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Abstract

This report describes an investigation into acceleration, velocity and displacement
feedback control of the vibration of a single degree of freedom system. The control
strategy used is simple analogue control by feeding back absolute acceleration,
velocity or displacement response. It is found that although an ideal system is
unconditionally stable, the real systems, which include filters, integrators and
amplifiers, are only conditionally stable.

Causes of instability at low and high frequency are investigated for a real system. It is
found that low frequency phase advance is critical to the system stability and
performance. The dominant source of instabilities at low frequencies is found to be
the high pass filter component and simple expressions are derived to give the
maximum gain that can be applied before system becomes unstable with high pass
filters fitted. In a lightly damped system, increasing damping only has a marginal

effect on overall system performance.

The theoretical predictions are supported by some experimental work. A relatively
simple formula to analyse control time delay is also derived. Considering low and
high frequency instabilities, velocity feedback control is found to be more robust and

hence more attractive.






Introduction

Vibration isolators are required to protect a dedicated piece of equipment from the
vibration of a structure to which it is attached [1,2]. Conventional passive forms of
isolation generally involve an inherent compromise between high frequency isolation,
that requires low values of damping, and limited excitation of the rigid body modes,
which requires high values of isolator damping [3.,4,5]. Passive isolation performance
can be enhanced by coupling an active system to the existing mounts [6]. The
objective of active vibration control is to reduce the vibration response of the
mechanical system by antomatic modification of the system dynamics [4]. The control
systems used for vibration isolation purposes can be either feed forward or feedback.
Feed forward control has been used extensively in active machinery vibration
isolation involving a time domain least squares adaptive filter {7]. The effectiveness
of this method depends on determining an appropriate reference signal, and when this
signal cannot be obtained easily feedback control has to be used [4]. For periodic
disturbances feed forward control may indeed be preferable as the reference signal
need not be in advance of the controller output signal to satisfy causality constraints.
However in many cases vibrations are not periodic in nature and it is not possible to
get the information of the incoming disturbance soon enough for a feed forward
control to be effective. Under these circumstances, feedback control is considered to

be a better method.

The application of feedback control for vibration isolation has been well documented,
for example {1, 2, 3, 5, 9, 11]. In recent vears feedback control for vibration isolation
1s increasingly being used, the implementation of which can be either analogue or
digital control. Analogue feedback control systems for vibration control have been

described in references [1, 3, 5, 11].

The essential components in an active control system are a sensor (to detect the
vibration), an electronic controller and actuators [4, 10, 13]. Sensors and actuators
together with associated signal conditioning equipment play an important role in
active vibration control, but often place limits on the control performance [13].

Devices such as accelerometers are often used as the sensing device in vibration



testing and control [4,15,16]. These devices often use piezoelectric sensing elements
to achieve certain design natural frequencies, weight and sensitivity characteristics
[16]. They are generally charge generating devices, which require high input
impedance signal conditioning instruments to interface between them and recording
device [15,16]. Charge amplifiers are such devices, which convert the generated
charge Into an output voltage that can be measured or recorded. These signal-
conditioning devices often consist of filters to reject unwanted signals. The term
filtering is used to describe the process of removing a certain band of frequencies
from a signal and permitting others to be transmitted [19]. These kinds of filters often
introduce extra phase shift at certain bands of frequencies, which are sometimes
critical to the stability of the feedback vibration control system [2,11]. Ren et al. [9]
studied the phase lag introduced by A/D, D/A converters, and actuators in an active
feedback control system and suggested that a phase-lead compensation net work can

be employed to over come this problem.

Actuators are used in active vibration control to generate a secondary vibrational
response, which could reduce the overall response by destructive interference with the
original response of the system caused by primary source of vibration [4]. Such
actuators in practice can be configured either to react off the base structure or function
as an inertial actuator [3]. The choice actuator configuration also influences the
available stability limit [3]. In general, the design of a feedback controller involves a
trade-off between performance (the attenuation of the disturbance) and robust stability
(the ability to remain stable under changing conditions) [8]. However the choice of

controller, to a certain extent, depends on the system considered for control.

This report deals with feedback control of a single degree of freedom (SDOF) system.
It particularly looks at high and low frequency stability issues. Following this
introduction, the concept of feedback control of vibration is presented in section 2
using an idealised system for acceleration, velocity and displacement feedback
control. The distinctions between a real and an ideal system are also discussed in
section 2. Section 3 deals with low frequency instabilities and section 4 deals with
high frequency instabilities. In section 5 experimental work is presented and

discussed. Finally in section 6 concluding remarks are given.



2. Feedback control of a single degree of freedom
system

2.1 Basic concept

Consider a SDOF system modelled as a lumped mass- spring-damper system with
feedback control applied as shown in Fig 2.1. A passive mount with stiffness k and
damping coefficient ¢ supports a rigid mass m, which is excited by a primary force f,.
It is assumed that the mounts are mass-less. An electromagnetic control shaker
generating the control force f; is also installed between the mass and base structure in
paralle] with the passive mount to achieve a reduction in the response of the mass.
The control system uses direct negative feedback control. In other words the signal
measured by the sensor mounted on the equipment is used to produce the control
force. This control force, which can be proportional to acceleration, velocity or
displacement, is produced via the controller which has a gain -H. It is this concept that
is investigated in this section. Accelerance, mobility and receptance are considered as
the frequency response functions for acceleration, velocity and displacement feedback

control system respectively.

2.1.1 System without control

For the system in figure 2.1, the differential equation describing the motion in the

absence of feedback control is,

mx(t)+cx(f) + kx(t) = f, () 2.1

Where,

m - mass of the system

¢ - damping coefficient

k - stiffness of the mount

x (t) - instantaneous displacement

Jp(t)- disturbing/exciting force.

By assuming zero initial conditions and taking Laplace transforms gives,
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F (s) T oms+es+k
The corresponding frequency response function can be obtained by substituting
§= jw in equation (2.2) to give,

2.2)

i(ja)) Y

——=— : (2.3)
F,(jo) mle? —a* + j2lo,0)

where

k
W, =,/— is the undamped natural frequency and { = 5 ¢ is the damping ratio.
m

n

n

Letting £2 = — equation (2.3) can be written as,
w

n

F(Jg)Xm:( zQ. j 2.4
p(] ) IHQ +J2§Q
where mx;n 1s the non-dimensional accelerance.

F,(j52)
r
Similarly mobility and receptance can be written in the Laplace domain as,

X(s) Ry X(s)
=— and =—
F.(s) ms"+es+k F,(s) ms"+es+k
The non-dimensional mobility and the non-dimensional receptance of the system can

respectively.

be written as,

I‘f (J'?z) X = I ) 2.5)
1) 1-Q% + j200
where —g-{-g;@-x ¢ is the non-dimensional mobility, and
F,(jQ)
XU p= ! (2.6)

FQ -0+ j2r0)

X(J2)

x k is the non-dimensional receptance.
F, (i)

where



2.1.2 Sysiem with feedback control

Now consider the system with feedback control, the differential equation describing
the motion of the system becomes,

mi(t) + cx(t) + kx(t) = f, (1) — f5 (D) (2.7}
where,
fi(1) is the secondary or control force.

Acceleration feedback control is considered first. The control force, which is

proportional to the acceleration, can be written as,

f(y=g,x® (2.8)
where g, is the gain for acceleration feedback control.
From equations (2.7) and (2.8) the non-dimensional accelerance in the frequency

domain can be written as,

X(Q) _0?

AT
() (1~(1+g—“]§22+j2CQJ
m

where €2 is the non-dimensional gain for acceleration feedback control.
m

(2.9)

Similarly for velocity feedback control, the control force, which is proportional to the

velocity, can be written as,

fi(@0) =g, x(@®) (2.10)
where g, is the gain for the velocity feedback control.
From equations (2.7) and (2.10) the non-dimensional mobility in the frequency

deomain can be written as,

X(Q) j2LQ

~ L= @.11)
() (1—Q2+j2§£2[1+g—"ﬂ
c

where ¥ is the non-dimensional gain for velocity feedback control.
¢

For displacement feedback control, the control force, which is proportional to the

displacement, can be written as,

fs(®)= g x(@) (2.12)



where g 1s the gain for displacement feedback control.

From equations (2.7) and (2.12) the non-dimensional receptance in the frequency

domain can be written as,

X(Q) 1
£, () Hl-f-%]—gz + jZCQ]

(2.13)

where ££ is the non-dimensional gain for displacement feedback control.

Figures 2.2, 2.3 and 2.4 show the non-dimensional accelerance, mobility and
receptance for acceleration, velocity and displacement feedback control respectively
as a function of non-dimensional frequency for various gains. A damping ratio of 0.05
was considered for all these cases. The accelerance plot in figure 2.2 shows that the
response at the original resonance frequency reduces considerably. But the response
has a resonance peak at a lower frequency than the original system as the gain is
increased. Comparing equations (2.4) and (2.9) it can be seen that increasing the gain
in acceleration feedback control effectively adds mass to the system. Equations (2.5)
and (2.11) suggest that velocity feedback control increases the effective damping.
Hence the response is reduced at the natural frequency of the system, which is shown

in figure 2.3 for various gains.

In the case of displacement feedback, it is seen from equations (2.6) and (2.13) that
the system tends to behave as if the stiffness is increased. Figure 2.4 shows the

receptance of the system for various feedback control gains.

All these three cases show that the response of the uncontrolled system at the original
resonance frequency (i.e. the plant) reduces considerably under active control. Also
the system resonance shifts to below or above the original resonance frequency in
acceleration and displacement feedback control respectively and remains the same for
velocity feedback control. This phenomenon can be explained by considering the

equivalent resonance frequency and damping ratio.



For acceleration feedback the equivalent resonance frequency and damping ratio are

) k - .
given by, @ = |l=————— and { S — Similarly for velocity

B (m+gu) ) (m+ga)k

. + .
feedback this becomes, @, ., = 1/—& and {,, =;/—i];—. For displacement feedback
m

42

. k+ c
this becomes, @ = 4 and £ o = —F=—===. It can be seen from the

o m 2mlk+g,)

above expressions that for acceleration feedback control, as the gain is increased,
@r_eqn and .., decreases thus the resonance frequency shifts down and the peak
becomes narrower. For velocity feedback @, qn Temains the same while (.,
increases, thus the peak response reduces while the resonance frequency remains the
same as the gain is increased. Similarly for displacement feedback Wy_equ INCTEASES

while (,,, reduces as the gain is increased.

2.1.3 Block diagram representation of control system

In practice accelerometers are used to obtain the plant response. The signals from

these sensors can be integrated once or twice to obtain the velocity or the

displacement response rtespectively. Therefore it is appropriate to consider

accelerance as the plant frequency response function. Here the term plant refers to the

system response without feedback control. Equation (2.2) represents the plant transfer

function, and from equation (2.4) this can be expressed in the frequency domain as,
QZ

— 2.
mfl-Q* + j20Q) 219

GP(jQ) =

The block diagram representation for acceleration, velocity and displacement
feedback control systems are shown in figures 2.5(a), 2.5(b) and 2.5(c) respectively. It
can be seen that acceleration, velocity and displacement are considered as the system
output response for acceleration, velocity and displacement feedback control
respectively. From equation (2.7), it can be seen that the plant experiences the
difference between the primary disturbance and the control force, and its response is
acceleration. This can be integrated once to give velocity and twice to give the

displacement response as shown in figures 2.5(b) and 2.5(c). Single integration is



represented in the frequency domain by —1— and the double integration by :—; (or in
J@ @

the Laplace domain by ! and —1,,— respectively).
s s
The feedback loop in the block diagrams H(s) or H{jw) consists simply of a gain,

which amplifies the output signal to produce the control force. Throughout this report,

the product of the forward path functions for example Gp(s)l or G, ( jco)—_l—in
s Jjo

figure 2.5(b), will be referred to as G(s) or G(j@w) and the feedback path as H{s) or
H(jw).

2.2 Stability of an ideal system

The ideal feedback system is one where an integrator can be represented in the

frequency domain by —1~ (or in Laplace domain by i), the combination of the
w $

power amplifier and the shaker, which generates the secondary force by a pure gain
and the accelerometer is assumed to provide the true acceleration of the plant. In this

section the stability of such an ideal system is analysed.

The vibration responses presented in section 2.1 show that the plant response at its
original resonance frequency reduces with acceleration, velocity and displacement
feedback control. However the closed loop response does not provide information on

the maximum attainable gain of a stable system.

The stability of a control system can be analysed using root-locus techniques or
Nyquist criteria [24]. Root locus methods offer a broad over view of the system
stability but do not give a definite answer as to the stability of a feedback control
system in all cases. However this method does offer a sophisticated graphical

technique for system analysis and design.

Consider the feedback system shown in figures 2.5(a, b & ¢), the closed loop response
can be written as,

Ouiput G(s)

= (2.15)
Fo(s) 1+G(9)H()




where the ;)utput can be acceleration, velocity or displacement depending on the
control type used. The characteristic equation of the system is given by,

1+G(s)H(s) =0 (2.16)

If the gain (K) is separated then equation (2.16) can be written as,

1+KG(s)H,(5)=0 (2.17)
where H(s) = KH (s)

The root locus is defined as the locus of the roots of equation (2.17) when the gain X
is increased from zero to infinity. A system is said to be stable for any gain if the
entire root locus is in the left half of the Laplace plane (s plane).

The product G(s)H(s) is said to be the corresponding open loop transfer function and
can be interpreted as the frequency response function by substituting for s = jw .
Equation (2.17) can be expressed in the frequency domain as,

G(jw)H (j@)=-1 or in terms of non-dimensional frequency as

KG(jOYH, (j)=-1 (2.18)

The Nyquist criterion states that the system is stable if and only if the open loop
frequency response function G(j€2)H(j€2) does not enclose the (-1,0) point in the
complex G(j$2)H(j€2) plane [2]. Thus the stability of the system can be studied by
considering the magnitude of the open loop frequency response function when it
crosses the negative real axis in the complex G(j§2)H(j<2) plane.

From equation (2.18), this occurs when the magnritude of G(j£JH(j(2) is equal to one
and the phase is equal to ~180°.

