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Abstract 

 

The purpose of the work reported here is to validate and verify results 

obtained using the Waveguide Finite Element and Wavedomain Boundary Element 

(WFBE) method using the software WANDS. This study concerns the vibro-acoustic 

behaviour of a plate strip in terms of its mobility, sound radiation and transmission 

loss. Moreover, it aims to provide a basis for employing the method in more 

complicated cases. 

The plate strip is assumed to be infinite in length but have a finite width where 

it is confined by parallel boundaries. Simply supported boundaries are considered, 

allowing ready comparison with analytical results. The comparisons between the 

analytical results and the numerical ones show that WFBE is applicable for 

investigating the waveguide structure behaviour. However, some practical aspects of 

implementing this method using the WANDS software should be borne in mind in 

order to obtain correct results.  Firstly, the Waveguide Boundary Element (WBE) 

mesh must have a closed boundary. Secondly, for comparison with the analytical 

results, a finite rigid baffle needs to be included in the model by extending the length 

of the WBE fluid model beyond the width of the structure. Thirdly, in the current 

implementation of WANDS it is better to use solid elements rather than plates for 

calculating cases incorporating the WFE-WBE coupling, e.g. the radiated power and 

the transmission loss. This latter aspect could be dealt with by improvements to the 

software. 
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1. Introduction 

A “waveguide structure” is one which is long (or infinite) in one (or more) 

dimensions and has a constant cross-section perpendicular to this axis. The 

Waveguide Finite Element (WFE) method [1] is a useful approach to calculate the 

dynamic behaviour of such a waveguide structure in an efficient way. This approach 

uses a two-dimensional finite element mesh with special elements that allow for wave 

propagation in the third dimension. The general three-dimensional solution can be 

obtained from an inverse Fourier transform over wavenumber. For the case of the 

sound radiation prediction, the coupled Waveguide Finite Element-Boundary Element 

(WFBE) method can be used to calculate the interaction with the acoustic field [2, 3].  

The method can be used for many such structures which have a constant geometry 

along one direction and therefore form a waveguide, for example railway tracks [2, 4, 

5], pipes [6] and tyres [1, 7]. Acoustic transmission through panels can also be 

considered. 

The WANDS software [8, 9] has been developed at ISVR to implement the 

WFBE method. It includes structural beam, plate and solid elements, acoustic finite 

elements, and boundary elements for both acoustic and solid domains. 

For the particular case of sound radiation and transmission involving the 

coupling between structural components and the surrounding air, analytical models 

have been developed [10] to enable validation of the WFBE approach. These are 

based on an infinite plate strip with simply supported boundaries. Results have been 

given in [10] for the mobility, the sound radiation due to a point force and the sound 

transmission due to an incident sound field. 

In this report, validation of the numerical model is conducted by comparing 

the results from WANDS with those from the analytical models. Comparisons of the 

results of the two methods as well as various methods for evaluating the integral in 

the inverse Fourier transform are discussed in detail. This step is important to know 

the effect of discretization in wavenumber space in terms of step size and 

wavenumber range in order to avoid losing information. As the numerical model is 

implemented with a finite baffle, the effect of baffle width on the accuracy of the 

radiated power calculation is also investigated. Moreover, the thickness (or depth) of 

the WBE mesh is considered to avoid the WBE method produces unreliable results 
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[11] owing to a close distance between the opposite sides of the mesh. In general, the 

verification of the numerical result by comparison with the analytical one is of 

importance as a prerequisite to employing the method in more complicated cases. 

2. Waveguide Finite Element method 

A structure with uniform geometrical and material properties along one 

direction but arbitrary cross-section can be modelled numerically using the waveguide 

finite element (WFE) method [3, 12, 13]. Under this formulation, the structural 

behaviour is treated as a two-dimensional problem in which the waveguide cross-

section in the y z  plane is discretized into a number of finite elements. In the other 

dimension, taken here as the x direction, the structure has homogeneous properties 

and harmonic wave solutions of the form i xe   are assumed. Therefore, a solution is 

obtained which is three-dimensional in nature, without requiring a three-dimensional 

model as would be required using conventional finite elements for a similar outcome. 

This situation offers a versatile and numerically efficient method for such structures, 

especially when they are long (or effectively infinite) in the x direction. 

2.1 Plate elements 

Consider a plate strip element with translational displacements u , v  and w  in 

the x , y  and z directions and a rotational displacement   about the x  axis, as shown 

in Figure  2.1. The element is defined by node points in the y z  plane which become 

lines in the x direction. This basic element is employed in the WFE formulation to 

build up any thin-walled complex structure. Derivation of the equations of motion for 

each element under the WFE formulation can be found in [3, 13, 14]. Harmonic 

motion at frequency  is assumed throughout. For a structure assembled of a number 

of elements, the overall equation can be written in the form 

 

 
4

2

0

( ) ( )
n

n n
n

x x
x




 
  

 
K M W F  (2.1) 

 

where nK  and M  are stiffness and mass matrices which correspond to elastic energy 

in the system and kinetic energy of the structure respectively. W  is the vector of 
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nodal displacement amplitudes at nodes in the y z  plane which is sought as the 

solution and F  is a vector of nodal force amplitudes. W is also a function of  

(suppressed for clarity). In the numerical implementation, the plate strip element 

includes in-plane and out-of plane motion so that the displacements are given by 

 1 1 1 1 2 2 2 2( )x u v w u v w 
T

W . 

 

 

 

 

 

 

 

 

 

Figure ‎2.1. A shell (or plate) strip element 

 

For clarity, Eq. (2.1) can be expanded as follows 

 

 
4 2

2

4 2 1 04 2
( ) ( )x x

x x x


   
     

   
K K K K M W F  (2.2) 

 

Note that the term 3K  is not usually present. The matrices 4K , 2K , 0K  and M  are 

symmetric while 1K  is skew-symmetric. Plate out-of-plane bending motion 

contributes terms in 4K , 2K  and 0K  while in-plane motion contributes terms in 2K , 

1K  and 0K . The matrices nK  and M  are derived in [9] in terms of the dimensions 

and material properties of the element. 

For the case of an infinite structure, a spatial Fourier transform in the 

longitudinal direction enables the response of the structure to be obtained. The 

following Fourier transform pair is used 

 ( ) ( ) i xx e dx



 W W  (2.3) 

 

 
1

( ) ( )
2

i xx e d 






 W W  (2.4) 

 

,x u  

  ,y v  

,z w  

Node line 1 
Node line 2 
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and a similar transform for F . Taking the Fourier transform of Eq. (2.2), to transform 

it from the spatial domain into the wavenumber domain, yields 

 

 4 2 2

4 2 1 0( ) ( ) ( ) ( ) ( )i i i              K K K K M W F  (2.5) 

 

where   is the wavenumber in the x direction.  

2.2 Solid elements 

Similarly a solid element can be defined by four (or more) node points. Nodes 

in the solid elements have 3 degrees of freedom corresponding to three translational 

displacements. Using the same principle as presented in section  2.1, the overall 

motion of a structure built up of solid elements can be written as follows [9] 

 

 
2

2

2 1 02
( ) ( )x x

x x


  
    

  
K K K M W F  (2.6) 

 

where again W is also a function of  (suppressed for clarity). Taking Fourier 

transforms, this gives  

 

 2 2

2 1 0( ) ( ) ( ) ( )i i           K K K M W F  (2.7) 

 

where   is the wavenumber in the x direction. The matrices  2K , 1K , 0K  and M  

are stiffness and mass matrices as before, and are given in [9].  

