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1. INTRODUCTION

Statistical Energy Analysis (SEA) is based upon the power balance equation for a system
which is made up of subsystems. Typically these subsystems are drawn from populations of
similar members for which the ensemble average is predicted by the SEA model. Variations
from the ensemble are expected for any particular realisation taken from the whole
population. The coupling loss factor (CLF) is a key parameter in SEA and is defined in terms
of the average behaviour of an ensemble of similar systems. However the power balance
equations also hold for individual realisations, in which case the CLFs are replaced by
"effective” CLFs (to distinguish them from the ensemble average CLFs). The effective CLF
for a given realisation differs from the statistical average. The variability of the effective CLF
has been investigated in a previous study by a numerical experiment based on a dynamic
stiffness model (DSM) for a two-plate system [1]. Variations were found to depend not only
on the geometric and material properties of the subsystems, such as thickness, length, width
and damping, but also on frequency as the modal overlap factor increased with frequency.
Results were presented in terms of the modal overlap factor of the source plate, the recetver
plate, or a combination of that of both the source and receiver plates. A limitation of these
results was that they were compared to the CLF derived from infinite plates, whereas a better
model is available based on an ensemble average given by Wester and Mace [2]. Moreover,
the use of one-third octave frequency bands, although common in practice, tended to confuse
the results by making it impossible to separate the effects of frequency bandwidth and those
of modal overlap. Upper and lower bounds for the CLF proposed by Craik ez al. [3, 4] were
investigated, but were found to be inappropriate to quantify the variability of the effective

CLF although they are useful indicators of the degree of variability.

In this report, published models of the ensemble average [2, 5-8] are first considered to
improve the estimate of the average CLF for two coupled rectangular plates. Then the
variability of the effective CLF is quantified by means of a systematic parameter study. In
this, the effects of frequency and modal overlap are separated by using frequency averages at
a series of constant bandwidths rather than 1/3 octave band averages. These results are used to
derive an empirical formula for the confidence interval of the effective CLF in terms of the
modal overlap factor and the number of modes in a frequency band. This will subsequently

allow confidence intervals in the SEA predictions to be determined.



2. COUPLING LOSS FACTOR

2.1 CLF from semi-infinite plates

The CLF in SEA is traditionally obtained by the travelling wave approach from semi-infinite

structures [9, 10]. For two plates joined along a line this gives
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where c; is the group velocity of the source subsystem i, b is the junction length, 7; is the
transmission efficiency, which is the ratio of transmitted power to incident power at the
boundary, and S; is the surface area of the source subsystem. Equation (2.1) can be derived
from the definition of the transmitted power and the power flow between two semi-infinite
plates (see the Appendix of [1]). The transmission efficiency 7; is the angular averaged value.

Tt is usual to assume a diffuse incident field, so that 7« is given by [9]

zl2

Ty = Iqu(ﬁ)cosé’dﬁ (2.2)
Q

where @ is the angle of incidence. The CLF estimates determined from the transmission

efficiency for infinite subsystems, are taken as representative of ensemble averages of finite

subsystems.

2.2 Ensemble average

The ensemble average CLF, based on the ensemble average response of connected rectangular

plates, is given by Wester and Mace (2],

-1

ﬂfj ons — ﬂjjw 41_ -E“ (ko k) T.fj( )-) ij, d dk‘, _ fﬂ_ 1+MJ (23)
" k, S+ 2 Ui+ 8y ) A\ Fib




where k; and k; are the wavenumbers of plates i and j, y, =k/ln /2 and pu, =kin /2 are

the limiting subsystem "reflectances” for small trace wavenumber k,. 7;(k,) corresponds to

7;(0) in (2.2) for sin © = ky/k;. v* and &° are coupling parameters defined by 2]

,  Tlk,)cosh®(u,) ., T(k,)sinh®(u,)
Y= : and &” =—
sinh(z, }sinh(#;) sinh(z,)sinh(z;)

where g1, = 1, 1 \[1=(k, 1k, 1, = pr /1~ (k, 1k,)* and g, =(u,— ;)12

As an example, a two-plate system is considered with thicknesses /) = 3mm and hy = 2mm,

2.4)

lengths L; = 0.5m and I, = 1m, width b = 1m, damping 77, = 7, = 0.1 and material properties
of aluminium. The ensemble average CLF 7 ., the CLF for two semi-infinite plates 77,
and the effective CLF 7, calculated using DSM for this two-plate system, are compared in
Figure 2.1. At low frequencies, the ensemble average CLFs arc lower than the semi-infinite

results 77,, and the effective CLFs fluctnate considerably relative to 7 ens. These CLFs all

coincide closely at high frequency where the modal overlap is high.

