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GROUND VIBRATION GENERATED BY A HARMONIC
LOAD MOVING IN A CIRCULAR TUNNEL IN A
LAYERED GROUND

X Sheng, C J C Jones and D J Thompson

ABSTRACT

In this paper, a predictive model has been developed for ground vibration
generated by a stationary or moving harmonic load applied in a circular lined or unlined
tunnel in a layered ground. This study is the first step to use discrete wavenumber
methods to model ground vibration from underground trains. Discrete wavenumber
methods can be the discrete wavenumber fictitious force method, the discrete
wavenumber finite element method and the discrete wavenumber boundary element
method. This study uses the discrete wavenumber fictitious force method. Based on the
moving Green’s functions for a layered half-space and those for a cylinder of infinite
length, boundary integral equations governing unknown fictitious forces (stresses) and
tunnel-soil interaction stresses are established. Unlike the conventional boundary integral
equation, those derived here only require the displacement Green’s functions, not the
stress Green’s functions. This is achieved by introducing the excavated part of the ground
as a separate substructure. The boundary integral equations are further transformed into a
set of algebraic equations by expressing the displacement and stress along the tunnel-soil

interface in terms of a Fourier series.

Results presented in this paper illustrate the effect of a tunnel on vibration
propagation on the ground surface and the difference between a lined tunnel and an
unlined tunnel. These results will be compared with those from the discrete

wavennumber finite/boundary element model which is being developed.
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1. INTRODUCTION

An important issue with regard to the environmental impact of rail traffic is the
problem of ground vibration produced by trains running in cut-and-cover or bored
tunnels. The dominant frequencies associated with underground train-induced ground
vibration are from about 15 Hz to 200 Hz [Grootenhuis, 1977]. Vibration in this range of
frequency gives rise to structure borne or ‘ground-borne’ noise. To explore the
mechanism of this problem, several models have been developed [Balendra er al 1989,
1991 and 1992; Jones et al 1999 and 2000; Forrest 1999; Metrikine er al 2000].
However, these models are either two-dimensional, therefore unable to account for the
wave propagation in the third direction, or treat the ground as a whole-space, thus unable

to model the wave reflection that is actually exists at the ground surface.

A model is required that can account not only for the wave propagation in the
ground, but also for the movement of trains in the tunnel and wave propagation in the
tunnel direction. The latter is important since the inclusion of a tunnel in the ground
provides a waveguide in that direction. A three-dimensional model is therefore needed
and for some studies is essential. A three-dimensional coupled finite/boundary element
(FE/BE) model has recently been implemented for the case of stationary load [Andersen
and Jones 2001] but is very expensive to use. In many situations, the geometry of the
ground-tunnel structure can be considered to be invariant with respect to any translation
along the tunnel axis. Utilisation of this feature may increase the computational
efficiency, as suggested by for example Aubry [Aubry ef a/ 1994]. In this idea, the
problem is transformed into a sequence of two-dimensional models depending on
wavenumbers in the tunnel direction. For each (discrete) wavenumber, the finite cross-
section of the tunnel may be modelled using the FE method (called the discrete
wavenumber finite element method, or the two-dimensional finite element method) and
the wave propagation in the surrounding soil be modelled using the BE method (called
the discrete wavenumber boundary element method, or the two-dimensional boundary
element method). The simplicity of this approach comes from the fact that the
discretization is only made over the cross-section of the ground/tunnel structure. The
conventional two-dimensional finite and boundary element methods for the plane-strain
problem, which corresponds to zero wavenumber, must be extended to account for any
value of wavenumber. In addition to other issues, use of the discrete wavenumber
boundary element method requires Green’s functions, which are responses
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(displacements and stresses) due to moving harmonic loads, either for a half-space or for
a whole-space, expressed in terms of coordinates in the plane normal to the tunnel axis
and the wavenumber in the tunnel direction. Such Green’s functions for a layered half-
space [Sheng, Jones and Petyt 1999] as well as for a homogeneous whole-space are now

available [Sheng, Jones and Thompson 2002].

