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MOVING GREEN’S FUNCTIONS FOR A LAYERED
CIRCULAR CYLINDER OF INFINITE LENGTH

X. Sheng, C. J. C. Jones and D. J. Thompson
ABSTRACT

This paper derives the Fourier transformed steady state responses (Fourier
transformed Green’s functions) of an infinitely long cylinder subject to harmonic loads
which may be stationary or moving in the cylinder-axis direction. The cylinder may have
a layered structure in the radial direction. By letting the inner radius of a hollow cylinder
approach zero and its outer radius approach infinity, the Fourier transformed moving
Green’s functions of a homogeneous and visco-elastic whole-space are found. They are
expressed in terms of Bessel functions of the second kind. The Green’s functions, either
for a layered cylinder or for a homogeneous whole-space, are useful in a number of
engineering applications such as ground vibration induced by underground trains and
leakage detection of water, gas and oil pipes buried underground. The formulae and the
computer program that implements them are validated first by means of the plane-strain
Green’s functions which correspond to the case of zero axial wavenumber. They are
further tested by comparison with the exact solution for a point stationary harmonic load

and the exact solution for a moving constant load for a homogeneous elastic whole-space.
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1. INTRODUCTION

With regard to the environmental impact of rail traffic, an important issue is the
problem of ground vibrations produced by trains running in cut-and-cover or bored
tunnels. The dominant frequencies associated with underground train-induced ground
vibration are from about {5 Hz to 200 Hz [Grootenhuis, 1977]. Vibration in this range of
frequency gives rise to structure borne or ‘ground-borne’ noise. To explore the

mechanism of this problem, several modelling approaches have been proposed.

A two-dimensional (in the plane normal to the tunnel axis) FE model was
reported [Balendra et al 1989, 1991, 1992] to investigate the steady-state vibration of
tunnel-soil-building systems. In this model, an artificial boundary was introduced for the

application of the finite element technology.

At ISVR, Southampton University, a two-dimensional (in the plane normal to the
tunnel) BE/FE coupled model has been developed for a ground including lined or unlined
tunnels [Jones, Thompson and Petyt 1999]. This model] is capable of accounting for
arbitrary shapes of the cross-section of the tunnel and lateral geometry of the ground, and
automatically satisfies the condition that there is no wave reflected from infinity.
However this model cannot account for the movement of trains or wave propagation in

the tunnel direction.

At Cambridge University, a cylinder theory-based model has been produced
[Forrest 1999]. In this work, the rails and track-slab are modelled as beams of infinite
length, with elastic layers to represent the railpads and slab bearings. The ground and the
tunnel are regarded as a viscoelastic whole-space including a circular thin shell of infinite
length. Excitation is provided by roughness displacement inputs between the rails and a
train of axle masses spaced regularly. The motion of the vehicles has not been taken into
account, though the phase differences of the inputs at different wheel/rail contact points
have been implemented in the formulation. The advantage of this model lies in that it is
an analytical model so that it is of very high computational efficiency. However, when
the tunnel does not possess a circular cross section, when the tunnel is not very far below
the ground surface, or when the ground has a layered structure, the usefulness of this

model will be limited.



At Delft University of Technology, Netherlands, a two-dimensional (in the
vertical plane along the tunnel axis) analytical model has been suggested [Metrikine et al
2000]. This model is composed of two two-dimensional visco-elastic layers (representing
the soil above and below the tunnel) and two identical Euler-Bernoulli beams (modelling
the tunnel). The beams are connected by continuously distributed springs. This model
accounts for the movement of wheel/rail forces; however, it omits the wave propagation

in the lateral direction.

A model is required that can account not only for the wave propagation in the
vertical plane normal to the tunnel axis, but also for the movement of trains in the tunnel
and wave propagation in the tunnel direction. The latter is important since the inclusion
of a tunnel in the ground provides a waveguide in that direction. A three-dimensional
model is therefore needed and for some studies is essential. A three-dimensional FE/BE
mode! has been implemented [Andersen and Jones 2001 a, b and 2002] but is very
complicated to use and, because of the extremely large computing resources that are
required, cannot be run many times in order to carry out an investigative study. The three-
dimensional FE/BE model is useful for many foundation problems where the structure is
of limited extent and in which the response of the ground is not required at great
distances. For a tunnel, however, and for vibration response at distance on the ground
surface, the model cannot be used for the whole frequency range of interest for structure-
borne noise from tunnels. Even on advanced computing equipment the computation time

is too long and the memory requirement is too large.

Having considered that, in general situations, the geometry of the ground-tunnel
structure is invariant with respect to any translation along the tunnel axis, an approach
was recommended by, for example, Aubry [Aubry et al 1994} in which the problem is
transformed into a sequence of two dimensional models depending on wavenumbers in
the tunnel direction. For each longitudinal (in the tunne! direction) wavenumber, the
finite cross-section of the tunnel is modelled using the FE method and the wave
propagation in the surrounding soil is modelled using the BE method. The simplicity of
this approach comes from the fact that the discretization is only made over the cross-
section of the ground-tunnel structure. It requires Green’s functions, which are responses
due to moving harmonic loads, either for a half-space or for a whole-space, expressed in
terms of coordinates in the plane normal to the tunnel axis and the wavenumber in the

tunnel direction. Such Green’s functions for a layered half-space are available [Sheng et



al 1999]; however they are expressed in terms of an infinite integral which can only be
evaluated numerically. The Green’s functions for a whole-space due to stationary
harmonic loads, expressed in terms of the three Cartesian coordinates, were obtained a
long time ago [see e.g. Miklowitz 1978]. Recently, Tadeu and Kausel [Tadeu and Kausel
2000] derived the Fourier transforms of these Green’s functions with respect to one of the

three coordinates, expressing them in terms of Hankel functions.

