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L. Andersen and C.J.C. Jones Multi-domain BEM in Three Dimensions

Summary

The report describes the theory for three-dimensional boundary element analysis of viscoelastic
media in the frequency domain. Quadrilateral and triangular elements with quadratic interpola-
tion are used in the discretization. A model is developed which may be used for the analysis of a
structure consisting of several open or closed boundary element sub-domains. Furthermore, the
method allows for a simple coupling method to a finite element scheme. The method outlined
in the present report forms the theoretical basis for the boundary element program BEASTS,
the documentation for which may be found in Reference [2].

For the analysis of structures or layered ground with a single plane of symmetry, a method
for reducing the mesh, making use of the geometry, is developed. Finally numerical examples
are given for a homogeneous and a layered half-space. The results from the boundary element
scheme are checked against a semi-analytical solution, and especially the effects of the trun-
cation of the boundaries are investigated. The boundary element scheme is found to provide
satisfactory results when only three elements are used per wavelength, and the local behaviour
at a loading point is well described, even when the mesh ends less than a single wavelength
away from the source.
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Glossary of Symbols

Greek Symbols

r Surface of domain for BE formulation

Ly Surface of boundary element j

r, Part of boundary where non-zero traction is applied

A Dilation

X5 Component 4,5,/ in the Green’s function for the stress in the frequency domain

®; Shape function matrix for element j

@, Scalar field for load applied in coordinate direction { in Helmholz decomposition of
load field

T, Vector field for load applied in coordinate direction ! in Helmholz decomposition of
load field

Q Domain for BE formulation

o, 8 Terms of the displacement Green’s function

By Kronecker’s delta

du Virtual displacement field vector

du; Virtual nodal displacements for element j

op Surface traction vector

ow Virtual work

dwy Virtual work on the surface of element j

€5 Component ¢, of the infinitesimal strain tensor

v Poisson ratio

A, Lameé constants for a homogeneous isotropic elastic medium

&:.&  Homogeneous element coordinates

&3 Third hoinogeneous coordinate for triangular elements

i, Mass density

T35 Component ¢,j of the Cauchy stress tensor
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&; Shape function for node 7 of an element

@y Scalar field for load applied in coordinate direction { in Helmholz decomposition of
displacement field

i Vector field for load applied in coordinate direction / in Helmholz decomposition of
displacement field

w Circular frequency

Latin Symbeols

B; Component ¢ of the load per unit mass in the frequency domain

B Component 2,7 of the unit amplitude harmonically varying load in the frequency do-
main

¢ Matrix with geometry constants for an entire BE domain

Cy Component ¢,/ of the geometric constant tensor for a collocation point

E Young’s modulus

F; Nodal force amplitudes for degrees of freedom in element 5

G Square displacement Green’s function matrix for an entire BE domain

G Non-square displacement Green’s function matrix for an entire BE domain

Gireda  Square displacement Green’s function matrix for BE domain ibed

H Sum of traction Green’s function matrix and geometric constants matrix for an entire
domain

H Traction Green’s function matrix for an entire domain

Hiteq  Sum of traction Green’s function matrix and geometric constants matrix for BE domain
thed

J Jacobian

Kieq  Equivalent FE stiffness matrix for BE domain ibed

N Number collocation nodes in a BE domain

N’ Number of columns in non-square displacement Green’s function matrix for an entire
BE domain

Ng Number of degrees of freedom in boundary element domain
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Np
Nj
NE
p*
Pipeq

*

il

Tived
U*
U
Uibed

*

il

cp
Cs

Eijk

P;

Number of degrees of freedom in finite element domain

Number of nodes in element j

Number of integration element in a BE domain

Traction Green’s function matrix for a collocation node

Nodal displacements for BE domain ¢bed

Component ¢ of the surface traction

Component 4,/ in the Green’s function for the surface traction in the frequency domain
Nodal traction amplitudes for element j

Transformation matrix for BE domain ibed

Displacement Green’s function matrix for a collocation node

Component ¢ of the displacement field in the frequency domain

Nodal tractions for BE domain ibed

Component 7,/ of the Green’s function for displacement in the frequency domain
Displacements for all degrees of freedom in a boundary element

Component : of the load per unit mass in the time domain

Group (energy) velocity of waves

Phase velocity of pressure waves

Phase velocity of shear waves

Permutation symbol

Frequency

Nodal force vector for degrees of freedom in element j

Wave number for pressure waves

Wave number for shear waves

Index used solely to indicate the direction of the load in the Green’s functions
Outward unit normal vector

Nodal tractions for element j
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Dj Component j of the surface traction

r Distance between the observation point and the source point
t Time

u Displacement field vector

U; Component ¢ of the displacement field in the time domain

X Position vector to observation point

X; Coordinate vector for collocation node 4

T; Component ¢ of the position vector x

y Position vector to source point

Y Component ¢ of the position vector y
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1 Introduction

For a homogeneous or a layered half-space with horizontal surface and interfaces an analytical
solution may be derived for the response due to excitation on the surface or within the ground.
However, for structures/layered ground with complicated geometries, such as a bored or cut-
and-cover tunnel, the need arises for a numerical solution. In the case of structures and media
of (semi) infinite extent, the boundary element method is a powerful tool due fo its inherent
capability to model radiating waves. Thus it is particularly useful for the analysis of submerged
railway structures, which are the primary concern in the present project.

A variety of problems may be analysed using a two-dimensional model. For the exami-
nation of the wave propagation due to a line load in e.g. a railway tunnel, a boundary element
program was developed in References [5, 7, 6]. However, when point forces, or sources that
are otherwise confined to a limited space, are applied, a three-dimensional boundary element
scheme has to be used - even if the geometry of the structure is two-dimensional as is often the
case in railway engineering. The present project deals with the formulation of a boundary ele-
ment (BE) scheme, which may be used for the analysis of wave propagation through the ground
due to harmonically varying excitation in a railway tunnel. Ground borne noise has a dominant
frequency range of about 30 Hz to 160 Hz. However, vibration that is perceptible as ‘whole
body vibration’ has a nominal upper frequency limit of 80 Hz. The objective is to develop a BE
model capable of dealing with three-dimensional wave propagation problems in this frequency
range with reasonable computing resources.

With the computing resources available, elements with lower order interpolation (i.e. con-
stant or linear elements) are inadequate for the discretization for this frequency range since the
rate of convergence is very slow. Thus an immense amount of degrees of freedom are needed at
high frequencies to obtain satisfactory results. On the contrary only 3-4 elements ~ 6-8 nodes
per wave length are found to be sufficient when quadratic interpolation is used. Therefore nine-
noded quadrilateral elements and six-noded triangular elements are used in the present work.

A method for coupling several BE sub-domains, and possibly also BE domains with finite
elements, is described. Different coupling techniques are considered where either surface trac-
tions are transformed into nodal forces (in a finite element sense) or nodal forces are interpreted
as surface tractions (in the boundary element sense). For reasons given in Section 3, it has been
chosen to transform each boundary element into a macro element, thus performing the coupling
in the finite element way.

The theory explained in this report has been implemented in a suite of computer programs
entitled BEASTS (Boundary Element Analysis of Soil and Three-dimensional Structures). A
further description of the software may be found in Reference [2]. In the documentation of the
software, numerical examples are given of wave propagation due to a stationary, harmonically-
varying point source in a bored tunnel. In this report examples are given of wave propagation due
to excitation on the surface of a homogeneous or layered half-space and comparisons are made
with a semi-analytical solution and a BE scheme using the original surface traction approach.

ISVR TM 867 1
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2 Formulation of a Boundary Element Domain

The first step in establishing a multi-domain boundary element model is to have a model for a
single BE domain. For this purpose the formulation of a BE domain is given in this section.

2.1 Outline of Boundary Element Method Theory

Consider an elastic body 2 which has the surface T" with outward unit normal vector n, see Fig-
ure 1. The basic idea of the boundary element method (BEM) for elastidynamics is to establish
a relationship between the known and unknown values of the displacement and the surface trac-
tion on the boundary. To achieve this, a discretization and numerical integration only has to be
performed over the surface I', not over the entire domain €. This reduces the spatial dimension
of the integration by one when compared to the finite element method (FEM),

Figure 1. The domain © with surface I" and outward unit normal n.

The fundamental equation in the elastodynamic BEM is the boundary integral equation
known as Somigliana’s identity. This equation, which is derived from the Betti reciprocal theo-
rem, uses the Green’s functions as weighting functions. Since the Green’s functions automati-
cally satisfy the Sommerfeld radiation condition, the BEM is especially well-suited to problems
involving exterior domains, e.g. layered or homogeneous soil.

The following subsection describes how the Green’s function for an elastic, homogeneous
and isotropic continuum is derived for dynamic analysis in the frequency domain. Subsequently,
in Subsections 2.2 to 2.5, the different steps in the discretization and intergration process are
described. Finally, a discussion of how to model more complicated structures than is possible
with a single BE domain is to be found in Subsection 2.6.

ISVR TM 867 2
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2.2 Derivation of the Frequency Domain Full-Space Green’s Functions

In Cartesian coordinates, z;, the time domain equation of motion for an isotropic, homogeneous
viscoelastic medium with mass density p may be written,

2

o ui(x, 1), (D

0
205X, 1) + pbi(x,t) = v

a.’L'j
where 0;;(x,1) is the Cauchy stress tensor, u;(x,t) is the displacement field and b;(x, ¢) is the
load per unit mass. Vector X is the position in space and ¢ is the time. The summation convention
applies, i.e. summation is performed over repeated indices.