In addition to the discrete wavenumber finite/boundary element methods, an
approach called the discrete wavenumber fictitious force method may also be used. This
method was proposed by Luco et al [Luco and de Barros 1993] and is especially useful
when the tunnel has a circular cross-section and the ground has a vertically layered
structure. This method will be described and applied in this paper. It may provide a
reference for the discrete wavenumber finite/boundary element methods. In the discrete
wavenumber fictitious force method, a boundary integral equation governing unknown
fictitious stresses and the tunnel-soil interaction stresses is established. The boundary
integral equation developed by Luco ef al [Luco and de Barros 1993], as that derived in
the conventional boundary element method, not only requires the displacement Green'’s
functions, but also requires the stress Green’s functions. However in this paper, by
regarding the excavated part (a solid cylinder of infinite length) of the ground as a
separate substructure, the boundary integral equation only requires the displacement
Green’s functions of the ground (without the tunnel, therefore referred as to the free
ground), the tunnel (a hollow circular cylinder, called the tube hereinafter) as well as the
excavated cylinder. In the conventional boundary element method, the displacements and
tractions on the boundary are interpolated using polynomials in terms of the values at
nodes, and the boundary integral equation is then converted into a set of algebraic
equations from which the values at the nodes can be determined. However in this paper,
instead of using the interpolation method, the boundary integral equation is transformed
into a set of algebraic equations by expressing every quantity in the boundary integral
equation, which is a periodic function of positions on the tunnel-soil interface, in terms of
a Foﬁrier series. Each item of the Fourier series represents a harmonic component of that

quantity and can be worked out from these algebraic equations.

In Section 2, analysis for each sub-structure is performed, and how the sub-
structures are coupled to recover the actual situation is explained. The coupling procedure
is detailed in Section 3, which leads to equations for the unknowns. Section 4 describes

the calculation of the response of a horizontal plane in the ground (called the observer
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plane, e.g. the ground surface). The case of a ground with an unlined tunnel is treated in
Section 5. Results are presented in Section 6 to demonstrate the effect of the presence of
a tunnel on the vibration propagation on the ground surface. Finally in Section 7, some

conclusive marks are summarised,
2. ANALYSIS OF EACH SUB-STRUCTURE

A lined tunnel with a circular cross-section is called a tube hereinafter. The inner
and outer radii of the tube are denoted by R; and R,. The material properties of the tube

are described by Young’s modulus E,, Possion ratio v;, density p; and loss factor 7.

Ground surface

Tube-soil interface T

Fictitious
interface I

Figure 1. The ground/tunnel structure and the coordinate systems.

The ground is modelled as a vertically layered ground, consisting of a number, #, of layers.
The nth layer overlies a homogeneous half-space or a rigid foundation, which is identified

as the n+1th layer. The jth layer’s material constants are: elastic modulus, £, Possion
ratio, v, density, p, , loss factor, 77, and thickness #;. If the n+1th layer is a homogeneous

half-space, its material constants are E_,, , v,,,, 2,,, and7,_,.

Three harmonic loads, P e™”, P e and Pe™, are applied at point (R, 6) on
the inner surface of the tube. They are directed in the longitudinal (x-), radial and
circumferential directions, respectively, as the notations indicate (Figure 1). The loads
move over the inner surface of the tube in the x-direction at a constant speed c. The
interface of the soil and the tube is denoted by I". The displacements of the tube-soil

interface due to the moving loads are denoted by w_(x,8,1), w,(x,8,1) and w,(x,8,f) in

accordance with the cylindrical coordinate systerm. The stresses on the tube-soil interface



due to the moving loads are denoted by F_(x,60,t)(i.e.7,), F.(x,0,t) (i.e.c,)and
F,(x,6,t)(i.e. 7, ). The Fourier transforms of the displacements and the interaction
stresses on the tube-soil interface are denoted by w, (3,8), w,(3,8), w,(f,0) and
F (5.9), ﬁ, (B,0), ﬁg( 3,8} (with the factor exp[i({2-fc)] dropped, see [Sheng, Jones

and Petyt 1999] and [Sheng, Jones and Thompson 2002]), where, f§ is the wavenumber in

the x-direction.
2.1 ANALYSIS FOR THE TUBE

The Fourier transforms of the displacements of the tube are given by

) Py . F(5.9)
(8,0} = D [®(B,m)e™ ™ IP v+ [ SIBB,m)e™ VL, (8.9 (R,dS (1)
" Pp) 77 Fy(8.9)

where, [@(S,m)] denotes the Fourier transformed moving dynamic flexibility matrix of

the tube, of circumferential order m [Sheng, Jones and Thompson 2002], and
{W(B,0)} = (W,(B.0),%,(5.6). W, (5,00 (2)