As a theoretical preparation for a thorough investigation into the tunnel-ground
vibration problem, this paper deals with the steady-state responses of a solid or hollow
circular cylinder to moving harmonic loads, or in other words, it aims at obtaining the
movi'ng Green’s functions of such cylindrical structures. The cylinder is assumed to have
a Iayéred structure in the radial direction, i.e. it consists of a number, n, of concentric sub-
cylinders. Starting from the most inner one, the sub-cylinders are numbered as sub-
cylinder 1, sub-cylinder 2 etc. The geometry of the jth sub-cylinder is described by its

inner radius, R, , and its outer radius, R, , where, R, = R, - The density, Young’s
modulus, Possion ratio and loss factor of the material of the jth sub-cylinder are denoted

byp;.E;,v;andn,.

When R, =0, the first sub-cylinder is a solid one. The outer radius of the last

sub-cylinder may be infinite. For a deeply buried circular tunnel, the tunnel is the first
sub-cylinder and the surrounding soil may be regarded as the second sub-cylinder which
has an infinite outer radius. A homogeneous elastic whole-space is a special cylinder the

inner radius of which is zero and the outer radius of which is infinite.

Investigations have been performed for solid or hollow circular cylinders by many
researchers. Fliigge & Kelkar [1968] proposed a general method to solve the statics ofa
solid or hollow circular cylinder of any length, allowing arbitrary conditions prescribed
on the curved and flat surfaces. Mirsky [1965] carried out a study on the wave
propagation of free harmonic waves in hollow and solid circular cylinders of a
transversely anisotropic material, following the approach that Gazis [1959] used for an

isotropic material.

As shown in Figure 1, the x-axis forms the axis of the cylinder. Two coordinate
systems are used; one is the Cartesian coordinate (x, y, z) system and the other is the

cylindrical coordinate (x, r, 8) system. The relation between them is

_5-



xX=x
y =rcosf (1)

z=rsinf

Three harmonic loads of angular frequency €2 are applied at the interface of the

(1, —1)th and{, th sub-cylinders in the axial, radial and circumferential directions. These

loads move at speed ¢ in the axial, i.e., the x-direction. These harmonic loads may be
distributed in the axial direction but concentrated in the other two directions, thus they

are denoted by p, (x)e™, p,(x)e™ and p, (x)e™ . Their action point at each cross-section
of the cylinder is determined by its circumferential coordinate, @ = 8,, and its radial
coordinate, 7 = R, ,. The displacement vector of the cylinder is decomposed into three
components, either asw (x, y,z,¢},w, (x,y,z,tyand w, (x, y, z,2) in the Cartesian co-
ordinate system, or as w_(x,7,0,t),w,(x,r,8,1) and w, (x,7,0,¢) in the cylindrical co-

ordinate system (see Figure 1).

w,(x,0,1)
Z o wy(x,6,1)

The x-section

Figure 1. Coordinate systems.

2. SOLUTIONS FOR A SINGLE HOMOGENEOUS CYLINDER

2.1 FORMULAE FOR THE DILATATIONAL AND EQUIVOLUMINAL
POTENTIALS

The motion of each sub-cylinder is governed by the free elastodynamics equation

(the subscript indicating the sub-cylinder has been omitted)

,L,LV’2:1+(/1+‘u)VV-u=p%;—‘zl (2)



where, u is the displacement vector of the sub-cylinder, ¢t and A are Lamé constants

determined by
_VE(Hnsgn(w)) | E(l+insgn(m))
A= a2y HT T 20w (3)

To solve equation (2), the displacement vector u is decomposed in terms of a

dilatational scalar potential ¢ and an equivoluminal vector potential H, i.e,
u=Vo+VxH 4)

Equation (2) is satisfied if the potentials¢ and H satisfy the wave equations

vip=92 )
C2VH = %fr—I;I (6)
where,

= +2u)/ p, e, =+l p (7

are the dilatational wave speed and the shear wave speed of the material.

To solve equations (5) and (6), the Fourier transforms
¢(B.y.z.0)= f¢(x, v, z,t)e P dv, H(B,y,z.0) = IH(x, y,z,0)e P dx (8)

are performed, where f3 is the wavenumber in the x-direction. By letting

O (B.v.2.)=0(B,v,20e ¥ H(B,y,z.t) = H(B, y, 2)e’ @ (9

equations (5) and (6) yield

29
St =B =0 (10)
S+ S+ (- pHE=0 (1)



where,
0=Q-fc (12)

Equations (10) and (11) are expressed in terms of the Cartesian coordinates. To express

them in terms of the cylindrical coordinates, recall equation (1), then

2 e 20 e

02H 1 0H 02H -

T -l (19
02 ﬁ." I o ﬁ.\' [ 92 ﬁﬁ' w?_ g2 ﬁ.\' _

Bﬁ{g }“L?B?{ﬁ }4—?9@{1@ }+(C§ B ){ﬁ =0 (1)

where, H " H 4 H . are the components of Hin the x-, y- and z-directions. IfHis

decomposed into H _, H,, H,, which arc related to H_H v H . by

H_ =H cos§—H,sind, H, = H sinf + H, cos@ (16)

v

then equation (15) becomes

82H 1aH 4.1 BZI?, > 2 5 ) aﬁg

ot trragr t g B D  —agieost - -
d H 18H 1 821’;’9 > NG 9 aﬁr o

Gt t 7 T e TUg TP o ety lsing =0

*H, 108, § oH, - of, . .

1 +% 3 +i2 o7+ N Z)H,—r—%—a-ei]smw .
azﬁs 18ﬁ9 1 asz @? 2 _ 17 2 aﬁr -

S5t Ty T e +(c—g‘ﬁ —7H, + 3 ggleesd =0
each of which implies that

9°H, (0H OH, ~ oH

R - L A i (19)
and that



8 g . 1 w2 _p2_1l\g 204,
3 TT or TR +(c§ B rz)H"+r2—8F_0 (20)