2.2.1 Acceleration feedback control

Acceleration feed back control is considered first. From equation (2.8) and from
figure 2.5(a)
F,(jQ) _

- a

X(j)

H{j€) = (2.18)

From equation (2.14) the forward path frequency response function is given by
el
mll - Q* + j2Q

G(jQ)= )= G, (jE2) (2.19)

Combining equations (2.18) and (2.19) the open loop frequency response function

becomes,



GUHH(Q) =(g—“\ 4 (2.20)

m )(1-Q* + j2{Q)

where [g“ J is the non-dimensional gain for acceleration feedback control.
m

The open loop transfer function can be written as,

2
Ay

which can be used to form the characteristic

G{s)H(s) =(3“ )

m )(s2 + j2lw, s+ o))
equation from which root locus can be drawn.

Rearranging equation (2.20) into real and imaginary parts gives,

. . Q*'1-9% _ 2007
GMH(jQ) = 2« - _
(JEDH ) [m}{(l—-ﬂz)2+(2éﬂ)2 1(1-92)%(2;“9)"-} (221)

The frequency at which the Nyquist plot crosses the negative real axis is called the
phase cross over frequency. When this occurs the imaginary part of equation (2.21) is
zero. It occurs at £2 = 0. The magnitude of the real part then becomes,

Re{G(JSHH (j)}=0

Thus the system is unconditionally stable.

Figure 2.6 shows the root locus of the acceleration feedback control system for a
damping ratio of 0.05 and a resonance frequency of 20.5 Hz. It is seen that for all
values of gain the system is in the left half of s plane hence stable. Figure 2.7 shows
the Nyquist plot of the open loop frequency response function for acceleration
feedback control. It can be seen that it does not cross the negative real axis and

thereby does not enclose the (—1,0) point of the Nyquist plane. In addition, when £2

tends to infinity, the magnitude of the real part is 82 1t is seen that the plot
m

asymptotically leaves from the origin along the negative real axis and return to the

positive real axis away from the origin.

2.2.2 Velocity feedback control

In velocity feedback control, the feedback path frequency response function becomes,

FUD _, (222)

L] v

X (L)

H(jQ)=

From figure 2.5(b) the forward path frequency response function can be written as,

10



G(j) =G, (jQ)—,l— (2.23)
jw

Therefore the open loop frequency response function now becomes,
. . v €2
G(iQH(j) =| £ L (2.24)
mo, | (1-Q%)+ j(2{Q)
The corresponding open loop transfer function is given by,
: 2Cw. s
GBI (s) = & | 2ot
c J(s +j2{w, s+ o)
Rearranging equation (2.24) into real and imaginary parts and substituting for

(2.25)

C .
— = mw, gives,

28

(2, 2007 _oi-2")
. 26
G0 H (j£2) [ - J{(I*QZ)Z-F(ZCQ)Z +J(1_Qz)2 +(2§Q)2} (2.26)

The Nyquist plot crosses the real axis when the imaginary pa.rt of equation (2.26) is
zero. This gives, 2 =00r 2=1

When €2 =0

The real part of G(jQ)H (j€)=0 and

When 2 =1

Real part of G(jQ)H(jQ) =22
c

Since this is positive the system with velocity feedback control is unconditionally
stable.

Figure 2.8 shows the root locus of the velocity feedback control system for a damping
ratio of 0.05 and a resonance frequency of 20.5 Hz. It is seen that for all values of
gains the system is on the left half of s plane hence stable. The Nyquist plot for
velocity feedback is shown in figure 2.9, where it is evident that the Nyquist plot is

completely in the right half of the Nyquist plane. In addition it crosses the real axis

when the magnitude is zero and 8V From equation (2.26), when £ tends to infinity,
¢

the real and imaginary parts of the open loop frequency response function
G(j$2)H(j£2) are zero. Thus the Nyquist plot leaves and returns to the origin along the

imaginary axis.

11



2.2.3 Disblacement feedback control

For displacement feedback control, the feedback path frequency response function is,

_E3(Q) _

SR T

84 (2.27)

From figure 2.5(c) forward path frequency response function is given by

G =G, (jm( %) (2.28)

Therefore the open loop frequency response function now becomes,
. . g4 1
G jQH(j) = ~ 2.29
(JQH (i) (mw;I(l—Qz)+j(2§Q)] (2.29)

'The corresponding open loop transfer function can be written as,
2

(&) ®,
GIOHLS) _( k j(s2 + j2lw s+ @) (2.30)

Rearranging equation (2.29) into real and imaginary parts and substituting for
k=mo? gives,

. (8 1-0?) iy (2L02)
- Q)H”Q)_( ¢ ){(1—92)2 +eof -0 +(2§9)2} =

The Nyquist plot crosses the real axis when imaginary part of equation (2.31) is zero.

This gives, £2 =0. When this occurs,
The real part of G(JQ)H(jQ) = i_d

Since this is positive the system with displacement feedback control is also
unconditionally stable.

Figure 2.10 shows the root locus of the displacement feedback control system for a
damping ratio of 0.05 and a resonance frequency of 20.5 Hz. It is seen that for all
values of gains the system is in the left half of s plane and hence stable. The Nyquist
plot for the displacement feedback is shown in figure 2.11. From equation (2.31) it
can be seen that when £2 tends to infinity the real and imaginary parts of the open loop
frequency response function G(7€2)H(j{2) are zero. Thus the Nyquist plot leaves and

returns to the origin of the Nyquist plane along the real axis.

12



2.3 Real éystem

Although the ideal systems discussed above are unconditionally stable the real
systems may go unstable. The reasons for this are investigated in sections 3 and 4. In
this section, the components of a real system are outlined and the ways in which they
differ from the ideal system is discussed. Figure 2.12 shows a block diagram
representation of the real system. Individual components and their mathematical

models are discussed below.

2.3.1 Charge amplifier

In a real system the charge amplifier such as the B&K type 2635 may perform the
function of integration and double integration. The charge amplifier may also perform
a number of other tasks, which include,
e Matching measurement instrumentation input sensitivity to that of the
accelerometer output,
¢ Low and high frequency filtering to reject unwanted signals (high and low

pass filters).

As mentioned in section 2.1 accelerometers are generally used to obtain the response
in a real system. The output charge from a piezo-electric accelerometer is converted to
a voltage by the charge amplifier, with the output voltage being directly proportional
to the input charge. The very high resistance of the charge amplifier reduces the
problem of charge leakage from the piezo-electric crystal and its very high
capacitance completely dominates the effect of the cable capacitance. The electronic
integration of the accelerometer output by the charge amplifier can be represented by

——1.— (Refer to appendix 3). Also contained in the charge amplifier are high and
1+ jr,m)
low pass filters to reject the unwanted signals at low and high frequencies. The
Jjo

(1 " j’rcco) and a low pass

mathematical model of a high pass filter takes the form of

filter takes the form of . The details of these models are also given in the

1+ j7,o)
appendix 3. The constants 7, 7. and 7; are called time constants. Their inverses are

called corner frequencies.

13
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—, @0, =— and W, =—.
T, T T,

[

lLe w, =

Consider the model of the integrator,

1

nt(jo) = ———— (2.32)
1+ jr.0)
Where Int denotes the integrator. Equation (2.32) can be written as,
) I
Int( jQ) = o—— (2.33)

(1+ joQ)

o
Where Q= @ and oo =— where ), is the original natural frequency of the SDOF
a w.

under control.
In this model o can be used as a measure of the separation of the corner frequency of
the integrator to the natural frequency of the plant. If o is large enough and as

frequency increases the integrator can be approximated to

Int(jQ) ~ —— (2.34)

(jo2)
Hence almost pure integration is performed at higher frequencies. However at low

frequencies the model described by equation (2.33) is valid. This introduces a phase

delay of tan™ (aQ) at lower frequencies, whereas in the ideal system it remains at
T . . . . .
——. Therefore the integrator deviates from the ideal case at low frequencies. Figure

2.13 shows the characteristics of ideal and real integrators, where for convenience
o = 1 is used. The magnitude and phase plots show that the real system varies
considerably from the ideal integrator at low frequencies. The magnitude plot
suggests that at low frequencies no integration is performed. That means that there
would be acceleration feedback control in this frequency region. However the extra
phase delay of the real integrator suggests that the system will behave neither like
velocity feedback control nor like acceleration feedback control.
A model of the double integrator is simply the square of a single integrator. Hence its
frequency response function can be written as
dint( jQ) = 1 (2.35)

(1+ jo2f

Where diInt denote the double integrator
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Now consider the model of a high pass filter

. {4
hp(jor)=—=— (2.36)
i+ j7.0)
. . o w W )
where hp denotes high pass filter. Substituting for Q=— and f =~—% equation
a)n (Dc
(2.36) can be written as,
. Jjo
hpjQ)=——""— 2.37
p(jQ2) {+ j50) (2.37)
Similarly for a low pass filter, the mathematical model can be written as,
1
Ip(jQ) =7 (2.38)
(1+ /%)
where y =—=2

a)I
Figures 2.14 and 2.15 shows the characteristics of high and low pass filters for B = 1
and vy = I respectively. The characteristics of a high pass filter shows that it introduces
a considerable phase advance at low frequencies. In addition it attenuates the signal at
low frequencies. Therefore it gemerally introduces a low frequency problem. The
characteristics of low pass filter shows that it introduces considerable phase delay at
high frequencies and in addition it attenuates high frequency signals. Therefore it

generally introduces a high frequency problem.

2.3.2 Power amplifier

The power amplifier in the real system is used to control the feedback gain. An ideal
power amplifier produces a pure gain, which is independent of frequency, but this can
be expensive. Most commercial power amplifiers have a high pass filter incorporated.
From the model of the high pass filter discussed in the previous section, a real power
amplifier will introduce a low frequency problem. A first order high pass filter is

assumed in the analysis described in this report.

2.3.3 Time delay

In real systems, time delay may present. This is particularly dominant in digital
control systems and is relatively insignificant in analogue control systems. Pure time
jw

delay in the frequency domain can be represented as e~ " where T is the delay time.
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The presence of a control time delay affects the feedback frequency response
function. For example, the presence of time delay in a velocity feedback system
means the feedback path frequency response function is,
F (jo ;
H(jw)= LD = g pier (2.39)
X(jo)

Or it can be written in terms of non-dimensional frequency as

oy =LUD _, ponme (2.40)

- v

X (Jj)

where T = -;- and T, is the natural period of the plant.

n

The effect of time delay is to alter the open loop frequency response function.

Equation (2.40) shows that the presence of time delay does not alter the magnitude
but introduces a phase lag. This phase lag, which is a function of frequency, becomes
significant at high frequencies. Hence the time delay introduces a high frequency

problem.

2.3.4 Accelerometer and secondary shakers.

An accelerometer is an electromechanical transducer, which outputs a voltage or
charge that is proportional to the acceleration of the object to which it is attached. It is
the most widely used vibration measurement transducer due to its small size, range of
sensitivities and large frequency range. An accelerometer can be modelled as a single
degree of freedom system [16] as shown in figure 2.16.

From figure 2.16, the equation describing the motion of the seismic mass is,

mz(t ¢ z(t ) kze) = £ () - mx(t) (2.41)
where z{t)= x(t)— y(t) and f{z) is a constant usually gravity force because of the
seismic mass is sealed in a case.

Assuming harmonic response i.e. x(t)= X e’ and z{t)=Z, e’ equation (2.41) can
be written as,

— 2
Z,= Tw X, (2.42)
k(1-Q, + j20,Q,)

where

£, —non-dimensional frequency /p,,
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(n, - accelerometer resonance frequency
{,~ damping in the accelerometer

Noting that

x(t)=-X 0% = A e’ Where A, =—X 0" and if @,, >> ®, the equation (2.42)
can be approximated to

Zl’) = Aa m
k

Thus at low frequencies the accelerometer only introduces a pure gain. At higher

(2.43)

frequencies, however, the accelerometer resonance may cause a problem. Hence this
is also a high frequency problem.

A secondary force shaker is required to produce the control force. In this report an
electrodynamic shaker is considered. The effect of mass (moving assembly), springs
(flexures) and damping gives a frequency response characteristic to the shaker. The
frequency response is dominated by the mass and stiffness of the flexures and at very
high frequencies, the resonance of the moving element itself [15]. This resonance may

cause instabilities in a control system at very high frequencies.

2.3.5 Discussion

Based on the characteristics of various components discussed above, the real system
may vary considerably from the ideal system. Therefore the stability limits (the
maximum attainable gain in a real system) and the sources of instability (which of the
electrical components leads to instability) have to be established. It is assumed that
the high and low pass filters and real integrators are separable in charge amplifiers as
this enables an analysis of the differént components to identify which of them causes
instability. Interestingly, from the characteristics of these components, some of them
are dominant at low frequencies and others at higher frequencies. Accordingly they
can be classified as low and high frequency sources of instability. From the
characteristics discussed in this section, the power amplifier (specifically the high
pass filter of the power amplifier) and high pass filter and real integrator of charge
amplifier are potential sources of instability at low frequencies. The low pass filter in
. the charge amplifier, time delay, actuators and accelerometers fall into the group of
high frequency sources of instabilities. The next section deals with the low frequency

sources of instability.
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Figure 2.1 A simplified model of a SDOF system with feedback control
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Figure 2.2Closed loop response of a SDOF system with acceleration feedback control
{=0.05
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Figure 2.3 Closed loop response of a SDOF system with velocity feedback control
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Figure 2.4 Closed loop response of a SDOF system with displacement feedback
control { = 0.05
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3. Low frequency instabilities

3.1 Introduction

Theoretically the Nyquist plot of an open loop frequency response function crosses
the negative real axis when the phase is = 180 degrees. Thus if the Nyquist plot
crosses the negative real axis, then the system may go unstable, when the gain is
increased such that Real [G{jw)H(jw)l=-1. It was established in section 2 that the real
integrators and the high pass filter in the charge and power amplifiers are the potential
sources of instabilities at low frequencies. With the introduction of charge and power
amplifiers into the feedback control system, both forward frequency response function
G(jw) and feedback frequency response function H(j@) are changed from the ideal.
The number of open loop poles and zeros may be increased by the addition of
instruments and hence the root locus may cross over into the right half of the s-plane
for some range of gain. In general the addition of a pole makes the system less stable.
Therefore the unconditional stability of the SDOF system discussed in section 2 is no
longer guaranteed. Thus the real systems require investigation, and this section
identifies the dominant source of instability and the maximum gain attainable for such

systems.

