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1. INTRODUCTION

The use of Statistical Energy Analysis (SEA) to predict the response of vibro-acoustic systems
relies on good estimates of the damping loss factors of subsystems and the coupling loss
factors (CLFs) between them. Damping is usually estimated from measurement data. The
CLFs are therefore normally the main parameters that are difficult to evaluate experimentally
or numerically. Usually theoretical estimates of the CLF, based on the wave transmission

between infinite subsystems, are used.

For two infinite subsystems coupled along a line or at a surface, the wave transmission
efficiency, 7, is defined as the ratio of the transmitted power to the incident power [1]. By
integrating over all possible angles of incidence, the diffuse incidence transmission efficiency

can be determined.

The CLF estimates determined from these transmission efficiencies, for infinite subsystems,
are taken as representative of ensemble averages of finite subsystems. At low modal overlap, |
usually corresponding to low frequency, the actual energy transfer between subsystems can
differ considerably from that predicted using these estimates [2]. These fluctuations are in part
due to the particular realisation of the subsystems within the notional ensemble. Underlying the
fluctuations are the modal properties of the subsystems. Their damping also plays a role in

determining the extent of the fluctuations.

In [2] it was shown that, for two finite rectangular plates coupled along a line, the modal
behaviour of the plates affects the coupling, expressed as an ‘effective CLF’ (to distinguish it
from the ensemble average CLF). Craik et al. [3] proposed that only the modal properties of
the receiving subsystem affect coupling between two subsystems. Using FE predictions, Steel
et al. [4] verified numerically the earlier experimental work. However, it was not clear in the
results in [2] whether it is the modal behaviour of the source or receiver plate or both that is
responsible for these fluctuations compared to the results for infinite subsystems. Therefore, in
this report, models are considered of a finite source plate coupled to an infinite receiver and
vice versa. First, however, a model of two semi-infinite plates of finite width is introduced to
investigate the effect of the finite width compared with the results for coupled semi-infinite

plates of infinite width.



2. SEMI-INFINITE PLATES OF FINITE WIDTH

Before considering finite plates, the restriction imposed by a finite width is studied. Consider
two semi-infinite plates, which are simply supported along the longitudinal edges, y =0 and
vy = b, and joined at the interface x = 0, as shown in Figure 2.1. At x =0 a simple support is

assumed, which could also represent a right-angled joint in the absence of in-plane motion.

X o —— e TTT—
e s = =

X =-co x=0 X=+c
Figure 2.1. Two semi-infinite aluminium plates of finite width & joined at a line.

Allowable wave solutions have a trace wavenumber in the y direction &, (=na/b) for integer
values of n. Considering only flexural waves, an exact analytical expression for the motion of

plate 1 of order n is
w (X, )= (A e + A" + A e sin(k, y) (2.1)

where A, A, and Ay are the complex amplitudes of the incident, reflected propagating and
nearfield waves at the interface, and %, and k, are the respective propagating and nearfield
wavenumbers of plate 1. These wavenumbers are the roots obtained from the wave equation

for plate 1, i.e.

k= (ky —ki)™ (2.2)

ky = (k; +k2)" | (2.3)

where kg (=(p 1hla)2/D1)” Y is the free bending wavenumber of plate 1.



The effective angle of incidence @ at the interface x = 0 can be obtained from

k
0 =tan™ |== (2.4)
1
where 8= 0 corresponds to normal incidence.
Similarly for plate 2,
w, (X, V)= (Ae ™ + A _e™) sin(k, y) (2.5

where A, and A,, are the complex amplitudes of the transmitted propagating and nearfield
waves at the interface, and k3 and k4 are the respective wavenumbers of plate 2. These

wavenumbers are the roots obtained from the wave equation for plate 2,

ky =k —k2)" (2.6)

k,= (k> +k3)" (2.7
where kp (=(p2hzaJ2/D2)“ 4) is the free bending wavenumber of plate 2.

Constraining the displacement along the joint, only rotational motion is allowed. Applying the
equilibrium and continuity conditions at the joint, one can determine the amplitude of each
wave: Le.

(1) displacements at the joint

w (0,y)=0 (2.8)

w,(0,y)=0 (2.9)
(2) rotations at the joint

ow (0,¥) _ dw, (0, y)

2.10
ox dx ( )

(3) bending moments at the joint

2 2 2 2
Mxx,l(o’y):Di{a—T-i_vla_vzl} :Mxr,Z(O’y):Dl{a Wz +V a WZ} (211)
ox W, x v )



Substituting equations (2.1) and (2.5) into these boundary conditions (2.8) - (2.11), the four

unknown amplitudes can be determined in terms of the amplitude of the incident wave A;,, as

follows.
A+A+A =0 (2.12)
A+A,=0 (2.13)
kA +kA, —kA, =—kA -kA, (2.14)

D, [(klz _kaj)Ar * (k22 _vlknl)Anl * (k12 ”Vlkj)Afn] =

R 2.1%
D,[ (k3 =,k A + (ki =V kDA, |
Equations (2.12) - (2.15) can be written in matrix form,
BA =C, (2.16)
where
i 1 0 0
B- 0 0 1 1 2.17)
k k, k; ki '
R ~vk) Dlg-vk) ~Dle-vk) ~Dk-vk)
T
A=|b S A A (2.18)
Ar'n Ain Am Ain
and C,=[-1 0 & -Dk-vi)]. (2.19)

Above cut-on, power is transmitted by the propagating waves, but not by the near-field waves.
In general the powers are proportional to the wave amplitude squared, but also depend on the

plate properties. The incident and reflected waves exist in the same plate so the transmission

efficiency T can be obtained from

(2.20)




