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1. Introduction

Even though the dynamic characteristics of most simple structures such as a beam or plate
can be solved theoretically, there are a lot of difficulties in obtaining solutions for combinations
of such structures. As such combined structures form the basis of practical industrial structures,
much attention has been focused on getting exact solutions or approximate results,

Low frequency analysis has been traditionally important because it represents the
fundamental characteristics of a structure and some useful and powerful numerical methods have
been developed for this analysis range. The most common of these is the finite element method.
In this method, a structure is represented by a number of elements and the accuracy of the result
can usually be improved by increasing the number of elements, It is known that, in general, more
than four elements are needed per half wavelength [1} and this means that for more accurate
results in the higher frequency range, a large number of elements should be included.

Although the upper frequency limit can be extended owing to the rapid development of
computer hardware, the need for large computer resources as well as inherent problems at high
frequencies remain as obstacles to its implementation {2]. In particular there are considerable
uncertainties in modelling actual structures at high frequencies and the details of the response are
sensitive to small changes in this frequency range.

The Statistical Energy Analysis method, SEA, is a good alternative for high frequency
analysis. In SEA, it is assumed that the response is diffuse within each subsystem, so that only
the total vibrational energy in each subsystem is important. The energy transfer between
subsystems is determined by the coupling loss factor [3]. Because each subsystem or substructure
corresponds to only one element of the solution matrix, it is a relatively simple, efficient and low

cost method. But in practical application, there are some difficulties. One of them is to find the



relevant coupling loss factors. To ensure more accurate results for practical structures, more
diverse coupling loss factors for the corresponding structures should be defined [4]. Ideally for
the application of SEA the subsystems or substructures should be weakly coupled. In addition, for
any particular frequency band each substructure should contain a minimum number of modes
whose natural frequency falls within the band and there should ideally be equi-partition of
vibrational energy between the modes of a substructure [5]. Because of these assumptions, the
accuracy of the predicted average energy is limited and it seems to be impractical to analyse a
system containing components carrying a long wavelength or having a low modal density. This
results in a low frequency limit of applicability.

There has been much effort to overcome the limitations mentioned above and to find suitable
methods for the region between these two frequency ranges, known as the mid-frequency region.
Various alternative methods, energy flow methods [6-9], wave approaches [10-13], fuzzy
structure theory [14, 15], and a hybrid method [16] have been presented.

Wohlever and Bernhard [6] have studied an energy flow method in one-dimensional systems.
On the assumptions that a structure has light damping and that the kinetic energy density and
potential energy density are equal, a second order differential equation governing the energy
distribution was developed and applied to coupled rod or coupled beam systems. Also Bouthier
and Berhnard [7] applied this equation to membranes where the response can be reasonably
described in terms of plane waves. In this research, to get an approximate energy distribution,
an equation for the time-averaged energy density was used with a smoothing operation which
means a space-averaging procedure over the span of the trace wavelength. The accuracy of this
method is improved as the frequency of excitation and the damping increase, but at low
frequency the approximations are not suitable because there are not enough modes in the

frequency band of interest.



Another energy flow method was developed for a jointed beam structure by Shankar and
Keane [8,9]. Under the some limiting conditions, for example, the beams are not allowed to be
coupled at the mid-span and the boundary conditions are only hinged or clamped conditions, the
averaged energy levels were studied using the receptances at the grid of joints between beams.
The behaviour of the global structure made of rigidly jointed beams is predicted frdm Green s
functions of the individual uncoupled beams. This approach has some advantages, for example,
local damping can be used for the corresponding substructure and the finite element method can
be used. However, difficulties in the convergence of the Green’s function can require the
inclusion of a large number of modes.

A wave approach based on the reflection and transmission of a wave along a structure and at
its joints has been studied for the prediction of the frequency response. Hugin {10] described the
response and transmitted power of bending waves in structures consisting of beams on the
assumption that the influence of the near ficlds is negligible. Grice and Pinnington [11,12] used a
wave analysis to study a built-up structure consisting of a beam and plate using the assumption
that short waves in a flexible plate present a locally reacting impedance to the long waves at the
structural joints [13]. In general, this method is useful for the simple structure combination
considered but a more general approach is required to deal with practical structures.

For the analysis of the mid-frequency range, Soize [14] introduced fuzzy structure theory. A
fuzzy structure is defined as the set of uncertain substructures which are attached to a master
structure but are not accessible by classical modelling and are therefore modelled by probabilistic
concepts. Strasberg and Feit [15] derived a more simple expression for the vibration damping
induced by a multitude of small sprung masses without using a probabilistic approach and
applied this to a simple structure consisting of a beam and a plate. From these studies, it is known

that the fuzzy structure behaves mainly as damping to the master structure and the level of the
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damping is independent of the dissipation factor of the attachments. In practice, because a
structure is divided into a master structure and a fuzzy structure, application is limited to
relatively simple structures or structures with a clear division between master and fuzzy
components.

The methods described above have both advantages and disadvantages. Comparing these
methods, it seems that using a combined or hybrid method is a reasonable approach. This is
because, to overcome the disadvantage of the finite element method in the high frequency range,
it is necessary to use a form of average method. Conversely, in the low modal density region, it is
inevitable that a deterministic method such as the finite element method should be used.

One such hybrid method was developed by Langley and Bremner [16]. In this method, the
degrees of freedom of a system are partitioned into a global set and a local set. For the analysis of
a simple rod system, global equations of motion are formulated in a deterministic manner and
local equations of motion are solved by statistical energy analysis.

The present project is related to the development of a practical hybrid method and the aim of
this report is to understand the fundamental dynamic characteristics of a simple combined
stucture which consists of a beam and a plate and, as the first step of the project, to study a
method for combining simple structures using a wave approach.

The initial models considered are connected beams and plates. The beams possess low modal
densities, and corresponding small wavenumbers, whilst the plate elements possess high modal
densities and corresponding large wavenumbers. A model of a plate with a beam connected along
one edge is considered. This is similar to the plate-stiffened beam considered by Grice and
Pinnington [11, 12] except that the plate is only connected on one side of the beam in the present

case.



2. Infinite beam coupled to semi-infinite plate
2.1 Undamped free wave motion

Consider a built-up structure or combined structure, in which a stiffer component carries
long-wavelength flexural waves and a flexible component carries short-wavelength flexural
waves. It is assumed that the ratio of these wavelengths is sufficiently large. It is known that the
built-up structure can be analysed in terms of its dispersion relation. This report is concerned with
this relationship for a simple built-up structure and the power transfer relationship in the built-up
structure is presented.