 

2.3 Free wave solution 

Setting the external force F 0  leads to the free vibration case, which results 

in a twin-parameter eigenvalue problem where both wavenumber   and frequency   

are unknown: 

 

 4 2 2

4 2 1 0( ) ( ) ( )i i i            K K K K M W 0  (2.8) 
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This is a linear eigenvalue problem in squared frequency 2  for a given 

wavenumber  . Alternatively the polynomial eigenvalue problem in wavenumber   

can be solved for a given frequency  . The solution obtained can then be used to 

describe the dispersion characteristics of the structure while the corresponding 

eigenvectors represent the cross-section deformation modes. For the case of 0  , 

the eigenvalue problem reduces to 

 

 2

0    K M W 0  (2.9) 

 

where the frequencies that are the solution of Eq. (2.9) are the cut-on frequencies of 

the various waves in the waveguide. Otherwise, however, Eq. (2.8) is a non-standard 

eigenvalue problem in wavenumber which can be more efficiently solved if it is 

transformed into a standard form. This can be achieved by transforming Eq. (2.8) so 

that the unknown eigenvalue   does not appear in the system matrix. The following 

procedure is used for solving such an eigenvalue problem by transforming it into a 

standard eigenvalue problem form for 1( )i   as given by Gavric [13]. The procedure 

starts by inverting the part of Eq. (2.8) which does not depend on wavenumber, 

 2

0 K M . Eq. (2.8) is then multiplied by the inverted matrix and divided by i  

to give the following relation 

 

  3 1
( ) ( )

( )
i i

i
 


    


1 2 4A A A W W  (2.10) 

  

where  
1

2

j j


  0A K M K , 1,  2,  4j  . Eq. (2.10) can then be converted to a 

simple eigenvalue problem by adding three identities 1( ) ( )( )j ji i i    W W  for 

1,  2,  3j   to yield the square matrix system 

 

 

2 4

2 2

3 3

( ) ( )1

( )( ) ( )

( ) ( )

i i

ii i

i i

 

 

 

    
    
      

      
            

1A A 0 A W W

I 0 0 0 W W

0 I 0 0 W W

0 0 I 0 W W

 (2.11) 
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where I  is the identity matrix. The dimension of the unknown eigenvector is four 

times the dimension of the original finite element model. The eigenvalues are the 

inverse of the wavenumbers 1( )i  . Eq. (2.11) satisfies the standard eigenvalue 

problem form. For the case of 
4 K 0 , i.e. solid elements, Eq.  (2.11) reduces to  

 

 
2 1

( )( ) ( )ii i 

    
    

     

1A A W W

I 0 W W
 (2.12) 

 

where  
1

2

j j


  0A K M K , 1,  2j  . 

2.4 Forced response 

In order to predict the forced response of a structure, all the wave solutions 

including nearfield waves are required. Hence, Eq. (2.11) and Eq. (2.12) have to be 

solved to obtain all wavenumbers and mode shapes at a given frequency .  

For the case of forced vibration due to a concentrated load at a given 

frequency , the force can be represented using a delta function in the spatial domain 

as follows 

 

  ˆ( )x xF F  (2.13) 

 

where F̂  represents the nodal force vector. The response of the structure is then given 

as the solution to 

 

  
4 2

2

4 2 1 04 2
ˆ( )x x

x x x
 

   
     

   
K K K K M W F  (2.14) 

 

Using Fourier transforms as in Eq. (2.3), Eq. (2.14) is subsequently written as 

 

 4 2 2

4 2 1 0( ) ( ) ( ) ( ) ( )i i i              K K K K M W F  (2.15) 

    

where  

   ˆ ˆ( ) i xx e dx 




 F F F  (2.16) 
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and ( )W  is the displacement of the cross-section at wavenumber  . By inverting 

the dynamic stiffness matrix in Eq. (2.15), the displacement of the structure in the 

wavenumber domain can be obtained 

 

 
1

4 2 2

4 2 1 0( ) ( ) ( ) ( ) ( )i i i     


         W K K K K M F  (2.17) 

 

 

Subsequently, the displacement in the spatial domain can be recovered through the 

inverse Fourier transform, Eq. (2.4). This equation can be solved by several methods 

as discussed below. 

2.5 Residue calculus method 

Using the residue calculus method, as presented in [1, 2, 14, 15], the integral 

in Eq. (2.4) with limits   can be replaced by a contour integral in the complex plane. 

Two such curves are shown in Figure  2.2. For x   0 the integral in Eq. (2.4) is 

performed over the upper half plane because the integrand will approach zero in this 

plane as R . Similarly for 0x   the integral is performed over the lower half 

plane. The integral is equal to 2 i  times the sum of the residues at the poles of the 

integrand [16]  

 
( ) ( )

2
( ) ( )p

f z f z
dz i

q z q z



  (2.18) 

 

where ( )f z  and ( )q z  are finite functions of the complex variable z . Eq. (2.18) has 

poles, where the dynamic stiffness has zero determinant, at precisely the solutions to 

Eq. (2.8), i.e. the free wave solutions. It is assumed that each of them is a simple pole 

hence there are no duplicate wave solutions. 



8 

 

 

Figure ‎2.2. Path of integration in complex plane [1]. 

 

The response in the spatial domain is then calculated as a sum of residues as follows 

[1, 14]  

  

 
,

, ,

, ,

( )

( )

p

T

p L

DOF DOF p R

p
T j

p L j p R

j
p

W x i W

i

 







  
  
   





W F

W K W

 (2.19) 

 

where p  is the number of waves in the structure under consideration at a given 

frequency. LW and RW  are referred to as the left and right eigenvectors of Eq. (2.8)

respectively for the eigenproblem evaluated at p  . The DOF subscript is an index 

indicating the degree of freedom at which the displacement is required while , ,DOF p RW  

is the component of the right eigenvector RW  corresponding with index DOF.  

The differential term in the denominator of Eq. (2.19) can be derived as 

follows 

 

  3

4 2 1( ) 4 ( ) 2 ( )
p

p

j

j

j

i i i i
 

 

  
 



 
       

  
K K K K  (2.20) 

 

For the case of the solid elements, where 4K is absent, Eq. (2.20) becomes 
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  2 1( ) 2 ( )
p

p

j

j

j

i i i
 

 

 
 



 
     

  
K K K  (2.21) 

2.6 Numerical integration 

Aside from the residue calculus approach, the integration in Eq. (2.4) can also 

be solved for a limited wavenumber range by using a simple numerical integration 

technique such as the rectangle method [16]. This method works by dividing the area 

under the graph of Eq. (2.17) into r  rectangles. The area of each is the product of 

height and width. Thus the integral in Eq. (2.4) becomes  

 

 

max

max

(2)

(1)

1
( ) ( )

2

1
( )

2

i x

i x

r

x e d

e








 


 










 





W W

W

 (2.22) 

 

where term (1) determines the height of the rectangles and term (2),  , is the step 

size, which is taken as an equal sub-division of the length. Figure  2.3 illustrates how 

this method works. The key point here is to determine suitable values for max  and 

 , which will be considered in section  5.1.2.  

  

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5
x 10

-7

Y
( 

)


 

Figure ‎2.3. Integration in Eq. (2.4) is performed as a series of rectangles to 

approximate the area under the graph. 
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3. Wavenumber Boundary Element method for exterior 

problems 

3.1 Fundamental solution  

For time-harmonic linear acoustics, the Helmholtz equation may be used to 

describe the acoustic properties of the fluid system 

 

    2 2 ( )k       0r r r r  (3.1) 

  

 

where 2 2 2 2 2 2 2x y z        ,   is the fundamental solution at position r , 

( )  0r r  is the three-dimensional Dirac delta function representing a source at any 

point 0r  and k c  is the acoustic wavenumber with c  the acoustic wavenumber.  

 In free space, the solution of Eq. (3.1) is [11, 17, 18] 

 

 
4

ik
e




 




0r r

0r r
 (3.2) 

 

This function is also known as the free space Green’s function for the pressure field 

due to a point source. 

3.2 Boundary integral equation 

Conceptually, to derive boundary integral equations, Green’s second identity 

is applied to the two scalar functions p  and  . For exterior problems, a far-field 

boundary surface 2RS  is introduced, along with the radiating surface S  and the tiny 

spherical surface 1RS  around the singular point, as shown in Figure  3.1. Therefore, 

Green’s second identity becomes 

 

  
1 1 2

2 2

R R RV V S S S

p
p p dV p dS

n n


  

  

  
     

  
   (3.3) 

 

where  V  is the acoustic domain exterior to S  and 1RV  is the tiny spherical volume. 
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Figure ‎3.1. Illustration of the exterior problem (redrawn from [19]) 

 

Considering p  is the sound pressure in the volume V  and   as defined in Eq. 

(3.2), it can be inferred that both functions satisfy Eq. (3.1). Hence the left-hand side 

in Eq. (3.3) is zero owing to cancellation of both the terms in V . For r  in the acoustic 

domain, the integral over the tiny spherical surface is equal to    0p pr r  as 

1 0R   while the integral over the far-field boundary in 2RS  would vanish as  

2R   due to Sommerfeld’s radiation condition. It should be noted that the integral 

over the tiny spherical surface is dependent on position r , e.g. for a smooth boundary 

it is equal to 1 2  when r  is at the boundary surface S . Therefore, in general, Eq. (3.3) 

reduces to 

   ( )
S

p
C p p dS

n n



  

   
  

r r  (3.4) 

 

where  C r  is a coefficient dependent on position r . 

 

3.3 Wavenumber domain 

Now the boundary variables, acoustic pressure p  and fluid particle velocity in 

the direction n , nv , are conveniently expressed through the velocity potential  . This 

gives 

  



12 

 

 
nv


 

n
 (3.5) 

 

and 

 

 
0p

t








 (3.6) 

 

where n  is a unit direction vector and 
0  is the mean fluid density. 