Figure 2.2 shows example results for a source plate of thickness 3 mm and a receiver plate of
thickness 2 mm, both of aluminium with no damping. The transmission efficiency only exists
above the cut-on frequency for any particular value of n of plate 1. Below the cut-on frequency
in plate 1, no propagating incident wave will occur and it is meaningless to calculate the
transmission efficiency. When the cut-on frequency in the source plate is higher than in the
receiver plate, no energy will be transmitted into pure propagating waves in the receiver plate
below its cut-on frequency and the transmission efficiency is zero. Thus the transmission
efficiencies are zero up to the higher of the two cut-on frequencies. Then they rise gradually
and tend to the result for normal incidence on semi-infinite plates at high frequencies. This can
be explained by consideration of the angle of incidence, equation (2.4). At cut-on, k, = kr and

wave propagation occurs in a direction parallel to the joint, i.e. k; = 0.

fI

cuton

Figure 2.2. Transmission efficiencies and the angle of incidence predicted for two semi-
infinite aluminium plates of width ~ = Im, thickness of the source plate /; = 3mm, and the
thickness of the receiver plate s;=2mm. Four curves present the results for different
transverse orders, n; —, n=1; -—, n=2; ~=, n=3; ", n=4. The x-axis is a non-dimensional
frequency, f/ feuton, TOT fouron OF the source plate for n = 1 (fouen = 7.34 Hz).

The transmission efficiency for oblique incidence is given by [1]

2" -V 1-s

2.21)
w? +w(Jzz 4521487 +4x° —SZJI—S2)+x2

7,(0)=




where, for plates of identical material ¥ = /b /h, , ¥ =(h,/h)", s =sin6, and 8 is the angle of

incidence. For such grazing incidence 8==m2, 7)5 is zero. As the frequency increases, the
propagating direction gradually approaches normal incidence 6 — 0 and 7, for a given #, tends
to T12{0). As more orders across the plate width, », cut on and are included in the incident field,
this approximates more closely to a diffuse field, with the incident energy not primarily being

at a single angle of incidence. Thus the sum of all such # will tend to the diffuse field value of

7,,, found from infinite plates.

The CLF is only defined for finite plates. The transmission efficiency, 7, for two semi-infinite

plates can be used to estimate the CLF of an equivalent finite plate by using the expression [1]

bty

e = (2.22)

WS,

where ¢, is the group velocity of subsystem I, b is the junction length, 712 is the transmission
efficiency, and S is the surface area of the source subsystem (=bL,, for a rectangular plate of
fength L;). The CLF results, using these semi-infinite plate transmission efficiencies for

. . . 2
particular transverse orders, are shown in Figure 2.3 for a source plate of area 0.5 m”.
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Figure 2.3. Coupling loss factors derived from models of two infinite plates and of two semi-
infinite plates of finite width; —, M,..; —,r=1,",n=2;", A =3+, n= 4,



3. SEMI-INFINITE SOURCE PLATE OF FINITE WIDTH COUPLED TO
A FINITE RECEIVER PLATE

3.1 Model

In this section, a model is considered in which a semi-infinite source plate is connected to a
finite receiver plate of length L,. The right-hand edge of plate 2 is assumed to be free. This
model is used to investigate the influence of the modal behaviour of the receiver plate on the
energy transmission. An incident wave Aj, is applied into the semi-infinite source plate as in
the previous section. The transmission efficiencies are evaluated for different thickness ratios
of the source to receiver plate and the results are considered in terms of the modal behaviour of

the finite receiver plate.

o —
kg%,%&*a Lroer el HEees : .- Sy i

X =-o00

Figure 3.1. Semi-infinite (source) plate of finite width » connected to a finite (receiver) plate.

The out-of-plane displacement of plate 2 given in equation (2.5) must be extended to include a

second reflected wave and a second nearfield wave.
wy(x, y) = (Ae™ + A e + A" +A,,e") sin(k,y) (3.1)

where A, and A,.; are the complex amplitudes of the reflected propagating and nearfield
waves at the right-hand edge of plate 2. Applying the equilibrium and continuity conditions at
the joint and boundary conditions at the right-hand free edge of plate 2 to this equation and
equation (2.1), the six unknown amplitudes can be solved in terms of A, Equations (2.13)-

(2.15) can be modified to

‘4t+Anr+A72+Ahr2 :O . (32)



klAr + klAnl - k1‘4in = thA‘l - k4‘4nr + k3Ar2 + k4Anr2 (33)

) l:(kzz _vlknz JA, + (kz% _Vlknz)Anl + (klz _Vzkf)Am] =

. . 3.4
D2 I:(k.{ WVij)‘AI + (kz _VZkI?)Anr + (k;. _VanZ)ArZ + (k-: _v.?.knz)AnrQ ]

In addition to equations (2.8)-(2.10), two further boundary conditions at the right-hand free

edge of plate 2 are included.

{1) bending moment at the right-hand edge of plate 2:

2 2
M2 (L, y)=D, ) sy, 0 2L =0, (3.5)
ox ay L

(2) shear force at the right-hand edge of plate 2:

o’

Fz(lq,y)=—Dz{ —(2—v2)k3%} =0. (3.6)
wily

ox

Substituting equation (3.1) into equations (3.5) and (3.6), then

(K] =V kD)™ 4,4 ~vokd e 2 A, + (k2 =V, A, +(F —V ke A, =0 (3.7)

ke {=k; +@-vkl e A 1k -k + 2 -vk fe A, +

(3.8)
ks {kzz - (2—v2)k;‘}ek"l’lAr2 +k, {kf - (2_‘/2)'763}‘9"%[’2 A,,=0.
Equations (2.12), (3.2)-(3.4) and (3.7)-(3.8) can be written in matrix form,
B,A, =C, | (3.9)
where
1 1 0 0 0 0 i
0 0 1 1 1 1
k k, k k, ~*; “ (3.10)

Bapw-w) pesp  bE® D@D DD DR
iy —vfoe™ (ke ™ KR (%
KK+ K{HrevKle® K- k{K-a-uKle"




A2 — |: Ar ﬁ. __‘é?_ Anr Ar2 Anrl :| (31 1)
xqin Ain ‘Ain i i

2 2 T
and C,=[-1 0 —k -D(kI-vik)) 0 0]. (3.12)

The reflection efficiency » and the transmission efficiency 7 can be obtained from

(3.13)

T=1l-r. (3.14)

In this model, it is assumed that there is no damping in the semi-infinite source plate, as before,
whereas the finite receiver plate is damped with a loss factor, 1. This loss factor makes the
bending wavenumber complex. The transmitted wave at the joint is propagated to the far edge
of the receiver plate and then reflected back towards the joint. If there were no damping in the
receiver plate, all the power flowing into the receiver plate would be reflected out of it again
and 7 would be zero.