Introducing the Lamé constants A and g, the stress tensor may be expressed in terms of the
dilation, A(x, ), and the infinitesimal strain tensor, €;;(x, t),

03X, t) = AA(X, 1) 855 + 2pei5(X, 1), 2

where 4;; is the Kronecker delta and the following definitions apply,

A(x,t) = a;;uk(x, ), €(x1)= % (aimiuj(x, )+ aimjui(x, t)) i 3)
Inserting (2),(3) into (1), the equation of motion in the time domain obtains the form
o & ok
(A+p) muj (x,t) + #83:3-8% u; (X, 1) + pbi (x,t) = p@ui(x, t). €Y

For exitation at a single circular frequency, w, the components of the load per unit mass
may be written b;(X,t) = B;(x,w) e**. Consequently the displacement will also be harmoni-
cally varying with time as u;(x, t) = U;{x,w) e™*. Hence, in the frequency domain, skipping the
exponential time variation terms, the equation of motion becomes,

& & \

2.2.1 Green’s Function for the Displacement Field

The frequency domain Green’s function (or fundamental solution) for the displacement,
U (x,w;y), is the solution to Eq. (5) for a harmonically varying point force with unit amplitude
applied at the point y in the /th direction, that is for a load of the form pBj(x,w;y) = 6(x — y) 6;.
Here 4(-) is the Dirac delta function. Thus the Green’s function is obtained as the solution to,
o? 9 5

(A+p) MUJ‘:(X: w; ¥) + #8—3:;“55:; a(X,w;y) +6(x—y) 8y = —p U (x,w3y) . (6)
The subscript { is not an index in the ordinary sense. It is used to indicate that there is not one,
but three times three equations of motion, three for each [ = 1, 2, 3. Subsequently, the subscript
{ will only be used to indicate the coordinate direction of the point Ioad.
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In order to find the displacement Green’s function, the principle of Helmholz decompo-
sition is used. This implies that each of the fields B} (x,w;y) and U}(x,w;y), defined on the
domain €2, may be written as the sum of the gradient to a scalar field and the rotation of a vector
field, i.e.

; 9 8
03) = gDl wsy) +egrg - Tulxwiy), )

. ad
éz(XaWQY) = a gjﬂbkz(xaw%ﬁa (8)

where e;;;, is the permutation symbol. The three scalar fields ®;(x,w;y) (one for each coordinate
direction of the load, {) and the three vector fields ¥;(x,w;y) are derived from the load field as

1 0 1 9 /1
@l(xaway) - 4’]T 8;1:2 z!(x w3 Y)dy"”"‘ _&'55; (T’) ) (9)
1 7, 1 d f1
zl(x W Y) e?—jk [ B;l X, w; Y) dy— - z;,vlar ( ) (10)
¥

Here r = |x — y/| is the distance between the observation point X and the source point y. Taking
the divergence and rotation, respectively, of Eq. (6) the following inhomogeneous frequency-
domain wave equations are produced,

&2 1 9 (1
C%J_axg X, w3 ¥) — 1np 0z, (;) = —wpi(X,w;y), (11)
3
9 1 g [1
2 = o . e Y 2 .
CSaxjngl(X:wsY)+ 471'[)6”[8333; (T) W %(X,w‘,y)- (12)

where ¢: = (A + 2u)/p and c% = p/p. These are identified as the phase velocities for pressure
(or dilatational) and shear (or rotational) waves, respectively. It should be mentioned that the
letters P and .S origin from earthquake engineering and are acronyms for primary and secondary
since the P-waves will arrive before the S-waves at any location not being the source point,
given that A > 0 which holds for all real materials. Next, the substitutions

d )
wi(X,w;y) = —%P(XJW;Y) s (X, w;¥) = e o7 5(X,w;y) (13)
are introduced. Furthermore, let kp = w/cp and ks = w/cg denote the wave numbers for pres-
sure and shear waves, respectively. Equations (11) and (12) may then be written,

2 2

1 8
a—ﬂgp(x,w;Y)-l- 5 :—k%p(x,w;y), 52 2s(x w;y)+

= —k2s(x,wy). (14
47TPCPT kSS(XJ Wy Y) ( )

drpcir

The particular solutions to Equations (14) are both p,(X,w;¥) = (X, w;y) = —1/ (drpuw?®r),
whereas the complimentary solutions are p.(X,w;y) = ¢y (1/7)e**" + ¢y (1/r) e %" and

ISVR T™M 867 4
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Se(X,w;y) = dy (1/7) €% + da (1/r) e~™s*. With the given definition of the harmonic time
variation, i.e. a variation of type €™, the first term of each of the complimentary solutions
corresponds to waves coming in from infinity. For physical reasons these terms must be disre-
garded, i.e. ¢; = d; = 0, since energy must propagate away from the source. It should be noted
that the group velocity ¢, = w/d% in an infinite homogeneous elastic continuum, and there-
fore the velocity of energy propagation, is equal to the phase velocity ¢ = w/k. When the Lamé
constants are real, the phase velocities and therefore also the group velocities are independent
of the frequency, i.e. the waves are not dispersive.
Subsequently, as the solution must be finite for r — 0, the full solutions are derived as:

1 1
47 pwr 47 pusr

p(X,w;y) = (7" —1), s(x,w;y) = (e7®s™ —1). (15)
By ditferentiation of the solutions (15) as defined by Eq. (13) and subsequently Egs. (7) and
(8), the following Green’s function is finally obtained for the amplitudes of the time harmonic

displacements,

1 or or
s(xwry) = O — B—— 1, 16
where
1 1 1 Ziner G f 1 1 ikp
— = _ L5 _ % T 17
“ (r * iksr? k§r3) ¢ b \ikpr: ki3 © (7
1 3 3 iksr_ 8 (] 3 3 —ikp
_(1 : _ G (4 _ thpr 18
P (r + ikgr? k§r3) ¢ cH \r * ikpr?  kErd ¢ (18)

2.2.2 Green’s Function for the Stress Field

The frequency domain Green’s function for the stress, Eﬁﬂ(x,w; ¥), is derived by insertion of

the displacement Green’s function defined by Eqgs. (16)-(18) into Eq. (2) formulated in the
frequency domain, that is

. d . 0 . a .,
Y(x,wy) = AEEUM(X,W;Y) i + 1 ('5:;: (x,wsy) + e -;(XaW;Y)) . (19}

J

Expressed in terms of the parameters « and S, the stress Green’s function reads

. 107 da 98 28\ Or Oa { Or or
Eij:(":%)’)—i;[(?s— )(E—E*? 3_5616”+5(3$i5ﬂ+8wj§“ —

B8 { or or ar or or Or 08 or Or Or
L A ST Il R Tk i i i
(6:63' %t Ox; S+t 23sc,g % Oz; Oz; Oy )

where it has been used that A = p(c% — 2¢2) and p = pc. The directional derivatives da/Or
and 03/ 0r are easily obtained from Eqs. (17) and (18),

ISVR TM 867 5
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aOf iks 2 3 .kS C%' ]. 3 3 'ikp’r’

—_— ST = - 21
or ( v 2 gkerd + kgr“) ¢ + ch \ 72 + ikpr®  kirt ¢ (2D

8_5:(_ik_s_i_.i_k-g_)e—iksn}_f%(%_P_l_i.,_i___%%) —kpT (22
5

r 12 ikprd  kirt

2.2.3  Green’s Function for the Surface Traction

The frequency domain Green’s function for the surface traction, Pj(x,w;y), is obtained by
taking the dot product between the stress Green’s function tensor and the unit outward unit
normal vector, 7;. This Ieads to the formulation

i (%, 03 ¥) = X3 (%, w; y) 1y (23)
which after insertion of the result (20) gives

. 1 Iré da 88 28 da [ Or or
P,g-,(x,w,y)_g K% 2) (B'r —ﬁ-—) o2, ‘f‘E (3—1:in1+57—?:5ﬂ) -

8 { or or or dr Or Or a8 or Or or
L y B i il
(ax,”‘ ™ 5l +28 T dx; Ox; On 2

Here Jr /0n is the derivative of the distance vector, r; = x; — ;, in the direction of the outward
unit normal vector .

2.3 Integral Formulation of the Elastodynamic Problem

Let two elastodynamic states be defined over the body €2 in the frequency domain. The two states
have the complex amplitudes of displacement, traction and body forces U} (x,w), P (x,w),
B} (x,w) and UZ(x,w), P?(x,w), B(x,w), respectively. From the Betti Reciprocal Theorem
the following relationship may be formulated between the two states [3],

| Pix ) vz ar - [ pBlxw) Uz (s,w) 4o =

r Q
f P2(x,w) U (x,w) dT" + f pB2(x,w) Ul(x,w)d2. (25)
y Q

Taking U} (x,w), P}(x,w), B}{(x,w) as the state of real, physical displacements, tractions and

body forces, and assuming that the second state corresponds to the fundamental solution, Equa-
tion (25) changes to

mmm+f$mmwmwmw:
T

[ Vit Py)ar + [ pimasy) Blse)do. @0
r

ISVR TM 867 6



L. Andersen and C.J.C. Jones Multi-domain BEM in Three Dimensions

Making use of the reciprocal relation U}(x,w;y) = U} (y,w; X) (which will not be proved
here) and, furthermore, introducing the substitutions ¢ — {, I — ¢ and x — ¥, ¥y — X,
Equation (26) is rewritten in the following form,

Ui(x,w) + f Py (x,w3) Ui y,w) T =
r
f Uiw:9) Pls,) a0+ [ pUs(xsy) By, ) @D
T Q

This equation holds for any observation point X which is interior to the domain {2. In the absence
of body forces, the integral equation for a point on the surface may be derived from Eq. (27),
leading to the formulation

Cu(x) UI(XJW)+frﬂ§(xaw;}’)br.!(y,w)dr=[ a(%w;y) Py, w)dl. (28)
r

The tensor Cj(x) depends solely on the geometry of the surface I at the point y. Cy(y) = %é}-t if

the surface is smooth at X. For any other configuration of the surface geometry at the observation
point other values of C;;(x) are obtained.

Equation (28) is referred to as Somigliana’s Identity and forms the mathematical basis
for the direct boundary integral and boundary element methods. It should be noted that the
integrals over the Green’s functions for both the displacement and traction are singular when
the observation point X coincides with the source (or integration) point y. These singular terms
must be treated in a special way in the numerical integration as explained in Subsection 2.5, or
the accuracy of the results will be reduced significantly.