The WBE formulation of the fluid can be determined following Hamilton’s 

principle  

 

   0U T W      (3.7) 

 

where U and T are the first variation of the potential energy and the kinetic energy 

over a volume V  respectively and W is the virtual work at the boundary surface S .  

In terms of the velocity potential, the first variation terms in Eq. (3.7) in the frequency 

domain are defined as follows [9] 

 

 2

0

V

U k dV      (3.8) 

  0

V

T dV     
H

 (3.9) 

 0

S

W dS


     
 n

 (3.10) 

 

where   denotes complex conjugate and H  is complex conjugate transpose. 

Applying Green’s second identity to the first variation of the kinetic energy in 

Eq. (3.9) gives 

 

   2

0 0 0

AV S V

dV dS dV


       



    

  
H

n
 (3.11) 

 

 

where 2  is the 3D Laplace operator. Substituting Eq. (3.8),  (3.10)  and (3.11) into 

Eq. (3.7) yields 
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  2 2

0 0 0

AV S

k dV dS
 

            
     

  
  n n

 (3.12) 

 

where 2  is the 3D Laplace operator. 

 Taking a spatial Fourier transform in the x direction leads to the volume and 

surface integrals in Eq. (3.12) becoming surface and line integrals when the integral 

over wavenumber is dropped, hence 

 

   2 2 2

0 2 0 0D

S

k dS d
 

       


 



  
       

  
  n n

 (3.13) 

 

where 2 2 2 2 2

2D y z      ,   is the wavenumber in the x direction, S  is the 

cross-section area of the acoustic domain and   is the perimeter of the boundary. It 

can be seen that the first term of Eq. (3.13) is similar to the normal 2D Helmholtz 

equation but with 2k  replaced by 2 2 2( )k   .  

Now consider the presence of the point source. The first integral of Eq. (3.13) 

is required to be zero except at the source position. Meanwhile, following the 

derivation of the boundary integral in section  3.2, the second integral of this equation 

over the source constitutes    C  
r r  where 0 0r r . The integral over the far-

field boundary also disappears owing to Sommerfeld’s radiation condition. Hence, the 

boundary integral equation becomes 

    C d
 

  


 



  
    

  
r r

n n
 (3.14) 

 

 The result from the BE model gives a relation between the boundary variables 

that may be written as 

 

 
i


 



inPψ
Hψ G

n
 (3.15) 

 

where ψ and  ψ n  are vectors of the respective variables at the nodes of the BE 

model and n  is the unit vector normal to the surface of the boundary. To allow 

excitation by an incident wave field, inP  is introduced as the pressure amplitude of the 

incoming wave evaluated on the boundary nodes. H  and G  are generally full, non-
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symmetric, complex-valued matrices that are obtained by discretising terms on the 

right-hand side of Eq. (3.14).   

3.4 Mixed boundary condition 

In addition to Eq. (3.15), another relation between the boundary pressure and 

the velocity is also required. This relation is given to cover specific conditions of the 

boundary, i.e. specifying a coupling to another system, for example nodes on the 

boundary which are not on the FE/BE interface (or ‘wetted’ surface). This is then 

referred to as a mixed boundary condition and can be written as 

 

 A B n c C P C V c  (3.16) 

 

where AC  and BC  are diagonal matrices and cc is a vector corresponding to pressure 

sources and moving boundaries. Note that this boundary condition is also known as a 

Robin (or impedance) boundary condition. This kind of boundary condition is 

imposed in the present case to enforce zero velocity on the baffle and at the edges of 

the plate. 

4. Coupling between WFE and WBE models 

The work of the fluid on the structure needs to be taken account when they are 

coupled. Hence, the virtual work  
1C P  produced by the WBE model can be included 

in the WFE model. This gives 

  2

1( )   K M W C P F  (4.1)  

 

where 1C  is a coupling matrix for pressure and F  is an external force vector, if 

present. 

At the wetted surface between the structure and the fluid, both models share 

the same nodes as well as having compatible shape functions. As a consequence of 

the essential boundary condition, the WFE and WBE models have the same normal 

velocity. In terms of the velocity potential, this can be expressed as  

 

 0i


 


2 2

ψ
I C W

n
 (4.2) 
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where 
2I is a matrix containing terms which are unity or zero and 

2C is a 

transformation matrix transforming FE-displacements W to the equivalent normal 

displacement at the boundary. 

From Eq. (4.2),  ψ n  can be written as  

 

 1

2i 



2

ψ
I C W

n
 (4.3) 

 

where the vector ( )W  is the displacement from the FE model. The velocity potential 

is obtained by substituting Eq. (4.3) into Eq. (3.15). This gives 

 

 1 




ψ
ψ H G

n
 (4.4) 

 

Having obtained  ψ n  and ψ , the particle velocity ( )n V  and the pressure ( )P  

and can be found from the Fourier transforms of Eq. (3.5) and (3.6). 

 Considering all relationships in Eq. (3.15)-(3.16) and Eq. (4.1)-(4.2) the 

combined system is obtained as follows 

 2

1

2 2

( )

n

c

i

i

  



 
    

            
       

 

in

ψ
H G 0 P

ψ
C 0 K M F

n
0 I C c

W

 (4.5) 

 

where 
1

n
i

G G . 

 

4.1 Radiated sound power  

The radiated power radW  due to a vibrating waveguide structure is given by 

 

 
1

Re ( ) ( )
2

rad nW p x v x d dx





 

 
  

 
   (4.6) 
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where   is the perimeter of the cross-section and d  is an infinitesimal segment of 

the perimeter of the cross-section. By using Parseval’s formula, Eq. (4.6) can be 

written in the wavenumber domain to give 

 

 
1

Re ( ) ( )
4

k

rad n

k

W P V d d  




 

 
  

 
   (4.7) 

 

where the integral is restricted to k k   , with k  the acoustic wavenumber, since 

elsewhere no radiated power is produced. 

 The integration process in Eq. (4.7) is actually performed element-by-element 

with the boundary variable jP  and jV  of each element j  given by 

  
1

n

j i i

i

P p N 


  (4.8) 

  
1

n

j i i

i

V V N 


  (4.9) 

 

where j  is the element number, i  is the node number of element j  and  iN   is the 

shape function with local coordinate 1 1   . 

 The length of the infinitesimal segment itself can be evaluated by [11] 

 

    
2 2

2 2 dy dz
d dy dz d Jd

d d
 

 

   
        

   
 (4.10) 

 

where J  is the Jacobian and  

 

 
1

n
i

i

i

dNdy
y

d d 

  (4.11) 

 

 
1

n
i

i

i

dNdz
z

d d 

  (4.12) 

 

 

Therefore, the integration over the perimeter for each   can be performed 

numerically. Here, standard Gaussian quadrature [20] is used for this. This gives 



17 

 

    

 

,

1

1

1 1 11

1 1

j

m

n j n j

j

m n n

i i i i

j i i

gm

k k

j k

PV d PV d

p N V N Jd

w f

  



 

 



  

 

  

 
  

 



 

  



 (4.13) 

 

where m  is the number of elements, g  is the number of Gauss points used on the 

element, k  is the thk  Gauss point, kw  is the corresponding weight and  

     
1 1

n n

k i i i i

i i

f p N V N Jd   



 

 
  

 
  . 

4.2 Sound transmission 

For an incident plane wave at angle   to the normal (about the x axis), the 

incident power per unit length in the x direction is defined as 

 

 

2

0

cos1

2

i

inc

p
W d

c






   (4.14) 



where ip  is the incident pressure amplitude. The incident angle about the y - axis is 

determined by the wavenumber   in the x direction. By using the radiated sound 

power radW  as defined by Eq. (4.7), the transmission coefficient is given by 

 

 rad

inc

W

W
   (4.15) 

 

The sound reduction index, or transmission loss, R  is found from 

 

 
10

1
10logR



 
  

 
      dB (4.16) 

 

In practice, structures are often subjected to a diffuse sound field rather than a 

plane wave. The diffuse sound field excitation is formulated as the superposition of 

uncorrelated plane waves with equal amplitude. The response of the structure is then 



18 

 

obtained by integrating the response due to all incident plane waves over the incident 

angle and weighting them with the corresponding solid angle to account for the 

directional distribution. 

Using the same principle, the diffuse field can be defined in WANDS but a 

different convention is used owing to the way the acoustic response is calculated in 

WANDS.  The acoustic response of the waveguide structure is calculated based on the 

wavenumber   instead of k  as follows (see section  3) 

 

 2 2 2 2

y zk k k      (4.17) 

 

 

The incident direction in WANDS can thus be described by two respective angles   

and   which cover the directional distribution of the acoustic intensity, as illustrated 

in Figure  4.1.  