It is assumed that the integrator and the high pass filter in the charge amplifier and
high pass filter in the power amplifier are separable. This is heipful in the
investigation of the relative influence of each component in the system. The charge
amplifier is assumed to be able to take the following forms.
o Jdeal integrator with high pass filter — to study the effect of the high pass filter
* Real integrator without high pass filter — to study the effect of the real
integrator
» Real integrator and high pass ﬁlter - to study the combined effect.
Similarly the power amplifier is assumed to take the following forms,
* Power amplifier with a pure gain
e Power amplifier with a high pass filter incorporated
Since the charge amplifier is installed in the forward path and power amplifier in the

feedback path, the conditions of the charge amplifier affects the forward path
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frequency response function G(j@) and the power amplifier affects the feedback path
frequency response function H(jw). Hence the overall open loop frequency response
function varies for each case. Three charge amplifier conditions and two-power
amplifier conditions gives six combinations of instrument conditions. In table 3.1,
these instruments conditions together with the ideal case, which was considered in
section 2 are tabulated for acceleration, velocity and displacement feedback control.

The maximum attainable gains for these cases are determined in the next section.

3.2 Analysis of maximum gain

From figure 3.1 the forward path frequency response function for velocity feedback

can be defined as

Gljo)=G,(jo)hp (jo)nt(jo)g. (3.1)
In terms of non-dimensional frequency, this can be written as,
G(iQ) =G, (jQ)np, (jQ)m(jQ)g, (3.2)

Where g, is the combined gain of the charge amplifier and accelerometer.

Similarly the feedback path frequency response function can be written in terms of
non-dimensional frequency as,

H(jQ)=g,8.hp,(jQ) (3.3)

where g, is the gain of power amplifier, which can be written as g, in the case of
acceleration feedback control, g, in velocity feedback control and g, in displacement
feedback control, and g; is the gain of control force shaker.

Therefore the open loop ffequency response function becomes,

GIQH (/)= g,8.8.G, (jQ)p, (jQn (jQhp, (/) (3:4)

Note that g, is the physical gain that is set in the feedback path power amplifier.

For acceleration feedback control In#(j£2) is replaced by 1 and for displacement
feedback by din(j€2).

The frequency response function of the components as a function of non-dimensional

frequency can be written as follows,

1
Ideal integrator =~
JQw,
: . -1
Ideal double integrator = O’
wrz
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1

Real integrator =
) i+ jo<2)
Real double integrator = ——1—--;-
(1+ jod)
. o v joo Q
High pass filter in the charge amplifier =1
(1+p2)
High pass filter in the power amplifier m——J—(-l-)i‘E—z—
1+ jéQ)
where o = 2 ﬁzw" and & = 2
a)t' a}h a)hp

For the purpose of simplicity o = B = & is assumed.

A few cases from those presented in table 3.1 are discussed here in detail. The cases
Al, A2 and A3 were considered in section 2 and were shown to be unconditionally
stable. This is reported in table 3.2.

Consider case B1 from table 3.1, where the system consists of acceleration feedback
control with a high pass filter and gain of the charge amplifier in the forward path and
pure a gain power amplifier and shaker gain in the feedback path.

‘The open loop frequency response function can be written as,

. Y -0’ jo,Q
G(JQ)H(JQ)—{m((l_gz)_i_jzén)Il_I_j 5 88 (3.5)

_ 8.8,80,

For convenience the total gain is defined as g, = . Equation (3.5) can be

arranged into real Re(G(jQ)H(jQ))) and imaginary Im(G(jQ)H({jQ)) parts as

follows,

(3.6)

o . -Q*2¢ +afl-0?))
R (G(JQ)H(JQ))— 8 ot ((I—Qz)g +(2§.Q)2X1+05292)

()= o o’ +Q* 1)
Im(G(FQ)H (JQ)) = & -o'F + oy hrare?)

The system becomes unstable when the Nyquist plot passes through (-1,0). The

3.7

corresponding gain when this occurs is the maximum gain that can be attained. The
frequency when the imaginary part of the open loop frequency response is zero is

found by setting equation (3.7) to zero to give,
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.1
Q" = 3.8
1+ 28 G-8)

Substituting equation (3.8) in equation (3.5) and equating to —1 gives,
8 ronat_max = 28 (2§(x +a’ -i-l). For low damping i.e.{ <<1land for a high pass filter

corner frequency much less than the resonance frequency of the plant i.e. ¢ >>1 this
becomes,

= 2lar? (3.9)

gmml _max
Note that for systems with low damping i.e. { <<1, the total gain is very small since

it includes damping. For a given system the maximum attainable total gain can be
found from equation (3.9). The corresponding maximum physical gain g, can be

found from the following relationship;

 8.8.9,8,

g tota! _max

(3.10)
m

Now consider case B2, which is a system with velocity feedback control with a high
pass filter and gain of the charge amplifier in the forward path and a pure gain power
amplifier and shaker gain in the feedback path. |

The open loop frequency response function can be written as,

. : -Q? jo Q I
U=y | s | o s O

. 88,85 .
In a similar way to case Bl we letg, ., = I=~. Note that for convenience the
m

same notation for total gain is used for acceleration and velocity feedback control,
although they are different in their composition.

Equation (3.11) can be arranged into real and imaginary parts as follows,

RGO (2) = 8, ((1_21()32‘)‘2;5(5)2(:;3392)

Q22 +ali-9%))
o f + 22 [i+02Q?)

The system becomes unstable when the Nyquist passes through (-1,0). Therefore

(3.12)

(3.13)

Im{G(j)H ()= 8. (=

when equation (3.13) is set to zero,

_a+2f
o

QZ

(3.14)

Substituting eguation (3.14} into equation (3.12) gives,
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2L +o
2@,’(2@,’05 +at +T)

Since this is positive, the Nyquist plot will not cross the negative real axis and so the

Re(GIQH (jQ) = g,

system is unconditionally stable.

For case B3, which is displacement feedback, consisting of a high pass filter and
charge amplifier gain in the forward path, and pure gain power amplifier and shaker
gain in the feedback path, the open loop frequency response function can be written
as,

G(jﬂ)H(jQ)=[m( it Ija’"g . ]gcg,,g,. (3.15)

1—Q2 )+ j20Q | 1+ joQ | 02Q?

Letting g, = 88,8 equation (3.17) can be arranged into real and imaginary parts
mao

F o

as follows,

Q*(2¢ —af0? -1))

N 000’ - (1-2))
Im(G(JQ)H (JQ)) = 8 roml ((1 _ Qz )2 + (2CQ)2 X] + a2Q2 ) (3 17)
When the imaginary part of equation (3.17) is zero,

2 1
= 3.18
1+ 2o @-18)

Substituting equation (3.18) into equation (3.16) gives,

: i 28 +1
RelG(jQH(jQ))=

Since this is positive the system is unconditionally stable as in case B2.

From table 3.1 it can be seen that cases (Al & C1), (B1, D1 &F1), (B2 & C2), (D2,
E2 & F2), (C3 & E3) and (D3 & F3) are mathematically similar.

Figures 3.2, 3.4 and 3.6 shows the root locus plot for the cases Bl, B2 and B3
respectively. It 1s seen that increasing gain alters the root locus of the ideal system
presented in section 2. Further more the acceleration feedback system becomes
unstable with an increasing gain. Figures 3.3, 3.5 and 3.7 show the open loop Nyquist
plots for cases B1, B2 and B3 respectively. The figures are plotted for o= 10, o= 15,
o = 20 respectively and for gains 10, 22, and 40, which were the maximum respective

gains for case B1. It is seen from figure 3.3 that for the acceleration feedback system,
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the Nyquist- plot passes through the (-1,0) point of the Nyquist plane. However the
corresponding velocity feedback system is almost completely in the right half of the
Nyquist plane. Part of the Nyquist plot for the corresponding displacement feedback
system, however, lies in the left half of the Nyquist plane but does not cross the
negative real axis. Hence it is a stable system. The analysis for the maximum gain for
the rest of the cases can be found in appendix 1. Table 3.2 gives the maximum non-
dimensional gains for the systems shown in table 3.1 as a function of damping ratio {

and o. An approximation for { <<land & >>1 is also given in table 3.2. The

maximum physical gain can be found by equating the total gain to the corresponding
relationship in terms of individual component gains given in table 3.3. It is evident
from table 3.2 that the maximum non-dimensional gain for the acceleration feedback
control system is small compared with the corresponding maximum non-dimensional
gains for velocity and displacement systems. Thus velocity and displacement
feedback control have much lager stability limits compared to the acceleration
feedback contro]l system. Comparing velocity and displacement feedback control
systems, the displacement feedback allows a larger gain than the corresponding
velocity feedback control system.

In addition, considering cases C2 & C3 from table 3.2 (no high pass filter and real
integrator) and cases D2 & D3 (high pass filter and real integrator), it is evident that
adding a high pass filter makes the unconditionally stable system conditionally stable

with a finite gain limit. It is further evident from cases C3 and E3, which both have an

Ep8c8s

overall open loop frequency response function G, (jQ) i+ ja£2)2 , that the high pass

filter effects in case E3 are virtually cancelled out leaving only a real integrator effect
present. Because of this, although there is a high pass filter in this system it is
unconditionally stable. It is also clear that the addition of high pass filters, further
reduces the stability limits. This is seen from cases D2, G2 and D3, G3 for velocity

and displacement feedback control respectively.
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3.3 Closéd loop responses of real systems

It was determined in section 3.2 that the high pass filter is the source of instability at
low frequencies. Although the Nyquist plot of the open loop frequency response
function provides information on the stability of the system it does not provide
information on the actual behaviour of the system. The closed loop response gives the
information about the system behaviour when it is implemented. This information is
vital in judging the performance of a system.

In this the section the closed loop response of the real systems for acceleration,
velocity and displacement feedback control are considered. Since the acceleration
feedback control system is not viable in terms of stability it is not considered for
closed loop response. A system with a real power amplifier, which consists of a gain
and a high pass filter, and charge amplifier, which consists of a real integrator and a

high pass filter, is considered.

3.3.1 Velocity feedback control
Consider the velocity feedback control of the single degree of freedom discussed in

section 2. From figure 3.1 the closed loop frequency response function (CLFRF) can

be written as,

CLFRF = G_(JQ) : (3.19)
1+ GjQ)H (jQ)
where,
. . e Q ) [ON)
G(jQ) = gCGP(]Q)m and H(jQ)= gpgx—(i—m (3.20,3.21)
This gives,
o 3 .
CLFRF =| 8<% — jQ (1”“93) (3.22)
m ) (1-Q° + j20Q)1+ joQf + g, Q°

*

where g,.. :_—gpgcg.\ n

m
The closed loop frequency response function CLFRF, which is the mobility for

velocity feedback control, can be non-dimensionalised. Substituting maximum gain

a4
= 8(; (table 3.2 case G2) in equation (3.20) and rearranging gives,

g toral _max
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CLFRF[ m }: = (1+ jo) — (3.23)
80 ) | -2+ jaeQ)i+ jo@)3+%94

In equation (3.23), all the parameters in the RHS are in non-dimensional form. Thus

the LHS, which denotes the mobility is also non-dimensional.

Figure 3.8 shows the non-dimensional mobility as a function of non-dimensional
frequency for o = 10 and { = 0.05 for various gains. It is seen from the figure that in
contrast to the ideal behaviour of the velocity feedback control system, the resonance
frequency under real conditions, shifts to a lower frequency as the gain is increased.
Figure 3.9 shows the change in mean square response for 10<¢ <100 in the

frequency band of 0.1<Q<10 with half the maximum gain

I 4ot
-2—gmm_max :Tapphed. The mean square response can be used as a measure of

overall performance. It can be seen from figure 3.9 that as o is increased a
considerable change in mean square response is observed, thus providing a better
system. It is observed from the open loop frequency response that increasing o
increases the stability limit. From the change in mean square response plot, it is also
seen that an increase in o results in a better performance. Thus increasing o, which is
a measure of separation of the natural frequency to the comer frequency of the high
pass filter of the electrical components, increases the stability. In addition, by
comparing the change in mean square response plot for damping ratios 0.01 and 0.05

that although damping improves the performance, it is not a dominant factor.

3.3.2 Displacement feedback control

The forward path frequency response function for displacement feedback control

becomes,

— 3.24
m(1-Q% + j28Q)  (1+ joQ) 29

Substituting equation (3.24) and (3.21) into equation (3.19) the closed loop frequency
response function (CLFRF) for displacement feedback control becomes,

— 7 3 ]
CLFRF =| 8<% B () aﬂ? ; (3.25)
m | (1-Q% + j2ta)1+ jo@) + ¢,
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2
8,8:8:D, e . : :
where g, :%—n—, substituting the maximum gain g, m =4¢* into

equation (3.26) and rearranging gives the non-dimensional receptance,
a - jQ 1+ joQ)

m
= 3.26
g.0, } (( — Q% + j2L0 N1+ joQ) + 4o Q* ] (5:20)

CLFRF (

Figure 3.10 shows the non-dimensional receptance as a function of non-dimensional
frequency for ¢ = 10 and = 0.05 for various gains. It is seen from the figure that in
contrast to the ideal behaviour of displacement feedback control system, a second
peak is starting to form at low frequencies. Figure 3.11 shows the change in mean

square response for 10 <o €100 in the frequency band of 0.1 <Q <10 with half the

maximum gain -ilé-gm,_m = 2a* applied. It can be seen from figure 3.8 that as o is

increased a considerable change in mean square response is observed. It is also
observed from the open loop frequency response that increasing o increases the
stability limit. Similar to velocity feedback control, although damping improves the

stability it does not improve the performance considerably.