Basically the analysis follows the derivation given by Grice and Pinnington [11, 12]. The case
considered here is that of an infinite beam attached along the edge (v = 0) of a semi-infinite plate,
see Figure 1. This differs from the case considered by Grice et al in which a beam was connected

onto the middle of an infinite plate.

Figure 1. A built-up structure consisting of an infinite beam attached to a semi-infinite plate.



Consider first the uncoupled free wave motion of the beam and plate. The relevant equation

of motion of the beam with no damping at frequency @ is

4~
oW, , .

D —r—-mow, =0 2.1

where W, is the complex amplitude of the beam vibration, 1), 1is the bending stiffness given by

EI with E Young’s modulus and [ the second moment of area and m, is the mass per unit

length.

A propagating harmonic flexural wave in the infinite beam, uncoupled from the plate, is

given by

W, = de™h (2.2)

where A is the wave amplitude, x is the coordinate in the direction of propagation and £, is

the uncoupled beam wavenumber given by & =(m,/D,)®’. A time dependence of ™ is

assumed.

The equation of motion of the plate with no damping is

a* o’ 0*

4~ w2 4 _
DV, -mw'w, =0, V' = o +28x28y2 +8y4 (2.3)
: o : En’ v :
where D is the plate bending stiffness given by D, mmand m, is the mass per unit
—v

arca of the plate. This leads to free wave solutions with wavenumber k; = mia)2 / D,.

When the infinite plate and the infinite beam are joined along the line y = ( a force per unit

length F (x) acts between them. Thus equation (2.1) becomes



4 —~
D, L% s, =—F(x) @.4)
X

Suppose that the free wave motion of the beam becomes
W, = de™ (2.5)
Then by wavenumber trace matching the motion of the plate is given by
W, = (Be " + Ce™™)e (2.6)

where B is the amplitude of the wave propagating away from the junction, C is the amplitude
of the near field wave in the plate which is also generated at the junction, %, is the wavenumber

in the coupled beam, k_ is the trace wavenumber for the propagating wave radiating into the

plate normal to the beam and %, is the trace wavenumber for the nearfield wave in the plate. In
the above it is assumed & is real, although as will be seen this is not quite the case.

To obtain the propagating wavenumber %  in terms of the beam and plate properties,
consider the propagating wave solution in the plate w, = Be™™e™™*  Substituting this into

equation (2.3) gives
D, {(k, + 2k K + k)~ m @’} Be " e = 0. 2.7

As Be™™e™ 20, then k+2k°kl+ki—k)=0 where ki =ml@’/D, is the uncoupled

plate wavenumber.

Therefore, the propagating trace wavenumber in the plate is found to be

k, =k -k . (2.8.2)



Similarly, let W, =Ce™e™ " then the near field wavenumber is

k,=JK2 k] (2.8,b)

The boundary conditions when a semi-infinite plate is attached at its edge to the beam are:

(1) Continuity equation; equal displacement

W, () =W, (x,0) (2.9)

& Moment equilibrium condition ; it is assumed that no bending moment acts on the plate by

the beam along y=0

azﬁ‘)p azwp
D, +v =0 (2.10)
y={)

(3 Force equilibrium condition; the force on the plate is equal and opposite to the force on the

beam
a o'W, 0% .
— +(2-v = =F(x).
; ay[ % (2-v) > 0 (x) (2.11)
3=
From the boundary condition (D,
A=B+C. (2.12)

" Here it is assumed that the beam has no torsional stiffness. If the beam is assumed infinitely stiff

—~

- . Y w
to torsion the condition will become —&=0.
Y



From the boundary condition &),

D g™ [—kj Be™ 4 E2Ce™ —y (k_ff?e_%"y +kCe™ )] =0. (2.13)

r y=0

A=B+(C="¢ s Ry—L T p-_VY ¢ R
vkl K vk B v

- K vk ~ = K +VE -
Bt Vh G o BTV 4 (2.14)
k, +k; k, +k;

From the boundary condition ),

D ai( kB ™+ BCe ™ —2-vIkiBe™ — (2-v)kiCe ™)
¥

=D e [ikj Be ™ —2Ce™ +i(2—v)K2k, Be™ + (2-v)K2E, @e_k‘.q

¥=0

¥=0

= D, ik B—k,C+i2—v)klk, B+Q2-v)kC | = F(x).

Substituting for B and C in terms of A gives

=ik, {@- )k + & Hvk! - Y+ k f@-v)i? -k Hvil + i}

pEaE AD e = F(x).
v ¢

(2.15)




Because kX+k. =k2.k —k =k, and k] +k} =2k, the numerator of the fraction in equation

(2.15) becomes
ik, { Q-2+~ 12 H vkl =k, - Kk { -kl -k~ K Hvk+k -k}

=ik, { a-vE +&Y -~k { - -k}

Therefore, equation (2.15) is equivalent to

. 2 3 2
ifI-k [k { -k +k§}2—, fiv /2 { 1-v)kl -k} AD e = ),

k

P

(2.16)
and the line impedance of the plate, which is the impedance per unit length along the beam, is

5 = F(x) _ F(x)
P i@, (x,0)  iww,(x)’

Dk [,/i—k_f/k; [a-ve/e+1} +ifi /2 { a-v) K[k —1}1
- 20

]
.l?

(2.17)
from which F(x)= z'a)Z]',}ie""‘-"‘. Note that equation (2.17) includes a damping-like term which

is the real part of a complex number and also a mass-like imaginary term. These have an
influence on the coupled beam which will be mentioned in section 2.5. Finally, the general
dispersion relation for the infinite beam attached to the semi-infinite plate can be derived from

equation (2.4), (2.16) and (2.17).

Dt =me’ —iw Z,,. (2.18)
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There are two propagating wave solutions and two evanescent wave solutions to this equation. It

must be solved iteratively as &, is contained in Z,. Note that k, is not real, due to the

damping-like term in Z,.

