 

associated with the critical frequency. Above this frequency, the plate strip and the 

infinite plate produce a similar curve. However, below this frequency the STL of the 

plate strip is higher by 6.5 dB at low frequency than that of the infinite plate. This 

difference reduces with increasing frequency; for example 2.7 dB difference is found 

at around the critical frequency. This difference comes about because a finite extent in 

one dimension of the plate strip introduces a spatial windowing effect on the infinite 

baffle [14]. Accordingly, the radiation ratio of the infinite plate is modified to remain 

finite for increasing incident angle rather than becoming infinite. This leads to a 

higher STL for the plate strip. This situation is also illustrated in Figure  4.5 in 

section  4.2 for oblique incidence. The relation of the incident angle with various 
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Helmholtz numbers was presented in [14] for the case of a finite plate. When the plate 

strip is calculated using the field incidence method, below the critical frequency, its 

STL is getting closer to that obtained for the infinite plate particularly at high 

frequencies. Above the critical frequency, a similar curve is seen for both models.  

 

 

Figure ‎4.8. STL of plate strip under a diffuse sound field excitation: random incidence 

( 0 90  ): (━ Plate strip;┅ infinite plate);  field incidence ( 0 78  ):  

(•–• Plate strip; ••• infinite plate). 

4.4 Summary  

An analytical solution for sound transmission through a plate strip has been 

derived by considering acoustic plane wave excitation, internal and acoustic damping 

but neglecting the cross-term contributions. Comparing the results with that of the 

infinite plate, some differences occur. For the normal incidence case, it is found that 

at high frequency, the STL of the plate strip converges to that of the infinite plate 

while at low frequency a slope of -30 dB/decade is found rather than 
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the -20 dB/decade that is normally found in the STL of an infinite plate. Dips are 

found corresponding to the cut-on frequencies. 

For the oblique incidence case, the analytical model behaves as expected 

considering the coincidence frequencies when the incidence angle is varied. These 

match with the infinite plate results. However, well below the coincidence frequency 

the STL of the plate strip is greater than that of the infinite plate due to its finite width. 

The internal damping loss factor effectively determines the STL values around 

the cut-on frequencies and the coincidence frequencies. Elsewhere, the damping has a 

negligible effect. Meanwhile, varying the thickness will shift the first cut-on 

frequency and coincidence frequency while the STL values increase as the thickness 

increases.  

Under random incidence, the plate strip model produces the same results as an 

infinite plate above the critical frequency. Below this frequency, the STL values of 

the plate strip are higher than those obtained using the infinite plate model. Closer 

results are found around the critical frequency and just below this frequency when 

both the plate strip and the infinite plate are excited by the field incidence limited to 

78°. 
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5. Conclusions 

A study of the vibro-acoustic behaviour of a plate strip has been presented. An 

analytical model has been developed in order to investigate the plate strip in terms of  

its mobility, its sound power radiation and its sound transmission loss. Some 

concluding remarks can be made as follows: 

1. The mobility of the plate strip due to a point force excitation is stiffness-controlled 

at low frequency while it tends to be similar to that of an infinite plate at high 

frequencies. Peaks occur at the cut-on frequencies with magnitudes that depend on 

the location of the excitation point. Damping has an effect only around the cut-on 

frequencies. 

2. It is clear that the plate strip still radiates sound below the critical frequency even 

if it is less than above the critical frequency. This sound is produced by nearfield 

waves in the vicinity of the forcing point and by ‘edge modes’, that is waves with 

an axial wavenumber smaller than the acoustic wavenumber while the transverse 

wavenumber is greater than the acoustic wavenumber. Therefore, it is clear that 

the finite width and the point force excitation influence the sound power radiation 

below the critical frequency. 

3. The sound transmission loss of the plate strip for normal incidence converges to 

the mass-law result at high frequencies. At low frequency, below the first cut-on 

frequency, a stiffness-controlled region appears, while the mass-controlled region 

exists above the first cut-on frequency. The slope at low frequencies is modified 

from the result for an infinite plate when the width is less than half the acoustic 

wavelength. Some dips or ripples in the curve are related to various cut-on 

frequencies. Such features are not present in an infinite model. 

 

 The results presented here can be used as benchmark solutions for validating 

numerical methods such as waveguide FE/BE.



 56 

References 

1. Fahy, F. and P. Gardonio, Sound and Structural Vibration: Radiation, 

Transmission and Response. 2nd ed. 2006, London: Academic Press. 

2. Cremer, L., M. Heckel, and B.A.T. Petterson, Structure-Borne Sound. 3rd edition 

ed. 2005, Berlin: Springer. 