Figure 2.2 shows the influence of damping on the ensemble average CLF, in which the
damping of the source plate, the receiver or both plates is varied. The values considered for
the damping loss factors are 0.001, 0.01 and 0.1. As the damping of the source plate or the

receiver increases, the ensemble average CLF increases in the low frequency region. The

spread of results at low frequency indicates that approximately 77, . o< [T ouree » NG

T ens ° | Thecawer - A change by a factor of 100 in the individual loss factors leads to a factor of
about 10 in 77 ens. Comparing the upper and middle graphs of Figure 2.2 it can be seen that
Theeoiver Das slightly more effect than euce. When both damping loss factors are equal, a

change in damping loss factor causes a proportional change in 77; .5 at low frequency, see

lower figures.
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Figure 2.1. The CLFs, (a) 712 and (b) 774, for a two-plate system (2 = 3mm, L; = 0.5m,
hy, =2mm, L» = 1m, b = lm, 77, = 7 = 0.1, material: aluminium). —, 7,3 7 T enss — > -
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Figure 2.2. The influence of damping on the ensemble average CLF 7, for the two-plate

system described in Figure 2.1: () Thource 18 fixed as 0.01 and Troceiver 18 varied (---, 0.001; —,

0.01; , 0.1), (b) Theceiver is fixed as 0.01 and 7source is varied (---,0.001; —-, 0.01; =, 0.1) and
(C) Tlsource = Tfreceiver A€ varied (---, 0001, -, 001, Y 01), s T



2.3 Frequency average effects on the CLF

The response of the dynamic system becomes much smoother when a frequency band average
is taken. A one-third octave band average is typically used in SEA. In this study, the
frequency average effects for different frequency bandwidths have been investigated. Firstly,
narrow band energies and powers were calculated for the two plate system discussed above up

to 1kIz using the dynamic stiffness method (DSM} at 1Hz spacing. In order to simulate a
system with a constant modal overlap factor, M = 1 wn(®), the damping loss factor has been
set proportional to 1/@. This gives 77=0.01 at 100Hz and 0.001 at 1kHz. Below 3Hz the

damping loss factor was limited to 0.3 to avoid too high values of loss factor. The
corresponding modal overlap factors are M, = 0.053 and M, = 0.16. The plate energies were

then averaged over constant frequency bandwidths (20, 40, 60, 100, 200, and 400Hz) in

overlapping bands. The effective CLF relating to these frequency bands <ﬁu> can be obtained
from these energies by a numerical experiment as in [1}. The logarithmic ratio of the
frequency averaged effective CLF to the ensemble average 1010gm(<ﬁ#> /ni.j,m) was

determined, and is shown in Figure 2.3 (< > denotes a frequency averaged guantity). The
mean over all centre frequencies along with a range of £2 standard deviations (o) is also
shown. Clearly, as the bandwidth increases the range £20 reduces, whereas the mean is close
to 0 dB throughout. As the bandwidth increases, the average number of modes in a frequency

band, N; or N, also increases. Figure 2.4 shows the values of 2¢ from Figure 2.3 plotted

against Nz, =/ NN, , i.e. the geometric mean value of N, and Na.
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Figure 2.3. Bandwidth effect on the mean and the two standard deviation (20) of the
logarithmic ratio of the frequency averaged effective CLF (ﬁ12> to the ensemble averaged

CLF 1y, (1= 3Imm, h, = 2mm, M, and M, fixed vs. frequency, and 7o /o (n7=03upto
3Hz, 001 at 100Hz and 0001 at LkHz). —, 10log,((,)/m, w)s O
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Figure 2.4. Two standard deviations (26) of the logarithmic ratio of the frequency averaged

effective CLF to the ensemble averaged CLF, 10log, ( <77;j ) /771.}., W) (hy = 3mm, hy = 2mm, M,

and M, fixed vs. frequency, and 7 =< 1/@ (77 = 0.3 up to 3Hz, 0.01 at 100Hz, and 0.001 at
1kHz)): —, 20,,; -, 20,,.

2.4 Review of previous DSM results

A sensitivity analysis has been performed [1] using the DSM model to evaluate the influence
of the following parameters: the plate thickness ratio, i/h, the length ratio, Li/L,, the length
to width ratio of the two plates Li/b and the damping loss factors, 77 = 7%. In the calculations,
the dimensions of plate 1 (L, =0.5m, h=1m, ~ =3 mm) were kept fixed and the relevant
dimensions of plate 2 were given 11 logarithmically spaced values between 0.3 and 3 times

that for plate 1. The values considered for the damping loss factor were 0.03, 0.1 and 0.3.

Two issues were investigated; one was the validity of Craik's upper and lower bounds for the
CLF [3] and the other was to determine whether the variability in the CLF depends on the
modal properties of the source subsystem, the receiver subsystem, or both the source and
receiver subsystems. It appeared, from the results presented, that Craik's upper and lower

bounds are a useful indication of variability in the CLF, although better agreement occurs



when the modal overlap of both subsystems is taken into account, rather than that of the
receiver as originally proposed by Craik [3]. However these bounds did not account for
remaining variability when the modal overlap is greater than about 0.5. In a further study [11],
the variability in the CLF has been examined in more detail using a model of a finite source
plate coupled to an infinite receiver and vice versa. Large variability in the energy
transmission was found due to the modal behaviour of the receiver plate, with peaks occurring
in the transmission efficiency at the receiver’s resonances. Damping of the receiver plate
controlled the magnitude of these variations. However, smaller variations in the energy
transmission were attributed to the source subsystem characteristics, as produced using the
finite source plate coupled to a semi-infinite receiver plate. Both peaks and troughs in the
effective CLF corresponded to natural frequencies of the uncoupled source plate, but damping
of the source plate had only a small influence. Therefore it has been suggested that the modal
overlap of the receiver plate is important whereas the modal density {not its damping) of the

source plate is important.