2.2 Forced response

Once the wavenumber for a built-up structure is calculated, then the point mobility of the
structure can be easily calculated from the equation of the point mobility of an infinite beam.
Although the point mobility of the infinite beam in flexure is well-known by Cremer et al [17]
and given by

o
4Dk}

)4 (I-1), (2.19)

in the present report, a semi-infinite beam is considered in numerical analysis because it is more
meaningful for comparing with a finite beam structure.
The point mobility of the semi-infinite beam in flexural motion can be derived from the

general solution of the motion of a finite Euler-Bernoulli beam, which is given by

W(x) = A + A + Ae™ + A, (2.20)

where E‘ and E3 are the amplitudes of propagating waves, A, and ﬁ4 are the amplitudes of
the near field waves, the k, is the propagating wavenumber and the k, is the near field

wavenumber. Consider a semi-infinite beam located at 0 < x<oo, and excited at x=0 by a

force F acting perpendicular to the beam axis. Since all waves propagate away from the

excitation point, waves travelling in the negative direction x direction waves should vanish.
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Therefore, 4, = A, =0, and equation (2.20) becomes

W(x) = Ae™ + dye ™ (2.21)

Because the applied moment is zero and the force applied should be the same as the shear force

of the beam at x =0, the boundary conditions are

=F. (222 a,b)

Then the amplitudes A and ﬁz are calculated as follows.

A F A, r (2.23 a, b)
= - ) = 5 . 23 a,
' Dk (—ik, + k) D,k (—ik, +k,)
Therefore, the point mobility of the semi-infinite beam is
L) 1 N 1 (2.24)
" F, D,| Kk, k) kylik,—ky) '

Because k, =k, inanuncoupled semi-infinite beam, the point mobility becomes [17]

(=1 (2.25)

The general relation of equation (2.18) is still valid for the built-up structure consisting of the
semi-infinite beam shown in Figure 2 and the point mobility for the built-up structure can be

calculated from equation (2.24) using the corresponding coupled propagating wavenumber k.

and the near field wavenumber k_ of the built-up structure.

12
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Figure 2. A built-up structure consisting of a semi-infinite beam attached to a semi-infinite plate.

2.3 Introduction of damping on the beam

The effect of damping in the beam can be introduced to the previous section by using D,

which is given by D, and the structural loss factor of the beam 7, as follows [17].
D,=D,(1+in,). (2.26)

Provided 7, is small the above analysis remains approximately valid. However it should be

realised that the derivation of &, and k, by wavenumber matching is strictly only applicable in

the undamped case.

2.4 Approximation by locally reacting impedance
Note that if k, >> k,, i.c. the plate wavenumber is much larger than the wavenumber in the
coupled beam, then the exact line impedance of the plate, equation (2.17) can be written

approximately as

13




3 ”

- Dk w0
£ —__rr N_ P
ZP ;’c‘,,>>k_‘_ - 20) (1 +I) -

(1+17). (2.27)

P

Equation (2.27) is known to be valid if the plate wavenumber is sufficiently larger than the
coupled beam wavenumber, ie., k. /k,<0.5 [11]. Then the impedance of the plate can be
considered as the input point impedance of an equivalent beam of infinite length and unit width
driven by a point force (the inverse of equation (2.25)). Therefore, the plate is considered as
locally reacting. This means that if the beam propagating wavelengths are much longer than those
in the plate, then the wave radiates into the plate at an angle which is almost normal to the axis of
the beam. From this point of view, the beam possessing the long waves is a ‘spine’ structure and
the plate carrying short waves is the ‘receiver’. If equation (2.27) is used, k:‘ can be found
directly from equation (2.18) from which the propagating wavenumber and the near field
wavenurmber in the beam can be calculated.

Strictly, the propagating wavenumber and the near field wavenumber could have different
values, but in the present report, since wavenumber trace matching is only based on the
propagating wave in the coupled beam, the exact near field wavenumber cannot be calculated. By
aséuming the locally reacting plate impedance, the near field wavenumber can be calculated

approximately from the roots of kf in equation (2.18) without any assumption of trace matching.

2.5 Numerical analysis
Numerical analysis was performed for the structure shown in Figure 2. The material

properties of the structure are shown in Table 1. The thicknesses of the beam and the plate are the

14



same and the area moment of inertia of the beam is calculated by assuming that its neutral axis

lies in the mid-plane of the plate using

3 2
W h(+h)

2.28
12 4 (228

I, =

where 4 is the beam height excluding the thickness of the plate and ¢ is the thickness of the plate.

The excitation point was selected at one end of the beam, x = 0, throughout the present report.

Table 1. Material properties and dimensions of the built-up structure consisting of

a semi-infinite beam attached to a semi-infinite plate as in Figure 2.

Material Perspex
Young’s modulus, E (GN/mz) 4.4
Poisson’s ratio, v 0.38

Density, p (kg/m>) 1152.0
Thickness, ¢ (mm) 5.9
Height of the beam, 2 (mm) 68.0
Loss factor of the beam (if used), 77, 0.05

As described in section 2.4, if the impedance of a plate can be regarded as locally reacting,

the numerical analysis to identify the characteristics of a full structure will be greatly simplified.

15



Before using the simplification, it is necessary to verify that the assumption is applicable. If the

ratio of k, to k, is sufficiently small so that the locally reacting impedance is the same as the
exact line impedance, it can be said that the locally reacting impedance of the plate is valid.
In Figure 3, the relationship between £ /k, and the ratio between the two impedances is

shown. For k,/k, <0.5, the locally reacting impedance is the same as the exact line impedance

to within 1 %. Moreover it can also be seen in Figure 4 that & /%, for the structure of Figure 2

has values below 0.3 in the frequency range of interest which is selected as 10 Hz to 1000 Hz.
Therefore, the plate can be considered as locally reacting and the general dispersion relation
equation (2.18) can be solved by using equation (2.27) for the locally reacting impedance of the

plate. This assumption is valid for both the infinite plate and a finite plate considered later.

| Locally reacting impedance / exact impedance ]

Figure 3. Ratio of the locally reacting impedance to the exact line impedance of the semi-infinite

plate.
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Figure 4. Ratio of wavenumbers.
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Because the wave method is used in the present report, it will be meaningful to understand
the characteristics of wavenumbers in the structures. The equations related to the wave method
start from basically the free or uncoupled wavenumber of a beam or plate. The coupled beam
wavenumber k, of the built-up structure consisting of a semi-infinite beam and a semi-infinite
plate is compared to a semi-infinite beam free wavenumber and a semi-infinite plate free
wavenumber in Figure 5.