Figure 3.2.(a) shows results for an example case, a semi-infinite source plate (thickness 3 mm,
finite width 1 m) coupled to a finite receiver plate (thickness 2 mm, length 1 m) for n=1. At
low frequencies, the transmission efficiency oscillates considerably around that for two semi-
infinite plates, whereas it converges to that for two semi-infinite plates as frequency increases.
The peaks and troughs in the transmission efficiency are related to the modal behaviour of the
receiver plate. This issue is discussed further in the following section. Figure 3.2.(b) shows the
effective CLF for n = | estimated by equation (2.22) when the length of the source plate is
0.5 m.
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Figure 3.2. (a) Transmission efficiency 7, for a semi-infinite plate (thickness &) =3mm) of
finite width (b = 1m) coupled to a finite plate (thickness #; = 2mm, length I, = 1m) for n=1;
the damping loss factor (11 =0, 12 =0.1); —, semi-infinite to finite plates; ---, two semi-
infinite plates of finite width; (b) CLF obtained from i3 for source plate of length 0.5 m; —,
semi-infinite to finite plates; —-, two semi-infinite plates of finite width; —, two semi-infinite

plates.
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3.2 The influence of the modal behaviour of the finite receiver plate

The transmission efficiencies vary with the thickness ratio of the source and receiver plates.
First, the thicknesses of the source plate are varied between 3.and 1/3 times the thickness of the
finite receiver plate, which is fixed as 2 mm. Next, the thickness of the receiver plate is varied
in the same range relative to the thickness of the semi-infinite source plate, which is fixed as
3mm. Figure 3.3 shows the transmission efficiencies for these thickness ratios. The
transmission efficiency tends to a maximum asymptotic value when the thicknesses of the two
plates are equal and to a minimum when the ratio is largest or smallest. At high frequencies,
the transmission efficiency for this model (the semi-infinite plate coupled to the finite plate)

converges to that for two semi-infinite plates of finite width as seen in Figure 3.2.

The frequency of the peaks for the former case (varying the thicknesses of the source plate)
remains essentially invariant as the thickness ratio varies (see Figure 3.3.(a)), whereas the
peaks for the latter case (varying the thicknesses of the receiver plate) are shifted according to
the modal behaviour of the receiver plate (see Figure 3.3.(b)). In order to study the influence of
the modal behaviour, the natural frequencies of the uncoupled receiver plate are summarised in
Table 3.1. Results are given for two sets of boundary conditions on the edge normally coupled

to the infinite plate (simply supported or clamped).

The peaks in the transmission efficiency are found to occur between the natural frequencies of
the uncoupled finite plate with either simply supported or clamped boundary condition at the
interface, i.e. F-S-S-S or F-S-C-S, as shown in Figure 3.4. At resonances of the finite plate, the
wave impedance of the receiver plate is low, producing a maximum in the transmitted energy,
and hence in the power dissipated in the receiver plate. At anti-resonances of the receiver plate,

the transmission efficiency has a minimum.

To investigate the influence of the modal behaviour of the finite receiver plate, here the
thickness of the receiver plate is fixed as 4, = 2 mm. When the thickness ratio h1/h; 18 large, the
infinite plate constrains the finite plate and the peaks tend towards the natural frequencies for a
clamped edge [F-S-C-S]; when the ratio hi/h, is small the peaks tend towards those for a
simply supported edge [F-S-S-5] (see Figure 3.5).

11
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Figure 3.3. Transmission efficiencies for a semi-infinite source plate to a finite plate (width
b =1m, length L, = 1m) for different values of i11/h, (a) hy fixed as 2 mm and (b) #; is fixed as
3 min,; ---, hllhg =3;_. h]/hg = 2; 5 hllhz = 1; ceeey h1/h2 = 1/2, =t h]ﬂ’lg =1/3.

»——
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Table 3.1. The natural frequencies of the uncoupled receiver plate (width =1 m, length
I,=1m, n=1) with 3 simply supported edges and one free edge [F-S-S-S] and with 2 simply

supported edges, one clamped edge and one free edge [F-S-C-S].

Thickness k> (mm) F-S-S-S (Hz) F-5-C-5 (Hz)
2 5.74,13.7,304, 57.0,93.5 6.20, 16.3, 35.6, 65.3, 104
1 2.87.6.83,152,28.6,47.0 3.11,8.17,17.8,32.5,51.8
1.5 428, 10.3,22.8,42.8, 69.8 4.606,12.2,26.7,48.7, 78.1
R.64,20.4, 458,854, 140 0.32,24.4,53.3,97.8, 155
172,412,914, 171,281 18.7,48.7, 107, 195, 311
258,61.3, 137, 257,421 28.1,73.0, 160, 291, 469
1 T
0.8¢
0.6 q
0.4} A
0.2 -
* * * #* #*
A A A P iy
O 1
10" 10° 10°
Frequency [Hz]

Figure 3.4. The transmission efficiency for an infinite source plate (width &= 1m, L, = 0.5 m,
hy =3 mm) coupled to a finite receiver plate (width b=1m, L, =1m, o =2 mm) and two
semi-infinite plates for n=1; ——, semi-infinite to finite; ---, semi-infinite to semi-infinite;
natural frequencies of finite plate; =, F-5-58-8; A, F-S-C-S.
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Figure 3.5. The transmission efficiencies for an infinite source plate coupled to a finite
receiver plate with b=1m, Lo=1m, n=1, hy =2 mm, for different values of Ai/hy, -—--,
ifhy=3: =, iyl =2, ~—, hifha=1; ", hilho = 1/2; -+-, li/hy = 1/3; natural frequencies of
finite plate; =, F-S-S-§; A, F-S-C-S.