 

z

x

y







 k


 
Figure ‎4.1. Description of incident direction in WANDS 

 

 

Here   is the angle within the  y z  plane (about the x  axis) and   is the angle 

between the vectors of the acoustic wavenumber and propagating wavenumber in the 

x  direction (for 2   it corresponds to a rotation about the y  axis). Note that the 

angle    is dependent on   while the angle   is discretised from 0 to 90º. 

As a consequence of the convention adopted in Figure  4.1,  the wavenumbers in 

each direction can be defined as 

  

 cosxk k    (4.18) 
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 2 2cos cos sin cosyk k k          (4.19) 

 

   

 2 2sin sin sin sinzk k k          (4.20) 

  

 

Following the Paris formula, the diffuse field transmission coefficients can thus be 

expressed as 

 

 
 

 

2 2

2 2
0 0

2 2 0 0

0 0

, sin sin 4
, sin sin

sin sin
d

d
d

d

 

 

 

    
     

 


  



 
 

 
 (4.21) 

 

where sind d d    .  Hence, the sound reduction index or transmission loss for 

the diffuse sound field dR  is finally expressed by 

 

  

 10

1
10logd

d

R


 
  

 
       dB (4.22) 

5. Validation case 

A computer program has recently been developed at ISVR which implements 

the WFBE approach with a number of suitable element types [9]. This software 

package, called WANDS (Wave Number Domain Software), is used here to model 

the structure of a plate strip as well as the surrounding fluid for the case where the 

structure-fluid interaction exists. The detailed procedure for using WANDS is given 

in [8].   

An aluminium plate of width 1yl  m and infinite length is assumed, with 

simply supported boundaries. The material and geometric properties are listed in 

Table ‎5.1. 
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Table ‎5.1.  Material properties of the plate strip (unless otherwise stated). 

Properties Value 

Young’s modulus, E  (N/m
2
 ) 107.1 10  

Poisson’s ratio, 
pv  0.332  

Thickness, h (mm) 6.0 

Width, yl  (m) 1.0 

Density,   (kg/m
3
) 32.7 10  

Damping loss factor (if used),   0.1  

 

5.1 Point mobility of a plate strip 

In WANDS, a special element is implemented for plates consisting of a linear 

shape function for the in-plane motion and cubic Hermite polynomials for out-of 

plane motions. Here, unless otherwise stated, 30 plate elements are used to represent 

the cross-section of 1 m width. This corresponds to 4 elements per wavelength at the 

maximum frequency of 3 kHz. To simulate the simply supported boundaries, the first 

node
 
of the first element and the second node of the last element are restrained in the 

x , y  and z  directions but are free in rotation so that the model has 118 degrees of 

freedom (DOF) in total. A point force of unit amplitude is applied at the centre, which 

corresponds to the 16
th

 node. 

The WANDS software itself is used for calculating the matrices nK  and M . 

Then, the receptance of the plate strip is obtained using the residue calculus method as 

described in section  2.5. The mobility of the plate strip is obtained by multiplying by 

i . Figure  5.1 shows the point mobility of the plate strip along with the analytical 

result from [10]. It is clear that the numerical result agrees well with the analytical one 

for the parameters given. 
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Figure ‎5.1. Mobility of the plate strip due to force excitation at  0, 2yl  calculated 

using WFE model (━ numerical; ┅ analytical). 

 

Figure  5.2 presents the predicted dispersion curves found from the free wave 

solutions for the undamped plate strip. Some mode shapes are also provided for 

particular cut-on frequencies. It is clear that the peaks found in the mobility are 

strongly related to the cut on of various waves. 

 In this figure, curves A and B are coupled longitudinal and shear waves 

resulting from in-plane displacement of the plate. These are not considered further in 

this report as this study is mainly devoted to the investigation of radiated power and 

sound transmission for lightweight structures. For these cases, the bending waves 

impose the largest normal displacement on contiguous fluid. Hence in terms of fluid-

structure interaction, they are of most relevance. 



22 

 

 

Figure ‎5.2. The predicted dispersion curves of a simply-supported plate strip and 

particular mode shapes. 

 

Compared with the analytical results, the discrepancy in cut-on frequency is 

less than 1%, as shown in Table ‎5.2. This discrepancy increases with increasing 

frequency, indicating that the element density used in the model becomes less 

sufficient to cover the actual structural wavelength at these frequencies. 

 

Table ‎5.2. Cut-on frequency fm: comparison between numerical results and analytical 

ones. 

m  mf  numerical mf  analytical % difference 

1 14.8 14.8 0 

2 59.2 59.2 0 

3 133 133 0 

4 237 237 0 

5 370 370 0 

6 533 533 0 

7 725 725 0 

8 947 947 0 

9 1199 1198 0.08 

10 1480 1479 0.07 

11 1792 1790 0.10 

12 2133 2130 0.14 

13 2505 2500 0.20 

14 2908 2899 0.30 

A 
B 

 
1

14.8f   Hz 

 
3

133f   Hz 

 
5

370f   Hz 
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5.1.1 Effect of element size 

 The required number of elements increases as frequency increases. As a rule 

of thumb, six finite elements or more are normally required per wavelength [21], 

although the element shape function also affects the accuracy. It has been seen that by 

including 30 elements in the model, the numerical result shows a good agreement 

with the analytical result up to 3 kHz. From Figure  5.2, it can be seen that at 1500 Hz 

10 waves have cut on. The 10
th

 wave has 5 wavelengths across the width so that using 

30 elements in the model gives 6 elements per wavelength at this frequency. By 3 kHz 

14 waves have cut on and there are only 4 elements per wavelength.  

Table  5.3 compares the results from WFE based on the residue calculus 

method with the analytical ones. Even at 3 kHz the agreement is within 0.3% in 

magnitude, as shown in Table  5.4. Reducing this to 10 elements, it can be seen that 

the results are much worse. This coarser mesh is sufficient up to 500 Hz where the 

error is less than 2% for the amplitude and 3 degrees for the phase. At this frequency 

it corresponds to 4 elements per wavelength. Hence, the results at higher frequencies 

are not strictly valid. 

 

Table ‎5.3. Comparison of mobility calculated using analytical method and numerical 

method based on residue calculus. 

 

Frequency 

(Hz) 

Analytical WFE Residue calculus 

Magnitude 

(ms
-1

N) 

Phase 

(degrees) 

Magnitude (ms
-1

N) Phase (degrees) 

30 elements 10 elements 
30 

elements 

10 

elements 

1 7.40210
-5

 84.27 7.40210
-5

 7.39710
-5

 84.27 84.27 

10 1.05210
-3

 81.52 1.05210
-3

 1.05210
-3

 81.52 81.52 

100 5.28710
-4

 15.73 5.28710
-4

 5.26810
-4

 15.73 15.19 

500 7.84210
-4

 -12.83 7.84410
-4

 7.96910
-4

 -12.88 -15.11 

1000 7.19410
-4

 -5.73 7.19610
-4

 7.43010
-4

 -5.87 -12.13 

3000 7.64510
-4

 -4.87 7.66610
-4

 8.42710
-4

 -5.45 -19.17 
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Table ‎5.4. Relative error of numerical results compared with analytical results for 

certain frequencies. 

 

Frequency 

(Hz) 

Relative error  

Magnitude (%) Phase (degrees) 

30 

elements 

10 

elements 

30 

elements 

10 

elements 

1 0 0 0 0 

10 0 0 0 0 

100 0 0.36 0 0.54 

500 0.03 1.62 0.05 2.28 

1000 0.03 3.25 0.14 6.40 

3000 0.30 10.2 0.58 14.3 

 

5.1.2 Effect of wavenumber range and step size on accuracy of 

mobility calculation 

When the rectangle method is used, the calculation process experiences 

truncation in the wavenumber domain. In order to determine correct integration 

parameters, the results of this approach are compared with the residue calculus ones. 

They are used as the reference here as they include the same effects of discretization. 

The comparison is therefore limited to the effect of the integration method. Various 

wavenumber ranges and step sizes are considered. The maximum wavenumbers and 

step sizes are deliberately designed by considering them as multiples of the free 

bending wavenumbers 
Bk  at the corresponding frequency, given by 

 

 

1 4

B

h
k

D



 

  
 

 (5.1) 

 

 

This approach allows a more general conclusion to be reached about how 

many wavenumbers should be included in the calculation. The error is obtained from 

comparison between the numerical results based on the rectangle method and the 

residue calculus one, defined as  

 

 10 10rectangle residue
dB error 20log 20logY Y   (5.2) 
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The residue calculus results are given in Table  5.3. The wavenumber range 

and step size required to achieve an error less than 1 dB or 0.1 dB can be observed 

from Table  5.5. Note that the required maximum wavenumber and step size are 

compared to the real part of the free bending wavenumber at the corresponding 

frequency in order to get a non-dimensional maximum wavenumber and step size. 