24 Discretization Using Quadratic Shape Functions

The next step in the development of the BEM is to discretize the state variable fields U;(x,w)
and P;(x,w) into the values at N so-called collocation nodes. Accordingly the surface intergral
is exchanged with a sum of integrals over VE elements. The displacement and traction fields
are interpolated over each element using a set of shape functions, which are also used to ap-
proximate the geometry, i.e. the elements are isoparametric. This step is sirnilar to the finite
element approach. However, the Green’s functions are used as weight functions instead of the
shape functions, which are used in a standard Galerkin FEM scheme. It should be noted that the
BEM allows the use of constant elements, where the displacement and traction is assumed to
be constant over the entire element leading to discontinuities at the element edges. This kind of
element is however inadequate for most wave propagation problems as the convergence is very
slow compared to that of higher order elements, e.g. quadratic elements which have been nsed
in the present work. For flexural problems the constant elements do not work at all [3].

Let U;(w) and P;{w) be two (3N; x 1) vectors storing the nodal displacements and trac-
tions, respectively, for the V; nodes in element j. Furthermore defining x; as the (3V; x 1)

ISVR TM 867 7
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coordinate vector for the element nodes, the displacement and traction fields over the element
surface I'; as well as the geometry may be described in vector form,

U(x,w) = 2;(x) Uj{w), PE,w)=2;(x)Pj(w), x=;x;, (29)

where x is a point (1, 24, 23) on the element surface I'; and ®;(x) is a (3 x 3V;) matrix storing
the shape functions for the element,

S 0 0 ¢ 0 0 - gy 0 O
‘i’j(X): 0 ¢1 t] ] (]52 6 .- 0 ¢Nj 0 . (30)
0 0 ¢ 0 0 ¢ - 0 0 gy

Each of the components ¢,, n = 1,2, ..., N;, is the shape function belonging to the nth element
node and depends on the position x on the element surface. With the definitions in Equation (29)
the discretized boundary intergral equation, i.e. the BEM formulation of Eq. (28), for a single
collocation node with the coordinates x; obtains the form

NE
C(x;) Us(w) + Z {fr P (x;,w;¥) @;(y) ng‘} Uj{w) =
%

J=1

fU*(Xé:w§Y)‘I'j(Y)dFj}Pj(w): (31D

T;

where NE is the number of boundary elements in the domain and U;(w) are the complex am-
plitudes of displacement at x;. Notice that the integrals over each of the element surfaces I'; is
carried out with respect to the source point coordinates y, not x; which is a single point.

The N matrix equations for each of the collocation nodes in the BE domain may be assem-
bled into a single, global matrix equation for the entire domain. In the present work an approach
has been taken where neighbouring elements share the nodes along the common edge. As the
displacement field must be continuous across the element boundaries, the contributions from
all adjacent elements fo an integration node may simply be added. However, the traction is not
generally continuous across element edges. For example discontinuities arise at corners because
the direction of the unit normal vector varies. This means that the contributions from adjacent
elements to a collocation node have to be stored separately. With this in mind the global system
of equations for the BE domain is given as

C + H )y U = G P 32)
(3N x 3N) (3N x 3N) (3N x 1) (N'x3N) (BN x1)

The C matrix stores the (3 x 3) matrices C(x;) for each of the observation nodes along the

diagonal and is otherwise empty. The values of the integrals over the Green’s functions for the

traction and displacement are stored in H and G, respectively, and U and P are vectors with

the displacements and tractions at each node and for each degree of freedom. Underneath the
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equation the dimension of each matrix/vector is given. For the G matrix, N’ = 3 Zjvfl N; is the
sum of degrees of freedom in each of the elements, keeping the degrees of freedom for multiple
coincident element nodes separately.

In the computer program BEASTS that has been developed in the present project, the BE
system of equations is eventually transformed into a finite element one, see Section 3. This
means that discontinuous tractions are not allowed in the model, which may suggest that the
model is not accurate when discontinuous tractions are actually present in the problem being
analysed. It is therefore checked by numerical experiment that no significant discrepancies arise
in the results obtained with such a model compared to the results calculated with the original
BE model, see Section 4. When the FE approach is used, the tractions are continuous in the
same way as the displacements. Hence a reduced version of the original matrix G may be used.
In the new matrix G the contributions to a collocation node from different elements are added.
Furthermore, introducing H = C+H, Equation (32) reduces to

H U = G P

(3N x 3N) (3N x 1) (3N x 3N} (3N x 1) (33)

which is the matrix equation established for each of the domains in the program BEASTS.

For any combination of collocation nodes and integration nodes that are not coincident, i.e.
X; # ¥i, a standard Gauss-Legendre quadrature rule may be used for numerical integration over
each element, given that the element geometry is described in terms of homogeneous coordi-
nates, as discussed below. However, when the collocation node is the same as the integration
node, singularities arise in the integrals over the Green’s functions. A means of dealing with
these singular terms is developed in Subsection 2.5.

In the computer program BEASTS there are two types of boundary elements available:
a nine-noded quadrilateral element with biquadratic interpolation and a six-noded triangular
element with quadratic interpolation. As the direction of the normal vector n is essential to the
calculation of the traction terms, the direction of the normal vector must be determined uniquely
from the clement topology. This is ensured by always numbering the nodes in clockwise order
around the element when looking in the direction of the normal vector, i.e. out from the domain.
The node ordering is illustrated on Figure 2.

In order to use a standard Gauss-Legendre quadrature rule for the numerical integration,
each of the curved elements must first be mapped into a generic element. Hence, a local (£;, &)
coordinate system is established for the quadrilateral elements, see Figure 2 (a). The elements
are mapped into this plane coordinate system so that any point on the part of the boundary
that belongs to the element lies within the square defined by —1 < &, < 1 and -1 < & < 1.
Expressed in terms of &; and &, the nine biquadratic shape functions ¢,, n = 1,2,...,9, for the
quadrilateral element may be written as

h=;E-8)E-8), p=21-)(E-8&), ds=1{E1+E) (2~ &),
$pa=5E+E)(1-8), =G+ (&+E), dbe=1(1-ED)(&+E), (34
= (E~E)(e+8), 6= -6)1-8), ¢p=(1-N(1-2D).
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(a)

Figure 2, Mapping from 3D Cartesian coordinate space (21,22, z3) into plane local coordinates (£, £2):
(a) Nine-noded quadrilateral element with biquadratic interpolation, (b) six-noded triangular element
with quadratic interpolation. The normal vectors n are pointing out from the domain.

Stmilarly for the triangular elements the six quadratic shape functions are defined for a
local plane coordinate system as illustrated on Figure 2 (b). The N; = 6 shape functions are:

$r1=6026-1), ¢2=6(26-1), ¢3=2E(26—1), (35)
b1 = 461§, @5 = 46283, P6 = 483¢1,
where 0 <& <1land 0 <& <1—&,. The third local coordinate €3 = 1 — &£ — &, is dependent
on the first two coordinates and has been introduced for convenience only.

When the integration is performed over a single element in the local, homogeneous coor-
dinate system, the area as well as the shape of the element, is misinterpreted. A transformation
of the surface differential from the local plane coordinates to the three-dimensional Cartesian
coordinate space is given by

dl' = [J(&1,&2)| d€1dEe. (36)

where |J(£1,£:)] is the magnitude of the Jacobian which is actually just the length of the normal
vector (not the unit normal vector n) at the point.
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2.5 Evaluation of Singular Terms for an Open Domain

For the main part of the numerical integration, a six-point Gauss-Legendre quadrature rule is
used. In the finite element method where the quadratic shape functions would also be used as the
weighting functions, a two-point rule would be sufficient. However the BEM used the Green'’s
function as weighting functions. For the three-dimensional problem these are exponential func-
tions, meaning that a higher order of accuracy in the discretization will always be gained by
using more Gauss points per element.

When the collocation node is one of the nodes in the element over which the integration
is carried out, the standard integration is not satisfactory, as singularities arise in the Green’s
functions for the displacement and the traction. The next subsection explains how the different
singularities are handled in the program BEASTS.

2.5.1 Singularities of the Displacement Green’s Function

The terms of the matrix G contain singularities of the the type 1/r when the collocation node
coincides with the integration node. This is seen by considering Eq. (16) and substituting the
exponential terms in Egs. (17) to (18) by their Taylor series expansions, e ™" = 3" L (ikr)".
To carry out the numerical integration using a standard Gauss-Legendre quadrature over an
element where the collocation node is one of the element nodes, Dominguez [3] used a method

proposed by Lachat [8]. The main steps in the procedure are:

1. The element is divided into a number of triangles, each having one of the comers at the
collocation node (see Figure 3).

2. The integral over each of the triangles is performed using a standard Gauss-Legendre
quadrature rule over an equivalent collapsed quadratic element, but only for the shape
function belonging to the element node which is also the collocation node. The technique
is further explained below.

3. For all other shape functions a integration is carried out in the same way that is used for
elements where the collocation node is not one of the element nodes.

The collapsed quadrilateral elements are quadrilateral elements where two of the corner
nodes coincide so that one of the element sides has a length of zero, see Figure 4. When per-
forming the numerical integration over an element with such a geometry, the Jacobian will tend
to zero with ~ as r — 0. This zero of the type r cancels out the 1/r singularity. Hence the
accuracy of the Gauss-Legendre quadrature is satisfactory.

ISVR TM 867 11



L. Andersen and C.J.C. Jones Multi-domain BEM in Three Dimensions

7 6 5 7 6 5 7 6 5
8 9 4 % 9" 4 8 9* 4
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1 2 3 1 2 3 1 2 3
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3 3 2 3
1 5 2 3 /\ 2
2 3 2 3
(2) (b) (c)

Figure 3. Sub-division of a quadrilateral element when (a) the collocation node is at a corner, (b) the
collocation node is at a side and {¢) the collocation node is at the centre of the element.