Since 5 and H are periodic functions of 8 with a period of 277 , they may be

expressed in terms of the Fourier series

o =k§5k(l3,r)e”"’ (21a)
H, = k:i 4, (B.r)e™ 21b)
H, = k;ﬂ 7, (B, r)e™ )
A, =Y Hy(B.re 21d)

fmmoo

Inserting equation (21) into equations (13), (14), (19) and (20), then multiplying the

results by e™? | and finally integrating with respect to@ between O and 2z, yields

d 0 3~
-3—% +1 ?"’-5— + (‘0 -p* —%"-)qam =0 (22)
azﬁxm 1 aﬁxm a)2 2 M2\ 0 _
ar2 +T ar +(?%-_ﬁ “?}me —O (23)
a’H 1 aHrm 602 2 m2+1 “m Fr
5 TF or ( - g -mhg —-;—H =0 (24)
azgem i aﬁﬂm w? 2 m2+1 I 1T =0 25
St et B - H,, +2H,, = (25)
where, m = —oo,---,—1,0,1,-++,00 . Equations (24) and (25) can be rearranged to give
az(ﬁrm +lﬁ9m) 1 a(‘gmz_’_zﬁ&m) ? 2 mE+2mtl
g +1 - + (?25. - B -——)(H +iH,)=0 (26)
al) (Hrm'_]’Hﬁ‘m) 1 a(HJ‘m Gm) w2 2 m2_2m+1 ry T T —_
or? tr or (? -B - T )H,, —iHg,)=0 27



Equations (22), (23), (26) and (27) are modified Bessel differential equations of

order m, m, m+landm—1, respectively, if p, # Oand p, # 0, where,
— [(pg2_o? — [p2_w?
p=\B" %, p= B -7F (28)

Thus, the general solutions to those four differential equations may be written as

6, (r)=CW, () +C,Z,(pyr) (29)
A, =CW,(p,1)+C,Z,(p,r) (30)
H_(r)+iH,, =2CW,  (p,r)+2CZ, . (p,r) (31)
H_(r—iH, =2C,W,_ (p,r)+2CZ, (p,7) (32)

where, C,,-- - C, are constants of integration, and

1, (pr), it p=0,
W (pry=4r", if p=0,m=0; (33)
Lif p=0,m=0.

K, (pr), if p#0;
Z (pr)= o gF p=0m=0; (34)

m

Inr, if p=0,m=0.

I ,K, denote the modified Bessel functions of order m of the first kind and the second

m?

kind with complex argument.
Equations (31) and (32) give
H,,(N=CW, . (p,1)+CZ,  (pr)+CW, (0, +CoZ, (p,7) (35)
H, (1) = —~iCWoy (Py7) ~iCZ,yy (o) +iC; W,y (por) +ICsZ 1 (P27) (36)
Now there are eight integration constants. Since the elastodynamics equation of

motion is of order 6, only six integration constants can be determined by boundary

-10 -



conditions. This indicates that¢ and H should be subjected to additional constraints. This

condition is normally taken as [Miklowitz 1978]
V-H=0 37)
which is consistent with the Helmholtz decomposition of a vector. From equation (37),

aH aH H, 19

+ gt =0 (38)
Now inserting equations (8), (9), (21) into equation (38) yields
iBH ,, + —;- N +imp =0 (39)
which, combined with equations (30), (31) and (32), becomes
IBICI, (pr) + o2, (par) 1+ G W, (o) + st By
CimHz, (pyr)+ Zasl Py o iy, (p,ry+ Va0 (40)

aZm—[ (p2r)] — 0
_a.r__ =

CS [“m_T'_Lan—l (er) +

For p, # 0 (for damped material, p, and p, are always non-zero), based on the

properties of the modified Bessel functions [Abramowitz and Stegun 1964],

gy (pyr)+ edlPD _ by (p,r) (4D
~lyy (pry DBy (p,r) “2)
Yz ()4 ZetlPD 7 (pyr) “3)
oz (pary+ZadPD o7 (1) (44)

thus equation (40) becomes

iﬁ[c.?wm(pzr)"'C4Zm(p2r)]+cspzwm(pzr) (45)
—Cop,Z,,(p)+Cop,W, (p,r)—Cyp,Z,,(p,r) =0

-11-



Since this must hold for any r within the sub-cylinder, and W, (p,r)andZ_(p,r) are

independent of each other, equation (45) implies
iBC,+Csp, +Crp, =0, i\ﬁC4 -Cep,—Cyp, =0
from which C; and C; are determined as

ﬁ C,+C,), Cy= ’ﬁ ~C, -G,
Thus
8, (1) =CW,(p,r)+C,Z,,(pyr)

(ry=CW,(p,r)+C,Z, (p,r)

U.' 1

H ()= ﬁ CW,,(pyr) +%C4zm—l G299
+ W, (pzf‘) W, P+ ClZ, (P~ 2, (p,7)]

A, (=B CW, (pr)~BC.Z, (pr)

- IC$ I:V[/rm—l (er) + Wm+] (er)] - lCﬁ l:Zm-—l (plr) + Zm+l (er)]
2.2 FORMULAE FOR DISPLACEMENTS
Equation (4) gives

dH, H, |0H,
I S B
or T ]

=
Il
e

_8¢' 190H, 0JH,
Ot I T M v

_109 OH, 0H,
r;;—’g"“r

If the Fourier transforms of w,_, w,, w, with respect to x, denoted by w_, w, , W, , are

expressed in the same way as for¢ and H, then equations (48) yield

oH, H oH
W‘ "lﬁgb'i'—é—- 1—8—9—’-'

-12-
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(472)

(47b)

(47c)

(47d)

(48a)

(48b)

(48¢c)

(49a)



With the substitution of equations (21), equation (49} becomes

onf!

rm

- ~ 9H, H, ;
- 8 B 1441
W = lﬁqu + Srm + F : =7

Inserting equation (47) into equation (50) yields

xR

. r=[C(MHCT

2]

S B4

-
<

(490b)

{49¢)

(50a)

(50b)

(50c)

(5D

where, {C} =(C,,C,,--.C; )" denotes the vector of the integral constants, [C(r)] is a

3% 6 matrix, called the displacement matrix of circumferential order m. The elements

Cy (k=123;j=12,---,6) are as follows:

c, =ifW, (pir), ¢, = iz, (pir), c5= BW, (p,r), ¢ = Bz, (p,r)

5 = =2ip,W, (p,r), ¢4 = 2ip,Z,,(p,¥)

:an(p,r) . ___aZm(plr)