All of the wavenumbers increase with increasing frequency approximately in proportion to
a)% which shows that they are dispersive systems. Because the bending stiffness of the beam is
larger than that of the plate, the wavenumber of the plate is greater than that of beam. The ratio of

k

, to k, is also shown in Figure 4 and is constant at 0.209 because both of them are

proportional to the square root of the circular frequency. In detail, the coupled wavenumber k,
is a little higher than k,. The reason can be seen from the dispersion equation (2.18) which
includes the impedance term of the plate. The mass of the plate increases %, , but the influence is
reduced at high frequency because the equivalent mass is m; /2kp , see equation (2.27). Because

of this, as shown in Figure 4, the ratioof &k, to % ’ does not have a constant value.
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Wavenumber
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10 10% 1¢°

Frequency (Hz)

Figure 5. Comparison of the propagating wavenumbers. : k_ in the coupled beam as in

X

Figure 2, — - k, in an uncoupled semi-infinite beam, —— - —: k, in the plate. k,  is

calculated on the basis of the locally reacting plate.

In Figure 6, the ratio of the imaginary part to the real part of the wavenumber &, is shown.
The imaginary part of the wavenumber is related to the damping of the structure. As mentioned in
section 2.1, the ‘damping’ part of the plate impedance makes the coupled wavenumber &, a
complex number. Physically this means that the plate appears to add damping to the spine beam

although it does so by energy radiation into the plate (the system is assumed undamped). Figure 6

shows how the damping changes with frequency. An equivalent loss factor 7 can be derived
from equation (2.29) and the ratio shown in Figure 6. It appears to fall with frequency. This

tendency was already known by Heckl [13].

n _ Im(k,)

4 Re(k) (2.29)
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Figure 6. Ratio of the imaginary part to the real part of the wavenumber k.. &, is calculated on

the basis of the locally reacting plate.

In Figure 7, the locally reacting impedance calculated from equation (2.27) is shown.
Because a locally reacting plate has a beam-like nature, the line impedance is similar to that of an
infinite beam. The impedance increases with frequency and obviously there are no resonances or

anti-resonances due to its infinite extent.

| Impedanceim | (Nsim®)
a

10 10% 10
Frequency (Hz)

Figure 7. Locally reacting impedance of the semi-infinite plate per unit length of the beam.
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In addition to the damping effect of the plate, it would be interesting to see how the dynamic
characteristics are changed when damping is introduced to the beam. The beam is given a loss
factor 0.05 (see Table 1). In Figure 8, the imaginary part of the wavenumber k_ is shown from
which the damping can be inferred. Although the difference is small, it can be seen that the

damping is increased.

10

1072 -
10' 10 10

Fraquency (Hz}

Figure 8. Comparison of the imaginary part of the wavenumber £, .

: undamped beam,

— —:damped beam.

If damping is included in the beam, the level of the point mobility will be reduced slightly,
but as shown in Figure 9, the difference between the solid line and the dashed line (lower two
lines) in the mobility graph is not distinguishable. In the phase graph, it can be seen that the
dashed line in the upper two lines shows a delayed phase which indicates that the beam includes
damping. The point mobility of the structure consisting of the damped semi-infinite beam and the
semi-infinite plate is used as a characteristic mobility later in the present report for comparison
with the results of different finite structures. Figure 9 also shows the mobility and its phase of an

uncoupled semi-infinite beam. Concerning the damping, the tendency is similar to the coupled

20



beam. Comparing the mobilities between the built-up structure and the uncoupled beam, the
built-up structure has a lower level than the uncoupled beam because it is influenced by the mass
of the plate. Both fall with increasing frequency which shows a partial mass-like characteristic.
The phase of the built-up structure has an increasing delay with frequency because of the

damping-like term of the plate while the uncoupled beam has a constant phase of —7z/4.

coupled beam

osf T — ]

-ir  uncoupled beam .

Phase {radian)

! 10° 10
Fraquency {Hz)

10

107" v

.. uncoupled beam

-

coupled beam

I Mobility | mésN)

3 1
10" 107 10
Frequency (Hz)

107

3

Figure 9. Comparison of the phase and the point mobility. : semi-infinite beam and semi-

infinite plate as in Figure 2 (undamped beam), — —: semi-infinite beam and semi-infinite
plate as in Figure 2 (damped beam), —«~—: uncoupled semi-infinite beam (undamped beam), -

------ : uncoupled semi-infinite beam (damped beam).
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3. Infinite beam coupled to finite width plate
3.1 General boundary

This section considers the case shown in Figure 10 in which a plate of finite width is coupled
to the beam and the effect of the boundary condition along the opposite edge parallel to the beam

is considered in general terms.

Figure 10. A built-up structure consisting of an infinite beam attached to a finite plate.

If it is assumed that there is no damping in the plate, the response in the infinitely long plate

of width L, joined to an infinitely long beam can be written as

- = = _ L5 ik =k (=L -
W, =(Be “ ¢ Ce kf”+,6’yrBef 4 Det Ty (3.1)

where S, =¢ ™ represents a phase shift over length 2L, 7 is the complex reflection

coefficient at the edge of the plate y =L, and D is the amplitude of the near field wave which

is generated at the opposite edge of the plate.
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The equation of the motion of the plate is the same as for the semi-infinite plate. At y =0, the
boundary conditions in terms of the displacement and force for the finite plate are the same as the
semi-infinite plate structure.

From boundary condition @,

N
Il
Tt
+
™

+ B, 7B+ De " (3.2)
From boundary condition (),
D e [ - k’f Be ™ + k2Ce™ — k}% ﬁyi’gem—“y + k2 De™
kv (Be™ + Ce + § B + D )] 10 =0,
~K:B+k2C -k B FB+ k2 D™ —k2v(B+C+ B 7B+ De ) = .
~{ & +vi Y1+ B,F)B+{ K ;ka}é +{ k7 —vk} } De " =0. (3.3)

Because the beam is attached to the edge y = 0 of the plate, at sufficiently high frequency it can

be assumed that the influence of the near field at the opposite edge will be negligible, which

~ kL
means De % =0.

Therefore, equations (3.2) and (3.3) become

A=+ B AB+C (3.4)

and

—{ B +vEZ 1+ B F)B+{ K2 —vi2}C =0. (3.5)
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Fquations (3.4) and (3.5) yield

. K HvE] -
TR (3.62)
¥ e
jo Kiovh 3.6b
(k; +k)H(A+ B,7) (3.60)

Boundary condition 3 can be rewritten as follows.