Some prominent features can be deduced from Table  5.5. Firstly, for low 

frequencies a high maximum wavenumber ratio is needed while a lower one is 

sufficient for mid and high frequencies. Secondly, a large step size ratio seems to be 

acceptable for low frequencies but as frequency increases a smaller step size ratio is 

required, particularly for mid frequencies. Thirdly, as expected, in order to achieve 

0.1 dB error or less, a higher maximum wavenumber ratio and a smaller step size ratio 

are required than for 1 dB error. Therefore, the largest number of integration points is 

found in the mid frequencies for both error criteria. 

This integration method has been considered as it is used by WANDS for the 

sound radiation and transmission. Other numerical integration methods such as 

Simpson’s method should achieve a similar accuracy with less steps than the rectangle 

method [16]. However, the trend of the wavenumber range and step size required 

should follow the result of this study where the maximum wavenumber ratio 

decreases as frequency increases. 

 

Table ‎5.5. Wavenumber ranges and step sizes required for 1 dB error and 0.1 dB 

error
1
. 

Frequency 

(Hz) 
Re( )Bk  

1 dB error 0.1 dB error 

max

Re( )Bk


 

Re( )Bk


 max

Re( )Bk


 

Re( )Bk


 

1 0.816  5.5  2.75  18  2.25 

10 2.579  1.5  0.75  4.5  0.375 

100 8.156  1.25  0.1  3.75  0.12 

500 18.24  1.0  0.05  2.0  0.03 

1000 25.79  0.9  0.04  1.5  0.04 

3000 44.67  0.9  0.04  1.5  0.02 

 

 

                                                 
1
 In practical calculation , the wavenumber range and step size is implemented: 

   max max2 : : 2k k k      
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Figure ‎5.3. Mobility spectrum of the plate strip at (a) 1 Hz, (b) 500 Hz and  (c) 3 kHz 

to represent low, mid and high frequencies respectively, with associated bending 

wavenumber of 0.8169, 18.27 and  44.74 rad/m (━ range required for 1 dB error; ┅ 

0.1 dB error; ••• border for the region required for 1 dB error). 
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To clarify the effect of the wavenumber range included in the calculation, 

Figure ‎5.3 portrays the mobility spectrum in the wavenumber domain for three 

example frequencies based on Eq. (2.22) for 0.1  . From this figure, it is clear that a 

wider range of wavenumbers relative to the bending wavenumbers is required at the 

low frequencies due to the presence of a single broad lobe. Therefore, the tail of the 

curve gives an important contribution to the total integral at low frequency. 

Meanwhile, for the mid and high frequencies a ratio of 1 is sufficient to cover most of 

the lobes and achieve an agreement within 1 dB. The tail of the spectrum should be 

included at these frequencies in order to achieve agreement within 0.1 dB. In terms of 

absolute step size, the mid frequencies need a smaller step size than at low and high 

frequencies because the peaks are quite close together and have a narrow bandwidth. 

It can be expected that for lower damping a smaller step size would be required. 

5.2 Sound radiation of a plate strip   

The radiated sound power has also been calculated using the coupled 

Wavenumber Finite Element-Wavedomain Boundary Element (WFBE) method. 

Figure ‎5.4 illustrates the WFBE model schematically. The WFE parameters are the 

same as for the WFE model used in the mobility calculation in section ‎5.1. To this is 

added a WBE model developed for an exterior problem using 30 cubic elements in all 

on the wetted surface. The first and last node of each element have the same 

coordinates as the WFE model as required in a coupled model, although the boundary 

elements have two intermediate nodes as well.  

However, the analytical model used for comparison includes an infinite rigid 

baffle beyond the plate strip. In order to implement a rigid baffle in the numerical 

model, as will be shown this must comply with the following procedure: (i) the WBE 

sub-model should be included as an extended boundary element mesh on either side 

of the plate strip with a width of at least the acoustic wavelength under consideration; 

(ii) the WBE sub-model should be closed. The nodal surface velocity 0V  is set equal 

to zero for all nodes outside the wetted surface. For the current numerical model, a 

1 m finite rigid baffle is included beyond both edges of the plate strip, unless 

otherwise stated, and this WBE mesh is 0.1 m thick. The effect of the size of this 

mesh is discussed in section ‎5.2.2. Note that the rear of the plate strip is not 

considered to radiate sound. 
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Figure ‎5.4. Schematic illustration of the plate strip excited by the acoustic plane wave. 

 

The sound power radiation of the plate strip due to the point force excitation 

was calculated using Eq. (4.7). Figure ‎5.5 presents the radiated power for excitation at 

the centre (0, 2yl ) from the numerical and the analytical models. Some discrepancies 

can be observed from this figure, especially at low frequencies and around 2 kHz 

which corresponds to the critical frequency cf . It is believed that the finite rigid baffle 

length of the numerical model affects the results in the low frequency region. This 

effect will be studied further in the next paragraphs. Meanwhile, the difference around 

cf   is believed to be due to difficulties in the implementation of the plate-fluid 

coupling in WANDS.  
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Figure ‎5.5 Comparison of the radiated power between numerical result and analytical 

one for excitation at the middle (0, 2yl ) (━ numerical model; ┅ numerical model 

with open BE mesh; –•– analytical model).   

It can also be seen that a lower radiated power is obtained, where the result is 

not in agreement with that of the analytical model, when an open BE mesh is used. 

plate strip  

WFE 

A point force 

radiated power 

(exterior problem) 

Fluid  

WBE 

┅ 0 0V   
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This indicates that the inclusion of a closed BE mesh in numerical model is of 

importance to get a correct result. 

5.2.1 Effect of baffle width 

The analytical results are based on a plate strip set in an infinite baffle. In the 

WFBE results, this is approximated by a finite width baffle. The baffle width 

incorporated in the model affects the accuracy of the results, especially at low 

frequency. This is demonstrated here by varying the baffle width and then comparing 

the results with those of the analytical model. The baffle width is varied to be 0, 0.2, 1 

and 2 metre extension from either edge of the plate strip. In other words, the length of 

the WBE sub-model on the radiating side for the 1 metre plate-strip will be 1.0, 1.4, 

3.0 and 5.0 metre in total.  

The results are shown in Figure  5.6. It is clear that the sound power level results 

from the numerical model become closer to the analytical ones when the baffle width 

increases. Thus a 1.4 m width baffle gives good agreement between the numerical 

results and the analytical ones at frequencies above 115 Hz while the agreement is 

extended down to 35 Hz for a 5 m width baffle. In contrast, the numerical model does 

not quite agree with the analytical one for any frequencies when the baffle is not 

present.  
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Figure ‎5.6.  Radiated sound power calculated using the numerical model with various 

baffle width on each side of the plate and compared with those obtained with the 

analytical model (┅ analytical model; ━ numerical model with baffle width of  2 m; 

┅ baffle width of 1 m; –•– baffle width of 0.2 m; ••• no baffle exists) 
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 These effects can be seen more clearly in Figure  5.7 which shows the level  

difference, defined as 

 

 
,

10

,

10log
rad numerical

rad

rad analytical

W
W

W

 
    

 

     (5.3) 

 

The value of radW  is approximately -3 dB at low frequency and reduces to 0 above a 

certain frequency. A large difference is found around at 15 Hz which is the first cut-

on frequency. However, it should be noted that the fluid loading is neglected in the 

analytical model while this is considered in the numerical one. Hence, the difference 

greater than -3 dB at this frequency is caused by the fluid loading as well as the baffle 

width effect. Another large difference found at 2 kHz is related to the plate-fluid 

coupling issue at the critical frequency rather than the baffle width effect.  
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Figure ‎5.7. The baffle width effect on the radiated power in terms of radiated power 

differences relative to the analytical model (━ baffle width beyond plate of  2 m; ┅

1 m; –•– 0.2  m; ••• no baffle exists) 

 

Considering these indications, it can be further concluded that the lowest 

frequency that can be covered by the model depends on the baffle width. The relation 

between the lowest frequency limit and the total width of the WBE mesh is 

summarized in Table  5.6. It can be seen that the lowest frequency limit reduces with 
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increasing baffle width.  Therefore, the relation between the approximate lowest 

frequency  of validity and the baffle width can then be shown to be 

 
2

ll

ll b

c c
f

l
   (5.4) 

 

where 
llf  is the lowest frequency limit and 

bl  is the total width of the WBE sub-

model on the radiating side. Thus, in order to allow the numerical model to be used 

reliably down to 15 Hz for example 
bl  needs to be around 11 m. Accordingly, the 1 m 

wide structure would require a 5 m extension of the BE mesh beyond the structural 

width at both sides. 