3. Gardonio, P. and M.J. Brennan, Mobility and Impedance Method in Structural 

Dynamics. chapter 9 in Advanced Applications in Acoustics, Noise and Vibration, 

ed. F.J. Fahy and J.G. Walker. 2004: Spon Press. 

4. Cremer, L., M. Heckl, and E.E. Ungar, Structure-borne Sound (second ed.). 1988, 

Berlin: Springer. 

5. Williams, E., Fourier Acoustics: Sound Radiation and Nearfield Acoustical 

Holography. 1999: Academic Press. 

6. Junger, M.C. and D. Feit, Sound, structures, and their interaction 1972, 

Cambridge, Mass.: MIT Press. 

7. Sakagami, K., et al., Sound radiation from a baffled elastic plate strip of infinite 

length with various concentrated excitation forces. Applied Acoustics, 1998. 

55(3): p. 181-202. 

8. Maidanik, G., Response of Ribbed Panels to Reverberant Acoustic Fields. J. 

Acoust. Soc. Am., 1962. 34(6): p. 809. 

9. Wallace, C., Radiation Resistance of a Rectangular Panel. J. Acoust. Soc. Am., 

1972. 51(3B): p. 946. 

10. Beranek, L.L., Noise and Vibration Control 1971, New York: McGraw-Hill  

11. Li, W.L. and H.J. Gibeling, Determination of the mutual radiation resistance of a 

rectangular plate and their impact on the radiated sound power. Journal of 

Sound and Vibration, 2000. 229(5): p. 1213-1233. 

12. London, A., Transmission of reverberant sound through single walls. Research 

Nat. Bur. of standard, 1949. 42(605). 

13. Thompson, D.J., P. Gardonio, and J. Rohlfing, Can a transmission coefficient be 

greater than unity? Applied Acoustics, 2009. 70(5): p. 681-688. 

14. Villot, M., C. Guigou, and L. Gagliardini, Predicting the acoustical radiation of 

finite size multi-layered structures by applying spatial windowing of infinite 

structures. Journal of Sound and Vibration, 2001. 245(3): p. 433-455. 



 57 

15. Mulholland, K.A., H.D. Parbrook, and A. Cummings, The transmission loss of 

double panels. Journal of Sound and Vibration, 1967. 6(3): p. 324-334. 

16. Leppington, F.G., et al., Resonant and non-resonant acoustic properties of elastic 

panels. II. The transmission problem. Proceedings of the Royal Society of 

London. Series A, Mathematical and Physical Sciences, 1987. 412(1843): p. 309-

337. 

 

 



 58 

Appendix A Out-of plane displacement of a plate strip 

due to a point force  
 

The out-of plane displacement of the infinite plate strip vibrating in order m  

contained in Eq. (2.2) can be written as 

 
1, 2,

1, 2,

1, 2,

3, 4,

( 0)

( 0)

x m x m

x m x m

ik x ik x

m m m

ik x ik x

m m m

w x A e A e

w x A e A e
 

  

  
     (A.1) 

 

where 1,x mk  and 2,x mk  are given in Eq. (2.6). 

 

The generalized force acting on the m
th

 order motion is given by  

 

0sinm

y

m y
F F

l

 
   

 

  ( 0)x        (A.2) 

 

The boundary conditions for such structures evaluated at 0x   are as follows 

 

1. Continuity equation ; equal displacement 

 

(0) (0)m mw w   
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2. Continuity of rotation 
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(A.4) 

 

 

 

3. Continuity of bending moment 
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         (A.5) 
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4. Force equilibrium condition 

 

(0, ) (0, )m m mS y S y F           (A.6) 
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Using the relation from (A.4)  
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From Eq. (A.3) and Eq. (A.5) the following relations are obtained 
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By substituting Eq. (A.8) into Eq. (A.7) this yields 
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The other coefficients will be 
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Based on these coefficients, the solution may be written as follows 
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The complete solution is given by 
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Appendix B Modulus squared of plate velocity in  

wavenumber domain 
 

 

The plate velocity in the wavenumber domain for a single mode m  is given by Eq. 

(2.19) as follows 
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From Eq. (B.1), the plate velocity in the wavenumber domain in the x direction is  
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while that of  the y  dependent plate velocity in the wavenumber domain is  
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The absolute value of Eq. (B.3) is  
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The plate velocity in x  and y  directions may be written as 

 

( , ) ( ) ( )x y x x y yV k k V k V k       (B.5) 

 

Hence the modulus of ( , )x yV k k  can be written as combination of Eq. (B.2) and (B.4) 

as 
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Thus the modulus squared of ( , )x yV k k  is 
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