2~ 2~
Dpi[a P e@2-1)° w”}

dyi ay ox’

y=0

= D, [ ik B—KC ik} B, 7B~ (2—)k; (~ik, B~ k.C +ik, B,7B)]

=D, [z‘ky {k}+@-vi2} (- BBk, {£-@-v)k} é] = F(x).
Substituting for BandC ,

s {I (K2 + -k} «-vk;f J1-87) . [k -@-v)E2 K +VvA] )} .
7 Y (k +k(1+ B,7) (k;+k)

Therefore, the line impedance is given by

”?

PRAR (K2 + @B J(82 -V )(1- B,7)-+ik, { &} ~ -V [{k +VE )1+ B,7)
o (& + K2 )1+ B,7)

(3.8)
3.2 Simply supported boundary

For a simply supported condition as shown in Figure 11, the reflection coefficient F

becomes —1, which means that propagating waves undergo a phase shift of 7.
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Figure 11. A built-up structure consisting of an infinite beam attached to a finite plate with simply

supported edge.

Therefore, equation (3.8) becomes

., D,k LI+ Q-2 K —vE)(1+ B, )+ ik, { k2~ Q- Nk +vE )1-5,)

r

P (&, + k1= B,)

(3.9)

3.3 Approximation by locally reacting impedance

Because the relationship between the wavenumbers k,, k,, k., and k, is the same as for

P’

the semi-infinite plate structure, the impedance can be written as follows.

D | K {R+0-vRY (148, ik {2 -1-v)kT a-8,)

7 =lr .
" 2UE(1-B,) G-10)

If k,>>k, ,then k, =k, k, =k,  and

’

L 2k2(1-B,)

. p,| B{1+a-nr/eY 1+ )+ {1-0-nEg/e} 1-5)

3 ..
_ Dpkp(1+ﬁy+z—1ﬁy)_

205 (3.11)
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Therefore, the line impedance of the plate can be expressed in the simple form of

. D i1+
z =L ”{——Jﬁi+ij (3.12)

P k,>>k, 20
where [, depends on k.. The wavenumber relationship between the real values &, k,, and

P’

k_ are still satisfied which is

I FEN (3.13)

where &, could be found iteratively from equation (3.12) and the dispersion relation.

3.4 Effect of damping

If damping is introduced into the plate, the plate stiffness is described as ﬁp =D (1+in,)
and the wavenumber of the plate becomes Ep =k, (1-i7, / 4),
Now, equation (3.12) which represents the focally reacting impedance of the plate, can be given

as follows including damping terms.

. DE(1+5
7 ~-ii( @+q. (3.14)

Ple sk, 2p -8,
where ,5'}‘ =% s the propagating wave attenuation coefficient of the plate, which represents
attenuation as well as phase shift over the length 2L .
Once the damping is introduced to the beam and the plate, strictly their wavenumber matching

cannot be satisfied because each wavenumber includes a damping term. Nevertheless, if the loss

factor of the spine can be assumed to be very small, then because the spine wavenumber £ is
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smaller than £, the receiver wavenumber i;\. can be calculated in terms of the loss factor of

the plate as follows.

£y=ky(1—i%J (3.15)

3.5 Numerical analysis

Computer simulations were carried out for a semi-infinite beam as in section 2.5. Figure 12
shows the built-up structure consisting of the semi-infinite beam and the plate which has finite
width L, For the plate both damped and undamped cases are considered but the beam has

damping for both cases.

Figure 12. A built-up structure consisting of a semi-infinite beam attached to a finite plate with a

simply supported edge.

The configuration considered for the built-up structure shown in Figure 12 is presented in
Table 2. The material properties are the same as those presented in Table 1 as are the thicknesses.

A point force was applied at the same location x = 0.
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Table 2. Dimensions of the built-up structure shown in Figure 12.

Plate width, L, (m) 0.45
Thickness, ¢ (mm) 59

Height of the beam, ~ {mm) 68.0
Loss factor of the beam, 7, 0.05
Loss factor of the plate (if used), n, 0.05

Firstly, the impedance of the undamped plate calculated from equation (3.12) is shown in
Figure 13. The resonances (dips) and anti-resonances (peaks) actually tend to Teo but this is

truncated by the frequency resolution used which is 0.1 Hz. It can be seen that there are erratic

fluctuations near the anti-resonances. This is due to 3, including the propagating wavenumber
k., which is also related to the coupled wavenumber k, (see equation (3.13)). Note that for an

undamped plate, [, does not include an attenuation term.

Figure 14 shows the point mobility of the built-up structure shown in Figure 12. It was
calculated using the impedance shown in Figure 13 and the general dispersion equation, when
the semi-infinite beam of the structure has damping loss factor 0.05. The point mobility is
shown along with the characteristic mobility of Figure 9. It can be seen that the point mobility
follows the characteristic mobility well.

Because a semi-infinite beam has no resonances or anti-resonances, the dynamic
characteristics of the built-up structure will be determined by the characteristics of the plate. It
seems to be important to notice that the peaks in Figure 13 and the dips in Figure 14 occur at the

same frequencies. The peaks in the impedance correspond to the anti-resonances, and at these
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anti-resonance frequencies of the plate the point mobility level of the built-up structure is

minimized. This phenomenon will be explained later.

| Impedancefm | (stmz)
a

.
10’ 10° 10°
Frequency (Hz)

Figure 13. Locally reacting impedance of the finite plate (undamped plate).

107

| Mability | (m/sN}

-
(=}
L

07" R
10" i0° 10
Frequency {Hz)

Figure 14. Point mobility of the built-up structure.

: finite width plate as in Figure 12
(undamped plate, 77, =0.05 in the beam, point force applied at x = 0), — — infinite plate as in

Figure 2 (undamped plate, 77, =0.05 in the beam, point force applied at x = 0).
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For the case where damping is added to the plate, the various wavenumbers are compared in
Figure 15. This shows the propagating wavenumber k., the near field wavenumber k, and the
free wavenumber k, along with k. As k, is larger than k_, the difference between k,, k.
and k, is small. This means that k, can be used in the calculation of the plate impedance instead

of k, and k, (seeequations (3.12) and (3.10)).