 

Table ‎5.6.  Effect of baffle width on the lowest frequency limit for 1 m width structure 

 

Baffle width (m) Total width (m) 
llf (Hz) 

0.2 1.4 123 

1.0 3.0 57 

2.0 5.0 34 

 

5.2.2 Effect of enclosed boundary thickness 

Great care should be taken to avoid problems associated with thin bodies when 

developing the enclosed boundary element mesh. Otherwise, the Helmholtz integral 

equation in Eq. (3.14) becomes near-singular as the mesh of surface comes too close 

to that of the opposite surface (or line). Under such circumstances, the required jump 

in the double-layer potential is not generated as both surfaces collapse to the same 

surface so that the pressure is zero when the field point and source point are at the 

same surface. Moreover, the terms     n  of the Helmholtz integral equation is 

also zero as the normal velocities are equal and opposite on each surface. 

Consequently the presence of the singularity is never realized by the computer 

program so that the Boundary Element method produces unreliable results.  

Specifically, this can be overcome by a thin-body integral formulation, e.g. as 

demonstrated in [11, 22]. In this study, however, the WBE model in WANDS is tested 

using different boundary thicknesses in order to avoid the problem. For this, four 

different enclosed boundary thicknesses are used to test the WBE model in WANDS. 

For the WBE thickness values of 6 mm, 15 mm, 30 mm, 66 mm and 100 mm are 
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selected. The effect of the boundary thickness is discussed in terms of the radiated 

power due to a point force. 

Figure  5.8 shows the effect of thickness of the closed boundary WBE mesh. 

The results are identical for all thicknesses under consideration except for 6 mm 

where a 2 dB lower radiated power is found at low frequency. Therefore, the 

numerical model will produce good results if the thickness is 15 mm or more. 
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Figure ‎5.8. Effect of enclosed boundary mesh thickness (━ 100 mm; ┅ 66 mm;  

–•– 30 mm;  15 mm; ••• 6 mm). 

5.3 Transmission loss of a plate strip 

To calculate the transmission loss for the sound transmission problem, the 

numerical model is similar to that used for the radiated power calculations as 

discussed in section ‎5.2. The main difference exists in the form of excitation: in the 

transmission loss case, a plane acoustic wave is used instead of the point force, as 

shown in Figure ‎5.9. The numerical model is developed using a coupled WFBE 

model consisting of one WFE region representing the plate strip structure and two 

WBE-fluid regions for modelling the sound pressure field on both sides of the 

structure. The wavenumbers of the plane waves are governed by the incidence angle, 

which depends on the elevation and azimuthal angles for a 3-D problem. Moreover, 

50 cubic plate elements are now used to cover the 1 m width in order to extend the 

result to a higher frequency. Under such circumstances, the model is expected to be 
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acceptable up to 8.5 kHz at which it corresponds to 4 elements per structural 

wavelength. However, it is important to compare the model configuration with the 

acoustic wavelength as the structural wavelength is larger than this above the critical 

frequency of 2.0 kHz. In fact, compared with the acoustic wavelength there are only 2 

elements per wavelength. Nevertheless, this number of elements is still sufficient due 

to the cubic shape function. 

 

 

 

 

 

 

 

 

Figure ‎5.9. Schematic illustration of the plate strip excited by the acoustic plane wave. 

 

For simplicity, the model differs from the WBE model of the radiation problem 

as the incoming plane waves are realized by an open boundary mesh. This causes 

differences in the scattered field on the source side. In order to assess the effect of the 

open boundary mesh, the result obtained is compared with that of the closed boundary 

one using the following formula: 

 

 
closed boundary

10

open boundary

10log  ,                      dBSTL




 
    

 

 (5.5) 

 

The result is presented in Figure ‎5.10. It is clear that the highest difference 

occurs at the first cut-on frequency, 14.8 Hz, at which a difference of 2.5 dB is found. 

As the frequency increases, the level difference reduces and it is less than 0.5 dB for 

frequencies above 40 Hz. This behaviour is caused by fluid loading at low frequencies 

which becomes negligible at higher frequencies. Hence the open boundary used in 

this study will not affect the accuracy of the numerical results for the current case for 

frequencies above 63 Hz as usually considered in practice. 
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Figure ‎5.10. The difference in the transmission loss between open boundary and 

closed boundary mesh on the source side. 

5.3.1 Normal incidence case 

Figure  5.11 presents a comparison between the numerical result and the 

analytical one for normal incidence. Note that the analytical model for this case has 

been extended from that given in [10] by including the cross-terms between different  

mode orders. The modified formulation is given in Appendix A. The mass-law result 

is also shown for comparison.  

First of all, the trend of the transmission loss in the numerical results agrees 

well with the analytical one. For the case under consideration, the transmission loss 

follows the mass law trend as frequency increases, especially above 100 Hz. Below 

50 Hz, a discrepancy occurs due to the finite baffle width (see section  5.2.1); hence it 

will always appear below some frequency depending on the assumed baffle width 

considered in the numerical model. Apart from this, the numerical result agrees well 

with the analytical one. Various peaks and dips are seen corresponding to cut-on 

frequencies of odd modes. The even modes are not excited in this case of normal 

incidence. 
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Figure ‎5.11. Comparison of transmission loss of the plate strip based on the numerical 

model and the analytical one (━ numerical model; ┅ analytical model; ••• 

analytical model without cross-term contribution; –•– mass law). 

  

 It can be also seen that the results of the analytical model with and without 

including the cross-term contribution in the calculation are very similar except 

between 80 and 200 Hz. Hence, for this case, the model without the cross-term 

contribution can be considered to achieve a sufficient accuracy, except in this 

frequency region, without requiring a high computational time. 

5.3.2 Oblique incidence case 

 A further comparison can be carried out for an oblique incidence angle. The 

plate strip is subject to a plane wave impinging on it at a certain angle to the normal. 

For the plate strip case, it is possible to construct the incident angle about the x  axis 

or y  axis, where each of them would affect the transmission loss behaviour 

differently due to the nature of the plate strip dimension. Figure  5.12(a) shows the 

result for oblique incidence at an angle of 45º about the x axis and Figure  5.12(b) is 

the result for the same elevation angle but about the y  axis. Both cases show a good 

agreement with the analytical result, with the dips in the curves corresponding to the 

cut-on frequency behaviour. Due to the finite width of the plate strip, the modal 

behaviour is more pronounced for the former case, where even modes as well as odd 

modes are excited, than it is for the latter one. 
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(b) 

Figure ‎5.12. Comparison of transmission loss of the plate strip and the analytical 

model for oblique incidence case: (a) 45  ; 90   (b) 45  ; 0   (━ 

numerical model; ┅ analytical model). 

 

Above the critical frequency, the coincidence frequency calculated by the 

numerical model agrees with that of the analytical model for the former case. 

However, it is slightly lower than the analytical one for the latter case. This 

unmatched coincidence frequency would lead to an erroneous result for the diffuse 

sound field in which the plane waves from all incident angles are evaluated in the 

transmission loss calculation. This discrepancy is believed to be related to the errors 

found in the sound radiation result around the critical frequency (see Figure ‎5.5). 



37 

 

Moreover, it has been found (not shown here) that the error increases as the incidence 

angle is increased. 

5.3.3 Effect of plate thickness 

Figure  5.13 shows results for two different plate thicknesses, 6 mm and 9 mm, 

for normal incidence. The numerical results show a good agreement with the 

analytical ones. The increasing transmission loss is expected and the dip related to the 

first cut-on frequency shifts upward with increasing thickness. 
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Figure ‎5.13 Comparison of transmission loss of the plate strip based on the numerical 

model and analytical model for the case of the different thickness (━ numerical 

model; ┅ analytical model). 

5.3.4 Effect of damping loss factor 

Figure  5.14 shows results for a smaller damping loss factor   of 0.01, again 

for normal incidence. A good agreement is found with the analytical model, with dips 

in the transmission loss at the various (odd) cut-on frequencies. 

6 mm 

9 mm  
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Figure ‎5.14. Comparison of transmission loss of the plate strip and the analytical 

model for lower damping loss factor 0.01   (━ numerical model; ┅ analytical 

model). 