In equation (1), the first term on the left side represents the response to the externally

applied forces while the second one represents that due to the stresses on the tube-soil
interface. Since Ft (8.0, ﬁr (4,8) and fg (B.8) are periodic functions of & of period 27,

they may be expressed in terms of a Fourier series

F.(p.6)= iﬂk(ﬁ)e”‘" 3)
f—

F(p.0)= 3 F (e @)

Fy(B.0)= if& (Be™® (5)

Inserting equations (3) to (5) into equation (1), gives



. P, (B
(#(B,0)) = Y [DB,me™ WP, b+ 2R, 3 [DB.mIe™ |, (B) (6)
" Py " Fom (B)

2.2 ANALYSIS FOR THE EXCAVATED CYLINDER

The ground with the infinitely long cylindrical hole of radius &, is subject to the

action of the tube-soil interaction stresses F_(x,0,1), F,(x,0,t) and F,(x,0,t)on the

wall of that cylindrical hole. For the ground without the hole (therefore it is called the
free ground), a fictitious interface 1 is defined and is located inside the tube-soil
interface " (see Figure 1). The fictitious boundary " and the tube-soil interface 1" are so
close to each other that the radius of the former may be regarded as identical to that of the

latter, i.e., R.. On the fictitious interface I, fictitious moving forces (stresses), T (x,8,1),
T (x,0,1y and T,(x,0,1), are applied. The Fourier transforms of the fictitious forces are
denoted byi( 5.0, ﬁ (8.8) andﬁ (,0). Similar to equations (3), (4) and (5), they can

be expressed as

T.(8,0)= iik (Bre™ (7)
fm—co

7 (5.0)= 3T, (Bt ®)

T,(8.0) = if;k (Bre*? (9)

If the fictitious forces are chosen in such a way that the stresses of the free ground
on the tube-soil interface are the same as the actual tube-soil interaction stresses,

e F (x.0.1), F.(x,0,t), Fy(x,0,1), then the state (the displacement and stress fields) of

the free ground outside T due to the fictitious forces is identical to that of the actual
situation. When the fictitious interface I'* approaches the tube-soil interfaceT", the
fictitious forces on I can be regarded as stresses externally applied on the outer surface
of the excavated cylinder. Thus the total stresses on the outer surface of the excavated

cylinder are F (x,8,0)+7T.(x,0,1), F,(x,0,0)+T,(x,0,1), F, (x,0,0)+T,(x,6,t). The



Fourier transforms of the displacements of the outer surface of the excavated cylinder

under the action of these stresses are given by

2 F(B.9H+T.(8.9
(w(3,8)} = IZ [fp(ﬁ,m)]g""’“"*” Fr(ﬂ,3)+i(ﬁ,g) R,d9 (10)
T F(B.9+T,(8.9

where, [¥( S,m)] denotes the Fourier transformed moving dynamic flexibility matrix of

the excavated cylinder, of circumferential order m. Having considered equations (3), {4),

(5) and (7), (8), (9), equation (10) yields

) Fon(B) + T ()
(8,00} =27R, > [P(B.m)e™F,, (B +T,,(B) (11)
E, (B + T, (B)

2.3 ANALYSIS FOR THE FREE GROUND

The free ground is subject to the action of the fictitious forces. The Fourier
transforms of the displacements of the free ground on the interface I' due to the fictitious

forces are given by

. T.(8.9)
[W(B.0)) = [10:(8.6.9KT,(B.9) (R, d9 (12)
i 7,(8.9)

where,

1 0 0 . 1 0 0
[0 (8,6.$H]=|0 cos@ sind ("ﬁlﬁ-’ .“[é(ﬁ,}’ﬁ,-9)]ei7R2(°°S‘9'c°5‘9)d}/] 0 cosg -sind
0 -sinf cosf w 0 singd cosé

(13)

in which, [Q( B.7,8,9)] is the Fourier transformed moving dynamic flexibility matrix (or
Green’s functions) of the free ground, with the horizontal plane of observation at

z =R, sin@ and the loading position determined by y = R, cos $and z = R, cos .