3.3 The influence of damping of the receiver plate

It is assumed that there is no damping in the semi-infinite source plate, but the finite receiver
plate is damped with a loss factor 77. As damping of the receiver plate increases, more energy is
absorbed by the receiver plate and less energy is reflected back towards the joint. Likewise the
transmission efficiency 7 oscillates less and converges more quickly to that for semi-infinite

plates of finite width, as shown in Figure 3.6.

14
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Figure 3.6 The influence of damping on the transmission efficiency for a semi-infinite plate

{thickness f,
length £, =1m) forn=1; —, 1, =0.1; -, 1, =0.03;
finite width.
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=3mm) of finite width (b = Im) coupled to a finite plate (thickness Ay = 2mm,
-, 1 =0.01; ",

semi-infinite plates of



4. FINITE SOURCE PLATE COUPLED TO A SEMI-INFINITE
RECEIVER PLATE OF FINITE WIDTH

4.1 Model

In order to evaluate the influence of the modal behaviour of the source plate on the coupling
loss factor, one can consider a finite plate connected to a semi-infinite plate, as shown in

Figure 4.1.

Figure 4.1 Finite (source) plate connected to a semi-infinite (receiver) plate of finite width b.

For this system, it is more appropriate to simulate a "rain-on-the-roof" type excitation rather
than a propagating source wave as in the previous chapters. In a previous investigation on two
finite plates [2], it has been shown that one needs of the order of 400 excitation points in the
finite source plate to obtain reliable results, independent of the forcing points. Single point
excitation is therefore applied at 400 randomly chosen points, avoiding edges. For each point
force, this excites vibration in many different transverse ordefs, n, across the plate width. For a
given frequency, all such components need to be included whose cut-on frequency is below the

frequency under consideration.

The equations of motion are solved using a dynamic stiffness approach [5]. A harmonic point
force is applied inside one plate. Thus the source plate is separated into two at the longitudinal
position of the applied force. The dynamic stiffness matrices for the source plate, K and Ks,
are as given in [5]. For the semi-infinite plate, a dynamic stiffness matrix Kir (see

Appendix A) can be defined in terms of the positive-going nearfield and propagating waves at

16



the interface. The global dynamic stiffness matrix of the total system can be derived by
assembling the dynamic stiffness matrices of the two finite plates and the semi-infinite plate
and applying the continuity and equilibrium conditions at the interface. This global dynamic
stiffness matrix K, can be reduced using a transformation matrix. The reduced dynamic
stiffness matrix K, for flexural motion only, is a 6x6 frequency-dependent matrix. The

response can be obtained from K''F for every frequency, where F is an applied force vector.

4.2 Coupling loss factor

The coupling loss factor (CLF) can be determined from the power balance equation [2]

}_)l = fj;,ldiss + 13112 = w(nlﬁll +ﬂ112E]1 Mnélﬁzl) (4 1)

1,in

where P, and Pgs are the time-averaged input and dissipated powers, Py is the net transmitted
power from plate 1 to 2, 7 18 the internal loss factor of plate 1, E; and E5 are the total time-
averaged energies, 12 and 7} are the coupling loss factors. The superscript 1 means the
excitation is applied to plate 1 and *~ ” denotes an ensemble averaged quantity. As before, no
damping is included in the semi-infinite plate. Due to its infinite nature, energy is only

transmitted away from the joint and the term on,, E, representing power transmitted from
plate 2 to plate 1, is zero. Since E}diss = n,E] , the effective CLF for a particular finite source

plate is obtained from

. B P
L2 —p 2 “.2)
a)El }DI,di.\'.\'

To evaluate the effective CLF, one needs to calculate the strain energy of the source plate £,
and the power transmitted at the joint Pj5. The response of the source plate is integrated
analytically to give an accurate measure of its strain energy (see Appendix B). The transmitted

power at the interface Py is obtained directly from

B, =

2| -

2]
Re{ZJMS(y){jwcan(y)}dy} 4.3)

where M, is the internal moment amplitude / unit length at the interface calculated from the
dynamic stiffness matrix and ¢, is the rotation amplitude. These are calculated for each

transverse order #, integrated along the interface length b, and then summed.

17



The power dissipated and power transmitted for this system fluctuate due to the modal
behaviour of the finite source plate, as shown in Figure 4.2. However the peaks in the two
curves tend to coincide. The power transmitted becomes significantly lower than the power

dissipated as frequency increases.

Power/Force” [Watt/NZ]

10° 10’ 10° 10° 1¢0°

Frequency [Hz]

Figure 4.2 The power dissipated Py 45 and power transmitted P, for a finite source plate
(h; = 3mm, L; = 0.5m, 1y = 0.1) coupled to a semi-infinite receiver plate (h, = 2Zmm, 1, = 0} of
finite width (b = 1m); —, P1 4iss; — P12

The effective CLF for a finite plate coupled to a semi-infinite plate of finite width (b = 1m) can
be obtained from equation (4.2). Figure 4.3.(a) shows the effective CLF for transverse order
n=1 up to 4 which is averaged over 400 forcing points. Figure 4.3.(b) shows the result for
1= I 10 Apmax, Which is included whose cut-on frequency is below the frequency considered. At
low frequencies, the effective CLF fluctuates around that obtained from two semi-infinite
plates. As transverse order n increases and the sum over s, is taken, the effective CLF
converges to the CLF for two semi-infinite plates. However, the effective CLF 1s relatively

smooth compared to the fluctuations in the CLF for a semi-infinite source plate coupled to a

finite receiver plate (see Figure 3.2.(b)).
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Figure 4.3. Effective CLF for finite source plate (f; = 3mm, L; = 0.5m, 17, =0.1) coupled to a
semi-infinite receiver plate (i; = 2mm, 17, =0) of finite width (b= 1m); (a) 1. versus narrow
frequency band and (b) 12 versus 1/3 octave frequency band; -, n=1; ™, n=142; 4+,
n=14243; o, n=142+3+4; —, n=1upto 46; =, N,...
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4.3 The influence of damping of the source plate