In order to resolve these questions a further procedure to investigate the dependence of the

variability on the various parameters has been conducted and is described in the remainder of

this report.



3. PARAMETER VARIATION USING THE DSM MODEL

The variability of the effective CLF was investigated in the previous study by a numerical
experiment based on a dynamic stiffness model for a two-plate system [1]. The CLF was
found to depend not only on the geometric and material properties of the subsystems, such as
thickness, length, width and damping, but also on frequency as the modal overlap factor
increased with frequency. Results were presented in terms of the modal overlap factor of the
source plate, the receiver plate, or a combination of that of both the source and receiver plates.
The previous calculations did not consider the ensemble average [2, 5-8]. Moreover, the

frequency, the bandwidth, and the modal overlap factor were not varied independently.

In this study, the modal density n(®) and modal overlap factor M, which affect the variability
of the CLF, are considered as independent control parameters. The ensemble average is also

used as the reference for studying variability. The purpose is to express the variability of the

CLF in terms of an empirical formula. This should then allow confidence intervals in SEA

predictions to be obtained.

The modal density and modal overlap factor are related to the geometric and material
properties. The modal density of a simply supported uniform isotropic plate is approximated

ds

2]

where S is the area of plate, p is the material density, k is the thickness of plate and

3
D[: %——{)—J is the flexural rigidity [12]. If the material properties are assumed to be
-V

constant, the modal density is proportional to the area (length X width) / thickness of plate and

it is independent of frequency. The number of modes in a frequency band of width Aw is

N = Awn(w) (3.2)
On the other hand, the modal overlap factor is given by

M =nwn{®) (3.3)

10



where 77 is the damping loss factor. Thus the modal overlap factor is in general dependent on

frequency as well as the geometric and material properties.

The effective CLF and the ensemble average CLF described in Chapter 2 are individually
investigated by varying these parameters as well as varying the geometric parameters
considered in the previous study for an L-shaped coupled plate system [1]. First, a coupled
aluminium plate model (Iength L; = 0.5m and L, = 1.0m, thickness s; = 3mm and 4, = 2mm,
and width & = 1.0m) is considered, as a baseline model, see section 2.2. This model has a
modal density that is constant with varying frequency but the modal overlap factor depends
on frequency. Then, in order to keep the modal overlap factors M; and M, fixed, the damping
loss factor is chosen to vary iLe. 77 = 1/@ The damping loss factors of the two plates are
assumed to be equal, and three different levels of damping loss factor (0.1, 0.03 and 0.01 at
100 Hz) are considered to investigate the effect of damping. In this case, as 74 = 7p,
M,N\/M N> = 1.0. These results are intended to show the effective CLF and its variability due

to frequency bandwidth and different levels of damping.

To investigate the effect of different damping for the two plates, whilst keeping the modal
overlap factors constant, calculations also performed with the damping loss factors for the two
plates chosen to have different levels of damping while retaining 77 e 1/@. These were high to

medium (M.N/M:N, = 0.3) and medium to low (MoN/M N, = 0.33).

Next, a series of systematic numerical simulations are performed covering extensive
parameter variations similar to those described in [1]. The influence of these parameters on
the variability of the CLF is investigated by keeping the dimension of plate 1 fixed and giving
the dimension of plate 2 logarithmically spaced values. The modal densities of the two plates
are kept constant for each calculation. The damping values of the two plates are varied with

frequency 77 e 1/, in order to keep the modal overlap factors fixed, as before. The other

parameters are the same as the baseline model.

The parameters used in this study are summarised in Table 3.1 and the values of plate
thickness ratio k/hy, the length ratio Li/L,, and the length to width ratio L/b of the two plates,
are shown below the table. The values of parameters will be given in detail in the following

chapter along with the results.

11



Table 3.1. Parameter variations for L-shaped coupled plates.

Parameter Fixed Varied M, M, M.NJMN,;
(h1:3ii;e;1;n=ezmm) I;;i:(l;;)hf(g My, M, L0
High damping Ly Lohyhob n=ne<l/o 0.53 1.6 1.0
Medium damping Ly Lok hob =1 <l/@ 0.16 0.48 1.0
Light damping Ly Lok kb n=m=<l/w 0.053 0.16 1.0
7> Ly Lo i, h,b n#Ene<l/o 0.53 0.48 0.30
>, Li Lok hab n#Epe<lw 0.16 0.16 0.33
bty Li,hb Loha, 1, Th 0.53 1.6 1.0
LJL,S™ Lihyhob 1258/ 053 | 25-032 1.0
Lbt™ hi,hy Li,Lo,b, .1 0.53 1.6 1.0

(*1) i/hy: the thickness of plate 1 (3mm) is fixed and the thickness of plate 2 is varied from
9.49mm to 0.949mm (9.49, 5.99, 4.75, 3.78, 3.00, 2.38, 1.89, 1.50,1.19, 0.949mm). The

length L, is varied simultaneously to ensure constant N,.