2.5.2 Singularities of the Traction Green’s Function

The singularities of the traction Green’s function and thus the singularities of the matrix H are
of the kind 1/r* when the observation point coincides with the integration point. Therefore the
method proposed by Lachat does not provide a means of dealing with the diagonal terms of
the matrix H. To treat singularities of higher order than 1/r an alternative method has to be
used. In the present work a numerical method is proposed. It is based on static equilibrium
considerations for the surface tractions which normally only apply to closed domains [3]. To
generalise the method to cover open domains where parts of the boundary are not discretized, a
modified version of the enclosing elements technique proposed by Ahmad and Banerjee [1] is
developed.

The basis for the numerical method proposed by Dominguez and others for closed domains
is that the singularity in the dynamic frequency domain solution is the same as that of the static
solution. Hence, writing the total dynamic Green’s function matrix H for the stress as the sum
of the static part Hg and the dynamic residue matrix Hz,

H=H; + Hg, (37)

only the singularities of the static part Hg need to be treated in a special way. The remainder
Hpy may be determined using a standard Gauss-Legendre quadrature, since it contains no singu-
larities. In the three-dimensional case the rest term is derived by writing the exponential terms
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Figure 4. Sub-clement for integraton of 1/r sigularities: (a) triangular sub-element and (b) equivalent

collapsed quadrilateral element.

2

of the full elastodynamic solution as series expansions and subtracting the terms corresponding
to the elastostatic Green’s function [3].

The three-dimensional elastostatic traction Green’s function is the special case of the elas-
todynamic fundamental solution given by Equation (24) that is obtained for the frequency w = 0.
After rearranging the terms, the following solution is obtained:

* _ 1 1 [or or dr
Pia(x,wy) = “m;ﬁ {% ((1 —2v) 6 + 36%6—33!) +

(1-—2v) (na% — n;g}) } . (38

Here Pg,(x,w;y) is expressed in terms of the Poisson ratio v, which is related to the Lamé
constants as ¥ = A/ (2(A + p)). The 1/r? singularity is obvious in the static Green’s function.
As the static part Hg is constant, regardless of the frequency, it may be evaluated once and for
all and added to the dynamic rest term H, which is calculated for each individual frequency.

In principle, the singular terms of P (x, w;y) may be calculated analytically for any given
geometry. For a smooth/flat part of the surface, the singular terms at the coinciding observation
and source point cancel out because the normal vector n is perpendicular to the distance vector r.
Thus, the displacement should only be multiplied by the geometrical constant 0.5. However for
arbitrary geometries, e.g. at a corner, the singular terms are not zero and the geometrical constant
is different from 0.5. As the geometry may be quite complicated when quadratic interpolation is
used, an integration by analytical means becomes complicated. Therefore a numerical method
for dealing with the singularities as well as the geometry constants is preferred.

Dominguez [3] proposed a numerical method whereby the total contribution from the sin-
gular terms for Pg;(x,w;y) and the geometry constants may be derived. For a closed, interior
domain with no tractions applied on any part of the surface, there should be no local defor-
mations. Only a rigid body motion is possible, implying that all N (3% 1) nodal displacement
vectors in the BE model of the domain are the same. Combining this with the matrix equation,
Eq. (33), for the entire system leads to the N sub-matrix equations (one for each node 7):

N
(C (x;) + Zﬂs,-j) Uy =0, (39)

=1
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where Uy is the arbitrary rigid body motion, which is generally different from 0, and I:I_S'ij are
{3x 3) sub-matrices of Hg. Hence, the diagonal terms (or in fact the 3 by 3 sub-matrices along
the diagonal) of the matrix Hs (including both Hg and ©) may be evaluated as

N
Hgi = C(x;) + Hgy = — Z Hg,;. 40)
=L

For an open domain the method described above obviously makes no sense as parts of
the boundary are not described in the model. To overcome this problem Ahmad and Banerjee
[1] proposed that an artificial, enclosing boundary is constructed, merely for the evaluation of
the singular diagonal terms of Hg and the geometry constants. This is plausible because the
geometry constants only depend on the local geometry of the surface. This also applies to the
singularities of Hy since they arise in the contributions from a node to itself. Hence, any closed
region which has the correct local geometry for the true surface may be used instead of the
original open region for the purpose of determining Hg;;. Any shape of the domain will do for
the evaluation of the diagonal terms of Hg given that the following requirernents are met:

1. The distance between original elements and new, opposing elements must be at least one
element length to ensure sufficient precision. Otherwise singularities may arise in the con-
tributions from new nodes to existing nodes and vice versa.

2. The original geometry is modelled correctly at the nodes, for which the Hg;; terms are to
be found. In principle this only requires that the elements adjacent to the node in question
are taken from the original model.

The first point is a general rule of thumb for BE discretization and hence does not impose
any restrictions that are not already there. From the second point, it may be concluded that it is
not necessary to model the entire original open region and then add a number of extra elements
to establish a single, global closed domain. Instead the terms for each node may be evaluated
by creating a small closed domain around that specific node. This method of local enclosing
elements, which was first proposed by Jones and Thompson [5] for the two dimensional case,
has the following advantages compared to the original enclosing elements technigue:

s It may be faster/more efficient to find the solution to numerous small systems of equations
than to a single big system of equations.

e A local geometry for enclosing elements may easily be established automatically whereas
the construction of an enclosing boundary for the entire domain may require an extensive
amount of error checking to ensure that the enclosing elements do not intersect the true
surface.

# The method may be applied to closed domains as well as open domains. This simplifies
the programming of a general routine to find the Hg; terms.
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(2) (b

Figure 5. Construction of a false surface for a closed local domain: (2) a corner node on the original
surface is picked and (b) the local domain is formed.

Several ways to pick out a local part of the entire surface may be suggested. The method
implemented in the program BEASTS [2] has the following steps:

1. A loop is performed over all nodes, ¢ = 1,..., N, disregarding nodes that are not at the
corner of an element,

2. The NE; elements in the original model to which the selected corner node 7 belongs are
identified.

3. A copy of the original elements adjacent to the corner node is offset a distance of approxi-
mately one element length in the direction of the inward normal (that is —n).

4. The gap between the original surface elements and the copy is filled with NFE; elements,
thereby producing a closed domain.

5. Hgy; is calculated using Eq. (40) for the corner node ¢ and the neighbouring mid-side or
centre nodes. These nodes are all on a part of the surface where the geometry is unchanged
from the original open domain and will thus be determined correctly.

The method has been illustrated in Figure 5 and the five points in the procedure will be explained
in the following.

Ad. 1. Generally corner nodes are identified as nodes that belong to three or more elements. A
centre node of a nine-noded quadrilateral element belongs to only one element, and a mid-
side node of either a six-noded triangular element or a nine-noded quadrilateral element
belongs to two elements. Only at the edge, i.e. where the model of the open domain ends,
does special care have to be shown.

Ad. 2. When identifying the elements to which the selected node belongs, it should be checked
if the node is not a corner node in one/some of the elements. Definitely the node should
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not be the centre-node of a quadrilateral element, but also it is bad discretization practice
to join side-nodes with corner nodes. This would mean that the displacements along the
element junctions are inconsistent as the shape functions for corner and side-nodes are not
the same.

Ad. 3. By copying the original elements in the direction of the inward normal vector it is as-
sured that the local closed domain is on the correct side of the true surface. When the
surface is not flat at the selected corner node, the normal vector at the node is different
for each element. To ensure that the projection vector points away from all adjacent ele-
ments and into the domain, the projection vector may be taken as a weighted average of
the inward normal vectors.

Ad. 4, The distance between the two parts of the local surface consisting of the original NE,
elements and the copy thereof need only be of the same order as the distance across these
two surfaces. Hence, one element in the —n direction should be sufficient to fill in the gap.
By experiment it has been shown that adding another ‘layer’ of elements will not improve
the accuracy significantly, whereas the calculation time is increased significantly.

Ad.S. Hgy; is determined twice for mid-side nodes, and for centre nodes Hg,; may be de-
termined multiple times. To reduce computation time it is advantageous to keep track of
nodes which have already been analysed. However, the method described ensures that Hg ;;
is determined for each node at least once.

For some geometries of the surface in the model of the original open domain, the method
described above may lead to significant errors in the determination of Hg,; and thus in the
solution to the entire problem. Generally, to get an accurate solution the following conditions
should apply:

e all sides of an element should have lengths of the same order of magnitude,
& contiguous elements must be of similar size,

o the angle between two elements should not be close to 27,

e only slightly curved elements should be used.

In any case these conditions represent good practice for BE analysis of wave propagation prob-
lem. Hence, the fact that the method will only produce accurate results under these circum-
stances should not cause a difficulty in practice.

As an alternative to the described method, a bigger part of the boundary (i.e. more ele-
ments} may be picked out at a time, meaning that the local closed domain would consist of
more elements and that the Hg,;; terms would be determined for more nodes simultaneously.
However, this would complicate the construction of the false surface since a general means of
establishing the projection vector cannot be found. Moreover the described method has been
tested for several different geometries and has been found to work satisfactorily.
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2.6 Division of a Model into Sub-Domains

In the previous subsections, a formulation has been given for a single boundary element domain,
which may be open or closed. The use of such a model is however restricted to the analysis of
a loaded homogeneous half-space with arbitrary surface geometry or to a structure built from a
single homogeneous material. A model which may be used for the analysis of a layered ground
with an arbitrary geometry of the ground surface and the layer interfaces may be constructed
by coupling a number of boundary element domains. The system matrices G .4 and Hjpq for
each of the ibed = 1,2,... nbed boundary element domains are constructed as described in
Subsections 2.2 to 2.5.