As damping of the source plate increases, the level of peaks in the power transmitted Py, and

the energy E, decreases, as shown in Figure 4.4. However damping has only a small effect on

the effective CLF, as shown in Figure 4.5.
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2
ntre Freque

0

Figure 4.4 The influence of damping of the source plate on: (a) the transmitted power Py, and

(b) the strain energy for the source plate E for different damping loss factors; —, 1y = 0.1; ---,
T =0.03; -, m =0.01. The dimensions of the source and receiver plates are the same as
Figure 4.3.
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Figure 4.5 The influence of damping on the effective CLF for a finite source plate (&, = 3mm,
Ly =0.5m, 17, = 0.1) coupled to a semi-infinite receiver plate (4, = 2mm, 7}, = 0) of finite width
p=1m);—, 7 =0.1; —, 7 =0.03; —, m =0.01.

4.4 The influence of the modal behaviour of the finite source plate

This section investigates the influence of the modal behaviour of the finite source plate on the
energy transmission in terms of the effective CLF. A parameter study is performed in which
the thickness ratio between the two plates is varied and the modal behaviour of the finite

source plate is examined.

First, the thicknesses of the finite source plate are varied between 3 and 1/3 times the thickness
of the semi-infinite receiver plate, which is fixed as 2 mm. The influence of the thickness of
the source plate is shown in Figure 4.6.(a). The peaks and troughs are related to the modal
behaviour of the source plate. The natural frequencies for the uncoupled source plate are
summarised in Table 4.1. Energy transmission starts at the cut-on frequency of the receiver
plate whose thickness is kept the same, as indicated above. The maximum energy transmission

occurs when the two plates have the same thicknesses.

Next, the thickness of the receiver plate is varied in the same range relative to the thickness of

the finite source plate, which is fixed as 3 mm. The energy transmission varies as well, as the
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thickness of the receiver plate is changed (see Figure 4.6.(b)). The peaks and troughs occur at
similar frequencies, but these are related to the natural frequencies of the finite source plate

(see Table 4.1) whose thickness is kept the same.
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Figure 4.6. The effective CLFs for transmission from a finite source plate (width =1 m,
length L; = 0.5 m) to an infinite receiver plate for different values of hi/hs; (a) hs is fixed as
2mm and (b) ky is fixed as 3mm; —, A/hy =3; -, il =2, ——, il =15 77, ifha = 172, -+,
hilhy = 1/3.
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Table 4.1. The natural frequencies of the uncoupled source plate (width #=1m, length
Li=05m, n=1) with 3 simply supported edges and one free edge [F-S-5-S] and with 2
simply supported edges, one clamped edge and one free edge [F-S-C-S].

Thickness #; (mm) F-S-S-S (Hz) F-S§-C-S (Hz)
6 23.6, 111, 314, 636, 1070 33,4, 148, 381, 728, 1200
4 15.8,74.3, 210, 423, 714 22.3,98.3, 254, 490, 799
2 7.88,37.1, 105, 211, 358 11.1,49.0, 127, 243, 399
1 3.95, 18.6, 39.5, 186, 524 5.58,24.6, 63.6, 122, 200
0.7 2.61,12.3,35.0,704, 119 3.72,164,42.5,81.2, 134
3 11.8,55.8,157, 318, 536 16.8,73.8, 191, 367, 602

To investigate the influence of the modal behaviour of the finitc source plate in more detail,
consider again the second case: the thickness of the finite source plate is fixed as 2 =3 mm
and the thickness of the semi-infinite receiver plate is varied between 1/3 and 3 times the
thickness of the finite source plate. The effective CLFs were shown in Figure 4.6.(b). The
energy transmission starts at the cut-on frequency of the semi-infinite receiver plate. The
effective CLF fluctuates at low frequencies and converges to the result of the infinite plate as
shown in Figure 4.3. The peaks and troughs occur at similar frequencies as the thickness of the
semi-infinite receiver plate varies. These peaks depend on the modal behaviour of the finite
source plate, as the thickness of that plate is fixed. Table 4.2 presents the natural frequencies of
an uncoupled source plate for different transverse orders, n and two different boundary

conditions along the edge normally joined to plate 2.

Figure 4.7 compares these natural frequencies for two different boundary conditions and the
effective CLFs for a finite source plate (h; =3mm, length L, =0.5 m) and semi-infinite
receiver plate. These natural frequencies are shown for each » value. It is found that the first
resonance corresponds to a peak in effective CLF, the second to a dip, the third to a peak and
so on. The effective CLF for a finite source plate ({(a) #; = 3mm, Az = 2mm, L; = 0.5 m and (b)
hy=2mm, and s, =3mm, L; =10 m) and semi-infinite receiver plate (h; =2 mm), is
compared with the CLF for two semi-infinite plates, for a diffuse field and for 4 transverse
orders, in Figure 4.8. The troughs in the effective CLF correspond to the cut-on frequency of

the source plate for n>1, which in turn correspond to the first resonance for a given a.
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At a resonance of the finite plate, the effective angle of incidence is dominated by that
corresponding to the mode. Consequently the effective CLF folows closely that for the semi-
infinite plates with the corresponding order n. The fluctuations in effective CLF are therefore
due to the predominance of particular angles of incidence, not due to the direct influence of the

modal behaviour of the source plate.

Table 4.2. The natural frequencies of the uncoupled source plate (thickness k) = 3.0 mm,
length L; = 0.5 m, width » = 1 m) with 3 simply supported edges and one free edge [I*-S-S-S]

and with 2 simply supported edges, one clamped edge and one free edge [F-S-C-S].