(*2) Li/L,: the length of plate 1 (0.5m) is fixed and the length of plate 2 is varted from 1.58m to

0.20m (1.58, 1.26, 1.00, 0.79, 0.63, 0.50, 0.40, 0.32, 0.25, 0.20m).

{(*3) Li/b: the widths of the two plates are varied from 1.58m to 0.20m (1.58, 1.26, 1.00, 0.79, 0.63,
0.50, 0.40, 0.32, 0.25, 0.20m). The lengths of the plates are varied simultaneously to

maintain the same areas and hence constant values of Ny and N,. The variation of 7 and

7 subsequently produces constant values of M, and M>.

4.1 Baseline model

4.1.1 Modal density fixed with varying modal overlap factor

The effective CLLE ﬁé,. , the ensemble averaged CLF 7);; o5, and the CLF for semi-infinite plates

7,.. for the baselinc model, with the modal densities fixed as described in the previous

chapter, have been shown in Figure 2.1. The results were averaged over 1/3 octave frequency

12

4. THE VARIABILITY OF THE CLF




bands as typically used in SEA. The effective CLFs fluctuated considerably relative to 7, ens

or 7)., and these CLFs all coincided more closely as frequency increased.

In the remainder of the results, constant bandwidth frequency averaging is used and the

damping is adjusted to make the modal overlap factor independent of frequency.

4.1.2 Modal overlap factor fixed without varying modal density (#1=7})

Int order to achieve a fixed modal overlap factor for all frequencies without varying the modal
density, the damping was chosen as inversely proportional to frequency, 71 = 7z =< 1/ Three
levels of damping (characterised by 7= 10/f, 3/f and 1/f with f the frequency) were considered
to investigate the influence of the modal overlap factor on the CLF. The maximum damping
was limited to 0.3 at low frequencies to avoid numerical difficulties. Since 71 = 7p, the ratio
M,N/MN, with M the modal overlap factor and N the number of modes in a frequency band
for the three levels of damping was fixed as 1. Figure 4.1 shows the effective CLFs and the
ensemble averaged CLF calculated at 1Hz spacing up to 1kHz. Also shown, are the estimates
of upper and lower bounds, 2/7M and wM /2, obtained from the maxima and minima of
the mobility given by Skudrzyk [13] and used in a formula for CLF similar to that given by

Craik et al. [3, 4]. These bounds were based on using the modal overlap factor for the source
plate M;, the receiver plate M, and the geometric mean values M, M, . It can be seen that

the varjation in the CLF is considerably greater than that estimated from the bounds shown.

These effective CLFs were next determined using energies averaged over frequency bands
with bandwidths of 2, 4, 6, 10, 20, 40, 60, 100, 200 and 400Hz in overlapping bands, as

described in section 2.2. Then the logarithmic ratio of the effective CLF to the ensemble

average, 10log,, ((ﬁg ) /?7:; m_), was determined as in Figure 2.3. The range of two standard

deviations (20) was obtained over the whole frequency region to express the variability of the

effective CLF compared to the ensemble average. Figure 4.2 shows the values of 20 plotted
against Nz, which is the geometric mean value of the number of modes per band for the two
plates. This shows that the variability of the effective CLF depends upon the number of the

modes per frequency band when this number is larger than about 1, whereas it depends on the

damping (modal overlap factor) when there are few modes in a band. The uncertainty (20)

13



increases as the average number of modes in a band reduces to about 1. Below this it reaches
a value that is independent of any further change in the frequency bandwidth. The value of 20
at low values of N, increases as the damping reduces (i.e. M, and M, reduce). Interestingly,

the results for 77,5 and 755; are similar despite the values of M differing by a factor of 3.

14
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Figure 4.1. The CLFs for the medium damping values (7= min(0.3, 10/f), M;=0.16,
M, =0.48 fixed, MoN/M N2 = 1.0). —, the effective CLF; —, the ensemble averaged CLF; -,
upper and lower bounds derived from Skudrzyk bounds for mobility [13]; (a) M, (b) M., and

(€)M M, .
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h1=3mm, h2=2mm, L1=O.5m, L2=1m, b=1m
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Figure 4.2. Variability of the CLF (20) for 3 levels of damping 71 = 7p as a function of Ny as
bandwidth is altered. —, M| =0.53, Ma=1.6; -, M;=0.16, M, =0.48; -, M, =0.05,
M, = 0.16. Circles denote 20 for 71

4.1.3 Modal overlap factor and modal density ratio (MoN{/MN») fixed (mmz10)

Using different damping values for the two plates whilst keeping the modal overlap factors
constant with frequency, the ratio M>N1/M N, takes values other than 1. Three damping values
(high damping = 10/f, medium damping = 3/f and low damping = 1/f), were combined to give
different damping values for the two plates: high to medium and medium to low. The

maximum damping was again limited to 0.3 at low frequencies as described in the previous

section. Figure 4.3 shows the variability (26) of the logarithmic ratio of the effective CLI to

the ensemble average, IOIOgIO((ﬁU) /77‘;,‘! M), as a function of N, for these cases. Similar

trends are found to those in Figure 4.2. Again the results for 7713 and 7% are similar in each

case despite differences in the damping of the two plates.