Further domains may be used to describe built structures located beneath or on top of
the ground surface, e.g. a tunnel or a railway track, given that the structures can be divided
into a number of homogeneous regions. However, to obtain accurate results with the boundary
element method, elements that do not belong to the same part of a surface or interface must
not be close. Generally, distances less than one element length between two surfaces should be
avoided. Otherwise the singularities of the Green’s functions will lead to errors if a standard
quadrature rule is used for numerical integration [5].

Hence, boundary elements are not suited for the modelling of thin structures or structures
with detailed geometries. Here a finite element model is appropriate. For instance shell finite
elements may be used to model a tunnel lining more efficiently than boundary elements, and in
a local region with soil parameters shifting rapidly within short distances, solid finite elements
may be used.

Thus, a model where both boundary and finite elements are available is useful for the
analysis of problems involving a combination of (semi) infinite regions (e.g. a layered ground)
and built structures (e.g. a tunnel). In Section 3 it is described how such a model may be con-
structed. Also the choice of coupling method for implementation in the BEASTS software [2]
is discussed.

3 Coupling of Multiple Boundary Element Domains

This section describes how multiple boundary element domains may be coupled to form a global
system of equations representing the entire model for a given frequency. The coupling is estab-
lished on the basis of continuity of the displacement and equilibrium of the forces at the inter-
faces. For future use it is worthwhile to perform the coupling in a way that allows for a simple
implementation of finite elements in addition to the boundary elements. The main problem in
performing the coupling of a boundary element domain and finite element domain is that the
forces at the interface in the boundary element method are described in terms of tractions dis-
tributed over the element surface, whereas a description in terms of nodal forces is used in the
finite element method. This leads to two approaches to the coupling of BE and FE matrices. In
both it is assumed that the nodes of the neighbouring BE and/or FE sub-domains coincide.

ISVR T™M 867 17



L. Andersen and C.J.C. Jones Multi-domain BEM in Three Dimensions

1. The coupling may be carried out in the finite element sense by transforming each of the
boundary element domains to a macro finite element. An equivalent dynamic finite element
stiffness matrix is derived from the BE system matrices Gipeq and Hjpeq, and the surface
tractions are transformed into nodal forces.

2. The coupling may be carried out on the basis of equilibrium of the tractions on the inter-
faces. For this, the FE dynamic stiffness matrix must be transformed to one in terms of
tractions on the boundary.

The first of these options has been implemented in the software developed in the present
project, even if the computer program BEASTS does not facilitate any finite elements at the
present stage. This allows the resulting dynamic stiffness matrices for the individual BE do-
mains to be coupled in the finite element sense and for the response of the whole model to
applied nodal forces to be calculated. The method is described in Subsection 3.1. The second
approach has computational advantages but does not provide a simple means of dealing with
the problem of coupling at points where the implied tractions are discontinuous. Although it has
not been applied in the present work the method is described in Subsection 3.2 for future use.
In Subsection 3.3 a further discussion on why the FE approach has been chosen may be found.

3.1 Coupling in a Finite Element Sense

In the time domain, the work done by the surface tractions p(x, ¢) at a part ', of the boundary
in applying a virtual displacement field du(x, ¢) is given as

S = f (5u(x,4)}7 p(x,2) dT. @1)

The vectors describing the traction and virtual displacement fields are column vectors with the
three compounents p;(x,t) and u;(x,t), j = 1,2, 3, respectively.

Consider a single finite, or boundary, element on which tractions are applied at the bound-
ary I'; € I',,. The nodal displacements and tractions may be stacked in two column vectors u;(%)
and p;(t), which will have 3 x NN; rows in the three-dimensional case. Using the element shape
functions to interpolate the displacements and the tractions, the field quantities at any point on
the element surface become u(x, t) = ®;(x)u;(¢) and p(x, t) = ®,(x) p;(t), respectively. Thus
the work done for element j may be written

sy = (o)) [ {2,00)" 500 o0 @)

The work done by the surface tractions is equal to the work done by the equivalent nodal forces
£;(¢) that would imply the same virtnal displacement values, du;(t), at the nodes, that is,

dw; = {0u;(t) (). (43)
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Combining Egs. (42) and (43), the following relationship is derived,

50 = [ {800} 8@ dr (). @)

FJ
This provides a matrix expression where the shape functions are used to transform the surface
tractions p;(¢) on element j into the equivalent nodal forces f;(2). In the frequency domain the
transformation process becomes

Fiw) = [ {2,00)" &, a0, (w), 5)

where F;(w) and P;(w) are the complex amplitudes of the nodal forces and tranctions, respec-
tively.
Calculating the element transformation matrices represented by the integral in Eq. (45) for

all elements j = 1,2,...,J in BE domain ¢bed and assembling them into a global system for
the domain yields a transformation matrix T;.4 such that
Fived = TivedPiea- (46)

Here Fiy.q is a vector of nodal forces equivalent to the nodal tractions Py applied on the
domain. The dimension of the system (i.e. the number of rows in Fipeq, Tipeqg and Pjp.q as well
as the number of columns in T';.4) is equal to the number of degrees of freedom in the domain.
For a three-dimensional, elastodynamic BE domain that is three times the number of nodes in
the domain. The transformation matrix T;p.q is sparse. Due to the nature of the element shape
function matrices ®; two out of three components are in all cases equal to zero, and furthermore
only parts of the matrix T4 that belong to nodes of the same element will be filled.

Now consider the boundary element equation for a single domain, i.e. Equation (33) with
subscript ibed on each of the matrices and vectors. Premultiplication by Tp.q {Gz-,,ed;}“1 leads
to the formulation

[Tised {Givea} ™ Hivea) Uisea = TiveaPisea = Fipea. 47)

This defines [Tiseq {Givea} " Hiea] = Kines as the dynamic stiffness matrix for boundary ele-
ment domain zbed. The matrix K. relates the nodal displacements to the nodal forces applied
to the domain instead of the nodal tractions, as is the case in the original BE formulation. For
a number of BE domains the ibed = 1,2, ..., nbed stiffness matrices K;;,4 may therefore be
assembled in the FE sense along with any finite elements into a global stiffness matrix K repre-
senting the entire model.

As already mentioned, the present transformation method turns each boundary element
domain into a kind of macro finite element, that is a finite element with as many nodes as are
used in the BE domain. Since the Green’s functions are used as weighting functions, all degrees
of freedom in the individual BE domains are coupled, meaning that the matrices K,y are full.
However, the global system matrix K will only have a limited bandwidth, as is common for FE
matrices, given that only some of the nodes are coupled at the interface.
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Another thing worth mentioning is that the BE stiffness matrices produced in this way do
not have the usual FE property of symmetry, which is a disadvantage with respect to memory
storage space. Mustoe [9] suggested a method by which a symmetric boundary element stiffness
matrix can be produced. The methed is however slightly more complicated than the method
presented in this section, and furthermore the inversion of a matrix twice the size of K;;.; has
to be carried out. This is a major disadvantage as inverting the G, matrix is already a time
consuming process.

Tullberg and Bolteus [11] conducted a study of seven different stiffness matrices for a BE
domain, including the original non-symmetric stiffness matrix and six symmetric matrices. The
main conclusions from their study is:

I. The direct non-symmetric stiffness matrix, i.e. the matrix derived above, is the best in terms
of accuracy.

2. The direct non-symmetric stiffness matrix is as good as, or better than, a stiffness matrix
based on a finite element discretization with the same number of degrees of freedom. The
same conclusion was drawn by Jones et al. [7].

3. The manipulated methods involving symmetric matrices show a very poor rate of conver-
~ gence compared to the direct BE.

For these reasons it has been chosen to implement the non-symmetric stiffness matrix, the
derivation of which has been given in this section, in the software described in [2].

3.2 Coupling in a Boundary Element Sense

Instead of transforming the BE system matrices to an equivalent FE stiffness matrix and per-
forming the coupling in a finite element sense, the boundary element method formulation may
be used. This means that equilibrium of the tractions has to be ensured on the interface, rather
than equilibrium of nodal forces. For a coupling with finite elements, this implies that a refor-
mulation of the FE system matrices has to be carried out, but even for a pure BE model problems
arise in this method as will be described in the next subsection.

First, consider a single boundary element domain, ibed. Reordering the rows and columns
mto components belonging to the interface (superscript I) and the rest of the domain (super-
script [2) the matrix equation (33) takes the form

Uzbed szed G1bed l:Pgede ( 48)
nged szed szed

szed zbed
szed szed

Uibed

Next, for a finite element domain, similarly the system of equations becomes

KE K] [UR] [F] T T} {P] "
_KFE U};E FJ}I‘?‘E T Tf‘?IE P%‘E ’

where the transformation mastrix T rgz has been defined on the finite element domain.

ISVR TM 867 20



L. Andersen and C.J.C. Jones Multi-domain BEM in Three Dimensions

The conditions of continuity of the displacements and equilibrium of the tractions at the
interface between the BE and FE domains are now satisfied by

Uly=Ulp=U", P}, =Pl = | (50)

Thus, Equations (48) and (49) can be rearranged in the forms,

Uged
]nggi Hgid _Gﬁéd] I ggi [PR ] 1)
- ibed] .
HE B -Gl | | G
RR KRI TRI Usp RR
[KFE Kre TFE] Ul FE [PR] 52)
- FE| >
K& Kiz T Tr -

PI

which may eventually be written together to form one single matrix equation,

HEE HEL, -G, 07 [UZ, GEE 0

ol ol of | U)ol 0|
0 Ki Ki TH|| P 0 TiE P
0 K Kz Tl LUk 0 THE

(Nrg + Ng) x (Np + Np) (Nr+ Ng) x (NfF+ N§)

The first column of matrices on the left hand side consists of terms from the BE domain only,
the second and third column consist of terms for the interface part of both domains and the
fourth column has terms which solely relate the displacements and tractions in the FE domain
to one another. The dimensions of the matrices on the left and right hand sides of the equation
are indicated using the symbolds Nz, Ng, NE and N£, to represent the number of degrees of
freedom of the finite element domain, of the boundary element domain, of the non-interface
part of the finite element domain and the non-interface part of the boundary element domain,
respectively. If the tractions are known (notice that tractions may not be applied at the interface)
Equation (53) may be solved to find the displacements.