23 ar 22 r

. ¥
en =, (1) + 2, (1) =~ B Wi (2) + Wy (par)]

Cog = —ﬁ[zm_l (pzr) + Zm+1 (pzr)]

€3 ='IrﬂWm(Pfr)s Cay =%Z,H(P1r)

-13-
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2 oW 2
C33 :%Wmvl(pzr)__"%(fz_r)’ Cay =_%Zm—l(p2r)_%a(r&r_)

635 = iﬁ[WmH (p'Zr) _Wm—l (pzr)} * ("36 = iB[ZnH-l (p2 r) - Zm—l (plr)]
2.3 FORMULAE FOR STRESSES

Now the strain-displacement relations

£, =+ (@w, /dx+aw, /) (52a)

g =ow /or (52b)
1 a WG 1 aM}r

€. ="§[f’a—r‘(7)+“f'a?] (52¢)

and the strain-stress relations

o, =2UE, (53a)
o, =AM+2ue,, (53b)
Gr&‘ = 21u£r9 (53(:)

are used to express the Fourier transformed stresses of circumferential order m in terms of

the potential functions. In the above A is the dilatation given by
A=V (54)

Equations (52) and (54) yield

£y =% (i, +37,,13r) (55a)
g, =odw,/or (55b)
B = lr L+ 5, ] (550)
< _p27, 9% 106 1 0%

A=—B0+ 5+ ro T g0 (56)

- 14 -



W _m g 57

A, =-24, (58)

From equations (53),

U'ﬂ‘l = 2H8xrm = #(iﬁ{;{}fm + aﬁ;'xm /ar)

= iuplm2 "”m +im i —-iﬁflam] (59a)

2 . ~
+ﬂ[1}3 ¢m +_a_§‘_:{i__ _a_( 9m _1mHm)]

~ 7~ aqu
Grrm = Mn: + 2#81'?'”[ lac)_]l mn + 2#58}7(-3;:—-’_ Z?IZ?‘ HXI‘H - lﬁHsﬁl)
%9 oH oH G0
— _C__U_2_~ 2¢m IFFL H\'m ﬂ Om
=—4 " +2'u(_8r—2+ rodr H,, —ip _3?_)
oW Wen zm

=2UE 5, = 5~ -+ W)

2igm ~  2ipm 99, 2 0H
=20, + —“f;‘ A, +5 5 (59¢)

o2H i -

_u r;‘m Ju’ﬁ H + l#ﬁ Jm + .‘umﬁ Hem

With the substitution of equations (47), equation (59) yields

i

xrm

G, r=[BMHC} (60)

rrm

S

rBm

where, [B(r)], called the stress matrix of circumferential order m, is of order3x6 . The

elements of [B(r)].b, (k=123 )= 1,2,-+-,6) , are as follows:

oW _(pr)

. 7
bu:zlauﬁ_"ér—’ by, =2i ﬁa (pl?’)

upy,

bl‘& =ﬂﬁP2Wm+1(P2f‘)+ p m-](pzr)

.15 -



3
b14 = _#ﬁPZZnHl (p?.r) “%Zm—i(pzr)
. . w
bys = "lﬂﬁz{Wm—l(Pzr) + W, (pr)1—2iup, an(r_pZ_Q
: . oz
b]é = “I#ﬁz [Zm-l (p'lr) + ZmH (p2r)] + 2E#p2 = (;-Dzr)
_ VV,,,(Plr) _ w (p ")
-2 : Wr,,(p]r)+21u—--—~—ar2 o by =A% - z (p,r)+2/»t--§—‘
' oW W
b, = 2z¢tm[ m(rpzr) B m(rpzr)] sz;zﬁ oW __ 1(sz’)
b 27',Um oz (pzr) Z (Pzi’) Ziﬂﬁz aZm_l(pzr)
- [ 1+ 12 or
oW oW
b25 = _2uﬁ[ m—alifPZr) + mél]EpTr)]
b26 — _2uﬁ[azm—l(p2r) aan3§p2r)]
_ 2ium W”(pli’) aVVm(Plr) 21m Zm(plr) azm(Plr)
b31 - [_ ) ]v b%z { ]
r r r r or

b33 Hm W (le‘) -+ = ‘u' W.”‘a&pzr) u a Wéz(p2r)

-1 oW
u_ﬁ__(_nl_)W L(p,r )+Au'ﬁ ma]‘fpzr)

b !i p 0Z_(p,r) Z_(p,r)
34 nt ar u ar2
-1 2 9Z
_iﬁg;f_—-lzm_](pzr)_atfpﬁz m_éi(‘pzr)

an—t—l(p?,r) _ an_l(pzr)
r T or

=iufl-2HW  (p,r) - 2w, (p,r) + ]

b =B TLZ, (pyr) 17, () + L) _ L),

The derivatives that appear in the matrices [C(r)] and [B(r})] are given by

_16-



pIInH’l(plr)-i_%Im(plr)’ p] ?50

oW _(pr) e
—ar—p‘m: lm1F™, p,=0,m=0 (61a)
0, p,=0m=0
2, mP—m Py
(p] + ?"2 )In;(plr)_—-}‘_jnz+l(plr)’ pl ;to
aZWm(p f") ml-2
———W: lml(lnft[—-l)r'I s, p,=0m=#0 {61b)
0, p,=0m=0
a _lem+1(plr)+!}‘ﬂKm(plr)’ pl ;to
A r) il
—"‘a&p—’: —lml p,=0m=0 (61c)
%, p,=0m=0
2 miomy g —‘P—I—K 0
(P1 + r2 ) m(p]r)+ Is m+l(pir)’ p] #
a?_Zm(pr) =lml-2
= lml (lm1+)r™™7, p,=0,m#0 (61d)

—?li_’ P :O’m:O

3. DETERMINATION OF THE INTEGRATION CONSTANTS AND
RESPONSES OF THE LAYERED CYLINDER

3.1 DETERMINATION OF THE INTEGRATION CONSTANTS

Equations (51) and (60) give the displacements and stresses of any sub-cylinder in
terms of six integration constants. The six constants of integration differ from one sub-
cylinder to another. All the integration constants are determined using the boundary
conditions on the inner surface of the first sub-cylinder and those on the outer surface of
the last sub-cylinder, as well as using the continuity of displacement and the balance of

stress at each interface of the sub-cylinders. The following cases are dealt with separately.