16



h1=3mm, h2=2mm, L1=D.5m, L2=1m, p=1m
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Figure 4.3. Variability of the CLF (20) as a function of Ny, as bandwidth is altered. Modal
overlap factor constant for all frequencies, 7#72. —, 71 = 10/f, 112 =3/f, MoN M\N>=0.3; ---,
m = 3/f, o = Uf, MaN/M N> = 0.33. Circles denote 2o for 7.

4.2 The variation of thickness ratio (A1/h;): constant modal overlap factors
without varying modal density

To investigate the influence of the plate thickness ratio &;/h; on the variability of the CLF, the
thickness of plate 1 was kept fixed and the thickness of plate 2 was given 11 logarithmically
spaced values between 0.32 and 3.2 times that for plate 1 as listed in Table 4.1. In order to
retain the same value for the modal density of plate 2, its length was varied to compensate for
the thickness, see equation (3.1). The damping values of the two plates were varied with
frequency in order to give constant values of the modal overlap factor, as before. The other

parameters were the same as the baseline model. The effective CLF and the ensemble average
CLF for the 11 cases were calculated and their logarithmic ratio, 1010, (f; /77; ) in dB is
shown in Figure 4.5 derived from results at 1Hz spacing up to 1kHz. The results below 1.25

times the lower of the cut-on frequencies of the two plates were excluded, as SEA

assumptions would not be valid and it is inappropriate to use an SEA approach. All of the

results fall within £10dB.
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These results were also determined using energies averaged over frequency bands (2, 4, 6, 10,

20, 40, 60, 100, 200, and 400Hz) in overlapping bands. The two standard deviation range (20)
of 10log,, ((ﬁlj > / ;. m) was calculated in each case and a graph of 20 against N, is shown in

Figure 4.6. The variability of the effective CLF is affected slightly by the plate thickness ratio

h/h, but much more by the frequency bandwidth. The dependence on the number of modes in

the band N,, has a similar form to those shown in Figure 4.2 and 4.3. The results seem to be

highest for either large or small values of hy/hy; the results are lowest for by/hy = 1.

Table 4.1. Parameter variations of the plate thickness ratio s1/h; for 11 variants

Parameter (rr}: rln ) (rrilrzn) (fn]) (I'Ig) (Il;) n{w | nmiew | M M,
1 3.00 9.49 050 | 474 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
2 3.00 7.54 050 | 3.77 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
3 3.00 5.99 050 | 2.99 | 1.00 | 0.009 j 0.026 | 0.53 | 1.60
4 3.00 4.75 0.50 | 2.37 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
5 3.00 3.78 0.50 | 1.89 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
6 3.00 3.00 0.50 | 1.50 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
7 3.00 2.38 0.50 | 1.19 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
8 3.00 1.89 0.50 | 0.944 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
9 3.00 1.50 050 | 0.749 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
10 3.00 1.19 0.50 | 0.594 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
11 3.00 0.949 | 0.50 {0474 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
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4.3 The variation of length ratio (1,/L,): varying modal overlap factor ratio

The influence of the plate length ratio Li/L, on the variability of the CLF was investigated by
keeping the length of plate 1 fixed and giving the length of plate 2 each of 10 logarithmically
spaced values between 0.4 and 3.16 times that for plate 1 as listed in Table 4.2. The damping
was again chosen to be inversely proportional to frequency so that the modal overlap factor
for each plate was constant. The modal overlap factor for plate 2 was constant for each
calculation, but was proportional to its length. The other parameters were the same as the
baseline model. The effective CLF and the ensemble average CLF for the 10 cases were

calculated and the logarithmic ratio of the effective CLF to the ensemble average
1010gm(ﬁ,j /7. m) in dB is shown in Figure 4.7, for results calculated at 1Hz spacing up fo
|kHz. The results below 1.25 times the lower of the first cut-on frequencies of the two plates
were excluded, as in the previous section. All of the results fall within +10dB except for

L, = 0.4m where a single peak of 30dB is seen.