10 ¢

10 16° 10"
Frequency (Hz)

Wavenumber (real part}

-1

10

10’ 10° 107
Fraquency {Hz)

Figure 15. Comparison of the wavenumber of the built-up structure consisting of the semi-infinite

beam and the finite plate as in Figure 12. —— kp., _—— k,- e ke k.
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Also, the imaginary part of the coupled wavenumber k, is shown in Figure 15. As
mentioned in section 2.5, the imaginary part is related to the damping of the structure. When the
imaginary part of the coupled wavenumber is divided by the real part, it is possible to infer an
equivalent loss factor. This ratio is shown in Figure 16, which according to equation (2.29)
indicates beam loss factors greater than 1 at the first few peaks.

For the -comparison, the impedance of the damped plate is shown in Figure 17, calculated
using equation (3.14). From comparing Figure 16 and 17, it is clear that the equivalent loss factor

is maximum at anti-resonance frequencies of the plate.

4 1
10" 100 10
Frequency (Hz)

Figure 16. Ratio of the imaginary part to the real part of the wavenumber k,.
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| Impedance/m | (Nslmz)
3

10" 10? 10°
Frequency (Hz)

Figure 17. Locally reacting impedance of the finite plate (17, =0.05 in the plate).

It can be seen that there are erratic fluctuations in both figures near the first anti-resonance.
This is again becuase of the influence of [)5), . At high frequencies the fluctuations seen earlier

disappear due to the attenuation of the propagating wave in the plate which increases at higher
frequency.

In addition to the impedance of the damped plate, the corresponding point mobility of the
built-up structure is shown in Figure 18. Similar to the undamped plate in Figure 14, the anti-
resonance frequencies of the plate, such as 31.9, 122.0, 269.8, 474.9, and 736.7 Hz coincide with
the dips of the point mobility of the coupled structure. This can be explained by the equivalent loss
factor mentioned above. Therefore, the motion of the coupled beam is reduced at anti-resonances of
the plate.

Comparing Figures 14 and I8, it can be seen that the damping of the plate has an obvious

influence on the drive point mobility of the beam, reducing both peaks and troughs.
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Figure [8. Point mobility of the built-up structure. . finite width plate as in Figure 12

(77,=0.05 in the plate, 7, =0.05 in the beam, point force applied at x = 0), — — infinite

plate as in Figure 2 (undamped plate, 77, =0.05 in the beam, point force applied at x = 0).

4. Finite beam coupled to finite plate
4.1 Response of coupled system

To define the dispersion relationships of a coupled beam and plate, an infinite beam and a
plate of either infinite or finite width were used in the previous sections. This general relationship
can be extended to the structure which is finite in length as shown in Figure 19. In addition, based
on equations for the transfer mobility and the point mobility of the finite beam, the point mobility
as well as the transfer mobility of the built-up structure can be calculated using the corresponding

propagation and near field wavenumber of the built-up structure.
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Figure 19. A built-up structure consisting of a finite beam attached to a finite plate with a simply

supported edge.

The general solution for the motion of the finite beam of the built-up structure at frequency
w 18

. 7 ik ~ -k ~ kxR
W= Ae™ + 4T + A"+ A, (4.1)

—~

where X] and E3 are the amplitudes of propagating waves, A, and ;4'4 are the amplitudes of

the near field waves, k, is the propagating wavenurber and !2,?,. is the near field wavenumber

X

of the coupled beam in a complex number (allowing for damping).
If the beam has length ! with a force F applied at one end x = 0, and is free at both ends,

the boundary conditions are then given by

~ %W
D,==| =0. (4.22)
* x=0
~ % -
-D,—| =F, 4.2b
b ax3 i ( )
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~ %W
b,%3 =0,
x={
~ 3w
D — =0.
" ox’ -

Equations (4.2) also can be written in terms of the wave amplitudes:

KA ELA KA R A, =0,

~D, (KA~ A, — ik Ay + K

) = £,

2 ik d 2~k 3 ik 2 kgl
—kle ™A +kle A~k A+ ke 4, =0,

n k!

g3 ki 3 kg3 3 ikd 3 kJdn
ikje ™A ke A —ike"™ A, +k e 4,=0.

These can be written in a matrix form,

Therefore, when the propagating wavenumber and the near field wavenumber are known, the
amplitudes of the waves can be found by inverting the matrix. Strictly, the propagating wave and
the near ficld wave should be calculated separately, but as mentioned in section 2.4, the
theoretical development in the present report is based on the propagating wave in a coupled beam.
Therefore, the near field wavenumber is assumed to have the same value as the propagating

wavenumber based on the locally reacting plate impedance and the general dispersion relation.
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Now equations {4.3) ~ (4.6) can be simplified using ]Ej instead of Iz,,f and the amplitudes A4,,

A,, and ;L; can be derived in terms of ;li

4= —(1+i)+1‘e’”;'1eiz‘j+e”'£‘le_iz"j i (4.8)
; (1+i)—ie™ ™™ — gkl eh! " .
b=l ), @9)
- 1=7 gy~ UHD ar | i
A=\ e A e e (*+10)

Therefore, the transfer mobility from the excitation point x = 0 to the response at the arbitrary
position x can be calculated from the relationship between equations (4.1) and (4.4), i.e. the

relationship between the force and velocity,

A N ik = ke T ikex ~ kx

_ « Sy .

Fy=l0F @ AeTide TrAe tder @.10)
F -Dk, A, +idy— Ay —id,

This also gives the point mobility at x = 0 as follows.

+

l

w
uﬁb];.\f

Y
ot

<@

T 4.12
N (4.12)

[

e o
1 +
'1 J?h!

+

2
2

o
s

g Ty —

4.2 Power input to coupled system
The total power injected into the coupled beam-plate structure by the point force applied at

the end is given by
1 = w7 & =
Pua =5 Re{ £y 3 }=2| £, [ Re{ %, } (4.13)
where 170 is the input point mobility of the coupled structure driven by the point force, given by

eguation (4.12).
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4.3 Power transmitted to plate

As mentioned in section 2.4, if the plate wavenumber is at least twice the coupled beam
wavenumber, the plate can be regarded as locally reacting. With this assumption that the plate can
be represented by a locally reacting impedance, the plate behaves like separate strips as shown in
Figure 20, because the wave radiated into the plate has a direction almost normal to the axis of

the beam.

The power flowing into a structure can be calculated based on its impedance and the velocity

at the connection point.