(1) EQUILIBRIUM OF THE STRESSES AT THE LOADING INTERFACE. Balance
equations of stress at the loading interface are derived from the three-dimensional stress
equations of motion expressed in terms of cylindrical coordinates. These equations are
[Leissa 1973]
olo] 1

XX
— 440, + +

ao—xr ladxﬂ _ azw'.'
xr ar ¥ ae =p ar?.

L p (x—ct)e8(r—R, ,)6(8-8,)/ R, , (623)
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90, | file] laam_ 0w,

— L+ 3(0,, ~Og)+—"" —p,(x—cHe™8(r— R, )6(6 —6,) IR, ,

or ox T 08 P

(62b)
do, do, eled %, i
2201 30,y + S+ S = p G - py (- e)e™ S (r = R, )0~ 8,)/ R, 0 (620)

Using equations (8), (9) and (21), equation (62a) can be simplified as

o6 ~ 3 i
4 GG g, = =Py~ gz B (BS = Ryg)e™™  (63)

Am

Py 1 ~
lﬁa.ﬂfﬂl +TC)-I!T?1 +

where, w = Q - fBc . Integration of equation (62) with respect to r from R, to R/,

gives
G omlazy = xmlmy = sz BBy (642)
Similarly,
P P w2 (64b)
G rom Roo ~G\on R0 =T }Q Pa(Ble —im8, (64c)

Equation (64} gives the condition of balance of stress at the loading interface.

(2) FOR THE CASE OF A SOLID CYLINDER. If the first sub-cylinder is a solid

cylinder, then as the functions Z_(pr),Z, ., (pryand Z _, (pr) tend to infinity

when r — 0, it is required that C, = C, = C, = 0. From equation (60}

Qi

Xrm

. =[B(R,)NC} (65)

O

rém r=Ry
which combined with equation (51) gives

{6,y =W0lw, h, (66)
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,and{U]isa

~ ~ o~ o~ T ~ = = o= AT
Where’ {Wm }i[ = (wxm s Wons wﬂ‘m) r=R °* {O-m }11 = (O-.rml 1O v 2O rom ) r=Ry;

3 %3 matrix. Further, the following vectors are defined

~ {ﬁ}m } (3 {ﬁ}m }
S o = - 3 mijg = ~ 67
{ mn }J {{Gnl }}I’=Rjn { }J] {{Gm }}’m‘q}l ( )

to describe the “states’ of the inner and the outer surfaces of the jth sub-cylinder.

(3) FOR THE CASE OF A HOLLOW CYLINDER WITH AN INFINITE OUTER

RADIUS. If the last sub-cylinder has an infinite outer radius, i.e., if R, =<0, thenitis
required thatC, = C, = C; = 0. This is because, for § big enough, W, (pr),

W, (pr) and W,__ (pr)tend to infinity when r — co. Similar to equation (66)
{wm }nD = [V] {6;11 }n() (68)

where, [V] is a 3 X3 matrix.

(4) FOR THE GENERAL CASE. For any, e.g. the jth, sub-cylinder, from equations (51)
and (60),

{{ " }} = {[C("”}{C} = [A'(M(C) (69)
16,1

[B(r)]
where, [A'(r)] is a 6x6 matrix. This may be rewritten in the form of

t

&0l E]

¢alE]
0 C,lE]

0 ¢,E] [Aljo (70)

[A'(R )]={ }[A],-l, [A'(R;)] =[
where [E] is a 3x 3 unit matrix, and ¢ and { are real scaling factors chosen so that the
magnitudes of the elements in matrix [A] are less than or equal to unity. By this means,

possible numerical difficulties can be avoided in the manipulations of those matrices.

Note that the unit of £is m”! while that of {'is N/m®*. From equations (69) and (70)

s ELE1 O I 3 72 TR R
Sy, = Al [ATA T o 168 Y 71
{ m}j |: O Cﬁ[E]}[ ]}1[ }J |: O C]O[E] { }J ( )
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which links the state of the outer surface and that of the inner surface of the jth sub-

cylinder.

Now, the continuity of displacement and the balance of stress at each interface of

the sub-cylinders require that
{§1n }jl = {"S‘um }j+E,O ’ (-] = 1’2" 1, -] * ll}’ - 1) ’ {S:m }IP—I,] = {gm }IPO + {§m }P (72)

where, according to equation (64),

(8.7 = gk—e ™" (0005, (B). 5,(B). B, (B (73)

1.0

From equations (71) and (72)

{ m}nl =

H

énl[E} 0 —_[T]“ [T]lgj”: ]‘E)I{E] 0 :'{S; }
0 CulE1IT],y [T]y 0 St 10

[eaEl 0 TR, [FLZJ;;]O[E] 0 sy
0 gnl[E]_ [F]?.l [}‘7]22 0O {;10[E] n

(74)

and (suppose [, <I,)

= 51 —11[E] 0 [G]n [G]lz 1;)1[E} 0 o)
=" S 75
{ " }{RO |i 0 g{ﬂ_u [E]:H:{G]Zl [(;]22 ],: 0 l_‘:}] {E] { n }]0 ( )

where [T];1, [F1i and [(];; etc. are 3x3 matrices and

- {[TL, [T),
[l [Tl

EolEl 0 ][’:R-I,JE] 0 }X_

}zm"‘w;{ 0 CAEY 0 lE]

4 |l 0 il E] »
’ Al,[A
[A]n—l,i [A]n—],0|: O C:l]‘no [E] 0 gu [E] [ ]Il[ ]10
That is,
5""’1 [E] 0 gl[E] 0
[T1=[A],,[AL,| ¢ [AL o [ALL o) 7 ¢ [4],,[AL,
0 "';" [E] 0 _Ci[E]

(76)