The results were next determined using energies averaged over frequency bands (2, 4, 6, 10,

20, 40, 60, 100, 200, and 400Hz) in overlapping bands. The two standard deviation range (20)
of 10log,, ((ﬁg ) /UU m_\_) was calculated and is shown plotted against Ny, in Figure 4.8. These

results show that the variability of the effective CLFs depend somewhat on the ratio of My to
M., introduced here by varying the plate length ratio Li/Lz. The constant value of 20 for low
Nys is greatest when M/M>=1 (+ in Figure 4.8) and lowest when M, and M, are most
dissimilar. The result for L, = 0.4m does not show up as unusual when averaged over the

whole frequency range.
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Table 4.2. Parameter variations of the plate length ratio L,/L, for 10 variants

hy

ha

Ly

Ly

b

Parameter (mm) (mm) (m) m) | (m) mley | n(@) | M M,
| 3.00 2.00 050 | 1.58 { 1.00 | 0.009 | 0.040 | 0.53 | 2.53
2 3.00 2.00 0.50 | 126 | 1.00 | 0.009 | 0.032 | 0.53 | 2.02
3 3.00 2.00 0.50 | 1.00 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
4 3.00 2.00 0.50 | 079 | 1.00 | 0.009 | 0.020 : 0.53 | 1.26
5 3.00 2.00 0.50 | 0.63 | 1.00 | 0.009 | 0.016 | 0.53 | 1.01
6 3.00 2.00 0.50 | 0.50 | 1.00 | 0.009 | 0.013 | 0.53 | 0.80
7 3.00 2.00 0.50 | 040 | 1.00 | 0.009 | 0.010 | 0.53 | 0.64
g 3.00 2.00 0.50 | 0.32 | 1.00 | 0.009 | 0.008 | 0.53 | 0.51
9 3.00 2.00 0.50 | 0.25 | 1.00 | 0.009 | 0.006 | 0.53 | 0.40
10 3.00 2.00 050 | 0.20 | 1.00 | 0.009 | 0.005 : 0.53 | 0.32
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4.4 The variation of length/width ratio (L/b): constant modal overlap factors
without varying modal density

The influence of the plate length/width ratio Li/b on the variability of the CLEF was
investigated by setting the widths of the two plates to 10 logarithmically spaced values
between 0.4 and 3.16 times the original length of plate 1 (L; = 0.5m), see Table 4.3. The
modal densities for the two plates were kept constant, by varying their lengths in order to keep
the area and hence the modal density fixed. The damping values of the two plates were also
made frequency dependent, as before in order to give constant modal overlap factors. The
other parameters were the same as the baseline model. The effective CLF and the ensemble

average CLF for these 10 cases were calculated and their logarithmic ratio,
10log,, (ﬁ,.j /7. m), in dB is shown in Figure 4.9, for results calculated at 1Hz spacing up to

1xHz. The results below 1.25 times the lower of the first cut-on frequencies of the two plates

were also excluded, as before. Most of the CLF ratios fluctuated within +10dB.

The results were also determined using energies averaged over frequency bands (2, 4, 6, 10,
20, 40, 60, 100, 200, and 400Hz) in overlapping bands. The two standard deviation range (20)

for the logarithmic ratio of the frequency averaged effective CLF to the ensemble average

1010g10(<ﬁ,.}.> /770., m) was calculated in each case and 20 is shown plotted against N,, in
Figure 4.10. These results show that while the results are largely independent of & at low
values of Nj,, as the bandwidth is increased considerable variations occur. Especially, if the

plates are narrow and long (o, ¢ in Figure 4.10), the variability of the CLF is significant even

for large values of Ny».
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Table 4.3. Parameter variations of the plate length / width ratio L1/b for 10 variants

Parameter (nilrln) (ni?n) (ii) (lrﬁ) (1?1) n(@) | m(@) | Mi | M
1 3.00 2.00 032 | 063 | 1.58 | 0.009 | 0.026 | 0.53 | 1.60
2 3.00 2.00 0.40 | 079 | 126 | 0.009 | 0.026 | 0.53 | 1.60
3 3.00 2.00 0.50 1.00 | 1.00 | 0.009 | 0.026 | 0.53 | 1.60
4 3.00 2.00 0.63 1.27 | 079 | 0.009 | 0.026 | 0.53 | 1.60
5 3.00 2.00 0.79 1.59 | 0.63 | 0.009 | 0.026 | 0.53 | 1.60
6 3.00 2.00 1.00 | 2.00 | 0.50 | 0.009 | 0.026 | 0.53 { 1.60
7 3.00 2.00 1.25 2.50 | 0.40 | 0.009 | 0.026 | 0.53 | 1.60
8 3.00 2.00 1.56 | 3.13 | 0.32 | 0.009 | 0.026 | 0.53 | 1.60
9 3.00 2.00 200 | 400 | 0.25 | 0.009 | 0.026 | 0.53 | 1.60
10 3.00 2.00 250 | 5.00 | 020 | 0.009 | 0.026 | 0.53 | 1.60
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5. AN EMPIRICAL MODEL FOR THE VARIABILITY OF THE CLF

5.1 The variability of the CLF for finite plates

The results of the above extensive parameter variations are next investigated altogether to
establish appropriate parameters to describe the variability of the CLF and to quantify its
confidence interval. Although the results up to now have been given in terms of 2, it is
helpful at this point to work in terms of the variance, o~. Firstly the results for o of the
logarithmic ratio of the frequency averaged effective CLF to the ensemble averaged CLF are
plotted against the number of modes per band for the source plate Nsource OF the receiver plate
Nieceiver a5 shown in Figure 5.1(a}. The results with no frequency averaging are plotted against
the modal overlap factor for the source plate Msource OF the receiver plate Mcceiver, s shown in

Figure 5.1(b). No clear trend can be seen from these results.