F-S-S-S (Hz)

F-S-C-S (Hz)

11.8, 55.8, 157, 318, 536, 812

16.8,73.8, 191, 367, 602, 894

34.6, 82.2, 182, 342, 561, 840

37.3,97.5, 215, 390, 624, 917

71.2, 122,224,384, 600, 876

72.8, 135, 253, 428, 662, 953

122, 175, 279, 439, 658, 930

123, 187, 306, 482, 716

188, 242, 348, 510, 730

189, 252, 372, 548, 783

|| W=

267,323, 431,597,812

269, 332, 453, 631, 864
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Tigure 4.7. The effective CLFs for a finite plate (£, = 0.5 m, &; =3 mm)} coupled to a semi-

infinite plate of finite width (b=1m); —, hy=1mm; —, ha = 1.5mm; —, sy =3mm;

Ed

hy = 6mm; —+, ki, = 9mm; The symbols denote natural frequencies of finite source plate for
different boundary conditions along the edge, (a) F-S-S-S and (b) F-S-C-S, and different
transverse orders n; =, n=l;0,n=2;a,n=3;0,n=4;x,n=>5.
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Figure 4.8. Comparison of the CLFs for a finite plate coupled to a semi-infinite plate of finite
width, () Ay =3 mm, Ay =2 mm, L; = 0.5 m, and (b) 2y =2 mm, Ao =3 mm, L; = 1.0m; —, the
CLF for two semi-infinite plates; —, the effective CLE for a finite plate coupled to a semi-
infinite plate of finite width(b = | m); -, the effective CLFs obtained from equation (2.22) for
two semi-infinite plates of finite width (=1, 2, 3 and 4); The symbols denote natural
frequencies of finite source plate for different boundary conditions along the edge, (a) E-5-8-5
and (b) F-S-C-S, and different transverse orders n; x,n =1 0,n=2;A,n= 3:o0,n=4.
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5. DISCUSSION

For finite coupled subsystems the variability due to modal behaviour in the effective coupling
Joss factor, or transmission efficiency, has been examined using a systematic investigation

involving finite width semi-infinite plates and finite plates.

It was shown that the modal behaviour of both the source and receiver plates affects the energy
transmission for two subsystems. Large variability in the energy transmission was found due to
the modal behaviour of the receiver plate, with peaks occurring in the transmission efficiency
at the receiver’s resonances. Damping of the receiver plate controls the magnitude of these
variations. However, smaller variations in the energy transmission can be attributed to the
source subsystem characteristics, as produced in the finite source plate coupled to a semi-
infinite receiver plate. This variation is due to the predominance of particular angles of
incidence at a given frequency. Both peaks and troughs in the effective CLF correspond to
natural frequencies of the uncoupled source plate. Damping of the source plate has only a small
influence. Therefore it can be inferred that the modal overlap of the receiver plate is important
whereas the modal density (not its damping) of the source plate is important. Figure 5.1
summarises these trends by comparing the CLFs found for a finite receiver or a finite source

plate, taken from Figures 3.2.(b) and 4.3.(a).
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Figure 5.1. Comparison of the CLFs for two different models (k=3 mm, A, =2 mm,
Li=05m, L, =1.0m, b=1m); (a) semi-infinite source plate coupled to a finite receiver plate
(n = 1) and (b) finite source plate coupled to a semi-infinite receiver plate (n =1 up to 46); —,
the effective CLF for model (a) or (b); —-, the CLF for two semi-infinite plates; ---, the
effective CLF obtained from equation (2.22) for two semi-infinite plates of finite width (n = 1).
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APPENDICES

A. Dynamic stiffness matrix for a semi-infinite plate

A semi-infinite plate, as shown in Figure A.1, is assumed to be simply supported along two

opposite edges (y =0 and y = b).

Figure A.1. A semi-infinite plate of finite width, b.

The deflection for flexural vibration may be taken to be of the form
2
W, (x)=2 A, (A1)
r=1

where the A, terms are two unknown constants of integration which can be found by ensuring

that the solution satisfies the boundary conditions at the left-hand edge of the plate and the k,,

terms are the positive-going nearficld and propagating waves (Kyy yn=— kK>Ek?,

2 1/4
k=(phw'/D)  and k,=nm/b).
Upon introducing the flexural displacement vector for longitudinal direction
ul, ={w,(0) W0}, (A.2)
then

W, (@)= A, + 4,

’ (A3)
Wn (0) = knlAnl +kn2‘4r32

or in matrix form
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o174
“”f{km knzHAﬂ} (A

unf = plnAn (AS)

where Al =[A, A} and
J1 o1 "
pl”_ knl an ‘ . )

Equation (A.1) may be used to derive a relationship between the displacements and forces at

the left-hand end of the plate, and thus the dynamic stiffness matrix of the plate for flexural

vibrations with transverse modeshape sin (kn y) for each n. The longitudinal shear force S,(x)

and bending moment M,(x) along the free edges may be written as {5]
S, =—D[W,=(2-V) kW, ] (AT)
M,=-D[W/ -viW, | (A.8)

where D is the flexural rigidity (= ER’ / 12(1-v*) and v is Poisson’s ratio.

Upon introducing the restoring force vector

={-s,(0) M,(0)] (A.9)

where S, (0)= D{i kY A, —(2-v)k {Z knrAmH (A.10)

r=l1

wa ¥, (0)=-D| 3 (5. 4, V34, | (A

From equation (A.5), A, = pl_nlll,!f , equation (A.9) can be rewritten in matrix form,

F,= p.,.A, = p’lnpl_riunf =Kyl (A.12)

Kinf = plnpl_ri (A 13)

and
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p -D (knl )3 _(Z_V)kfknl (knz)s_(z_v)ksknz (A.14)
- —(k, ) +VE] — (k) +VE?

where Kiur is the dynamic stiffness matrix of the semi-infinite plate for flexural vibrations.
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B. Analytical integration of strain energy

In calculating the energy of each plate, an analytical integration has been performed to give
sood agreement. The displacements and their derivatives are obtained from the dynamic

stiffness approach.