5.3.5 Diffuse sound field 

In the previous analysis, the resulting transmission loss was calculated for 

excitation by an acoustic plane wave. Now the structures are subjected to a diffuse 

sound field excitation and the sound pressure level is calculated using the procedure 

in section  4.2. For this, 9 incident angles  about the x  axis and 18 incidence angles  

are considered with an upper angle of 90º. Figure  5.15 presents a comparison of 

transmission loss from the numerical model and analytical one under a diffuse sound 

field excitation. The results of the numerical model are in a good agreement except 

around and above the critical frequency. Around the critical frequency, the WFBE 

model has a higher transmission loss than the analytical one while the dip associated 

with the critical frequency occurs at 2179 Hz for the numerical model instead of 

2034 Hz as shown by that of the analytical model.  Moreover, above this frequency 

the transmission loss of the plate element model starts to deviate and has lower values 

than the analytical results. Therefore, it is clear that the numerical model gives 

erroneous results in this frequency region.  
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Figure ‎5.15. Transmission loss comparison of the numerical models and the analytical 

model under a diffuse sound field excitation (━ numerical model using plate 

elements; ┅ analytical model). 

6. Substitution of plate elements by solid elements 

All cases considered in the previous sections will now be repeated using a model 

assembled using solid finite elements instead of plate elements. The results obtained 

will be compared with those of the plate elements and the analytical model. All 

procedures and formulae used for the plate element case are again used for calculating 

the results with the solid elements, hence the description of that is not repeated in this 

section. Furthermore, the material properties are the same as used for the plate 

element model (see Table  5.1).  

To realize the WFE model using solid elements, eight-noded quadrilateral 

elements are used with quadratic polynomial shape functions. Three-noded boundary 

elements are used for WBE fluid with 1 metre extension on both sides beyond the 

length of the plate strip in order to represent the rigid baffle. Hence the width of the 

BE mesh at the radiation side is 3 m in total. The elements at the edges are restrained 

in three directions at their mid-side points to impose simply supported boundary 

conditions, as shown in Figure  6.1. The effect of restraining the nodes is considered in 

detail in section  6.2.  
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Figure ‎6.1. Restrained node for simply supported boundary conditions in the solid 

element model. 

6.1 Element density 

The element density used for the plate elements, which is 30 elements for 1 m 

width plate strip, is not sufficient to produce the same results up to 3 kHz for the case 

of the solid elements. After increasing the density up to 50 elements, the dispersion 

curves of this model become closer to those of the plate element model, as shown in 

Figure  6.2. This indicates that it requires seven elements per wavelength if the 

quadrilateral type of solid element is used while four elements per wavelength are 

sufficient for the case of the plate elements. This element density gives 0.3% 

difference in frequency relative to the plate element result and 0.6% compared with 

the analytical results at around 2.9 kHz (which is the 14
th

 cut-on frequency). 

Hereafter, this element density is implemented for all comparisons considered except 

for particular cases where a higher maximum frequency is required. 
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Figure ‎6.2. Dispersion curve comparison of the plate element model and the solid 

element one (● Plate element ; ○ solid element) 

Restrained nodes 
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(a

) 

(b) (c) 

6.2 Effect of restrained nodes 

Restrained nodes are of importance in realizing certain boundary conditions in 

the numerical model. In order to see the effect on the boundary conditions, three 

different configurations of restrained nodes of the solid elements are considered. This 

can be seen from Figure  6.3 where only a corner node is restrained in configuration 

(a), a midside node for configuration (b) and combination of both the corner and 

midside node  for the configuration (c). In each case all three translations are 

restrained; unlike plate elements, solid elements do not have rotational degrees of 

freedom. 

 

 

 

 

Figure ‎6.3. Restrained nodes position of an solid element (● restrained node) 

 

 The effect of the restrained node position is compared in terms of dispersion 

characteristics in Figure  6.4 and the cut-on frequencies corresponding with each 

configuration are listed in Table  6.1. Considering the relationship of the cut-on 

frequencies and the boundary conditions, it can be inferred that the cut-on frequencies 

of configuration (b) correspond to the simply supported boundary conditions. The 

corresponding analytical results are    
2 1 2

ym l D h   with yl  the panel width, D  

bending stiffness,   structural density and h  structural thickness. Meanwhile, 

configuration (c) can be inferred to correspond to the clamped boundary condition in 

which the cut-on frequencies equal approximately    
2

1 21
2 ym l D h  

 
. For 

configuration (a) the results are affected by coupling with the longitudinal waves due 

to the asymmetrical constraint. 
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Figure ‎6.4 Dispersion curve comparison of configurations in Figure ‎6.3 (○ 

configuration (a); ● configuration (b) ; □ configuration (c)). 

 

Table ‎6.1. Cut-on frequencies 
mf  corresponding with configurations in Figure ‎6.3. 

 

 mf  (Hz) 

m  
Numerical Theoretical 

(a) (b) (c) Simply supported Clamped 

1 23.6 14.8 33.3 14.8 33.3 

2 59.3 59.2 92.4 59.2 92.4 

3 146.5 133 181 133 181 

4 237 237 302 237 300 

 

6.3 Point mobility 

A point force is applied at the centre of the plate strip at position  0, 2yl . In 

terms of amplitude, the mobility of the solid element model is in good agreement with 

that obtained by the plate element model as well as the analytical model, as shown in 

Figure  6.5. However, the differences are found to be greater at high frequencies; e.g. 

at 3 kHz it is found that the mobility amplitude of the solid model is 0.4% higher than 

the plate element model while its phase is 0.12 radian higher than the plate element 

model. Compared with the analytical model, differences of 0.7% for the amplitude 

and of 0.13 radian for the phase are found. 
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Figure ‎6.5. Mobility comparison of the solid element model and the plate element 

model (━ solid element; ┅ plate element; －•－ analytical model). 

6.4 Radiated sound power 

It has been shown in section  5.2 that the plate element model result has a 

discrepancy in the radiated sound power around the critical frequency cf . To re-

evaluate the numerical model for this frequency region, the analytical results are also 

included along with the plate element model result. The comparison of these results 

for radiated sound power can be seen in Figure  6.6. It is clear that the solid element 

model produces a better result for the frequency range of interest, particularly around 

cf , when the results are compared with those of the analytical model. At low 

frequency, both the numerical models produce around 3 dB lower radiated power than 

the analytical model as a consequence of the baffle width included in the models (see 

section  5.2.1). 
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Figure ‎6.6. Radiated power comparison (━ solid element; ┅ plate element; －•－ 

analytical model) 

 
 

Figure ‎6.7. Radiated power level difference between the numerical model and the 

analytical one (━ solid element model and analytical; ┅ plate element model and 

analytical). 

 

 Figure  6.7 presents the level difference of the radiated power between both the 

numerical models and the analytical one. It is clear that around the critical frequency a 

difference of up to 3 dB exists for the plate element model whereas the solid element 

model shows a difference of less than 0.2 dB in this frequency region. Apart from this 

frequency region, the difference between the numerical models and the analytical one 

at low frequencies is clearly due to the baffle width effect as found previously.  
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6.5 Transmission loss 

To cover a higher frequency range up to 6 kHz, which is considered to be 

sufficient for oblique incidence with angle of 45, the number of elements is increased 

to 70 elements covering 1 m width plate strip. At this frequency, there are 7 elements 

per structural wavelength and 4 elements per acoustic wavelength. Figure  6.8 presents 

a comparison of the transmission loss for the solid element model, the plate element 

and the analytical one for the normal incidence case. At frequencies above 50 Hz, the 

results of the solid element model agree well with those of the plate element model 

and the analytical one. Meanwhile, the solid element model results agree with the 

plate element ones for all frequencies. 
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Figure ‎6.8. Transmission loss comparison of the model with solid element and plate 

element for normal incidence case (━ solid element; ┅ plate element; －•－ 

analytical model). 