Next the results for ¢ are plotted against Niz= JN,N, (the geometric mean number of

modes per band), as shown in Figure 5.2(a). These results are slightly less scattered than in

the previous plot, Figure 5.1. This result shows that the variability of the CLF o” has a

nonlinear relationship with Njz on log-log axes. The results for o~ are shown for the cases

with no frequency averaging in Figure 5.2(b). These are plotted against M, = JMM, (the
geometric mean modal overlap factor). These non-frequency averaged results show a linear
relationship with M}> on log-log axes; from the slope of this relationship it is found that o~ is

inversely proportional to M.

This can be seen to determine the constant part of the curve in Figure 5.2(a), as results for
narrow frequency bands are similar to these for no frequency averaging. By multiplying all
data points on Figure 5.2(a) by M the curves collapse to a similar level at low values of Ni».
However it is also found necessary to shift the curves horizonially by a factor of 1/Mi, to

collapse them to a single data set.

The result is shown in Figure 5.3 in which ¢”M, is plotted against N, / M,, . A formula has

a
been established to fit three curves to the data in Figure 5.3: O ‘M, =
14+bN, I M,

Dividing through by M,, these can be expressed in the form
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2 a
O =——— (5.1)
M, +bN,
where a and b are constants for three curves. The first and third curves are fitted as the

minima and maxima of the ordinate value ¢°M,, as a function of N7, /M, . The values of a

and & are listed in Table 5.1.
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Figure 5.1. o” of 10log,, ((ﬁu ) / nm)for all sets of data plotted against (a) Nsource aNd Nreceiver
when the effective CLFs are averaged over frequency bands (2, 4, 6, 10, 20, 40, 60, 100, 200,

and 400Hz) and (b) Mource a0d Mroceiver When no frequency averaging is performed. Crosses

denote results for 7712 and circles denote those for 7721

33



o (b)

o [dB]

10+t

10 — '
107 107y 10° 10
12

Figure 5.2. & of 10logm(<ﬁij> /nem,) for all sets of data plotted against (a) Ny, when the

effective CLFs are averaged over frequency bands (2, 4, 6, 10, 20, 40, 60, 100, 200, and

400Hz) and (b) M1, when no frequency averaging is performed. Crosses denote results for 7712

and circles denote those for 7.
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Figure 5.3. ¢°M,, plotted against lez/M12 and three curves produced to quantify the
variability of the CLF.

Using each of these curves rather than the original data points, a predicted confidence interval

(x20) for 10log,, ((7)/7,,,) is determined for each pair of plates represented. In each case the

percentage of frequency points falling inside this interval has been determined. Taking the
average over all plates considered, it was found what confidence level each of the formulae
represented. These are listed in Table 5.1. Of these, the second curve represents a 97.2%

confidence interval for all sets of data and appears a suitable model.

Table 5.1 Percentage of points falling within 220 limits defined by & P = for all

(74
M, +bN},

sets of data.

Curve a b Confidence interval (%)
1 4 1/6 82.3
2 9 /16 97.2
3 16 1/36 99.7
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5.2 New parameters for finite-infinite plates

In order to apply the above concepts to the results for a finite plate coupled to an infinite plate
or an infinite plate coupled to a finite plate, the two parameters, My, and Ny, cannot be used
since the number of modes and modal densities for an infinite plate tend to infinity. The CLF
ratio for a model with an infinite receiver plate from [11] and upper and lower bounds
obtained from equation (5.1) using 2M, and 2N; are shown in Figure 5.4(a). Figure 5.4(b)
shows the results of an infinite plate coupled to a finite plate for n=1 along with bounds
obtained from 2N, and 2M>. These give a reasonable upper and lower bounds for the CLF for
those models. Therefore, instead of M» and N, new parameters Moo and Neomp, are

proposed, given by

_2MM,

= 5.2
comb Ml +M2 ( )

It may be noted that M, =M, for M, ~ M,, Mcomp = 2M, for M, — e, and Meomb = 2M>

for M, — <o . Similarly

_ ZNENZ
comb NI +N2

(5.3)

which satisfies N__, =N, for N, ~N,, Neomb = 2N for N, — oo, and Neoms = 2Nz for

N, —eo. Equations (5.2) and (5.3) are based on the following relationship;