P:%| 7 Re{Z' } (4.14)

In this section the power transmitted to the plate is evaluated and compared to the total power
input to the coupled structure by the point force.

The response of the beam to a point force can be written in terms of transfer mobilities for
the positions shown in Figure 20. Therefore, the velocity of the plate strips at their attachment

points becomes

170:}7;,0}76, v, :Y;.IFE)’ v, :ﬁ;,zﬁ)a"' (4.15)

where ﬁ,‘x is the transfer mobility I;,,(x) of the coupled beam.
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Figure 20. Power flow from a beam to strips of a plate.

The impedance per unit length of a locally reacting finite width plate is defined in section 3.4 and

given by

., DRE(1+fp
AR N LA SR i 4.16
r 260 [lnﬁ) IJ ( )

Now, it is possible to assume that the strip is being driven by a prescribed velocity
distribution. Therefore, using equation (4.14), (4.15) and (4.16), the power input into a strip of

the plate of width dx can be calculated as follows.

lv I'Re{ Z, Jdx= —|F P 7,00 [ Re{ Z; Jax. (4.17)

\mp

Finally, the power input to the plate can be obtained from the integral of equation (4.17) over the

length of the beam and is given by

P dx:—jF ’Re{Z, }j |Y(x)| d. (4.18)
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4.4 Numerical analysis

For the built-up structure consisting of a finite beam attached to a finite plate shown in
Figure 19, some results from the numerical analysis are shown. Dimensions of thé structure are
given in Table 3. The results of the analysis are compared to those obtained by a finite element
analysis. Figure 21 shows the FE model. Damping is included with FE model by a modal

damping ratio which is equivalent to a loss factor as follows.

(4.19)

™y
Il
o |3

Table 3. Dimensions of the built-up structure shown in Figure 19.

Beam length, L (in) 2.0
Plate width, L, (m) 0.45
Thickness, ¢ (mim) 5.9

Height of the beam, 2 (mm) 68.0
Loss factor of the beam, 77, 0.05
Loss factor of the plate, M, 0.05

Figure 21. FE model for comparison with numerical analysis.

39



The point mobility is compared to the characteristic mobility in Figure 22. As in section 3.5,
the point mobility follows the characteristic mobility. Some of the peaks correspond to modes of
the finite beam, but the second, fifth and eighth peaks, for example, correspond to peaks in the
mobility of the infinite beam and finite plate structure in Figure 18. Figure 23 shows the transfer
mobility of the built-up structure from x=0 to a response at x=2m, the opposite end of the
beam. It can be seen that there are some deep troughs at 31.9, 122.0, 269.8, 474.9, and 736.7 Hz.
Comparing Figure 23 with Figure 17, the frequencies of these troughs coincide exactly with the
anti-resonances of the finite width plate. This is due to the same reason as explained in section
3.5. That is, the anti-resonance of the plate reduces the vibration along the beam at that frequency.

This phenomenon is referred to as a *blocking effect” in [11].

| Mobility | {Ns/m?)

10% 10
Frequency (Hz)

: finite beam and finite plate as in Figure

Figure 22. Point mobility of the built-up structure.
19 (77, =0.05 in the plate, 77, =0.05 in the beam, point force applied at x = 0), — — infinite
beam and infinite plate as in Figure 2 (undamped plate, 7, =0.05 in the beam, point force

applied at x = 0).
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Figure 23. Transfer mobility of the built-up structure consisting of finite beam and finite plate as

in Figure 19 (7, =0.05 in the plate, 77, =0.05 in the beam, point force applied at x = 0,

. analysis, — —: FEM.

response at x = 2.0).

The transfer mobility and the point mobility from the simulations are compared to
corresponding results from the finite element analysis in Figures 23 and 24, Below 100 Hz, they
agree closely. Above 100 Hz, although the general tendency of the curves coincides well, the
resonance frequencies show differences. The main reason for these differences seems to be due to
the approximation of the neutral axis of the beam. As mentioned in section 2.5, the bending
stiffness of the beam is calculated on the assumption that the neutral axis lies in the mid-plane of
the plate. This is basically a good approximation for the fundamental modes of the beam motion,
for example, a rigid mode or first bending mode, but for more complicated modes at higher
frequencies, it seems that the neutral axis does not lie in the mid-plane of the plate any more
because the spine beam is much stiffer than the plate. This can be easily verified from a different

finite element model.,

41




10’ 10% 10
Fraquency (Hz)

Figure 24. Point mobility of the built-up structure consisting of finite beam and finite plate as in

Figure 19 (77, =0.05 in the plate, 77, =0.05 in the beam, point force applied at x = 0}, ——

analysis, —— —: FEM.

Figure 25 shows the modified model in which the plate is attached at the centre of the beam
height. In this model, the neutral axis lies at the centre of the beam and will not change for
different modes. Figure 26 shows the results of the finite element analysis and the numerical
analysis in which the neutral axis also lies at the centre of the beam. The resonance frequencies
coincide well. Therefore, if a plate is attached to the bottom of a beam, it is necessary to calculate
the neutral axis of the beam using a more accurate method to describe the real dynamic behaviour.

This requires further study.
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Figure 25. FE model for comparison with numerical analysis (the plate is attached to the centre of

the beam height).

10° b

| Mobilty | {Nsim?)

1
10

10* 10°
Frequency (H2)

Figure 26. Transfer mobility of the built-up structure consisting of finite beam and finite plate,
when the finite plate is attached to the centre of the beam height (77, =0.05 in the plate,

7, = 0.05 in the beam, point force applied at x = 0, response at x = 2.0).
FEM.

: analysis, — —:

The power distribution for the structure of Figure 19 was calculated using the equations in
section 4.3 and 4.4 and is displayed in Figure 27. As expected, the total input power for the

structure is greater than the power transferred to the plate. Comparing the point mobility of the
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built-up structure, shown in Figure 22 and the power, it is clear that the power is maximum at the
resonances of the buili-up stracture.

While at some peaks such as at 37.1, 128.8, 277.1, 484.1, and 751.5 Hz, the total power and
the power transferred to the plate have almost same values, at other peaks such as at 59.0, 174.0,
351.0, 589.7, and 890.1 Hz, the difference between the two powers is large. This could be
explained in terms of mode shapes of the beam and the plate. Although the modes of the beam
and the plate are coupled, nevertheless, at some natural frequencies the mode of the beam 1is
dominant, at other frequencies the mode of the plate is dominant. Therefore, it can be said that
when the difference between the two powers is reduced, the mode of the plate is dominant and
the plate receives most energy. In that case, the magnitude of the beam motion is relatively small.
Conversely, if the difference is large, the magnitude of the beam motion becomes larger than that
of the plate. For example, at 59.0 Hz, the dominant mode of the built-up structure is flexural
mode of the beam with two nodes and the 3 noded flexural mode is dominant at 174.0 Hz.