3.3 Choice of Coupling Method

The equivalent BE matrix method has been developed for the case of coupling a single FE and
single BE domain (Subsection 3.2). The complexity in implementing the method in a computer
program is greater where an arbitrary number of boundary element domains is involved. So is
the required effort in data preparation, since the interface and non-interface nodes of the FE and
BE domains must be identified, and the matrices repartitioned to introduce each new domain.
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The BE matrix method has the advantage over the FE matrix, or equivalent nodal forces,
method that there is no matrix inversion involved in producing the global system of equations.
This is the step (Equation (47)) which, for most practical problems, takes the greatest amount of
computing time. Thus, for problems involving a single BE domain with almost as many degrees
of freedom as the global system, the solution time may be doubled. The equivalent BE matrix
method is therefore considerably more time efficient. However from Equation (53), it is seen
that the equivalent BE matrix method requires more computer array storage space and thus is
less memory efficient. It also carries the minor disbenefit that tractions cannot be applied at the
interfaces of the domains.

No method has been developed here to solve the problem of discontinuous tractions in the
BE coupling method. One way to overcome this problem is to define multiple coincident nodes
where the discontinuities are present, hereby adding extra degrees of freedom to the global
system of equations. Alternatively extra equations may be implemented to ensure equilibrium
of the surface tractions.

For coupling with FE regions, extra terms would have to be derived. Mustoe [9] outlines
four methods of dealing with this problem in two dimensions. This would add considerable
complexity to the implementation of this method as well as its use. The method of expressing
the BE matrices in terms of nodal forces on a finite element basis avoids having to allow for
traction discontinuities at corners as well as at any point on smooth parts of the surface of the
boundary element domains. In the numerical examples given in Section 4, it will be checked
experimentally that this does not generate erroneous results compared to those obtained by a
pure BE scheme where discontinuous tractions are allowed. The test is however confined to the
analysis of a single boundary element domain.

Finally, a judgement also arises as to whether it is preferable to apply the loads in terms
of tractions over finite areas of boundary element (or finite element) surfaces or if it is more
convenient to specify the load in terms of nodal forces.

These reasons have contributed to the decision to implement the FE stiffness matrix ap-
proach of Subsection 3.1 rather than the BE matrix method described in Subsection 3.2.

3.4 Boundary Element Analysis of Problems with Geometrical Symmetry

Many problems of wave propagation through soil and solids involve structures and layered
ground that have at least one plane of geometrical symmetry. Examples include tunnels, tracks
and many types of foundations. When the geometry is symmetric the load and the correspond-
ing response may, in any case, be split into a symmetric and an antisymmetric part. The total
displacements may then be found as a linear combination of the displacements obtained by the
two analyses involving, respectively:

1. symmetry of the load and response around the plane of geometric symmetry,

2. antisymmetry of the load and response around the plane of geometric symmetry.

ISVR TM 867 22



L. Andersen and C.J.C. Jones Multi-domain BEM in Three Dimensions

Since the size of the system matrices depends on the number of degrees of freedom squared, the
demand for computer memory is quartered when a symmetric description is used. Furthermore
itis often much faster to make the two analyses for the reduced system than one analysis for the
original (the full) system. Naturally, if the load is purely symmetric/antisymmetric the benefit
from a symmetric description is even more pronounced.

In a finite element scheme only half the model needs to be analysed when a plane of
symmetry exists. Usually the degrees of freedom which are known to be zero at the plane of
symmetry are eliminated in the system of equations to satisfy the conditions at the interface
between the modelled and the non-modelled part. Alternatively a very high stiffness (orders of
magnitude higher than the average stiffness of the system) may be applicd for those degrees
of freedom so that the displacements here become insignificant relative to the displacements
elsewhere. The second approach has the advantage that no reordering of the degrees of freedom
is necessary. However, it is not physically correct, and mathematically the first method is more
efficient.

The introduction of a plane of symmetry in a boundary element scheme is slightly more
complicated than the implementation in a finite element scheme. One way to proceed is to
discretize the plane of symmetry so that the conditions that apply here can be introduced in the
same way as it is usually done in a FE scheme. However, this implies the introduction of degrees
of freedom that are not present in the original model. Thus the results may be less accurate and,
depending on the geometry of the model, there may be no or only a little net reduction of the
number of unknowns in the system of equations. Especially, if a half-space is considered, only
half the surface has to be discretized. However, the interface at the plane of symmetry has to be
discretized a similar distance into the soil to obtain the same degree of accuracy in the model.

Instead, a method has to be developed where a discretization of the plane of symmetry
is not necessary. For that purpose, consider the original BE system of equations for a single
domain with identical, but mirrored discretizations of the surface on either side of the plane of
geometrical symmetry y = 0,

Htt H U+ Gttt Gt Pt

(][ )
Superscripts + and — denote terms belonging to the half-spaces defined by v > 0 and y < 0,
respectively. Subsequent superscripts +—, for instance, indicate the influence to degrees of
freedom at y > 0 from degrees of freedom at y < 0. It is assumed that all sub-matrices are
square (which disallows discontinuous tractions) and that N/2 nodes are located on either side
of the plane of symmetry.

When the load, and thus also the response, is symmetric around the y = 0 plane, the fol-
lowing conditions apply for the displacements and the surface traction:

Ul(l?, _y:z:w) = Ul(mvy:z7w)1 Pl(ma _y:z:w) = Pl(may:zsw):
UQ(‘II’.) ”y!z:w) = “"UZ(m;y)z:w)a P2($: Wyaz:w) - —PQ(x:yyz:w)a (55)
U3(:'U: “‘y,Z,UJ) = U3($:y)z:w) » PS(:E} _yzzaw) = PS(«'E:E/: Z,W) .
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Thus the displacements and tractions in the x and z directions are the same on both sides of
the ¥ = 0 plane of symmetry, whereas the y components are refiected. The degrees of freedom
are now assumed to be ordered so that the ‘mirror image’ of degree of freedom 7 appears as
degree of freedom j + N/2. Furthermore rows and columns are reordered so that all z degrees
of freedom appear first, and all z degrees of freedom appear last on either side of the y = 0
plane. The arrays storing the displacements and tractions for the part of the model located at
y < 0 may then be written as:

I 00
U =Rs;U*Y, P =RsP*, Rg=]0 -1 0 |. (56)
0 01

Here I is the identity matrix with dimensions (N/6 x N/6) and 0 is the null matrix with the
same dimensions. R is denoted the reflection matrix for symmetric load/response. In the case
of antisymmetric load and response, the reflection matrix becomes

-1 0 0
Ry=| 01 0|=-Rg (57)
0 0 I

With the assumed order of the degrees of freedom, the original system of equations may
eventually be reduced to:

(H* +RH'") Ut = (G* + RGT7) P*. (58)

The reflection matrix R is equal to R and R4 in case of symmetric and antisymmetric load and
response, respectively, and only the first row of sub-matrices in Eq. (54) is taken into account.
Thus the system of equations may be halved in size by ‘adding’ the contributions from the
reflected part of the model to the part which is kept in the discretization.

In the present case only the part of the model present in the y > 0 half-space has to be
modelled, and the following steps have to be carried out in the integration process:

1. The influence from integration points on the part of the surface at ¥y > 0 to collocation
points at i > 0 are found in the usual manner.

2. The influence from the ‘mirror images’ of the integration points to the collocation points
are found by evaluating the same elements again, but with a change of sign on the y co-
ordinates for the nodes. The contributions are then assembled into the existing system
matrices.

Since the elements, and thus the local node order, will be mirrored in the process, a reordering
of the nodes in each of the elements produced in this manner at y < 0 is necessary to ensure the
correct direction of the normal vector. Alternatively, the model may be reduced to only include
the part of the domain present at y < 0. In that case the reduced system is established from the
second line of sub-matrices in Eq. (54). The refiection matrix remains the same.
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So far it has been assumed that half of the nodes are present on either side of the plane
of symmetry. This may be the case when constant elements are used, and is even possible
with linear elements. However, when quadratic interpolation is used, some of the nodes will
definitely have a y co-ordinate equal to zero when the discretization is strictly symmetric around
the y = 0 plane. This leads to some numerical problems which will be discussed below.

For the nodes on the plane of symmetry the contributions from a node and its ‘mirror
image’ are exactly the same. However, depending on the kind of symmetry, the sign on either
the y degree of freedom or the z and the z degrees of freedom will be opposite. Since the
contributions are added into one component in the G and H matrices, not stored separately
(as they are in the original description), this eventually means that some of the rows in the
reduced system matrices contain nothing but zeros. Notice that the diagonal term is zero, even
if it only stores the influence from a single node, namely the node itself. The reason is that half
the influence is obtained from one side of y = 0 and the other half is obtained by integration
over elements on the other side of ¥ = 0 to which the node also belongs. For the same reason,
the contribution to other degrees of freedom will also be very small. The terms in the columns
corresponding to the problematic degrees of freedom may even be zero if the other degree of
freedom belongs to a node which is also on the plane of symmetry.

As explained in the previous subsection, it has been chosen to perform the solution in a fi-
nite element manner. Each boundary element domain is transformed into a macro finite element
described by an equivalent stiffness matrix, the derivation of which involves an inversion of the
G matrix. When some of the row contain nothing but zeros, the system is ifl-conditioned. In the-
ory, the inversion of such a system is impossible. However, due to the small errors introduced in
the numerical integration, the terms in the problematic columns are not completely zero. Hence,
a solution of the system of equations is still possible in practice; but the the solution algorithm
is unstable and the results produced are erroneous unless the zero terms are in one or another
way removed/avoided in the G matrix.