1 1{ 1 1 i 11 1 1
=— —+—and =—| —+—|, and reflect the fact that the smaller N or

M 2\ N, N,

comb
M dominates the variability of the CLF most. Figure (5.5) shows Neomw/N1 and Neomp/N2
ploited against N»/Ny. These are compared with Ni»/Ny and Ni2/N,. This plot shows that two
values are close when N, ~ N, . The values of No/Ny and M»/M, considered in the parameter

variations in section 4 are limited to the range 0.6 to 4.74.
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5.3 The derivation of an empirical model

Using the same method as section 5.1, a similar result is shown in Figure 5.6 in which

o°M__ is plotted against N2 . /Mmmb. In the same way as above, a formula has been

c
established to fit three curves to the data in Figure 5.6: oM comb = 5
1+ chomb /Mcomb
Dividing through by M_, these can be expressed in the form
2 c
o= 54
M, +dN: G4

comb comb

where ¢ and d are constants for the three curves. The confidence interval represented by each
of these curves has been determined and is listed in Table 5.2. Of these, the second curve is

adopted as the "empirical model" for the variability of the CLF:

2 6
o = 3 .
Mcomb + Ncornb /16

(5.5)

This represents a 95.7% confidence interval for all sets of data. This model can be generally

used to evaluate the uncertainty of the CLF of a two-coupled plate system.
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Figure 5.6. o°M_, plotted against N2 . /Mmmh and three curves produced to quantify the

variability of the CLF.

C
Table 5.2 Percentage of points falling within 20 limits defined by & P = T d for

comb comp

all sets of data.

Curve c d Confidence interval (%)
1 3 1/6 80.1
2 6 /16 95.7
3 12 1/36 99.6
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5.4 Comparison with previously published model

A similar investigation for two coupled plates, for which only the plate length ratio Li/L, was

varied, was performed by Mohammed [14]. He suggested a semi-empirical formula,

o
()

where ¢ is the variance of the CLF, <ﬁﬁ) is the mean value of the CLF and ¢ is a constant

=log,,c+1.3log,, M, +1.25log,, NV, (5.6)

which was determined by plotting the different sets of data and performing best straight line
fits on log-log axes. The current results, displayed in Figure 5.6, have been converted into the
form used in Mohammed's model and are plotted in Figure 5.7. This result shows that the
current results cannot be represented by a straight line as suggested by Mohammed. The
present data set far exceeds the number of configurations previously used {14]. The present

model therefore seems more appropriate.
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Figure 5.7. The normalised variance <ci-—> plotted against (M,,)"*(N,,}® based on the

Mohammed's formula [14].
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5.5 Comparison with previous calculations

The variability of the effective CLF found in the previous parameter variations [1] have been
compared to the estimates based on equation (5.5). These results were in 1/3 octave bands and

covered variations in thickness ratio, length ratio, and length/width ratio. The logarithmic
ratio of the effective CLF to the ensemble average 10log,, ((ﬁu ) /77,.},’ m) was determined and

these results are shown in Figure 5.8. These 20 estimates give belter upper and lower
bounds for the effective CLF than Craik's model investigated in the previous study [1]. The
deviations at high frequencies in Figure 5.8(a) are due to in-plane motion included in the

DSM medel but not the ensemble average.
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length/width ratio. ---, 1010gm((ﬁ12)/7712,m); -, 1010g10((7721)/7721%.); —, 20 estimate

based on equation (5.5).
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6. CONCLUSIONS

In this study, the variability of the coupling loss factor (CLF) for a system of two coupled
rectangular plates has been examined and quantified using a systematic parameter variation.

An empirical model for the variability of the CLF has been developed using these results.

Firstly, the ensemble average CLF given by Wester and Mace [2] was used to improve the
estimate of the average CLF for a case of 1/3 octave bands and a constant loss factor. At low

frequencies the ensemble average CLFs are lower than the semi-infinite results 77,. and the

effective CLFs fluctuate considerably relative to 77 ens. These CLFs all coincide closely at
high frequency. The influence of damping on the ensemble average CLF was also

investigated.

Secondly, narrow band energies and powers were calculated for a large number of
configurations using the dynamic stiffness method. The modal overlap factor was kept

constant versus frequency by using a loss factor inversely proportional to frequency. The
effective CLFs averaged over frequency bands (ﬁ,..) were obtained from these energies. The

effects of frequency and modal overlap were separated by using frequency averages at a series

of constant bandwidths rather than 1/3 octave averages.

Finally, the logarithmic ratio of the effective CLF to the ensemble average,

1010g10(<ﬁﬁ>/7;'{j,m_), was determined and the variance ¢® was obtained over the whole

frequency region to express the variability of the effective CLF compared to the ensemble
average. An empirical model was developed to express the dependence of the variance ¢ on

the modal overlap factors and numbers of modes in a frequency band. This is given by

M
where M = 2MMs ooy, =2

2 6
2 an comb T .
Mcomb+Ncomb/l6 M1+N2 N1+N2

o =

This represents a 95.7% confidence interval for all sets of data considered. This model was
developed for two coupled rectangular plate system and can be used to evaluate the
uncertainty of the CLF of that system. However it is not known whether other types of system

can be represented by the same model.
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