Both velocity and displacement feedback control systems perform well in closed loop.
Their gains for a stable system are considerably higher compared to acceleration
feedback control. The maximum gain that can be achieved for a given « is higher in

displacement feedback compared to the other two.

3.4 System with more high pass filter components

It has been established that the high pass filter is the source of instability at low

frequency. The mathematical model of the high pass filter considered so far takes the

form ﬂ—— However it is possible to have higher order filters. For simplicity
1+ joQ)
. . jo QY . .
filters which have the form 1—-”5 are considered. Systems withm = 1, m =2 are
+ ]

given in table 3.2, for example for velocity feedback control, cases D2 and G2
respectively. Therefore the systems with m = 3 and m = 4 are considered in this

section. For simplicity an undamped system is considered.
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3.4.1 Ve!dcity feedback control

The open loop frequency response function for velocity feedback control can be

written as,

. . £.8,8. | —Q°F 1 o QY
G(jo)H(jo) = i 2 3.27
(Jo)H(j®) ( m Il—Qzllﬁ-jo@IﬂjaQ] (3-27)

Table 3.4 shows the maximum gain for different number of high pass filters. The

details of calculations are given in appendix 1. Consider a system with £, = 20 Hz then
o, = 125.7 rad/sec, figure 3.12 shows the maximum gain of this system as a function
of oo for m = 1 to 4. It is seen that the gain reduces considerably when a higher

number of high pass filters installed.

3.4.2 Displacement feedback control

The open loop frequency response function for displacement feedback control can be

written as, :

. . g.8,8. ) -Q° 1 Y joo Y
G(jw)H(jo)=| ==L . , S (3.28)
m 1-Q° | 1+ jo2 | | 1+ jok2

Table 3.5 shows the maximum gain for different number of high pass filters.

Considering a system with f, = 20 Hz, figure 3.13 shows the maximum gain of this
system as a function of o for m = 1 to 4. It is seen that the maximum gain reduces

considerably when a higher number of high pass filters installed.

3.5 Discussion

It can be seen from the analysis in this section that in an acceleration feedback control
system far less gain is possible than the other two configurations. In the real system,
comparing the maximum gain attainable for velocity and displacement feedback
control, it is evident that for displacement feedback control a higher gain than for
velocity feedback is possible. It is also evident that the overall performance,
quantified by the change in mean square response, is not very different for these two
systems.  Although the system damping helps to improve the closed loop

performance, it is not a dominant factor.
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It is clear that the high pass filter component is the dominant source of instability at
low frequency. The real integrator does not affect the performance greatly compared
with an ideal integrator. It is also evident that when higher numbers of high pass

filters are installed the maximum gain reduces.
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Table 3.1 Mathematical models of different combinations of power amplifier and

charge amplifier for acceleration, velocity and displacement feedback control

Charge
amplifier
settings
considered

Acceleration
feedback
1

Velocity feedback

2

Displacement feedback

3

Pure gain power amplifier - g,

[A] No high
pass filter
and

Ideal
integrator
(Ideal
condition)

1

jo

{B] High
pass filter
and ideal
integrator (if
applicable)

J&.0
{1+ j7.)

jg.® 1
1+ jr.0) jo

jg.o 1
1+ j7.0)0°

[C] No high
pass filter
and real
integrator (if
applicable)

8.
1+ jr.0)

8¢
(+jro)

{D] High
pass filter
and real
integrator

jg.@
1+ jr.0)

j8.0 1

780 1

L+ jr.o) @+ 7o)

1+ jrw) 1+ jro)

Real power amplifier

Jjg,o
1+ j7,0

[E] High
pass filter
and ideal
integrator (if
applicable)

780
1+ jr.o)

jg.w 1
1+ jr.0) jo

__Jgo 1
1+ jr.0) 0

[F] No high
pass filter
and real
integrator (if
applicable)

g,
1+ jT,0)

8.
(1+ jr,0)

[G] High
pass filter
and real
integrator

jg .0
1+ jr,0)

J8.® !

jg .o 1

X
1+ jr0) (1+jrw)

X
1+ jr.0) 1+ jr0)
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Table 3. 2 Maximum non-dimensional gain for the cases considered in table 3.1

Charge Acceleration Velocity feedback Displacement
amplifier feedback feedback
settings 1 2
considered 3
Pure gain power amplifier - g,

fA] No high | Unconditionally | Unconditionally Unconditionally
pass filter Stable Stable Stable
and Ideal
integrator
{Ideal
condition)
[B]High | g, =
pass filter 2 Unconditionally Unconditionally
e | 260+ dara?) | Gu Stable
integrator (if )
applicable) | &mx = 20°¢
[C] No high
pass filter Unconditionally | Unconditionally Unconditionally
and real stable stable stable
integrator (if
applicable)
[D] High Lo = g0 = 8=
pass filter 2 2 1321
P eal 2 1+ +a?) 2a{4a2§’22+ @ -1} oL+ -1y}
integrator ) (@™ -1 330 1)

8omax = 2000 S = 200° e =80

Real power amplifier /8
il + j'rpa)j

[E] High Box = S =
pass filter d rodaa?t? + (of —1)2 + | Unconditionally
and ideal M { 4 5 _(1 ) } stable
integrator (if (o+E) (@ . )
applicable) | g =a°( G =200
[F]Nohigh | g,..= Grmax= Smax™
passfiter | 57(14 g +07) | 2040 2@ 217} Sl 207¢? +(30” 1’
and rea . 5 @® -1 ~
integrator (if | &max ~ 2o g’ 3(30:2 D
applicable) Emax = 2O 8 max = 80
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[G] High

gma.xz gmax= 8max=
pass filter alloot+o? +1f &12{12052@’2 +Ho —3)2} 4o faoe? + (o - 1?]
gnd real @+07 XN —3) (@ -1
Integrator 5 4
Brax =00C 8or* Bmax = 400
=9
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Table 3. 3 Total gain as a function of individual gain settings of components for the

cases considered in table 3.1

Instrument Velocity Displacement Acceleration
settings feedback feedback feedback
considered 1 2 3
Pure gain Power amplifier- g,
B] High pass
filter and ideal _ 8.8,8,9, _8.8,8, _8.8,8.
integrator (lf tatal "——m— Erorr = m wral T mo.
applicable) o2 = 1 Unconditionally Unconditionally
o 20:.’C +1 Stable Srable
C] No high
pass filter and _8.8,8. _8.8,8; _8.8,8,
real integrator toral rotal m ol
(if applicable) | Unconditionally | Unconditionally | Unconditionally
stable stable stable
D] High pass _ £.8,8.0, _8.8,8,9, _&.8,8,9,
filter and real tatal m wotal " rotel T m
mtegrator 2 1 o2 =_t for Q2 =—'_for
crr 2a€ +1 on az o 3“2
o>>1&E <<l a>>1&7 <<1
jo
Real power amplifier Jg_”
1+ j7,00
E] High pass
filter and ideal £.8,8.0) _ 8.8,8.0, _£.8,8,
integrator (If sorad = _m tatal m torl T
applicable) \ a+l o =L for Unconditionally
o m i a2 Stable
a>>1&¢0 <<1
F] No high
pass filter and _8.8,8,0, _8.8,8,9, _8.8,8.%,
real integrator total m ol T m roraf = "m
(if applicable) | o, _ 1 Q2 =_L for 2 __1 for
crr 2ac+1 crr az crr 3“2
o>>1&80 <<l | a>>1&§ <<1
G] High pass _8.8,8.0; £.8,8,0] _8.8,8,9;
filter and real 1otul ___m— oral m & rorat ——m—_
integrator ) _ o+ Q= iz for Q2 :Jz_for
T aal + o
o>>1&5 <<l | a>>1&§ <<1
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Table 3.4 Maximum gain for an undamped velocity feedback control system as a

function of o for higher number of high pass filter components.

Order of Critical Maximum gain Approximate
high pass frequency 2.8.8, Maximum gain
filter Where g, = " for o>>1, Where
Q° _8.8.8,
mx =TT
n=1 1 2alo® 1) 20
e & max :T Emax = o
n=2 3 _s*fa®-3) 8o
o Bmax = 9w’ Brax = 9w?
n=3 JZ+1) ) _ 8o’
. ] e = T 7 o = 402
n=4 2,\/_5_{_5 ~8054(O[2—9) _ 8@6
o? ] Sran = 190} Bmus = 190}

Table 3.4 Maximum gain for an undamped displacement feedback control system as a

function of o for higher number of high pass filter components.

Order of Critical Maximum gain Approximate
high pass frequency g.8,8, |Maximum gain
filter Where g, = Tn | fora>>1, Where
Q* _8.8.8,
il m
n=1 1 _ 8o3e® - 1) 8’
3“2 gma.x - 3a)n gmax - a}ﬂ
n=2 ] 40 (e® -1) ¢
? max CO: gmﬂx = C!)f
n=3 25 +5 320° (0% -2) . - 320°
502 - 1w’ ™ 1)
n=4 3 ~64a“(a2—3) _ 640°
o’ e 270° Eme =
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Gjow)

-4 »
Charge Amplifier+ gain g,
Response
Plant High pass Integrator
Joy G,(jo) filter H oot e
hp;(jo) din(jw)
fs
Controller (Power amplifier)
Gain High pass filter
gr+8s hpa(jw)
> Hyw) >

Figure 3.1 Simplified model of real system for feedback control
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Figure 3.2 Root locus for acceleration feedback control (case Bl ) - { = 0.05 and
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Figure 3.3 The Nyquist plot for acceleration feedback control with { = 0.05 (case
Bl).
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Figure 3.5 The Nyquist plot for velocity feedback control with { = 0.05.
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Figure 3.6 Root locus for displacement feedback control (case B3) - { = 0.05 and
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Figure 3.8 Closed loop response of SDOF for velocity feedback control - case G2
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Change in mean square response (d8}
b
[4:]

35 - .
10 10

Figure 3.9 Change in mean square response for velocity feedback control of SDOF.
4

(£=0.01, 0.05, frequency band 0.1 < Q <10 and a gain of 0.5x°%

for each o)
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Figure 3.10 Closed loop response of SDOF in displacement feedback control - case
G3 ({ = 0.05. Gains— 0, 1000, 4000, 8000 (<gna=40") and ot = 10)
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Figure 3.11 Change in mean square responses in displacement feedback control of
SDOF. ({=0.01, 0.05, frequency band 0.1< Q <10 and a gain of half the maximum
0.5x4d0*)
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Figure 3.12 Maximum gain for different number of high pass filter components with «

for an undamped velocity feedback control system- f, = 20 Hz.
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Figure 3.13 Maximum gain for different number of high pass filter components with ¢

Jfor an undamped displacement feedback control system- f, = 20 Hz .
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4 High frequency instabilities

4.1 Introduction

In this section the sources of high frequency instabilities in the feedback control of the
SDOF system are investigated. As mentioned in section 2, high frequency instabilities in
the active feedback control system arise from four sources. They are,

Time delay

Low pass filter module of the charge amplifier.

Wb

Control force shakers
4. Accelerometers
In this section time delay and effect of low pass filters are discussed in detail and some

mention is made of the other two. Time delay is considered first.

4.2 Time delay

The delay is represented as e7%T where T is the delay time. Delays in feedback control
mainly come from digital control systems where there is some processing to be done by a
computer. Therefore a delay such as this is unlikely to influence an analogue control
system. However for completeness it is investigated here.

The delay term affects the feedback frequency response function. For example consider
an ideal velocity feedback control system with time delay. The feedback frequency
response function becomes,

H(jo)=g,e’ 4.1

where g, =g ,8, (g8~ gains of power amplifier and secondary shaker respectively)

The open loop frequency response function for a SDOF system with velocity feedback

and time delay in the control loop now becomes,

F2LQe 1T

A 4.2
1-Q% + j20Q *2)

GUQH () = %x
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k. . . . @ .
where @, =,/— is the resonance frequency, { = , 1is the damping ratio, Q = — is
m 2mw @

" n

the non-dimensional frequency and 7 = }—13 the non-dimensional time delay, where T, is

the natural period.

The open loop frequency response function given in equation (4.2) is plotted in the form

g,
c

of a Nyquist plot for various time delays and for damping ratio { = 0.05 and =1, and

is shown in figure 4.1b. The figure shows how the delay affects the stability of a single
degree of freedom system. The open loop response of a system with no time delay lies
completely in the right half of the Nyquist plane and as time delay is increased the
orientation of the plot changes in a clockwise direction. It becomes unstable with a non-
dimensional time delay of 0.5. It is also interesting to note that the second frequency at
which the Nyquist plot crosses the real axis is important in this case. With a non-
dimensional time delay of 0.5, the frequencies 0.9, 1.0 and 1.1 are also marked in the
figure 4.1b. Interestingly this shows how rapidly the frequency changes for a system,
which passes through (-1,0) point of the Nyguist plane. For a system with non-
dimensional time delay 0.5, it is stable for Q = 0.9, on the verge of instability for Q = 1.0
and unstable for £ = 1.1. Therefore when critical frequency is estimated a slightly lower
estimation does not do any harm, whereas a slightly over estimation means an unstable

systemn. Similar plots for acceleration and displacement feedback control are shown in

figures 4.1a and 4.1c with Buztand L2 respectively. It is interesting to note that
m

acceleration feedback control system may go unstable with the second frequency at
which the Nyquist plot crosses the real axis of the Nyquist plane whereas it is the first

frequency for the displacement feedback control.