B.1. The strain energy for flexural vibration

The strain energy for flexural vibration is given by [5]

s

where I is the flexural rigidity (= EW/12(1-V), E is Young's modulus, 4 is the thickness of

the plate, v is Poisson's ratio, respectively), b is the width of the plate, L is the length of the

plate and w is the out-of-plane deflection. In equation (B.1) w is a real quantity.

The out-of-plane displacement amplitude may be taken to be of the form

S
w(x, y) = Z 2 A_e* sin(k,y) (B.2)

=l m=l
where the complex Ay, terms are four unknown constants of integration which can be found by
ensuring that the solution satisfies the boundary conditions at the ends. The &y, terms are the
four complex wavenumbers, k, (=n7y/b) is the trace wavenumber in y direction and » is the

number of half-sine waves along the transverse edge.

The first term of the integral in equation (B.1) can be rewritten in the form
b oL d’w Y 'w
[ o522 e =

_ZE A k> e sin(k,y) B4

a=l m=1

az
o’

where

and * denotes the complex conjugate.

Substituting equation (B.4) into equation (B.3),
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J J; HZZAM ](ZEAW el Jsin(kﬂy)sin(kn.y)}dxdy

" m n o om

. (B.5)
__ZZZAnmA:m k/in IU:I { (k,l,,i+k:,,{)l-__1}
b . b
where _[ sin(k, y)sin(k, y)dy=— if n=n".
0 2
The second term of the integral in equation (B.1) can be rewritten as
2 *
b oL EO W b et P w Y Ow
Ll e ao=L), {y){y dudy B.6)
where v —XZkamek’"“x sin(k, ). B.7)
n=1 m=1
Substituting equation (B.7) into equation (B.6),
b L 2 Kot Lo
jo jo M_sz € J("sz " ]sm(k y)sin(k, y)}dxdy
. (B.8)
Zzz AzmAnm { eyt )L _l}

The third term of the integral in equation (B.1) can be rewritten as

gk

Substituting equations (B.4) and (B.7) into equation (B.9),

va-(f IOL Re [(ZzAhmkjm ot }{ szzAnm o JSln(k y) Slﬂ(k y):|dxdy

0w

_ A [ hurric
_—vaEEsz{k e et ”—1}]

n m m

(B.10)

The last term of the integral in equation (B.1) can be rewritten as

I
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Ty g &
where = kA ke cos(k B.12
axay 22 B (k,»). (B.12)

Substituting equation (B.12) into equation (B.11),

20-v[ [ [(szn/\mkme - ]{ZZkﬂAmkme g ]cos(kny)cos(k”,y):,dxa‘y

n nl

= b(l_v)zzz kﬂ im&r?mkxm {e(k,,,,ﬁk:,,;)L _ 1}

2
n m m

The strain energy for flexural vibration can be analytically obtained from equations (B.5),

(B.8), (B.10) and (B.13).

{ZZEAN A,k Ko { (k,.,,.+fc,:,;)L__1} n

Ll k, ke
t:AnmA;Lm (CWR ST B
;;; knm +knm { 1}
WZZEER@[AW"% { o) 1}} : (B.14)

2(1_‘/);;;]6 A/;mA:r-nknm nm{ (e )L 1}:|

[Zzz AA, { kL 1}{»’6,?,”»’6;31 e+ 2vkE, H
k. +k .

noomoom T g 2(1 V)kzk k

N nm

B.2. The strain energy for in-plane vibration

The strain energy for in-plane vibration is given by [5]

Vs v)”[[ } ( )2 2‘%% L;)(%+%Eﬂdx‘iy (B:15)

where u and v are the longitudinal and transverse deflection, respectively.

If the boundary conditions are simply-supported along the longitudinal edges, the in-plane

deflections, the longitudinal deflection u and the transverse deflection v, may be written as [5]
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A Ee:
i ()C, y) = Z{[lnl &nz][gnlzlnz-fji+ [kn kﬂ][gﬂglﬁx}}sin (kny) (B'16)
n2

u=1 né

g Ayt A
V(x,y):z,{[kn kn]{g”izzﬂx}r[ﬁnz /1n4][g":§an4x}}cos(kny). (B.17)

n=l1

where the complex C; terms are four unknown constants of integration. The A, terms are

determined by

A’nl,n?, = i ) knz ——kf and ﬂ‘n?},n‘i = i W kn2 _kT2 (B'18)

where k; = pw*(1-v*)/E and k] = 2p’*(1+WV)/E.

The first term of the integral in equation (B.15) can be rewritten as

b oL | Qul b el Ou Y ou '
[N = dxdyzLL(gJ(a]dxdy (B.19)
au £ I Cn z’n elnlx CHB/’LﬁeA"JI 3 '
where H.;C_ = p {[}L‘nl ;LRZ] —Cn:/ln;el”zx:| + [kn kn ]}:Cnalﬂeiﬂx Sln(ku y) (B.Q.O)

and * denotes the complex conjugate.

Substituting equation (B.20) into equation (B.19),
J.: J-: |:{z (Cn!;l’r‘flgl”lx + anljzeﬁdx + knCn3;Lr13€A"JX + kncrzdz'HQelmx) }

{2 (C:1 ?L:lze,l.:lx + C:’z/’L:ze%:zx + kn’c:?l:}ei;ax + kn,C:,‘ll:‘iga.:u ) }Siﬂ(k” y) Sin(kn,y)} dxdy
2Ref, )L
2 |A,M |4 £ 1 +
ZRG (l'ni)

2Re(A,, )L
ie e(dyz) -1

|

Cn 2

Cnl

-ty

. ezae(zﬂ)L_l
Y
ZRG (?l'rﬁ )

2Re(A,q )
48 el 4

2Re(A,,)

1 (A 2235)L

e(l,,]hl,:z)l, . 1
Rel{C CLAA I —  — 4+ C CL Ak, e+
nlR27 " nl" "l A, +ﬂ;:2 al a3 il w3 a lnl'i‘ﬂu;i

nl

2

A

nd +

k:- Cra3 Iz

Cn4

j"n}!