To obtain a stable system of equations, the following approaches may be suggested:

I. A certain amount of asymmetry is introduced so that the contributions from the original
and the reflected elements are not exactly the same.

2. The rows and columns corresponding to the degrees of freedom which are known to be
zero are eliminated.

It has been chosen to implement the second approach in the computer program BEASTS. The
reasons are given below.

Ad. 1. One way of introducing asymmeiry is to disregard some of the nodes or elements in
the reflected part of the model. However the major problem is that some of the diagonal
terms become zero. Since these terms are calculated entirely from the elements adjacent
to the plane of symmetry, it is these elements (or the nodes of elements) that have to
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be disregarded to avoid the problematic zeros in the diagonal of G. Just disregarding the
elements/nodes in that are farthest away from the plane of symmetry, as it is common prac-
tice when the entire model is considered, will not stabilize the solution. Alternatively the
asymmetry may be introduced in an arbitrary way, simply buy adding small numbers to the
zeros terms in the G matrix. Mathematically this may be as good as leaving out elements
or nodes in the reflected part of the domain. However, it is impossible to give any phys-
ical interpretation of the error which is introduced in this manner. The conclusion is that
the first approach cannot be used, since the changes that are necessary to produce a stable
system are conflicting with the initial assumption that the model should be symmetric (or
antisymmetric) with respect to the y co-ordinate, at least in the vicinity of the y = 0 plane.

Ad. 2. The rows that contain zeros in all columns may be eliminated in the equivalent stiffness
matrix. In this way the ‘infinite’ stiffness terms associated with the degrees of freedom that
are known to be zero are avoided. However, even if the system of equations is, in this way,
not badly scaled, erroneous results will still be produced. The reason is that the remaining
stiffness terms for all other degrees of freedom are already determined inaccurately because
the G matrix is not fit for inversion. Actually the inversion is only possible in the first place
because a small numerical error has been introduced in the Gauss integration process.
Therefore the reduction of the system must be applied before the matrix inversion. This
implies a bit more bookkeeping, especially as it has to be ensured that the same degrees of
freedom are removed from all sub-domains in the entire model. However this should not
be a problem. Finally it should be noticed that when the degrees of freedom are removed
before the matrix inversion, the calculation time may be reduced significantly if a large
fraction of the nodes are on the plane of symmetry.

Hisatake er al. [4] proposed an alternative method which may be used to avoid an ill-
conditioned matrix for inversion. Basically, their idea was to establish the equivalent stiffness
matrix from the full system of equations, where the rows with nothing but zeros do not occur.
However this requires the assembly of the double amount of terms in G and H and a matrix
of the quadruple size has to be stored and inverted. Hence, the method suggested by Hisatake
et al. is not as efficient as the second method, which has been proposed in this section and
implemented in the computer program BEASTS [2].

The method of dealing with symmetric structures that has been developed in the present
section may easily be generalized to the case where more than one plane of symmetry exist.
Also, a formulation may be given where the plane of symmetry is placed arbitrarily. However,
in most situations involving railway structures (which are the main consideration in the present
project) only a single plane of symmetry may exist, and the track is most easily modelled with
the centre line coinciding with one of the co-ordinate axes. It has therefore been chosen only to
implement the facility to place a plane of symmetry at 7 = 0 in BEASTS.
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4 Numerical Examples

In this section two numerical examples are given where the theory described in Sections 2 to
3 is tested against a semi-analytic solution. First, a homogeneous half-space is considered and
a comparison is made not only with the semi-analytical solution but also the results obtained
with a BE scheme where discontinuous tractions are allowed. Subsequently a half-space with a
single layer of softer material on top is analysed.

4.1 Case 1: A Homogeneous Half-Space

A homogeneous, viscoelastic half-space is considered. The model has the parameters given in
Table 1. These parameters correspond to sand with medium stiffness - here given in terms of
the Young’s modulus, F, and the Poisson Ratio, v, which are related to the Lamé constants as

E=,u(3)\+2,u,) A

N Tren) (9)

The loss factor, 7, defines a complex Young’s modulus as E* = E (1 + i), which again results
in complex values of the Lamé constants and therefore also the phase velocities ¢p and cg.
Notice that 7 is constant for all frequencies, well knowing that this results in a non-causal
system in the time domain. However, the error due to the chosen damping model is very small.

Table 1. Parameters for homogenecous half-space.

Layer E [MPa] v p [kg/m3] 7 Depth [m]
1 369 0.257 1550 0.10 Half-space

A harmonic, uniformly distributed vertical excitation is applied on the surface of the half-
space over an area of 3 x 3 m®. The analysis is carried out for the three frequencies 10 Hz,
20 Hz and 40 Hz. The following models are used for comparison:

1. A semi-analytic solution based on Fast Fourier Transforms (FFT) - inverse FFT with 2048
points per 500 metres in the x and y directions and an analytical solution in the z direction,
i.e. over the depth. See Reference [10] for further explanation.

2. A boundary element solution based on the original formulation for a single BE domain,
Equation (33), where discontinuous tractions are allowed.

3. A boundary element formulation in the macro finite element sense. The resuits are calcu-
lated using the computer program BEASTS described in Reference [2].

In neither the first nor the second solution has any use been made of the symmetry. How-
ever, in the third solution, symmetry around the z — 2z plane has been utilized, see the input file
for BEASTS in Appendix A. The vertical load is applied in terms of surface traction over the
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T T————

2

Figure 6. Mesh used for boundary element analysis of the homogeneous half-space.

3 x 3 m® area with the amplitude 1/9 Pa in the first two cases. In the third case the load is ap-
plied as point forces adding up to a total of 1 N and distributed according to the shape functions
as defined by Equation (45). Hence, the total intensity of the load is the same in all the models.

For all frequencies the elements in the BE discretization have the dimensions 1.5 x 1.5 m?
in the vicinity of the area, where the load is applied. Farther away from the area of excitation
the length of the elements is doubled. The mesh is illustrated in Figure 6. For the original BE
formulation with discontinuous tractions a mesh with double the size is used with the other half
of the elements present in the negative y half-space.

The influence of the distance from the load to the edge, where the surface of the half-space
is artificially truncated, is studied. Thus, as shown on Figure 6, the mesh does not extend the
same distance away from the load in all directions. In the Figures 7 to 12 the results obtained
with the different models have been plotted. The absolute values of the displacement amplitudes
and the phase shift are shown as functions of the distance r from the centre point of the loaded
area, which coincides with origin of the coordinate system. Figures 7, 9 and 11 show the vertical
displacements, whereas Figures 8, 10 and 12 contain results for the horizontal displacements.

Results obtained with the semi-analytic solution are plotted in red, dotted lines (---). Re-
sults from the original BE solution, i.e. method 2, are plotted in blue. The dots (- ) refer to results
obtained along the line between origin and 1 on Figure 6, triangles (A) refer to the line ranging
between origin and point 2, and crosses (+) refer to results along the line towards peint 3. For
the FE based BE solution the corresponding solutions are plotted in green using the symbols
(o), (v7) and (%), respectively. The following observations can be made:

e The two BE models produce results that are almost identical except for some minor dis-
crepancies in a small region near the centre of the loaded area. The ‘errors’ in the FE
based boundary element solution arise because of the lacking ability to apply discontinu-
ous tractions, However, the effect is local and farther away from the load the influence of
the discontinuity of the surface traction is vanishing.

e Both BE solutions are in good accordance with the semi-analytic solution. This counts for
both the amplitude and the phase shift.
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Figure 7. Comparison of two different BE models with semi-analytical solution for a homogeneous

half-space: Vertical surface displacements for the frequency 10 Hz.
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Figure 8. Comparison of two different BE models with semi-analytical solution for a homogeneous

half-space: Horizontal surface displacements for the frequency 10 Hz.
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Figure 9. Comparison of two different BE models with semi-analytical solution for a homogeneous

half-space: Vertical surface displacements for the frequency 20 Hz.
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Figure 10. Comparison of two different BE models with semi-analytical solution for a homogeneous
half-space: Horizontal surface displacements for the frequency 20 Hz.
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Figure 11. Comparison of two different BE models with semi-analytical solution for a homogeneous
half-space: Vertical surface displacements for the frequency 40 Hz.

x 107° Absolute Disp. Amplitude Phase Shift
3 : : : s : o T N
e 0
& = 1004 E & ®
[ 2 | .. 4 ~ -
EYNa E o4 » °
T la &y I Ly
= |- z i ® ® '
. @ S 100t 2 : :
ko ® = ® ®
0% @@'@--@"@*@'@-@-@-@...._.___._._._ T = L -
0 5 10 15 20 25 30 0 5 10 15 20 25 30
r[m]

r [m]
Figure 12. Comparison of two different BE models with semi-analytical solution for a homogeneous
half-space: Horizontal surface displacements for the frequency 40 Hz.
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e The distance from the load to the edge of the mesh has no, or little, effect on the precision
of the BE results close to the loaded area. Even close to the edge, the results are useful. The
reason is likely to be the small impedance mismatch between a half-space and a full-space.

s The agreement of the BE results with the semi-analytical solution is better for the ‘low’
frequencies (10 Hz, 20 Hz) than for the ‘high’ frequency (40 Hz). This is due to a combi-
nation of two reasons: the influence of the edge is insignificant and the elements are not
sufficiently small for frequencies much above 30 Hz. Thus, for the f = 40 Hz only two
elements are available per Rayleigh wave length. The fact that the results are still quite sat-
isfactory at 40 Hz indicates that the BEM with quadratic interpolation is very powerful and
provides good results, even when extremely few elements are used in the discretization.

f=20Hz

Figure 13. Surface displacement of the homogeneous half-space. Red and blue colours indicate pos-
itive and negative vertical displacements, respectively, and parts of the surface with near-zero vertical
displacement are in shades of green.
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The wave propagation on the surface of the half-space, i.e. the Rayleigh waves, are illus-
trated on Figure 13. The displacements are plotted for four time steps during a single period of
time, T = 1/ f, given a harmonic excitation with the exponential term e¢*?*,

4.2 Case 2: A Single Viscoelastic Layer over a Half-Space

A viscoelastic, horizontal layer of soft clay and with a depth of 2 metres is overlaying a homo-
geneous half-space of a stiffer clay. The two soil materials have the parameters listed in Table
2. As the soil in the top layer is softer than the soil underneath, a cut-off frequency, f,, exists
below which only evanescent waves are present. However, when the excitation frequency goes
beyond f; travelling waves will propagate through the layer.