In this section the effect of time delay in acceleration, velocity and displacement
feedback control are discussed. The maximum gains for a given time delay and the closed

loop responses are analysed.
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4.2.1 acceleration feedback control with time delay

The open loop frequency response function of an ideal acceleration feedback control with
time delay can be written as,
_ Qi

. . g
G(jQH(j) =" X— .
(JQ)H (j€2) mxl—.Q*’-+j2§Q (4.3)

Equation (4.3) can be rearranged into real and imaginary parts to give,

QZ 2__ _ .
CUDE (jQ)z_gam {(Q 1) cos(2m1Q) 2§Qsm(2m§2}+

4§ ZQZ +(QZ “1)2
72, Q% [(©% 1) sin(2r1Q) + 2{Q cos(2m1(Y)
40°Q°% +(Q -1)°

4.4)

m

To determine the relationship between the critical frequency €2, at which the system

goes unstable and the time delay, the imaginary part is set to zero to give,

Im{G(jQ)H (jQ)}=0, which results in tan(277Q__ ) = -12—5%2—
Let
240,
F(Q) =tan(2m1Q_, ) = _1_"?25;_ (4.5)

crir
Equation (4.5) can be written in alternative form as,

200 .
tan(z —271Q2 ) = —1—£‘—2’” . For low damping, i.e. when { — 0;

Crir

tan(zr — 2772, ) — O which gives,

crit

1
it = o2 (4.6)
From equation 4.5 the critical frequency depends on the damping ratio ({') and non-
dimensional time delay (7 ). A graphical representation of solution to this equation is
shown in figure 4.2a for 7 = 0.1. The second frequency at which the graph crosses the
real axis is important for acceleration feedback control and is the critical frequency.
Figure 4.3a shows the critical frequency as a function of damping ratio and non-

dimensional time delay. It is evident from this figure that the dependence of the critical
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frequency on the time delay is much greater than for the damping ratio. Thus for low
damping, the approximation given in equation 4.6 can be used. Figure 4.4a shows this
approximation graphically together with the numerical solutions to equation (4.3) for
damping ratios 0.01, 0.05 and 0.1 respectively. It can be seen that this approximation is in
good agreement with the numerical solution. For a time delay 0 <7 £0.15 and damping
ratio 0 < { <0.1 the approximation given by equation (4.6) is in good agreement with the
numerical solutions.

Substituting the approximate critical frequency given by equation (4.6) into the real part

of equation (4.4) and equating to -1 to find maximum non-dimensional gain £ , before
m

the system becomes unstable gives,

8u_mx —1-472 (4.7)
"

It is evident from equation (4.7) that the maximum attainable gain is less than unity.
Figure 4.5a shows the maximum non-dimensional gain as a function of time delay.

It can be seen that the maximum gain reduces considerably as the time delay becomes
significant. Although the open loop frequency response function provides a means of
finding the point of stability, it does not provide much information on the system
performance. This requires the closed loop frequency response and change in mean
square response to be studied. Figure 4.6a shows the closed loop frequency response
function for a damping ratio of 0.05 and for various time delays. The maximum gain
given in equation (4.7) was used in the simulations. This shows that when the feedback
gain is increased the response reduces at its original resonance frequency but the new
resonance frequency is shifted to a higher frequency and muitiple resonance also occur.
These resonance peaks are the undesirable effect of the time delay. Figure 4.7a shows the
change in mean square response for a frequency band of 0.01<Q <100 as a function of
time delay for maximum gain given by equation (4.7). It is seen that as the time delay
increases the overall performance tends to that of the original system and with a non-
dimensional time delay 7 =10.051 the system becomes ineffective. This means that for
even a small time delay the acceleration feedback system does not help to reduce the

overall vibration performance.
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4.2.2 Velocity feedback control with time delay

The open loop frequency response function with velocity feedback control is given by

equation (4.2), which can be rearranged into real and imaginary parts to give,

4L Q% +(Q* - 1)*
— 28,00 | (% — 1) cos(2n102) + 2£Q sin(277€2)
40°Q% + (7 -1)°

2g (0 —(Q% —Dsi
GUOH Q) = g;é' {ECQCOS(ZMQ) (Q2 l)sm(ZM'Q}_

(4.8)

C

To determine the relationship between the critical frequency £2.;, at which the system

goes unstable, and the time delay, the imaginary part is set to zero to give,

2
Im{G(jQ)H (jQ)}=0, which results in tan(277Q) = 12;
Let
F(Q) = tan(2wQ) = 1-Q° 4.9)
20Q '
Equation (4.9) can be written in the following form,
tan © 2wy, |= ke (4.10)
2 1 - an‘r
When ¢ — 0 in equation (4.10), tan(%u 2710, ]—> 0 which results in,
o -1 (4.11)
crir 4T "

As seen in equation (4.9), frequency at which the Nyquist plot crosses the real axis
depends on the damping ratio and non-dimensional time delay. A graphical
representation of the solutions of equation (4.9) for various damping ratios is shown in
figure 4.2b. The solid line in figure 4.2b shows the zan function (LHS of equation 4.9)
and other lines shows the RHS of equation (4.9) for various damping ratios { and a non-

dimensional time delay of 0.1.
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Figure 4.3b shows the numerical solution (critical frequency) of equation (4.9) as
function of damping ratio and non-dimensional time delay. It is seen from figure 4.3b that
the critical frequency is influenced much more by the time delay than the damping ratio.
For a given time delay and low damping, the critical frequency can be taken as the
asymptote frequency of the tan function (equation 4.11). For higher damping the equation
{4.9) has to be solved numerically. Figure 4.4b shows the approximate critical frequency
and the numerical solutions to equation (4.9) for damping ratios 0.01, 0.05 and 0.1
respectively. It is seen that the approximate solution is in good agreement with numerical
solutions. It can be observed that for a time delay 0<7<0.15 and damping ratio
0<{ <0.1 the approximation given by equation (4.11) is in good agreement with the
numerical solutions.

To determine the maximum gain the real part of the open loop response function given by

equation (4.8) should be set to ~1 and the frequency set to the critical frequency. This

gives,
g —[4529;: +(£'2§rit "1)2
AEL_Ip - (4.12)
¢ 2Q.,¢ {2§th cos(21Q,,;, )+ (1 -Q%, )Sm (271, )}
When 7<0.15, Q_, = ZL and equation (4.12) reduces to
T
8y _max _ = (641252 +(167° —1)1) (4.13)
c 8tg (167% 1) '
For { <<1 this becomes,
_ 2
8 m _ (1-1677) 4.1
¢ 8t
which for a small time delay, 7 <<1 reduces further to,
B 1 @.15)
c 87
Figure 4.5b shows the maximum gain §y_max’ as a function of time delay for the time

C

delay range v <0.15. It is seen that the maximum gain reduces considerably as the time
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delay increases. Figure 4.6b shows the closed loop frequency response function for a
damping ratio of 0.05 and for various time delays. The maximum gain given in equation
(4.14) was used for these simulations. This shows that when the feedback gain is
increased the response reduces but the resonance frequency is shifted to a higher
frequency. These resonance peaks are the undesirable effect of the time delay. Figure
4.7b shows the change in mean square response for a frequency band of 0.01< Q<100
as a function of time delay for maximum gain given by equation (4.14). It is seen that as
the time delay increases the overall performance tends to that of the original system. But

for time delay less than 0.15 the system is still effective.

4.2.3 Displacement feedback control with time delay

The open loop frequency response function with time delay of an ideal displacement

feedback control can be written as,

o g, g2 y
G(jQH(jQ) =X —————— 4.1
GDHR) = (4.16)
Equation (4.16) can be rearranged into real and imaginary parts to give,
. : Q? —1)cos(2m1Y) — 2{Qsin(2wQ
GUQH(jo) = S| (€2 ~DeosUTED - 2snOned |
k 40°Q°+(Q° 1)
(4.17)

jg, Q% =1ysin(2m1Q) + 2{Q cos(277E2)
k 487207 +(Q* -1)?

To determine the relationship between the critical frequency (2., at which the system
goes unstable and the time delay, the imaginary part is set to zero to give,

Im{G(jQ)H( j&)}= 0, which results in tan(272Q,,,) = —IZ—CS;—; Let

ot

209, (4.18)

1-QF

crit

F(Q)=tan(2r1Qd . )=—

It is to be noted from figure 4.1c that the critical frequency is the first crossing (real axis})
frequency of the Nyquist plot. This is in contrast to the acceleration and displacement

feedback control systems discussed in section 4.2.1 and 4.2.2.
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Figure 4.3¢ shows this first crossing frequency (critical frequency) as a function of time
delay and damping ratio. It is seen that the critical frequency is influenced much more by
the time delay than the damping ratio. In addition it is also evident that the magnitude of
the critical frequency is much smalier than the acceleration and velocity feedback control
discussed previously. Hence for a small time delay the equation (4.18) can be
approximated as,

20Q

__I_Qc;f (4.19)

crit

tan(2r1€d . ) = 2718} = —

crir

From equation (4.19) the approximate critical frequency can be written as,

QZ

crit

S+ (4.20)
T

Unlike acceleration and velocity feedback control this approximate critical frequency
depends on the time delay and damping ratio. Figure 4.4¢ shows the numerical solution
and approximate estimation of critical frequency for damping ratios 0.01, 0.05 and 0.1
respectively. It is seen that the estimation is in reasonable agreement with the numerical

solutions. For time delay 0 <7 <0.15 and damping ratio 0 < { < 0.1 the approximation

given by equation (4.20) is in reasonable agreement with the numerical solutions.

Substituting the approximate critical frequency given by equation (4.20) into the real part

of equation {(4.17) and equating to -1 to find maximum non-dimensional gain %’— gives,
Sdmm & (4.21)
k T

Figure 4.5.c: shows the maximum non-dimensional gain as a function of time delay.
Figure 4.6¢c shows the closed loop frequency response function for a damping ratio of
0.05 and for various time delays. The maximum gain given in equation (4.21) was used
for these simulations. This shows that when feedback gain is increased the responses
reduce at the original resonance frequency but the resonance frequency is initially shifted
to a higher frequency and then to a lower frequency. This is due to the choice of damping
since ¢ = 0.05 was considered and 7= 0.01 is less than the damping ratio hence it gives a

much higher gain than the other cases. However these resonance peaks are the
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undesirable effect of the time delay. Figure 4.7b shows the change in mean square
response for a frequency band of 0.01<Q <100 as a function of time delay for
maximum gain given by equation (4.21). It is seen that as the time delay increases the
overall performance reaches to that of the original system with non-dimensional time

delay 0.07 and thereafter it becomes ineffective.

4.3 Low pass filter

As mentioned in section 2 the low pass filter in the charge amplifier, which is used to
filter out the high frequency unwanted signals, is a potential source of instability at higher
frequencies. In this section the effect of this low pass filter in velocity and displacement
feedback control is analysed. Two factors have to be explored. First whether the low pass
filter affects the stability and if so what is the maximum gain. As the purpose is to
investigate the effect of the low pass filter, which is dominant at high frequency, it was
assumed that the effect of high pass filter is negligible. In other words the system behaves
as if no high pass filter connected. An ideal integrator was assumed. It should be noted

that such a system without a low pass filter is unconditionally stable.

4.3.1 Effect of the low pass filter on acceleration feedback control

With a low pass filter the open loop frequency response function for a SDOF system with
acceleration feedback control becomes,
-0* g,
2, - X -
m(l—-Q, + j2§§2) (1+ j9Q2)

where 1 is the ratio of the natural frequency of the system to the corner frequency of the

G(/QH(jQ)= (4.22)

low pass filter.

This system is mathematically equivalent to case B2 presented in table 3.1 and table 3.2.
From the analysis presented in section 3.2, the system is unconditionally stable. Hence
the low pass filter does not affect the stability of the acceleration feedback control

system.
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4.3.1 Effect of the low pass filter on velocity feedback control

With a low pass filter the open loop frequency response function of a SDOF system with

velocity feedback becomes,

-Q° g, 1

4.23
m(l -7+ j2§Q)X jo, Q % 1+ 1) 4.23)

GiQH (jQ)=

where v is the ratio of the natural frequency of the system to the corner frequency of the

low pass filter. Equation (4.23) can be rewritten as,

. v 280 J& 1
G(jw)H (jo)= - X(1—92+j2§9]x(1+j}&2] (4.24)

This system is mathematically equivalent to case E3 presented in table 3.1 and table 3.2.

From the analysis presented in appendix 1 for case E3, the system is unconditionally
stable.
Hence a low pass filter does not affect the stability of the velocity feedback control

system.

4.3.2 Effect of the low pass filter on displacement feedback control

Similar to the velocity feedback control system, a low pass filter in an ideal displacement
feedback control system is considered. The ideal system is unconditionally stable for
displacement feedback control. Because of this it is relatively simple to see whether the
addition of a low pass filter has any significant effect in displacement feedback control.
The open loop frequency response function becomes,
G(jQ)H(jg)zéLx( - L : ]x( 1_ 1 (4.25)

ko [1-Q° + j20Q 1+ j¥Q2
which can be expressed in real and imaginary parts as,

Re{GQ)H (jQ)}=—24 x + ro’ + (@2 -1) (4.26)

k h§292+(1—£22)211+y2§22]

Gl o 8 19[23.-'—’1’(92,“1)]
Im{G(jQ)H (jQ)}= kxl4 (o Tl ] (4.27)

The Nyquist plot crosses the real axis when imaginary part is zero, which gives a
frequency of,
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+—=. (This is similar to equation 4.20)
Y Y
The real part at this frequency is -3 3 14 ,
: k2007 + 20y +1)
The maximum gain occurs when the real part is equal to —1, which results in
Z
max 2
gdk _ 2C(y + §y+1) (4.28)
Y

For { <<1 and ¥ << 1 equation (4.28) can be written as,

mx 2
Buma 20 (4.29)
k 4
Therefore addition of a low pass filter in a displacement feedback control system makes

the unconditionally stable system, conditionally stable.

It is also interesting to note that small time delay can be approximated to low pass filter
effect in displacement feedback control system.

—j2m)

Non-dimensional time delay is represented by e which is for a smail time delay can

be approximated as,

R L S (4.30)
1+ j2m7e

Let ¥'=2n7 then treating delay as a low pass filter the maximum gain from equation

(4.29) can be written as

S 2 _

p — which is equivalent to the gain given in equation (4.21)
v mT

Hence a small time delay in displacement feedback can be related to a low pass filter.