 

For the case of oblique incidence at an angle about the x  axis, the results are 

shown in Figure  6.9(a). The solid element model generally produces promising results 

compared with the plate element model and the analytical one below the coincidence 

frequency. Above this frequency, the transmission loss of the solid element model 

starts to deviate slightly from the plate element model and the analytical results. This 

indicates that the solid element model requires a higher element density to cover this 

frequency region. For the case of an incident angle about the y  axis, as shown in 
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Figure  6.9(b), it is clear that the solid element model results agree well with the 

analytical results whereas the plate element model results differ considerably below 

the coincidence frequency and at the coincidence frequency itself. 
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(b) 

 

Figure ‎6.9. Transmission loss comparison of the model with solid element and plate 

element for oblique incidence case: (a) at angle 45º about  x  axis; (b) at angle 45º 

about  y  axis (━ solid element; ┅  plate element; －•－ analytical model). 
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6.6 Diffuse sound field 

As in section ‎5.3.5, the diffuse sound field is represented by an integral over a 

range of incident angles with an upper angle of 90 to represent full random 

incidence; hence the upper angle 90º is chosen here. These results are shown in 

Figure ‎6.10. From this, it can be seen that the solid element model gives results that 

are much closer to the analytical ones than the plate element model, particularly 

around and above the critical frequency. Such trends have already been observed in 

Figure ‎6.9. 
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Figure ‎6.10. Transmission loss comparison of the numerical models and the analytical 

model under a diffuse sound field excitation (━ solid element; ┅ plate element;  

–•– analytical model).
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7. Summary 

Comparisons of numerical results and analytical ones have been conducted to 

validate the WFBE method applied in this study and to determine under what 

circumstances the numerical model can be used to give accurate results. For the 

mobility calculation a suitable wavenumber range and step size are determined in 

order to ensure errors are less than a certain value. This range is expressed in terms of 

the maximum wavenumber ratio, relative to the associated free bending wavenumber 

of the plate. This study shows that the maximum wavenumber ratio decreases as 

frequency increases e.g. for the case considered at 1 Hz max Re( )Bk   18 while 

max Re( )Bk   1.5 for 3 kHz in order to get results with an error of less than 0.1 dB. 

Some practical aspects of implementing this method using the WANDS 

software should be borne in mind in order to obtain correct results. Firstly, the 

Waveguide Boundary Element (WBE) domain should have a closed boundary. The 

thickness of the mesh should be determined carefully to avoid the jump phenomenon 

which causes misleading results. Secondly, to simulate a baffled situation a finite rigid 

baffle should be included in the model by extending the width of the WBE fluid 

model beyond the structure. The width of the finite rigid baffle is important in 

determining the accuracy of the numerical model results at low frequency in 

comparison with the analytical ones which are for an infinite baffle. The lowest 

frequency at which the numerical model results are still valid depends on the total 

width of the baffle at the radiating side which should be at least half the acoustic 

wavelength. Thirdly, care should be taken in choosing the element type in the 

WANDS software. For the case of the waveguide structure considered in this study, 

the plate element type along with its coupling element to acoustic BE fails to calculate 

accurately the vibro-acoustic response of the plate strip although it gives good results 

for the mobility. It is found that the radiated sound power is incorrect in the critical 

frequency region and the transmission loss is incorrect around and above the 

coincidence frequency. To overcome this, solid elements can be used to obtain the 

results although a higher element density is required to achieve the same level of 

precision. 

All in all, the WFBE method is applicable for the cases considered in this 

study. Moreover, the WANDS software can be used to develop numerical models of 
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structures and the structure-fluid interaction provided that suitable precautions are 

taken. 

8. Recommendations for future work 

Problems associated with the implementation of the numerical model require 

further attention in the WANDS software. The following work is recommended to be 

considered for such a purpose in future: 

1. It is required to have analytical models of simple cases to validate the 

results of WANDS. It is particularly useful for testing the cases 

incorporating coupling models, e.g. plate-fluid coupling model, before 

proceeding to handle multi-domain models in which more than two sub-

models are used. The results obtained can then be used to update WANDS 

if discrepancies are found. 

2. To extend the capability of WANDS in modelling various multi-domain 

systems, the WANDS software should be able to handle and process 

complex wavenumbers as input. 

3. It is also important to have a better documentation of the source code of 

WANDS to allow computational errors to be traced more easily as well as 

assisting the incorporation of new sub-model into the WANDS software 

in the future. 
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Appendix A.  Analytical model of sound transmission coefficient for 

an infinite plate strip 

 

  In [10] the sound transmission through a plate strip is calculated by ignoring 

cross terms. Here, the analysis is presented for the case where cross terms are 

retained. 

The total pressure on the plate surface at 0z   consists of the superposition of 

the blocked pressure field blp  due to the incident wave and the radiated pressure field 

radp  on both sides of the plate. The radiated pressure terms will impose a fluid 

loading at the plate surface. The two-dimensional bending wave equation in terms of 

velocity subject to the applied acoustic pressure field and the radiated acoustic 

pressure produced by the plate velocity is 
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 (A.1) 

 

The distribution of the pressure ( , )p x y  may be expressed by the combination 

of a Fourier integral and a Fourier series. This yields 
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and 
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It is assumed that the blocked pressure field consists of a reflected sound wave 

which is equal to the incident sound wave at the plate surface. The total pressure on 

the plate surface at 0z   consists of the superposition of the blocked pressure field 

and the radiated (or scattered) pressure field due to plate motion on both sides of the 

plate. Hence the generalized force per unit length for mode m  is given by 
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and Eq. (A.3) becomes 
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where 
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Similarly, because the plate strip is uniform and infinite in the x direction, 

its transverse velocity may be written in the form  
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Using the same argument as above 
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where m  is an integer designating each mode of the plate vibration. Eq. (A.9) can be 

conveniently written as 
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where  , ( ) siny m m yv y v m y l 
 This transverse velocity is only defined for 

0 yy l   and is zero otherwise. Subsequently, it can be expressed in terms of an 

infinite set of simple harmonic waves travelling in the y  direction, with 

wavenumber denoted as   in order to distinguish it from the incident wavenumber 
yk , 

as follows 
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The solution for 
, ( )y mV 

 is 
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In order to solve the coupled vibration-radiation problem, some conditions must be 

satisfied, i.e. the fluid particle velocity must be equal to the normal plate velocity and 

the fluid particle velocity v  and the pressure p  must satisfy Euler’s equation 

0i v p   . Therefore, the (normal) plate velocity v  in Eq. (A.10) is related to the 

radiated pressure by 
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Hence the radiated pressure field, assuming the fluid on both sides is the same, is 
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or as a function of y , the radiated pressure can be written as 
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where 2 2 2
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where ( ) ( )m ma a    as the modal displacement the modal velocity function is real. 

 

Substituting Eq. (A.6) and Eq. (A.9) into Eq. (A.1), this gives 
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Using the orthogonality of the mode shapes  
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Eq. (A.18) can be written for a single term in the series; to obtain this, it is multiplied 

with  sin ym y l  and integrated over the length 
yl  yielding  
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and substituting 
mA  from Eq. (A.17) into Eq. (A.20) after some simplifications, it is 

found that 
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where 
mmR   is the inter-modal coupling which couples the structural mode m  with the 

radiated pressure in other modes as is given 
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where 2 2 2

zk k     . Considering the solution of  ma  , 
mmR   has non-zero 

values for the parity indices of odd-odd or even-even, otherwise its value is zero as 

the odd and even modes do not interact each other. The solution of  Eq. (A.21) is 

rather complicated as it is not mathematically orthogonal [23, 24]. For light fluid 

loading, the off-diagonal terms of mmR   can be neglected. This implies that there is no 

energy transfer due to two different modes hence only direct fluid loading exists. 

Consequently, this removes the summation sign in second term on the right hand side 

of  Eq. (A.21). This yields  
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where 
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 Despite the above simplification relating to fluid loading, the cross-modal 

radiation terms can still be included as demonstrated in next paragraphs.  

 The transmission coefficient   is defined as the ratio of the transmitted sound 

power tranW  to the incident sound power incW . The sound power transmitted through 

the plate strip is equal to the sound power radiated into the region 0z  , hereafter 
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denoted by 
2radW . For clarity and consistency in defining the radiated power of the 

plate strip, an arbitrary length of plate strip 
xL  is retained in the following derivation. 

Thus, the radiated sound power of the plate strip 
2radW  per unit length in the 

x direction is given by 
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in which the range of the integration 0 to 
yl  has been extended to   because the 

form of ( )yV   ensures that 
yv is zero outside 0 yy l  . Substituting Eq. (A.12) and 

Eq. (A.15) into Eq. (A.25) for the radiated sound power per unit length, this yields 
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where   ,y mV   as defined in Eq. (A.13).   

 Hence the total radiated sound power with the necessary condition 2 2 2

xk k   is  
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where the product of  ma   and  ma   corresponds to the cross-modal radiation 

coupling.  

The incident power per unit length of the plate strip can be expressed as 

follows 
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The transmission coefficient is given by 

 

  2rad

inc

W

W
   (A.29) 

 

Substituting Eq. (A.27) and (A.28) into Eq. (A.29) gives  
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The sound reduction index or transmission loss R  is found from 
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Note that in [10] cross terms in (A.26) were neglected leaving only a single 

summation. These results in a significant reduction in calculation time but yield an 

approximate solutions.  
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