Table 2. Parameters for layered half-space.

Layer E [MPa) v p [kg/m?] 7 Depth [m]
1 60 0.44 1500 0.10 2.0
2 360 0.49 2000 0.10 Half-space

The same analysis that was carried out for the homogeneous half-space is performed for
the layered half-space. Thus, a harmonic, vertical excitation is applied on the surface over and
area of 3 x 3 m?. Again the frequencies 10 Hz, 20 Hz and 40 Hz are considered. However,
only the semi-analytic solution scheme and the BE method based on finite element coupling
are compared as no means of coupling two sub-domains in a boundary element sense has been
implemented in BEASTS. Therefore the second approach listed in the previous subsection has
not been taken in the present example.

For the first method, i.e. the semi-analytic solution, the same discretization used in the
FFT-iFFT of the surface in Subsection 4.1 has been used for both the surface and the interface
between the layer and the half-space. Likewise, a BE mesh identical to the one shown on Fig-
ure 6 has been used for both the surface and the interface, see the input file for BEASTS in
Appendix B. It should be noted that this actually results in a distance between two boundaries
that is only two thirds of the element length for most parts of the BE model.

The results obtained with the semi-analytic solution and the boundary element scheme are
shown on Figures 14 to 19. Red, dotted lines (---) are the semi-analytic solutions, whereas
green circles (o), triangles (v7) and crosses (x) indicate the results from the BE scheme along
the lines on the surface between origo and the points I, 2 and 3 on Figure 6, respectively. It is
noticed that:

e At 10 Hz travelling waves do not propagate through the top layer. Five metres away from
the source |Uy (r)] has decreased to less than 10% of the value at the centre of the loaded
area and the phase shift is clearly not a piece-wise linear function of the distance r.

e For the frequencies higher than 10 Hz, travelling waves occur in the viscoelastic layer.
Here the excitation frequency is higher than the cut-off frequency.
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Figure 14. Comparison of BE model with semi-analytical solution for a layered half-space: Vertical

surface displacements for the frequency 10 Hz.

x 107" Absolute Disp. Amplitude Phase Shift
3 - : : - - S eres -
% _ 100} e,
= 2r / o -,
ETTgx ab Cm.
g = oy O-.,
e . X =
=1 “ooge &
©FO000., -
@9 S ~100
(@ L A L L L % ST ANl s L L
0 5 10 15 20 25 30 6 5 10 15 20 25 30
r [m]

r [m]
Figure 15. Comparison of BE model with semi-analytical solution for a layered half-space: Horizontal

surface displacements for the frequency 10 Hz.
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Figure 16. Comparison of BE model with semi-analytical solution for a layered half-space: Vertical
surface displacements for the frequency 20 Hz.
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Figure 17. Comparison of BE model with semi-analytical solution for a layered half-space: Horizontal
surface displacements for the frequency 20 Hz.
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Figure 18. Comparison of BE model with semi-analytical solution for a layered half-space: Vertical
surface displacements for the frequency 40 Hz.
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Figure 19. Comparison of BE model with semi-analytical solution for a layered half-space: Horizental
surface displacements for the frequency 40 Hz.
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o The influence of the edge is much more pronounced than it is in the example with the ho-
mogeneous half-space. This is partly due to the fact that the impedance mismatch between
the modelled layer and the ‘full-space’ that lies beyond the edge is much higher than that
between the homogeneous half-space and the “full-space’.

e A better discretization is needed for the layered half-space than for the homogencous half-
space. Thus the BE mesh used in the present analysis is not sufficiently detailed to give
a satisfactory result at 40 Hz. The semi-analytical solution indicates that the wave prop-
agation pattern is quite complex, i.e. the wave lengths change with the distance from the
source (the phase shift is not a piece-wise linear function of r).

Hence it may be concluded that for a layered medium or structures coupled with soil, where
complicated wave propagation patterns may occur, a bigger and more refined mesh has to be
used than is necessary for a homogeneous half-space.

5 Conclusions

The theory for a multi-domain boundary element scheme has been formulated for analysis of
harmonic vibration wave propagation through three-dimensional, viscoelastic media. The sub-
domains may be either open or closed and may be arbitrarily shaped. Thus the scheme is useful
for the analysis of structure-soil interaction problems. The coupling between the individual sub-
domains is established by a transformation of the BE dornains into equivalent macro elements,
which are assembled in the finite element sense. Hence a further coupling with finite elements
is straight forward.

Numerical examples are given for the wave propagation due to a surface excitation of a
homogeneous and a layered half-space. Generally the analyses show that fairly accurate results
are obtained with very few elements per wave length. Hence, the scheme may be used for
the analysis of problems with more complicated geometries, even at frequencies which are of
interest in such topics as railway tunnel engineering. An example analysis of a bored tunnel
may be found in Reference {2], where documentation is provided for the computer program
BEASTS that is based on the BE formulation given in the present report.
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A BEASTS Input: Homogeneous Half-Space

This is the input file for the computer program BEASTS used for the boundary element analysis
of the homogeneous half-space in Subsection 4.1. An explanation for the commands used and
the general layout of the file is given in Reference [2].

*Title
A Homogeneous Half-Space, LA, 15/8/2001
C This is an example file for use with the BE program BEASTS
*Material Properties

268000000 0.257 1550.0 0.1000
*xmulti file output
*plane of symmetry
*Frequencies

10.000

20.000

40.000
*Node coordinates

-10.50 0.00 o0.001! 1

+offset nodes
1 1 1.50 0.00 0.00 41 2to 5

+offset nodes
5 5 0.75 0.00 0.00 12 1 8 to 17

+offset nodes
17 17 1.50 0.00 0.00 16 1 18 to 33

+offset nodes
i 33 0.00 0.75 0.00 6 ! 34 to 231

+offset nodes
199 231 0.00 1.50 0.00 8 ! 232 to 495
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*Boundary Element Domain 1

1 ! Material Properties Set 1

1 2
+copy
1 1
+copy
i 16
*Loads
9 0
42 0.
75 0.
10 0.
43 0.
76 0.
11 0.
44 0
77 0.
i2 0.
45 0.
78 0.
13 0.
48 0.
79 0

*End

.000

000
000

000
000
000

000

.000

000

000
000
000

000
000

000

3

66

36

15

.000
.000
.000

.000
.000
.000

.000
.000
.000

.000
.000
.000

.000
.000
.000

69

-000
.000
.000

.000
.000
.000

.000
-000
.000

.000
.000
.000

. 000
. 000
. 000

68

67

-000
.000
.000

-000
.000
.000

.000
.000
.000

. 000
.000
.000

.000
.000
.000

34

35

.0138889
. 0555556
.0138889

.05b5556
. 2222222
.0555556

0277778
1111114
0277778

. 0555556
. 2222222
.0555556

.013888%9
.0555556
.0138889

.000
.000
.000

. 000
.000
. 000

. 000
.000
. 000

-000
-000
-000

.000
.000
-000
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B BEASTS Input: Layered Half-Space

This is the input file for the computer program BEASTS used for the boundary element analysis
of the layered half-space in Subsection 4.2. An explanation for the commands used and the
general layout of the file is given in Reference [2].

*Title

A Layered Half-Space, LA, 15/8/2001

C This is an example file for use with the BE program BEASTS
*Material Properties

60E6 0.44 1500.0 0.1000
360E6 0.49 2000.0 0.1000

*multi file output
*plane of symmetry
*Frequencies
10.000
20.000
40.000
*Node coordinates

-10.50 0.00 0.00 ! 1

+offset nodes
i 1 1.50 0.00 0.00 41 2 %05

+offset nodes
5 5 0.75 0.00 Q.00 12 1 86 to 17

+offset nodes
17 17 1.50 0.00 0.00 16 ! 18 to 33

+offset nodes
1 33 0.00 0.75 0.00 6 ! 34 to 231

+ofiset nodes
199 231 0.00 1.50 0.00 8 1 232 to 4956

+offset nodes
1 495 0.00 0.00 =-2.00 1! 496 to 990
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*Boundary Element Domain 1
1 ! Material Properties Set 1

1 2 3 36 €9 68 87 34 35

+Ccopy

+copy
1 186 66 6

+mirror copy
1 112 495

*Boundary Element Domain 2
2 | Material Properties Set 2
496 497 498 531 564 563 562 529 530

+copy
i 1 2 15

+copy
1 18 66 6

*Loads

9 0.000 6.000 0.000 0.000 0.0138889 0.000
42 0.000 0.000 0.000 0.000 0.0555556 0.000
75 0.000 0.000 0.000 0.000 0.0138889 0.000

10 G.000 0.000 0.000 0.000 0.0555656 0.000
43 0.000 0.000 0.000 0.000 0.2222222 0.000
76 0.000 0.000 0.000 0.000 0.05555566 0.000

11 0.000 0.000 0.000 0.000 0.0277778 0.000
44 0.000 0.000 0.000 0.000 0.1111111 0.000
77 0.000 0.000 0.000 0.000 0.0277778 0.000

12 0.000 0.000 0.000 0.000 0.0555556 0.000
45 0.000 0.000 0.000 0.000 0.2222222 0.000
78 0.000 0.000 0.000 0.000 0.0555556 0.000

13 0.000 0.000 0.000 0.000 0.0138889 0.000
46 0.000 0.000 0.000 0.000 0.05555566 0.000
79 0.000 0.000 0.000 0.000 0.013888% 0.000

*End
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