4.4 Combined system (low and high pass filters)

Consider an analogue velocity feedback control system with high and low pass filters and
power amplifier. Since an analogue system is considered, the effect of control time delay
is not included. The purpose of the low pass filter is to filter out high frequency unwanted
signals and high pass filter is to filter out low {requency unwanted signals. Hence their

corner frequencies should be significantly apart. Since ¢ is defined for the high pass filter
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as the plant natural frequency to the high pass filter corner frequency ratio, a similar

definition for low pass filter () can be written as ¥ = ke, where & is less than one. The

open loop frequency response function for combined system can be written as,

. . gpgl.'g.\' _Q2 jw Q : 1 1
GUQH(jQ) = : 4.32
EDHCED [ m Il—Qz+j2§QI(1+jaQ)J[1+ijI+jkaQ}( )

2
0 £
where (—jw"—} represents the high pass filters in the charge amplifier and power

0+ jo)

- 1
amplifier,
[1 + jofd

) represents the real integrator and (1 ]represents the low

+ jkoL)
pass filter.
Consider the system with negligible damping then the equation (4.17) can be written as.
2
£,8:8; @, 1 1
GUDH(jQ) = ! : : (433)
1+]O¢;Q 1+ jo2 | 1+ jkofd

This can be written in real and imaginary parts as follows,

. . 8,8.8,0, | oQ®(Q%*(B3k+1)-{k+3
Im{G(JQH (j&))=| =L | 2( — Bk +1)~(k+3) (4.34)
m 1+ Q%) 1+ ke o -1)
. : £.8,0) | Q*(ka*Q* —302Q% (k +1)+1
Re(GUQH (@)= 2 | 2k (2 1) (4.35)
m o Ji+Q%2 Y i+ K202 Q2 -1)
As orevi . [(&,8.8,9;
s previously, the gains of the components are grouped together, so g =| ——«—
m
When the Nyquist plot crosses the real axis the imaginary part is zero, this gives,
5 k+3 .
= ————_ At this frequency the real part becomes,
Bk +1)? reanency P
. . k+3)(3k+1
Re(GU)H (jQ))=—¢ (k+3) Gk +1) (4.36)

oo Bk +1)~ (k +3) k +1)

The maximum total gain can then be obtained by equating the real part to —1, which

gives,
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80% {02 3k +1)~ (ke + 3)Jk +1)

e = o (4.37)
{k+3)Y 3k +1)
If ¥ <<1 and & >>1 then the equation (4.22) can be approximated as,
8’
= 4.38
Bmx =5 (4.38)

This is the same as the gain for the velocity feedback system defined by case G2 in table
3.2. Therefore if £ is sufficiently small then the low pass filter will not affect the velocity
feedback control.

It was seen in section 4.3 that the low pass filter affects the displacement feedback system

even for the ideal case. Hence the real case is not investigated.

4.5 Effects of accelerometers and secondary force shakers

As mentioned in section 2 the accelerometers and secondary shakers can cause instability
at higher frequencies. The resonance frequency of the accelerometer together with
additional phase shift may cause the system to go unstable. Therefore the range over
which the accelerometer functions as a linear transducer and the operation frequency
range of the feedback system have to be considered. Similarly a resonance of the moving
element of control actuator, which generally occurs at a high frequency, can produce a
non- proportional control force. A system, which is theoretically stable, may go unstable
because of this phenomenon. Therefore prior knowledge of the characteristics of these
transducers and the operating range of the feedback system can only help to avoid

unexpected instabilities.

4.6 Discussion

It can be seen from the analysis presented in this section that time delay, if present, is
potentially the dominant source of instability at high frequencies. Increasing the time
delay reduces the overall performance of the control system. The maximum gain that can
be achieved in the acceleration, velocity and displacement feedback control systems

considered can be approximately calculated using the relatively simple formulae derived.
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It is also evident that the velocity and displacement feedback control system permit
higher gain than the acceleration feedback control system with delay. However the
overall performances suggest that acceleration and displacement feedback control
systems are ineffective with even small time delays. The velocity feedback control
system functions reasonably well up to a non-dimensional time delay of 0.15.

The low pass filter set to filter out high frequency components well above the natural
frequency of the mechanical system, does not seriously affect the acceleration and
velocity feedback control systems. An analysis of the ideal displacement feedback control
system with a low pass filter shows that the low pass filter affects this system. Hence it
appears that a realistic velocity feedback control system is more robust.

Although velocity and displacement feedback control systems are theoretically
comparable except when there is time delay in the control system, velocity feedback is
more robust. Because the accelerometer signal is integrated twice to obtain the
displacement feedback signal, at higher frequencies the displacement signal becomes
very small, with a reduced signal to noise ratio. This noise, affects the quality of the
displacement feedback control more so than in velocity feedback control. Hence among

the three configurations the velocity feedback control is considered to be more attractive.
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(a) Acceleration feedback control.
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Figure 4.3 Critical frequencies as a function of time delay and damping ratio.
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5. Experimental work

5.1 Introduction
In this section the experimental work conducted to evaluate the active control of the

single degree of freedom system discussed previously is outlined. The overall aim of
this section is to compare qualitatively, theoretical analysis and experimental results
to verify the conclusions on control strategies (acceleration, velocity and displacement
feedback control) discussed in the previous sections. In order to achieve this
experiments were conducted using a SDOF system set on a rigid foundation. Open
and closed loop responses were measured with the feedback control strategies applied.
The experiments were conducted with the following objectives

¢ To compare the open loop response of acceleration, velocity and displacement
feedback control of a single degree of freedom system with theoretical
analysis.

e To evaluate/judge the closed loop performances of acceleration, velocity and
displacement feedback control.

e To compare the experimental open and closed loop response with predictions
based on the characteristics of instruments to see whether the system exhibits
any un-modelled characteristics.

e To investigate the effect of the high pass filter corner frequency (o) setting in
feedback control. Only velocity feedback control is considered for this
purpose.

Since low frequency instabilities were found to be the dominant source in the
theoretical analysis, experiments were conducted for the low frequency range of

0~200 Hz.

5.2 Description of the experimental equipment

In this section the equipment and set up used to perform the experiments are
described. Figure 5.1 shows the active mount system used in the experimental work. It
consists of an aluminium plate, two mounts placed symmetrically underneath the
aluminium plate and two electromagnetic shakers to produce the control force. The

aluminium plate had previously been shown to behave as a rigid mass up to 1000 Hz
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[13, which is well above the maximum frequency of interest in this experimental

study.

Each of the mounts is composed of a passive as well as an active part. The passive
part of the mount consists of a rubber cylinder fixed between two thin aluminium
plates, one side of which is connected to the aluminium plate and the other is glued to
a rigid base. The passive parts of both mounts were assumed to have the same
mechanical properties and were each modelled as a parallel connection of spring and

damper without mass.

The electromagnetic shakers of the system produce the active force, which is
transmitted to the bottom disc by a thin rod through the rubber cylinder. Thus the
force at the bottom and top of the discs attached to the rubber mount is produced.
Since the shakers and rubber mounts are symmetrically placed with respect to the
mass centre of the aluminium plate, it is therefore possible to treat the system as a
SDOF system if both the control shakers are set to produce in-phase control forces.
This can be practically achieved if both the shakers are excited by the same input

signal.

In principle the aluminium plate will vibrate under influence of a primary force that
will be counter acted by the secondary force generated by the actuators. Therefore
eventually the aluminium plate will experience the difference of the primary and
secondary forces. Hence in this experimental work, the actuators were set to generate
both the primary and the secondary forces [1] by exciting them with the difference of
the primary and feedback signal as shown in figure 5.2. A summing box, designed by
Serrand [1] was connected as shown in figure 5.2 to produce the difference of the
signals (negative feedback). The output signal from an accelerometer placed in the
centre of the plate was fed into the charge amplifier, which was again fed through

power amplifier 2 into the summing box ensuring negative feedback.
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5.3. Characteristics of electrical components

Before any control technique is applied, identification of the experimental system and
the characteristics of each instrument used are important. This helps to identify the
correct interpretation of the coupling phenomena between the controller and the
system dynamics in order to have a sensible assessment of the control performance.
Figure 5.2 shows the feedback control system with instruments connected. It consists
of a summing box, power amplifier 1, two shakers, an accelerometer, a charge
amplifier and power amplifier 2 (model and serial numbers are given in table A2.1 in
appendix 2). The accelerometer calibration chart supplied by the manufacture
provides information on its gain, which is found to be unity up to 10 kHz. The shaker
gain (g) is defined as the force generated by the two actuators for an input voltage.
This information was taken from Serand’s [1] work; which is 0.91. An attempt was
made to study the characteristics of the rest of the instrument used in the active
feedback control of the single degree of freedom system. These results were used to

obtain their mathematical models.

White noise from analyser was fed into the summing box and the output was
normalised by the input signal, in a simple experiment to measure the gain (gs) of
summing box. A gain of about 0.67 was observed. The details of experiments and the
technique used to model the characteristics of power amplifier 1, power amplifier 2,
the charge amplifier in integration mode with 1 and 10 Hz cut-off frequencies and the
charge amplifier characteristics at double integration are given in appendix 2. Since‘
the frequency range of interest in this experimental work is O ~ 200 Hz, the
characteristics were measured in this range. The low pass filter of the charge amplifier
does not have influence in this frequency range hence it is not included in the
mathematical model. The mathematical model are given below (refer to appendix 2
and 3 for details),

e Power amplifier 1

. = 7027750 5.0
(1+ j0.0633w)
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Equation (3.1) shows the characteristic of power amplifier 1, which is as described in

section 3, consists of a gain of 0.2775 and a high pass filter described by
jo

(1+ j0.0633c0)

» Power amplifier 2

- - gp2w2
(1+ j0.0633w)"

where g,; = [0.002, 0.0045, 0.0075, 0.0131, 0.0162, 0.020].

(5.2)

i,

Equation (5.2) shows the characteristics of power amplifier 2, which is the controller
in this experimental work. The gain gp2 can take a range of discrete values, hence
allowing an increase in the gain in the feedback system. It is seen that it has a second
order high pass filter.

e The charge amplifier with 1 Hz and 10 Hz cut-off frequencies with single

integration,
a, = J4153%0 X - 1 At cut off frequency 1 Hz.  (5.3)
(1+ j0.139@w) 1+ jO.251w)
J0.0567w X ! At cut off frequency 10Hz. (5.4)

%o =+ j0.01590) . (1+ 70.0333m)
It was discussed in section 3 that the greater the value of ¢ (ratio of natural frequency
of the system to the corner frequency of electrical component) the better the system
performance in closed loop. Equations (5.3), and (5.4) give the charge amplifier
frequency response functions at two cut-off frequencies, it is seen that they are
considerably different from each other. This allows the investigation of the effect of
the magnitude of ¢ as discussed in section 3.

e The charge amplifier frequency response function with double integration

7507520 1
Ca_d, = _ Y >
(1+ jO.15%9w) (1+ jO.1757w)

At cut off frequency 1Hz. (5.5)
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Equation (5.5) shows the characteristics of charge amplifier with double integration,
jo

e and real double
(1+ jO.159w)

which has a gain 5.0752, a first order high pass filter

1
(1+ j0.1757w)*

integrator

In acceleration feedback the charge amplifier was assumed to have unity gain. In
section 3, for the purpose of simplicity the corner frequencies of the electrical
components were assumed to be same. However the measured characteristics of the
electrical components are different from each other, this allows only a qualitative

comparison of the experimental results with the theory explained in section 3.

5.4 Acceleration feedback control

The open and closed loop frequency response functions of the feed back system
shown in figure 5.2 can be written as,

GjoyH(jw) = Pa,(jo)xG,(jo)yxCa(jo)x Pa,(jw)xg,g, (5.6)
where

G(jo) = Pa,(jo)x G ,(jo)X Ca jw)x g, and

H(jo)= Pa,(jo)x g,

Closed loop frequency response function (CLFRF) is given by,

G jw)

CLFRF(jw) = - ——,
1+ G(jo)H (jo)

.7

For accel_eration feedback control Ca(jw)=1, G,(jw) is given by equation (2.14),
Pa; by equation (5.1), Pa, by equation (5.2), g =0.91 and g, = 0.67. This system has
a total mass (m) of 2.9 kg, natural frequency £, of 20.2 Hz and damping ratio { of 0.05
[1]. Substituting these parameters in equations (5.6) and (5.7), the open and closed

loop frequency response functions can be obtained.

As seen from figure 5.3, the Nyquist plot for acceleration feedback control, the system
becomes unstable at very low gain (0.0045). As discussed in section 3, acceleration
feedback control becomes unstable at lower gain than the velocity or the displacement
feedback control systems. Although the charge amplifier was assumed to provide only

gain, the system still has an overall high pass filter of order 3 (power amplifier 1 has
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first order and power amplifier 2 has second order). It was seen in section 3, table 3.2

and table 3.3 that an acceleration feedback system with an overall high pass filter of

2 3
260 and Sar Itis
a)ﬂ n

order 0,1,2 has an approximate maximum total gain of infinity,

2

this inclusion of the damping ratio in the expression for the maximum gain that
reduces it in comparison with velocity and displacement feedback systems. Figure 5.4
shows the measured closed loop response of acceleration feedback control. It is seen

that the reduction in the resonance peak is small.

5.5 Velocity feedback control

The open and closed loop frequency response functions for velocity feedback control
with 1 Hz and 10 Hz charge amplifier cut-off frequency can be obtained by
substituting equations (5.3) and (5.4) into equations (5.6) and (5.7) while all other
conditions remains the same as acceleration feedback control.

It can be seen from figures 5.5(a) and 5.5(b) that when charge the amplifier cut-off
frequency is increased from 1 Hz to 10 Hz the maximum attainable gain reduces
considerably. With a 10 Hz cut off frequency the gain becomes comparable to
acceleration feedback control. The closed loop response at 1 Hz shown in figure
5.6(a), (simulations) and 5.7(a) (measurement) shows that a reduction of about 20 dB
at the uncontrolled resonance frequency is possible. It is also seen that the high
frequency behaviour is not affected very much. At very low frequencies however the
measurements are inaccurate because of the low sensitivity of actuator and sensor. As
predicted in section 3, figure 3.5 as the gain is increased a downshift in resonance
frequency and increase in response is observed. At the 10 Hz cut-off frequencies,
although the open loop response is similar to acceleration feedback control the
measured and simulated characteristics shows that the velocity feedback control has a

better closed loop performance than acceleration feedback control.