-0 -



- &1
nlif 0 E—_P [E] 0
[F1= 14,1473 & ¢ TAL AL | T e AL AL,
0 ﬁl[E] O 5[ lPI]O [E]
(77
Sl g
z ~[E] 0 L[E] 0
[G]:[A]IR—L;{A]:—J,U hlo é’ .[A]IR—ZJ[A]E:—Q.U'” z; é’ [A]II{A]]—{;
0 kL E] 0 ZrLE]
1p-1.0 20
(78)
Thus
[ [ Supy o
{{wm }nl} — 10 [T]“ CIO [T]lz {{ﬁ?m }1[}}_ I e—imﬂﬂ 5!..,0 [ ]]1 g{FD [ ]]2 {0 }
{6,,,},11 %{T]zl gﬂ_[]’]m {U,,;}m ZERJPO ‘:n; (F1,, _g_fﬂ_[p]n {P}
10 10 {p 10
(79)
0o —-—wéé [G1,, i (Gl (4w, 1 %0
Gbol " G Cans {{5,,,}]0} ¢
0 2 (G, T[G]zz
10 10

where, {p} = (P,. D, Py Y.
3.2 DISPLACEMENTS AND STRESSES OF THE FIRST INTERFACE

Now the state of the first interface is evaluated for four different situations. It

should be noted that matrices [T], [F], [G] etc. are different for different situations.

(1) The first sub-cylinder is a hollow cylinder, and the outer radius of the last sub-

cylinder is finite. Since {6, },, ={5,,},, =0, from equation (79),

(Do = e ™ gfg[ﬂii [Fl {5} 81)
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(2) The first sub-cylinder is a hollow cylinder, and the outer radius of the last one is

infinite. Since {6, },, =0 and {W,},={VI{G,}., (seeequation (68)), from equation

(79)

—1
() = e ™™ [%—m —%:—"[V][T]QIJ (%—[F] —%ﬁwmﬂ )«5}

(82)

(3) The first sub-cylinder is a solid cylinder, and the outer radius of the last one is finite.

Since {6}, =[U1{w,}, (equation (66))and{G ,}, =0,from equation (79)

() = e ™ [%[Tlﬂ +§§mzzwl} g;—;mn{ﬁ} (83)

(4) The first sub-cylinder is a solid cylinder, and the outer radius of the last one is

infinite. Since {6 },, =[U{w,}, and {0}, =[VI{F,,} 0, from equation (79}

ef'.me" gn 11 én 11 grlml,l grz—ll -
{Wm}n 2]ZR (—E—[T]n _C_[T 12[U] _g[v]{T] _C—“[V [T]zz[U] (84)

-(%‘LT‘[F]H f’—’[V][FJH )«ﬁ}

3.3 DISPLACEMENTS AND STRESSES OF THE OBSERVER INTERFACE

Inserting equations (81) to (84) into equation (80) yields the responses

{displacements and stresses) of the interface of the (I, —1) th and the [, th sub-cylinders,

ifl, <1,. The responses are dealt with for the four situations stated above.

(1) When the first sub-cylinder is a hollow cylinder and the outer radius of the last sub-

cylinder is finite,

{ﬁ:‘m}lgo :ﬁze—hn% %%[G]U[T];[F]zz{ﬁ} (853)
(G )10 = smg—e ™™ iy [G1,[T1;,[F1,{P) (85b)
mig0 = ZTER[PO _51,,_0- ald g L Inip
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(2) The first sub-cylinder is a hollow cylinder, and the outer radius of the last one Is

infinite,
(B} 0 = 5mg—e ™ Sy = [G],| [T] ’“{V][T] ] [F] gV"H[V][}"] p}
w0 = 2ER1,,0 TP 1" 1 ‘5:’ 21 12 E: n P
(86a)
(W, )0 = 5mi—e ™™ e (G| [T] St [y 7 ) [F] _Smuyyr, b
mIt0 = 275R1,,0 _é"{PT 21 i En_l 2 12 EE 2 f P
(86b)

(3) The first sub-cylinder is a solid cylinder, and the outer radius of the last one is finite,

(Tl = e ™ iil”[m]” %[GLZ[U]I[T]QI +ERTL )mp{ )

(87a)

{&,,,},RO:M}% e ii':;‘[[c; T[G]” U]I[le, +5m mn[m) [F1,(P)

(87b)

(4) The first sub-cylinder is a solid cylinder, and the outer radius of the last one is

infinite,

~ ~imty & 1) ¢ 4 4
_ € R 20 n—l,
{Wm }[Ro = ﬁ:o_ Cgpo ([G]” +g[G]12[U]I{T]11 +ZQ£[T]12[U] a‘ﬁ[v]{T]m

_gﬂ%@_[V][T}gg[U]) ([F]p —%WHF b )‘P}

n—1,1 20

(88a)
‘: - 20 n-1,1
{O-m}ln ZTCR gl ]01 ([G]zl + gzo [G,,IU] | [T, + gzo (T],IU1- %n 3 [VIIT],

_ Gt _gz_q[V][T]gg[U]J ([F]12 —-g";“-[V][F]zz ]( }

n-1,1 220

Equations (85) to (88) may be rewritten as
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B FQ:n(ﬁvm) glz(ﬁvm) Q:la(ﬁam)
()0 =108, m)(P) =) G (Bom)  Bua(Bom) By (Bor) () (89
Qsz(ﬁ’m) ng(ﬁ,m) Q33([3,m)

where, matrix [O( B,m)}may be termed the Fourier transformed moving dynamic

flexibility matrix of circumferential order m.

According to equation (21), the Fourier transformed displacements of the

interface of the (I, -1)th and!, th sub-cylinders are given by

wx(ﬁ’r’g) - 5[([5’)
W, (B.r,0)p=| ZIQBmN" "™ |5, (B) (90)
wg(ﬁ’rsg) ) 59(18)

where, r= RIR0 .
4. PROPERTIES OF MATRIX [Q(8,m)]

Two properties of the matrix [é( B, m)]are observed which will increase the

efficiency of computation.