The ratio of the power transferred to the plate, or power dissipated by the plate, to the total
input power is shown in Figure 28. When the ratio has the value of 1, all of the total power is
transferred to the plate. As seen in the figure, at some specific frequencies such as 31.9, 122.0,
269.8, 474.9, and 736.7 Hz, most of the power is transferred to the plate, and those frequencies
coincide with the anti-resonance frequencies of the plate. These frequencies are just below the
corresponding resonance of the coupled system that is dominated by plate motion. The total
power level is reduced at these plate anti-resonance frequencies as seen in Figure 27. Therefore,
when the plate is in anti-resonance, it can be said that most power is transferred to the plate. This
is due to the blocking effect mentioned above. Because at those frequencies the plate absorbs the
power, it is known that a flexible finite plate can be used as a narrow band vibration damper

which absorbs the vibrational energy [11].
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Figure 27. Comparison of power inserted to the built-up structure shown in Figure 19 (17, =0.05

: power input to the plate

in the plate, 77, =0.05 in the beam, point force applied at x = 0).

(equivalent to dissipated power by the plate), - —: total power input to the built-up structure.

Power to plate / total power

L
' 10® 10
Frequency (Hz)

0.2
10

Figure 28. Ratio of the power input to plate to the total input power.

A 3-dimensional diagram can help in understanding the power distribution as a function of

frequency as well as the position along the beam. Figure 29 shows the 3-dimensional diagram
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showing the power distribution. It should be noted that the power distribution at the position
along the beam shows only the input power transmitted to the plate at that specific position x.
This differs from the power transmitted to the plate, shown in Figure 27, which is the total power
transmitted to the plate. As shown in figure, the power level reduces at high frequency. Note that
at both ends x = 0 and x = 2.0, the power is higher than at other positions. This is because the
beam behaves like a free-free beam and therefore near field effects on both ends are generated. At
one end of the beam x = 0, the power is much higher than that at the other. This is because the

force is applied at this point, whereas the level on the beam reduces along its length due to the

power transmitted to the plate.

Power (Nm/s)

Frequency (Hz)

X ()

Figure 29. Distribution of vibrational power transmitted to the plate in terms of frequency and the

position along the beam
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5. Conclusions

The vibrational characteristics of a structure consisting of a beam possessing small
wavenumbers and a plate possessing large wavenumbers has been calculated by means of the
wave method. The plate is only connected on one side of the beam in the present case, which
means that the structure is non-symmetric and thus different from the symmetric structure
considered by Grice and Pinnington [11]. The structure was analysed first in terms of an infinite
beam and an infinite plate leading to the structure consisting of a finite beam and a finite plate.

Firstly, it was shown that, for the presented non-symmetric structure, the exact line
impedance could be simplified so that the plate can be regarded as locally reacting. This means
that the line impedance of the plate can be considered as the input point impedance of the
corresponding beam of infinite length and unit width driven by a point force, because the wave

radiated into the plate has an almost normal direction to the axis of the spine beam. The

simplification is based on the assumption that k /k, <0.5, which is verified for the case

considered in the present report for the frequency range considered.

Also, it was shown that the coupled wavenumber in an undamped beam is complex because
the plate line impedance is complex. This means that the plate behaves like added damping as
well as mass when coupled to the beam. The ratio of the imaginary part to the real part of the
coupled wavenumber shows that the equivalent loss factor falls with increasing frequency, which
was shown by Heckl [13].

The blocking effect was explained. When the finite plate has an anti-resonance, the equivalent
loss factor of the beam is maximum and also the mobility level of the built-up structure is

minimized. This is because the plate reduces the motion of the beam at this frequency. From this
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point of view, it can be said that the flexible finite plate attached to the spine beam behaves like a
narrow band vibration damper.

The results of the numerical analysis for a built-up structure consisting of a finite beam and a
finite plate were compared to the results of finite element analysis. Below 100 Hz, they agree
closely, but above 100 Hz, the resonance frequencies show differences. The main reason is due to
the assumption that the neutral axis of the beam lies in the mid-plane of the plate. In reality, it
seems to change with frequency. It was verified using a different finite element model in which
the neutral axis lies at the centre of the beam for which good agreement was found with the
analytical model.

The total input power injected to the structure consisting of a finite beam and a finite plate
was compared with the power transferred to the plate. The power transferred to the plate was
obtained from the locally reacting impedance of the plate and the velocity driving the plate,
which behaves like separate strips. The input power is maximized when there are resonances in
the built-up structure. From the ratio of the power transferred to the plate, or power disstpated by
the plate, to the total input power, it was seen that the greatest proportion of power is transferred
to the plate at specific frequencies which coincide with the anti-resonance frequencies of the plate.
This is also explained as the blocking effect.

It should be noted that the results mentioned above are based on some assumptions. Firstly,
coupled wavenumbers are calculated based on wavenumber trace matching which is satisfied
only when structures have no damping. For application of the wavenumber trace matching in
damped structures, it is assumed that the loss factor of the spine is very small and the spine
wavenumber is smaller than the receiver wavenumber. Secondly, in the present report, the
impedance of the plate is considered as locally reacting. This is satisfied only when the free plate

wavenumber is twice as large as the coupled spine wavenumber. Concerning the near field wave
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in the coupled beam, it is assumed to have the same value as the propagating wavenumber
because only the propagating wave in the coupled beam is obtained from the wavenumber trace
matching.

It seems that the wave approach is an appropriate method to analyse the dynamic
characteristics of the simple structure. As mentioned in the introduction, the present report will be
the first step to approach the development of a practical hybrid method. By means of the wave
method, the fundamental dynamic characteristics of a simple combined stucture could be
understood.

Concerning further study, it is believed that the present report will be a good basis. In the
further study, more complicated structures, such as a structure consisting of four beams and a
plate, can be considered. Basically, the approach presented in this report may be used and

different methods also can be considered to make progress for mid-frequency analysis.
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