5.6 Displacement Feedback

The open and closed loop frequency response functions for displacement feedback
control with a 1 Hz charge amplifier cut-off frequency can be obtained by substituting
equation (5.5) into equations (5.6) and (5.7) while all other conditions remains the

same as acceleration feedback control. The theoretical analysis presented in section 3
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suggested éhat such a system is more stable than the velocity feedback and
acceleration feedback systems. Figure 5.8 shows the Nyquist plot (simulated and
measured) of the open loop response for displacement feedback control. It is seen that
displacement feedback control has a better open loop response than the other two.

However it was mentioned in section three, that at higher frequencies the

displacement feedback signal becomes very small with a reduced signal to noise ratio.

It is seen from figure 5.9, although the response is reduced near resonance with an
increase of gain, at high frequencies the response contains noise, which is an

undesirable effect.

5.7 Summary

Based on the experimental results and simulations presented in this section, it is
evident that acceleration feedback control exhibits low gain and poor closed loop
performance as predicted in section 3. Experiments with charge amplifier cut-off
frequency set tol Hz and 10 Hz for velocity feedback contro! show that the cormer
frequency setting of the charge amplifier has an effect on the attainable gain and
associated closed loop control performance. When the cut-off frequency is set tol0Hz
it is closer to the system resonance frequency 20.2 Hz, and hence the maximum
attainable gain reduces. Amongst the three-control strategies displacement feedback
exhibits better open loop performance, however, its closed loop performance is
influenced by noise. Hence among the three strategies velocity feedback is more

attractive.
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(a}) Charge amplifier cut-off frequency set to 1 Hz. Gains = [0, 0.002, 0.0045, 0.0075,
0.0131, 0.0162, and 0.020].
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(b) Charge amplifier cut-off frequency set to 10 Hz. Gains = [0, 0.002 and 0.0045].
Figure 5.6 Closed loop frequency response for velocity feedback control (Simulated)
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(b) Charge amplifier cut-off frequency set to 10 Hz. Gains = [0, 0.002 and a gain less
than 0.0045].

Figure 5.7 Closed loop frequency response for velocity feedback control (measured)
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Figure 5.8, Nyquist plot of the open loop frequency response for displacement

feedback control with charge amplifier cut-off frequency 1 Hz (simulated and

measured).
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Figure 5.9, closed loop frequency response for displacement feedback control with

charge amplifier cut-off frequency 1 Hz (measured). Gains = [0, 0.002 and 0.0045].
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6. Conclusions

This report has described an investigation of the stability issues of acceleration,
velocity and displacement feedback control of a SDOF system. The control strategy
used is analogue feedback control. Low and high frequency sources of instability have

been investigated.

An ideal system with perfect instruments is found to be unconditionally stable for
acceleration, velocity and displacement feedback. When real components are
connected, however, (a real system) it becomes conditionally stable for acceleration,
velocity and displacement feedback control. Considering the three configurations the
acceleration feedback control system exhibits the lowest maximum gain. Velocity and
displacement feedback control systems are unconditionally stable even with a real
integrator provided that there is no high pass filter connected. The addition of one
high pass filter component for velocity and displacement feedback control brings
these unconditionally stable systems to be conditionally stable. Increasing the number
of such components reduces the maximum attainable gain. In comparison with
velocity feedback, the displacement feedback control system has a higher maximum
gain but both systems theoretically have a comparable overall performance. Although
damping helps to improve the performance, it does not have a considerable effect in

the overall performance.

As far as high frequency instability is concerned the low pass filter does not have
significant effect in velocity feedback control. However it reduces the stability of the
displacement feedback control system. In addition at high frequency, the displacement
feedback control system is affected by noise due to double integration (reduced signal
to noise ratio). Although control time delay is the dominant source of instability at
high frequencies, it does not significantly affect the analogue feedback control system
considered in this report. However for low damping relatively simple formulae have
been established to estimate the maximum gain, if there is control time delay, for

example in a digital system.
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In summary-, low frequency instability is dominant in analogue feedback systems, and
is caused in particular by the high pass filter component. This provides low frequency
phase advance, which is critical to the stability. Considering low and high frequency
instabilities, velocity feedback control 1s more robust and hence considered to be

more attractive.
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Appendix 1

A1.1 Analysis of maximum gain for systems in table 3.1

In table 3.1, different instrument conditions, which will form a feedback control
system, are given. Cases Al, A2 and A3, which are ideal acceleration, velocity and
displacement feedback control respectively, were discussed in section 2 and cases B1,
B2 and B3 were discussed in section 3. In this appendix, the rest of the cases are
considered. It was also discussed in section 3 that cases (A1 & C1), (B1, DI &F1),
(B2 & C2), (D2, E2 & F2), (C3 & E3) and (D3 & F3) are mathematically similar.
Therefore the cases C3, D2, D3, G1, G2 and G3 are discussed here.

For case C3, which is displacement feedback, consisting of real double integrator and
charge amplifier gain in the forward path, and pure gain power amplifier and shaker
gain in the feedback path, the open loop frequency response function can be written

as,

2
-Q? 1
. . 1.
G(iQH(Q) (m(l_ 2)+J'2§QI1+f :]gcgpg.; (ALD)

£:8p8s , equation (Al.1) can be arranged into real and imaginary

Lettlﬂg g total =

parts as follows,
Q{4 + (1- Q* o2 - 1))

Re(GUQH(jQ)=¢,., = : Al2
e( (J ) (J )) & iota ((1-—92) +(2§Q)2I1+0{2Q2) ( )
Im(GUQ Q)= g, 22 2 ~1)+ afa’ -1) (AL3)
(t-a) + ey fi+a’Q?)
When the equation (A1.3) is zero,
Q= SF6 (Al.4)

all+ o)
Substituting equation (A1.4) into equation (Al.2) gives,

(Ca+1fa+E)
§(4(x2§1 +4CO!((ZZ+I)+(C£2 +1)) (ALS)

Re(G(JQ)H (JQ)= &

Which is positive and hence the system is unconditionally stable.
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For case D2, which is velocity feedback, consisting of a real integrator, a high pass
filter and charge amplifier gain in the forward path, and pure gain power amplifier
and shaker gain in the feedback path, the open loop frequency response function can

be written as,

) : -0° 1 i Q
G(JQ)H(JQ)=( ( I — Lk NS (A1.6)

mll - Q° J+ j20Q jo2 | 1+ joQ
- gc gp g‘\' a)n - . - .
Letting g,,, =————, equation (A1.6) can be arranged into real and imaginary
m

parts as follows,

2040’ 1)+ ofo? 1)

Re(GUQIH (JQ))= £ D) P (AL7)
: : Q4o + 1 - Q7 J*Q* -1

IM(G(/QH (JQ)= & uu i E Qf - ++(§§Q)2 ﬁ(i ) 2)) (A1.8)

When the equation (A1.8) is zero, and o >>1,{ <<1gives,

Q= L (A1.9)

Substituting equation (A1.9) into equation (A1.7) gives,

lo* 1)

, equating this to —1 gives maximum
20:(40:24’2 +{o? —1)2)

Re(GUQH (/)= -8 1

total gain as,
205(40524’2 + (o2 —1)2)
= Al1.10
gmtal_max (az _1) ( )
Applying the condition & >>1 and § << 1gives,
8 rotal_max = 207 (AL.11)

For case D3, which is displacement feedback, consisting of a real integrator, a high
pass filter and charge amplifier gain in the forward path, and pure gain power
amplifier and shaker gain in the feedback path, the open loop frequency response

function can be written as,
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02 2 ‘w O
G(jQ)H(J'Q)=( = I 1 Njw” (8,8, (AL.12)

mll- Q%)+ j22Q | 1+ joR | | 1+ joQ
. gc gp g.\'wn . . - -
Letting g,,, =——— equation (Al.12) can be arranged into real and imaginary
m

parts as follows,

(3020 - 1)+ alQ? —1)er*Q? -3))

Re(GUQH(/Q)=¢,., Q* (o

(A1.13)
((1 —0*) +(2LQ) X1+ocz£22)3
: , Q200 ?Q* - 3)+{1- Q% J3’Q* -1
Tm(G(H (JQ)) =8 a ot . ) E )2( < ) (A1.14)
((1—!2 ¥+ (2¢Q) Il+oc Q2
When the equation (A1.14) is zero, and & >>1,{ <<1gives,
] 1
Q= Al.15
e ( )
Substituting equation (A1.9) into equation (A1.7) gives,

3(3a? -1)
80:(120:2@,‘2 +(a? -1

Re(G(/Q)H(Q))=~2 )2), equating this to -1 gives

maximum total gain as,

3 805(12a2§2 + {32 - 1)2)

afal _max (A116)
Srma 3Be® -1)
Applying the condition o >>1 and { <<1gives,
& orat_omax = B0 (AL17)

For case G1, which is acceleration feedback, consisting of a high pass filter and
charge amplifier gain in the forward path, and a high pass filter, power amplifier gain
and shaker gain in the feedback path, the open loop frequency response function can

be written as,

-Q? jo.o Y
GUQH{jQ )= - _ Al.18
(Q)H (1) (m(leZ)-:-jZCQIHj r] g.8,8, (AL18)
. 8.8,8:0, . . o
Letting g,,., =——————, equation (A1.18) can be arranged into real and imaginary
m

parts as follows,
(ato0? + (1- Q> fo’Q2 -1))

(A1.19)
~02Y + (@) i+aQ?f

Re(GUQH ()= 1 ‘(?:
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20° (¢ (2Q? — 1)+ a1 - ©7))

Im(G(JQ)H (JQ))= &1, : (A1.20)
I ((1 o) + (2LQ)y Xl +020? )
When the equation (A1.14) is zero,
5 a+{
Q° = ——=— Al.21
ool +1) ( )
Substituting equation (A1.21) into equation (A1.20) gives,

@+¢) . . , .
—, equating this to -1 gives maximum

Re(GUQH (JQ))= =8
a1 +a? + 208 )

total gain as,

all+a® +20L )

gma max 2 (A122)
e+

Applying the condition & >>1 and { <<1gives,

& ot _max =€ (A1.23)

For case G2, which is velocity feedback, consisting of a high pass filter, real
integrator and charge amplifier gain in the forward path, and a high pass filter, power
amplifier gain and shaker gain in the feedback path, the open loop frequency response

function can be written as,

2
~-Q? jo Q 1
GJQIH(jQ)= - Al.24
(Q)H (%) [m(1—92)+j2§QIl+jaQ] (l+jo@}g‘g"’g" ( )
. 8:8,8,0, . . o
Letting g,,, = —————, equation (A1.24) can be arranged into real and imaginary
m

parts as follows,
0 (2200 292 3)+(Q? —1)Ba2Q? - 1))

Re(GUIQ)H Q)= g, A1.25)
e( (J ) (J )) & total ((1 2CQ)2X1+O[2§22)3 (
: : Q° (20 302Q? 1)+ afl - Q? 2@ - 3))
Im(GQH Q)= g, (A1.26)
(GUQH Q)= & b+ orfraay
When the equation (A1.26) is zero and & >>1 and { <<1,
Q=2 (A1.27)

2
(94

Substituting equation (A1.27) into equation (A1.25) gives,
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ole® - 3)
8052(12052;’2 +{a? —3]

Re(G{jQ)H( JQ)=—8. ), equating this to -1 gives

maximum total gain as,

B 80{2(12052;2 +{a? —3)2)

total _max (A128
B 9f® -3) )
Applying the condition a >>1 and { <<1gives,
4
gmmi‘vmax = 8(; (Al'zg)

For case (3, which is displacement feedback, consisting of a high pass filter, real
double integrator and charge amplifier gain in the forward path, and a high pass filter,
power amplifier gain and shaker gain in the feedback path, the open loop frequency
response function can be written as,

G(jsz)H(jQ):{( -Q° ijng]( ! ]zgcg,,,g.\. (A1.30)

mll - Q%)+ j2LQ | 1+ jo | | 1+ joQ

_8.8,8,0,

Letting g,,. = , equation (A1.30) can be arranged into real and imaginary

parts as follows,
QB (@’Q? - 1)+ Q7 - 1" Q* - 6022 +1))
(-] + o) fi+e2?)