(1) In accordance with the symmetry or asymmetry of the displacements, it can be shown

that

Qn(ﬁ’m) le(ﬁ’m) Qla(ﬁ:m) Qu(ﬁ’—m) giz(ﬁ’"m) —Qm(ﬁ’_m)
Qzl (B,m) sz (B.m) 923 (B.m)|= in (B,—m) ng (B,—m) _~Qz3 (B.—m)
Q31(ﬁ:m) ng(B,m) Q33(ﬁs m) _le(ﬁ:"m) _Q32(ﬁ’_m) Q33(ﬁa'—m)

oD

(2) When the loads are applied at the interface of the (I, -1)th and !, th sub-cylinders, the
displacements at the interface of the (/,-1)th and{, th sub-cylinders, similar to equation

(89), are expressed as

1 St O

[
—

{W,},0 =16 (B.m)]{P}= {5} (92)

L
[
(]
[y
L+
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Then it can be shown that

%u %ﬁ ?ﬁ éél —fgm _}ém
8, §22 523 =0T %2 gzz sz (93)
31 32 533 - Q13 Q23 Q33

Equation (93) is an extension of the Betti reciprocity relations in elastodynamics.

5. FOURIER TRANSFORMED MOVING GREEN’S FUNCTIONS FOR
A HOMOGENEQUS WHOLE-SPACE

The harmonic responses (Green’s functions) of a homogeneous whole-space
without any inclusion due to stationary harmonic loads were first derived analytically by
Stokes and can be found in many books on elastodynamics [e.g. Miklowitz 1978,
Dominguez, 1993]. A Fourier transform of these Green’s functions with respect to x
gives the Fourier transformed counterparts, i.e. the Fourier transformed stationary
Green’s functions. Such Green’s functions, also referred as the Green’s function for the
‘two-and-half-dimensional problem’, have been derived by Tadeu et al [Tadeu and

Kausel 2000].

When the moving load is a constant load, i.e., its frequency is zero, the steady
state responses of an undamped whole-space were obtained by Eason ez al [Eason,
Fulton and Sneddon 1955/1956, Fryba 1982]. The Fourier transforms of these responses
have been derived by Apostolos et al [Apostolos, Papageorgiou and Duoli 1998].

The Fourier transformed moving (displacement} Green’s functions for a whole-
space with material damping due to moving harmonic loads, may be derived using the
cylindrical formulations developed in this paper. To do so, first let the loads be applied
on the inner surface of a cylinder with an infinite outer radius and then let the inner radius
be allowed to approach zero. With the procedure of derivation omitted, the final results

are listed below,

When 5, (8)#20,5,(8)=p,(8)=0,5,(8)=p, (B) =0, the response field of
the whole-space consists only of that of circumferential order zero and the integral

constants are determined as
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C,=C,=C,=Cs=0, C,= _iB B.(B), C,= (B (94)

T 2mpw? 47rpco2 b,

Thus, the transformed displacements in the x-, y- and z-directions are (see equation (51))

Ei(ﬁ)—z,rpm2 [B*Ko (1)~ P2 K, (P15 (B) (952)
5() = g FIP K (17— P (P15 (B) ©5b)
HB) = by F1 K2~ P K, (2115 (B) 95¢)

1t should be noted that, since @ = Q — fSc (equation (12)), w vanishes at f =Q/c.

However, equation (94) has a finite limit asew — 0.

When 5 (8)=0,7,(8)=p,(B) =0, p,(B)=p, =0, the response field of the
whole-space consists only of that of circumferential order one, and the integral constants

are determined as

€=C=C=C=0, =gl (B). C=-pliy B, (B) ©96)
Thus

7(B) = gt FLp K, (1) = oK, (021, (B) ©72)

~ K

58 = grlapr 2t Y B K, () + BK (0]

K -
+§7[%K1(p,r)+ B*Ko(por)+ py La(f.&)}},v,.(ﬁ)

ie.

VB = o 1P, (pr) = DEK ()] + 07Ky (pyr) o7b)

'i'%'Kl(plr)_%Kl(pZF)}ﬁJ'(’B)
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) = giar 25T AP B2 K o+ B ()

LR, (i) + B Ko (pr)+ Py S5 ()

w(f) = L[ p3K,(par)— prKo(pir)VB,(B) (97¢c)

27:,00)2 r2

It is noticed that for § = 0, a plane-strain problem results, and equation (97) gives

the Green’s functions for a whole-plane (yz plane), which are well known and normally

expressed as [Dominguez 1993]

Wi 277:p(:2 =Wy — X aal Baxi] (98)

where, Lk=2o0r3, x,=y,x, =2, r=qy>+z%,and

Y = Ky(por)+ prlKi(por) = 2 K, (p7)] (99)
C2

X =Ky (p) — S Ko(pir) (100)
1

p,=iw/c,p,=iwl/c, (101}

The Fourier transformed moving stress Green’s functions can be obtained

following the Hooke’s law which, after being Fourier transformed, reads

&, = iB(A+2u)i +;L(%£ i) | (102)
&, =i +(A+2p)%%+x%% (103)
&, = ipAii +/’L-%—’3~+(l+2u)%% (104)
7, = w2+ 90 (105)
7, :p%%-ﬂﬁuw (106)
7, = u%;lﬂﬁuﬁ (107)
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6. VALIDATION OF SOLUTION

The solution derived in the previous sections and the corresponding computer
program can be validated by three means. Firstly, as has been shown in Section 5, when a
zero axial wavenumber is used in the moving Green’s functions, the plane-strain Green’s

function are indeed recovered (Equations (98) to (101)).

Secondly, the Fourier transformed moving Green’s functions for a layered
cylinder can be validated numerically by means of the exact solution for a point
stationary harmonic load in a homogeneous whole-space. Suppose the point load is
applied at point A which has a distance R; from the x-axis, and the displacements along a
straight line, which is parallel to the x-axis and at a distance R, (suppose Rx > Ry), 18
evaluated. For this source-observer configuration, the homogeneous whole-space can be
regarded as a layered cylinder consisting of three sub-cylinders. The first one is a solid
cylinder with an outer radius of R;. The second one is a hollow cylinder, the inner and the
outer radii being R; and R; respectively. The third one is a hollow cylinder with an

infinite outer radius and an inner radius of R».