(Aucan )t (Auz+ias)L

CnlC:'flA’Z ﬂ’:;lkn =

nl

1 , e -1
+C ,CL AL A b ——m——+
n2 R 302" a3 A/ . +ﬂ(*

nl n4 n2 n3

(Amz”-%)i- (Aﬂ3+l;4).[,
. ., & -1 w 2B -1 (B.21)
C . C ANk ———+C Co A A —————

n2 " n 4 2 hd e l '}"1:4 A3 R4 03 w4 Ve 1"3_%_1’:4

n2

%
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b b
where [ 'sin(k,y)sin(k,)dy =S ifn=r.

The second term of the integral in equation (B.15) can be rewritten as

o re|ovf el v Y ow Y
Lk % dedy=1 | (g]{g}]dwy (B.22)
where @:‘rﬁk [k, k] Cue™ A A Cpae™” sin(k, ). (B.23)
ay o n n n anel"zx n3 n Cn4g}‘"4“: .

Substituting equation (B.23) into equation (B.22),
b
¥ [kz{ Sk, Ce +,C +Codue™ +C A W)}

{E(knf;e""‘+k,,JC:rze“"2*+Cf,3/1,ﬂe’W‘+C“ A, *"“)}sin(kny) sin(k,fy)}dxdy

,
"

e RelhL Re(ha)l_y
_Z { Cof =t ,,2| S
|c,=3|2|z,,3|29f%+‘ N e B20
2Re(}“ns ) 2Re(/1n4 )
2Re k'C,C; e Lk c,Co Chiie L kGO i Ly

0 n1 2 l /1 Rl n3 3 /»L”] nﬁ 1 nl 4 d /’L /1,;4

B ity N
kncmc;)hns W + k” C,QC:M“ m+ Cn3C:42~;131n4 m

The third term of the integral in equation (B.15) can be rewritten as

[ [ Re{[% ][% )}dxdy . (B.25)

Substituting equations (B.20) and (B.23) into equation (B.ZS)',
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21/-[: JoL [{;( Cnl;i':]elux + C,lzitfgeﬁ’ﬂ" + k”C”3 ﬂhgeﬁns-f +k C., 3?14 eﬂ,,4x) }

{2<-k,,>(k,,,c;e’%x e Crn ™+ o+ G| }sin(k,,w sm(k,;w]dxdy

3 CZRC('A‘M)L_I 5 GZRﬂ(ﬂnz)L_I
ﬂ_VbEkn Re |C;!l| ﬂ'jlkn—-i_ C;IQ A;an—-l_
i 2Re(2"nl) ZRG(}":Q )
2Re(A3)L 2Re(A,4)L
21, 2, © -1 21, 2, € -1
Cn3 I n3| n—+ Cn4 |2'.'u4| k11—+
2Re(ﬂ.n3 ) 2Re( Ay )
, e(llll+27:2)L—]. , e(lul"')vjs)f—_l , (11:1"'};4)[-_1
cC C Ak ——+CCAMAL, ——+C C AN, —————t
nl 02" hl ™ /'Ll+ﬂ,:2 nl 3" h1 h3 A,’ll'i‘ﬂ/:} ni—nd" "nl* "hd //Lnl +l:4
(ﬁnz'“‘;ljl- (3542”-:3)"- (3311'*'3;4)11
; -1 « € -1 ., € -1
CLC Ak, St C O A 1 C O,
w20l h2 lﬂz +}b‘:l u2r3H27 03 /'1?12 +/1;:1 a2~ rd" 02" w4 }L.nz '{‘/’L;
(lﬁ:‘“’j:!I)L (J1|3+;'172)L (2113"";\;4)'[‘
. e -1 e -1 e -1
szcu/lnakfm“*‘c,aC:z%kf m‘*‘cﬁc‘;ﬂ-ﬂakﬂm*f
(Aa+ i )L (At )L (Rt )L (B.26)
) -1 e -1 e -1 :
C.OARS — A —yC AN S
rdnl" hdn /1,14 +/1:1 nrd R nd ;Ln4 ‘i‘;‘.;:z nd N3 hd" W30 144‘1:3

The last term of the integral in equation (B.15) can be rewritten as

(=) o e |ou ] (1=v) e v You v |
— —_—— = —+— | —+— idx B.27
2 Jo .[o ay ox chedy 2 jo jo ay ox ay ox dy ( )
o Tem C oM C ot
h —=>Y kA, A" k, k] k B.28
wnere ay s 7 {[ nl it ]1:(:”2@1"2/‘:|+[ [3 n]|:Cn4el"“x}} COS( ny) ( )
and
dv s C e ) C e
g = ”=l {[kn;tnl knlﬂ2]|:cn;e%?‘r:|+[&n3 154]{anelﬂ4x:|} COS(k,, )’) . (B.Zg)

Substituting equations (B.28) and (B.29) into equation (B.27),

38



J-;,J’ [{2{ H nl}’n]eﬂn]x +2knq523?126&121 +C:B (k2 '1'2,2 ) 2,,3x +C;14 (kj +ﬂ§4)e}mx) }

{Z(ﬂcﬁ@;&ﬂe’* F 2 Gl + G AR + Gy + A7) }COS(kny)oos(knfy)}M

-
o

I IR -1, -1,
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A (A,ﬂ+a,4)L 1 - . (wm) 4
2% C k +A, +2% C.C A,k +A +
it ( ) ﬁm ;1124 (/7 Ad %} 1:2( ) 2112+2;13
o , (31:2"‘37;4) -1 s s e(ﬂﬂ‘L}M)L_I (B.30)
2%,C, e+ A+ GGl + A, + Aoy ———— )
s 4 fJZ zﬁ‘i ’ ! 2;,3+Aﬁ4

The strain energy for in-plane vibration can be analytically obtained from equations (B.21),

(B.24), (B.26) and (B.30).
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