Re(G/QH ()= &

(A1.31)
2Q° (o' Q* - 602Q? +1)+ 221 - 2 Y2022 — 1))
((1—-92)2 +(2LQ) X1+052£2")q

Im(G(Q)H (JQ)) =g

(A1.32)
When the equation (A1.32) is zero and o >>1 and { <<1,
2 1
Q' =— (A1.33)
o

Substituting equation (A1.33) into equation (A1.31) gives,

o -1)

so*lae?l +(@? -1

Re(GUQH(jQ)=—¢ ., )ﬂ, equating this to -1 gives

maximuom total gain as,
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@2(4a2§ +{o? —1)2)

gm!u max = A134
f_ (az _ 1) ( )

Applying the condition o >>1 and { << 1gives,

& ot _eux =40 (A1.35)

A1.2 Maximum gain in system with more high pass filter
components

Consider equation 3.27 from section 3. It is rewritten here,

. . 2.8,8, Y —QF 1 jo QY
G(jo)H (jo) = 2 z A1.36
R e) ( m Il—gleﬂmTHjo@J (4159

Consider m = 3;

Substituting m = 3, rearranging equation (A1.36) into real and imaginary and then
equating imaginary part to zero gives the critical frequency as,

_V2+1

ori . Substituting this critical frequency into the real part of equation
(94

(A1.36) gives

. : (5v2+7)
Re{GUQH (JQ)}==8 1 ®; (A137)
{ } razal 8&3((12-2'\/5—3)
where & voral z{g':gl’g-‘ ]
m
When equation (A1.37) is equal to —1 maximum gain occurs. This gives,
1 (8a*(® -2+2 -3

gmml_max :—_3— ( ) (A].?)S)

o (572 +7)
This can be approximated as,

8ot (at” — 6)

m—— F Al1.39

gmml_mﬂx 140)3 ( )

n

For o >>1, equation (A1.39) can be approximated to give,
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8o’

14@°

n

(A1.40)

& ioral _max

Consider m = 4;
Substituting m = 4, rearranging equation (A1.36) into real and imaginary and then

equating imaginary part to zero gives the critical frequency as,

92_:2\5”

cri 2

(04
(A1.36) gives

. Substituting this critical frequency into the real part of equation

. . 5535 +7)
Re{GUQH(jQ)}=—g, @ Al4]
GUDH(JD}= ¢, [640:4(052—2\/5—5)) (A141)
where 8 toral =(gcgf’g"]
m

When equation {Al.41) is equal to —1, the maximum gain occurs. This gives,

1 {64 (@ =245 -5)
[Lmax 4 Al.42
Srour. ( 545345 +7) ] ( )

w
This can be approximated as,

n

8t (a? -9)
77 Al43
g toral _ max 19&): ( )
For o >>1, equation (A1.43) can be approximated to give,
4
Sa (A1.44)

gmra!_max = 19&):

Considerm = 5;
Substituting m = 5, rearranging equation (A1.36) into real and imaginary and then
equating imaginary part to zero gives the critical frequency as,

_T+43
aZ

Q: , Substituting this critical frequency into the real part of equation

cii

(A1.36) gives,
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56+/3 +97 ] (AL45)

RAGJQOH ()} =~g,,.0°
e{ (] ) (] )} g.roma)n(64a5(ag_4\/§_7)

m

WhEI'C gmrai :[g“g-"g" ]

When equation (A1.45) is equal to ~1, the maximum gain occurs. This gives,

1 [64&5(a2—4J§—7)J (AL46)

Etorai_max — 5
- gl 5643 +97

n

This can be approximated as,

8o’ (0 —14)
& roral _mwax = _-“%5—' (Al 47)

n

For ¢ >>1, equation (A1.47) can be approximated to give,

8o’ _
gmm!_max = 240)5 (A148)
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Appendix 2

A2. Analysis of instruments used in active control of single degree of
freedom system

Before any control technique is applied, identification of the experimental plant and
the characteristic of each instruments used is important. This helps to identify the
correct interpretation of the coupling phenomena between the controller and the
system dynamics in order to have a sensible assessment of the control performance.
An attempt was made to study the characteristic of each instrument used in active
feedback control of single degree of freedom system and mathematically model their

characteristics that were obtained experimentally.

A2.1 Power Amplifiers
A simple experiment, as depicted in figure A2.1, was conducted to measure the

frequency response function of the power amplifiers. White noise from a Hewlett
Packard analyser (analyser C) was fed into the power amplifier and the output was
normalised by the input white noise signal. Figure A2.2 shows the measured
characteristic of power amplifier 1, which was used in the experiment discussed in
section 5.

It can be seen that the phase of the system tends to zero after 100 Hz. In addition at
low frequencies the phase trends to 90 degrees. It suggests that the power amplifier
has a high pass filter of first order and a mathematical model can take the foliowing
form in the frequency domain.

jgpla)

—————— , where g, is the gain of power amplifier 1 and 7, is the time constant.
(1 + JTPI a))

This function can be expressed as magnitude and phase to give,

gpla)

o and the phase is ¢ =90—tan™' (7 ,0).
pl

The magnitude 1s PAl=

where PA/J and ¢ denote the magnitude and phase of power amplifier I respectively.
From measurement of power amplifier characteristics, the phase angle ¢ and the
magnitude PAI; are known for each frequency points f; in the range 0~200 Hz. Where

i goes from 1 to the number of frequency lines in the measurements n. Using the

o8



phase relationship above, the time constant 7, can be calculated for each frequency
points f; It pli becomes,

tan(90 — ¢,)
L
.

4

(A2.1)

Now using magnitude relationship and equation (A2.1), the coefficient g, can be

calculated for each frequency points. It becomes,

PAL J(+7%.0] A2.2)
(A2.

.

!

gpli =

An estimate of the time constant 7, and gaing , are the average of 7, and g,

over the frequency range. It is a good estimate since it takes into account the

measurement over the frequency range considered. It can be expressed as follows,

n
zfplr'
=1

T, (A2.3)
n
Z g pli
gy = (A2.4)
n
The frequency response function of the power amplifier 1 then becomes,
0.
Pow _ampl= J _2775&) (A2.5)
(1+ 70.0633w)

Figure A2.2 also shows the Bode magnitude plot and phase plot for this model. It can
be seen that this plot is in good agreement with the measured characteristic of the
power amplifier 1.

After setting a suitable gain in the power amplifier 1, which is in the forward path, it
was intended to change the gain in power amplifier 2 to study the effect of active
control. Hence the characteristic of the amplifier 2 was measured for various settings.
These are shown in figure A2.3. The phase difference between the low and high
frequency of the power amplifier characteristics suggests that it has a high pass filter
of order 2. Hence the frequency response function can be written as,
- gp2w2

i A2.6
1+ jT ,0)° (2.0

Pow _amp2=
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where g , i-s the gain and 7, is the time constant of power amplifier 1

Similar to power amplifier 1, equation (A2.6) can be simplified to obtain the time
constant 7 ,, and the gain g ,, .

From the phase relationship the coefficient ¢; at each frequency point becomes,

tan| 90 — ?L
2

T ., = {A2.7)
Now using magnitude relationship,

PA2, (1+12,0%)

p2i
gsz' 2
.

13

(A2.8)

where PAZ; and ¢; are measured magnitude and phase at each frequency points.
Now the time constant 7, and gain g,, can be calculated using equations (A2.3)

and (A2.4) with appropriate modifications. Repeating the procedure for each gain

settings, g ,, for each gain can be found. The frequency response function for the
power amplifier 2 then becomes,

2
_gpza)

—. (A2.9)
{1+ j0.0633w)

Pow _amp2 =

Where g,, =[0.002,0.0045,0.0075,0.0131,0.0162,0.020].

The mathematical model is plotted in the form of Bode magnitude plot and phase plot
as shown in figure A2.3. It can be seen that these plots are in good agreement with the
measured characteristic of the power amplifier. Due to low sensitivity of
accelerometer at very low frequencies, the measurement of power amplifier 1 and 2 is
not shown at very low frequencies. It is also interesting to note that the phase is
independent of gain. This is because the characteristics of power amplifier are linear.

Small peaks at frequencies 50 Hz and 150 Hz are due to the line effect.
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A2.2. Charge Amplifier with integrator module

As discussed in section 2 and 3 the charge amplifiers play a crucial role in this
experiment. The output charge from a piezo-electric accelerometer is converted into
voltage by the charge amplifier. The output voltage is directly proportional to the
input charge. Its very high resistance reduces the problem of charge leakage from the
piezo-electric crystal and its very high capacitance completely dominates the effect of
the cable capacitance.

The charge amplifier can also be used to integrate the accelerometer output so that the
output is proportional to the velocity or displacement. Hence velocity or displacement
feedback control can also be studied. Since it is intended to study acceleration,
velocity and displacement feedback it is useful to study the characteristic of a single
integrator and a double integrator. Kim et el. [4] measured the characteristic of a
single integrator of charge amplifier using the following approach.

In the frequency domain acceleration and velocity are related by,

X = joX

This can be rearranged to give,

X 1

X jw

Where X and X denote acceleration and velocity respectively. Therefore dividing
the velocity response measured at a point by acceleration response measured at the
same point gives the integrator characteristics. Similarly dividing the displacement
response measured at a point by acceleration response measured at the same point

gives the double integrator characteristics.

The B&K (type 2635) charge amplifier was used for this purpose. It contains a high
pass filter and an integrator module. For velocity and displacement response the high
pass filter can be set to a cut-off frequency of 1Hz or 10Hz. The measured
characteristics of single and double integrators are shown in figure A2.5 and A2.6.
Due to the low sensitivity of the actuator and sensor at low frequencies, the response
at low frequencies are not shown. Even with a 1Hz cut off frequency there is a small
phase advance at very low frequencies. However the phase approximately tends to -90

degree at high frequencies.
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The integraw_cor module in the charge amplifier performs integrations of the filtered
signals electronically. It is assumed that the integrator module and high pass filter can
be represented separately in a mathematical model (Refer Appendix 3).

Therefore the charge amplifier together with its high pass filter can be modelled as,

g @
cha _ ampl =—75¢ ! (A2.10)
1+ jr.0) 1+ jr.m)

where g is the gain of the charge amplifier and 1/7. and 1/7; are the corner frequency
of the high pass filter and integrator respectively.
There are three unknown in equation (A2.13), only two can be found using magnitude

and phase information. Hence one of the coefficients has to be fixed to a suitable
value. The most appropriate is to fix the time constant 7. to the setting of the charge

amplifier cut-off frequency. The time constant 7, can be related to the cut-off

frequency of the charge amplifier by 7, = 2—1— , where f; is the cut-off frequency. For

1 Hz and 10 Hz cut-off frequencies 7, is 0.159 and 0.0159 respectively.

Therefore the overall mathematical model of the charge amplifier becomes,

Cha _ampl =—829 1 a2.11)
1+ jO.15%w) (1+ jz,w)

Cha_amplo=—3822 1 (A2.12)
1+ j0.015%w) (1+ jr,w)

Using a similar approach to the power amplifier, the charge amplifier characteristics

can be written as,

Cha _ampl = J 4'.153960 X ! At cut off 1Hz (A2.13)
(I+ jO.15%w) (1+ jO.251w)
Cha _amplo=—200670 ! At cut off 10Hz (A2.14)

(1+ jO.015%w) (1+ j0.0333w)

A2.3. Charge Amplifier with double integrator module

Figure A2.6 shows the charge amplifier characteristic at double integration. A cut-off
frequency of 1 Hz was used. Therefore, it can be assumed that the high pass model in
equation (A2.16) is unchanged. Therefore a mathematical model for the charge

amplifier at double integration can be written as,
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Cha _amp _ double=—5% s 1 (A2.15)
(1+j0.15%) (1+ jr,0)

Using the phase and magnitude relationship and applying a similar argument

presented for power amplifier, the double integration model can be expressed as,

75.0752 1
X

A2.16
(1+ jO.15%@) (1+ jO.1757w)> ( )

Cha _amp _ double =

Fig A2.6 also shows the Bode plot of this mathematical model. It can be seen that the
representation up to about 3Hz does not reflect the measured characteristic exactly.
However apart from that it is a reasonable representation. One reason may be the
inaccuracy of the measured response at low frequency. As mentioned above at low
frequencies the accelerometer has low sensitivity.

Table A2.1 Equipments used for experimental work

Name Manufacturer and model Serial Number
Accelerometer B& K type 4375 1760059
Charge amplifier B& K type 2635 1446895
Power amplifier (1) H/H electronic TPA 50-D | 14415
Power amplifier (2) H/H electronic TPA 100-D § 15397
Shakers Ling dynamic systems 1td | 40326.21
Model V101
Analyser Harvard Packard Analyser B
— Analyser -
Power amplifier

White noise

Figure A2.1 the arrangement for measuring frequency response function of Power

amplifier
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Figure A2.3 Measured and mathematical model of the characteristic of power
amplifier 2

(Each curve in the magnitude plot corresponds to the gain settings in the power
amplifier from its lowest position. As the gain increased the plots shifts upwards in
the direction shown. Corresponding gains are -

[0.002,0.0045,0.0075,0.0131,0.0162,0.020])
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Figure A2.5 Measured and mathematical model of charge amplifier characteristics at

IHz and 10Hz cut-off frequencies.
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Figure A2.6 Measured and mathematical model of Charge Amplifier characteristic at

double integration
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Appendix 3

A3. Integrators and filters

As mentioned previously power amplifiers and charge amplifiers consist of high pass
filters. In addition the charge amplifier also consists of low a pass filter and an

electronic integrator. In this appendix their basic mathematical models are discussed.

A3.1 Electronic integrator
Electronic integration, at the most basic level can be achieved using a circuit similar

to the one shown in figure A3.1, where R and C denotes resistance and capacitance

respectively.

When a voltage V;, is applied at the input, the voltage across the capacitor V,,; can be

shown to be,
Vv
2 = ! (A3.1)
V., 1+ joRC
Letting 7, = RC equation (A3.1) can be written as,
Vou = L (A3.2)
V., 1+ jT,0
When 7.0 1 then,
V.
Vo =[L] = (A3.3)
JjT. o

Similarly when7,.@w << 1 then

Vou = Vi (A3.4)
Comparing equations (A3.2), (A3.3) , it can be seen that an electronic integration has

taken place only when 7,0 =>1. The factor I/7; is usually taken care of in internal

calibration [18]. It is also clear that there is no true integration below a certain

frequency (i.e. when 7, <<1) and there is almost true integration above a certain

frequency (i.e. when 7,@ >>1). Hence there exists a frequency range in which only a

partial integration is taking place. As all of the experiments were in frequency range
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0 ~ 200 Hz, it is appropriate to model the integrator module as —1--_—“ This
1+ jT,0)

model will also deal with the region of partial integration. Whereas a model of

it
although theoretically a good representation it will not include the region of partial

, can be used.

integration. However in high frequency models

it

A3.2 High pass filter

High pass filtering can be achieved using a circuit similar to the one shown in figure
A3.2, where R and C denotes resistance and capacitance respectively.
When a voltage Vi, is applied at the input, the voltage across the capacitor V,,; can

be shown to be,

V}znut —_ JRCCO (A3 5)
V. 1+ joRC '

hin

Letting 7, = RC and substituting in equation (3.4) gives,

thul — jfk w

= _ (A3.6)
Ve 1+J7,0

where 1;, is called time constant
Equation (A3.5) gives the frequency response function of first order high pass filter.
The constant in the numerator of equation (A3.6) can be grouped with gains of the

instrument to which it 1s attached.

A3.3 Low pass filter

Basically Circuit for low pass filter is same as integration circuit, but the difference is
that the product RC is very small compared to the integration circuit RC product.

Hence the frequency response function for low pass filter can be written as,

Vz‘ou: _ 1 (A3.7)
V, 1+ jr,0

fin
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Vin CT Vout

Figure A3.1 a simple RC integration network

Vin R Vout

Figure A3.2 a simple RC high pass filter network
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