TABLE 1
The parameters for the whole-space
Young’s Possion’s ratio Density Loss factor P-wave speed  S-wave speed
modulus (kg/m’) {/s) (m/s)
(x10° Nm™)
1770 (.4 1700 0.15 1500 610

Figure 2 presents a comparison between these two methods by showing the
calculated vertical displacements along the straight line (y = 20 m, z = 0 m) due to a unit
vertical harmonic load of 250 Hz applied at the origin. The material parameters are listed
in Table 1. In the application of the Fourier transformed moving Green’s functions for a
layered cylinder, the FFT technique is used to transform the displacement from the
wavenumber domain into the spatial domain. In the performance of the FFT, 2048
samples are used with a spacing of £ equal to 0.0025x2x. This figure indicates a high
computational accuracy can be achieved by the FFT. This is true even for higher

frequency and for near observer, as shown in Figures 3 and 4.
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x10?

Vertical displacement (m)

L ' L L ' ! L i I

50 -40 30 20 -10 0 10 20 30 40 50

Distance along the x-axis {m)

Figure 2. Vertical displacements along the straight line (y = 20 m, z= 0 m) due to a unit vertical
harmonic load of 250 Hz applied at the origin. ——, by the layered cylinder theory; — — —, by the exact

solution for a point stationary harmonic load.

x10™"%
1.5 T T T T T T T

05

Vertical displacement {m)

1 L 1 i 1 1 ] L I
.50 .40 30 o0 RE o k1] 20 30 40 50

Distance along the x-axis (m)

Figure 3. Vertical displacements along the straight line (y =0 m, z = 5 m) due to a unit vertical

harmonic lead of 500 Hz applied at the origin. , by the layered cylinder theory; - - —, by the exact

solution for a point stationary harmonic load.
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a5 7

-0.5[ f

Longitudinal displacement {m}

2 1 L ! 1 I I 1 L I
-50 -40 -30 -2¢ -10 o 0 20 30 40 &0

Distance along the x-axis (m)

Figure 4. Longitudinal displacements along the straight line (y =0m, z= 5 m) due to a unit

vertical harmonic load of 500 Hz applied at the origin.

, by the layered cylinder theory; — — —, by the

exact solution for a point stationary harmonic load.

Finally, the solution is validated numerically by means of the exact solution for an
undamped homogeneous whole-space subject to a constant moving point load [Eason,
Fulton and Sneddon 1955/1956]. Suppose the whole-space includes an infinitely long
cylindrical hole. The axis of the hole is parallel to the x-axis. The presence of the hole
would not make a significant difference if its radius is small (e.g. 0.05 m). Now a
constant point load is applied on the wall of the hole and moves in the x-direction. The
response of the whole-space with the hole to this moving load can be evaluated using the
cylinder theory and may be compared with that calculated from the exact solution for the
whole-space without any inclusion subject to the same load. The results of such a
calculation are shown in Figures 5 and 6 for the ‘subsonic’ case in which the load speed,
500 m/s, is lower than the shear wave speed in the whole-space, 610 m/s (see Table 1). In
the application of the Fourier transformed moving Green’s functions for a layered
cylinder, the FFT technique is also used. Again 2048 samples are used with a spacing of
S equal to 0.0025x2x. Figures 5 and 6 also show that a high computational accuracy can

be achieved by the FFT.

Figure 7 shows the vertical and longitudinal displacements for the ‘transonic’ case
in which the load speed, 800 m/s, is between the shear wave speed and the P-wave speed

of the whole-space. This figure indicates a pulse at
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x307°

Vertical displacement (m})

L L L r i ' L i L

-50 -40 -30 -20 -10 o 10 20 0 40 50

Distance along the x-axis (m)

Figure 5. Vertical displacements along the straight line (y=0m, z = 5 m) due to a unit vertical
constant load moving along the x-axis at 500 m/s. ——, by the layered cylinder theory; — ——, by the exact

solution for a point moving load.

x10™"

06l

045

0zr

02

Longitudinal displacement (m)

08

-0.8f

] s L 1 I H L i i

-50 -40 -30 -20 -10 0 10 20 30 40 50

Distance along the x-axis (m}

Figure 6. Longitudinal displacements along the straight line (y =0 m, z=5 m) due to 2 unit
vertical constant load moving along the x-axis at 500 m/s. ——, by the layered cylinder theory; — — -, by

the exact solution for a point moving load.

x=aflc/ cy)? —THy® +2%) = £4/[(800/ 610)* —1](0* +5%) =4.24m
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This feature is confirmed by the exact solution which states that, at these positions, a
singularity occurs. Comparison between the layered cylinder theory and the exact

solution for a constant moving load is not applicable due to this singularity.

Displacement {m)

A L 1 1 1 ] : L ! t
-50 -40 -30 -20 -10 0 10 20 a0 40 50

Distance along the x-axis (m)

Figure 7. Vertical { y and longitudinal (- — -) displacements along the straight line (y=0m, z

=5 m) due to a unit vertical constant load moving along the x-axis at 800 mv/s, calculated using the layered

cylinder theory.
7. CONCLUSIONS

In this paper, the Fourier transformed steady state responses (Fourier transformed
Green’s functions) are derived for a radially layered circular cylinder of infinite length
subject to harmonic loads moving uniformly in the direction of the cylinder axis. These
have not been found in previous publications. By letting the inner radius of a hollow
cylinder approach zero and its outer-radius increase to infinity, the Fourier transformed
moving Green’s functions of a homogeneous visco-clastic whole-space are formulated in
terms of Bessel functions of the second kind. This provides the Green’s functions that can
be used in the ‘two-and half-dimensional boundary element method’. These moving
Green’s functions are comparable with the stationary Green’s functions recently
published by Tadeu and Kausel. The formulae and the computer program that
implements the moving Green’s functions have been validated by means of the plane-

strain Green’s functions which correspond to the case of zero axial wavenumber, and by
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comparison with the exact solution for a point stationary harmonic load and the exact

solution for a moving constant load.
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