[Q( B,7,0,)] is derived in reference [Sheng, Jones and Petyt 1999] in the Cartesian
coordinate system and is a function of the wavenumbers £ in the longitudinal direction
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and y in the lateral direction . The integral with respect to y in equation (13) provides the
Green’s function transformed with respect to x only. Since the displacements and
fictitious forces on the interface I” are decomposed in accordance with the cylindrical
coordinate system, a transformation between the Cartesian coordinate system and the
cylindrical coordinate system must be introduced as indicated in equation (13). Following

the properties explained in reference [Sheng, 2001] (Section 2.4.2 and equation (2.63)),

_glz le Qm ] Qll _?12 éj}
921 922 st = _921 sz “923 (14)
_Q.ﬂ Q32 Q33 ] (‘5,_},’9,3) Q31 - Q32 Q33 (ﬁ!},ﬂ,‘g)

_Q” Q:z gm_ gu QZI _Qﬁl
921 922 923 = le Qiz "~Q32 (15)
_Q31 Q32 Q33 i (ﬁ,}/,S,B) - Q13 - Q23 Q33 (}3’7,’9’3)

Equation (14) shows that the Green’s functions are even or odd with respect to y while

equation (15) represents a reciprocity relationship between the source and observer in the

(8. y) domain. It follows that

y @ éll é]z QH
J[Q(ﬁ, ¥, 8, 19)]8 17Rz(cosﬁ—cosg)d?, = Q21 sz Q23 el?Rz(COS 9—cos.9)d}/
- = < <
’ Q?l Q';g Q”H
' ' HA(Ly.0.8)
D ) A (16)
o Q,l T~ ~le Q,l., 2 |
S | QZE ng - Q23 e"J'Rz (cos —cos S)d}/
0 Q31 - Q32 Q33 (ﬂ,y,ﬁ,g)
o0 Ql] é[g ém
Q21 ng Q23 21?32{005(9—@39)(1,7/ _
1 Qe Onlig, 00 (17)

) Ql 1 - Qzl —?31 |
- Q]g sz Q32 M2 (cvs f-cos .Q)d}/
- QI3 Q23 Q33 (ﬁ,y’g,lg)

Equation (16) indicates that the integration over the whole y-axis can be done over the

positive half y-axis, while equation (17) shows that the reciprocity relationship between
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the source and the observer is kept. Use may be made of equations (16) and (17) to

increase the calculation efficiency.

Since [ér (f,8,3)] is a periodic function of both & and & of period 27 , it may be

written that

o

[0-(5,0,9]= [0 (B,m k)l (18)
it k=-o

where,

[0 (B.m 001 =715 [ [10r(8.6.91e™ " dbd s (19)

-T—T

With the substitution of equations (7), (8), (9) and (18), equation (12) becomes

H

xk (ﬁ)
(W(B,0)) = 27R, >, I [0r (B.m~K)K T, (B) ™ (20)
m—wk=—uo —~
% (B)

Due to the lack of a closed form for the matrix[ér (8,6,9], it can only be

calculated numerically at discrete points (nodes). Suppose [Qr (8,6,9)] is evaluated at

nodes (&,,9,) (j.I = 1,2,-:-2N), where
2, =(j-N)AG-0.540 , G, =(-N)AG-0.5A0, AG=2n/2N 2

and equation (18) is approximated by truncating the Fourier series to a finite number, 2N,

terms, i.e.

—~ N — .
[0-(B.0.9]= D [10:(B,mk)e "™ (22a)

s k=—(N-I)

then [ér (f,m,k)] is given by

IN

(O (fom. 0] = Tz 2 10r (8.0, 8™ "™ 225)
1

Jil=

S 10 -



To evaluate {ér (8.0,,8)forj,1=1,2 ... 2N, 2Nx2N calculations of equation (13) are

required. However, by making use of equation (17), the number of calculations of

equation (13) reduces to N(2N + 1). Equation (22b) indicates that the calculation of

[ér (B,m, k)] can be performed using the FFT algorithm.

The choice of N depends on the frequency of excitation and the radius of the
tunnel. The higher the frequency or the larger the radius of the tunnel, the greater will be

the number N.

3. DETERMINATION OF THE TUBE-SOIL INTERACTION
STRESSES AND THE FICTITIOUS FORCES

The tube-soil interaction stresses and the fictitious forces are unknowns and may
be determined by (1) requiring the displacements on the outer surface of the tube to be
the same as for the outer surface of the excavated cylinder and in turn, (2) requiring the
displacements on the outer surface of the excavated cylinder to be equal to those of the
free ground at the fictitious interface. These two requirements set up two boundary
integral equations the integral trajectory of which is along the tube-soil interface (a
circle), with unknowns being the tube-soil interaction stresses and the fictitious forces.
The first boundary integral equation is equivalent to the algebraic equation obtained by

equating equation (6) to equation (11), i.e.

(BB, myle ™™ { P} + 278, [B(B,m)UE, (B)) = 22R, [T (B m)(F, (B} + (T, (8)1)(23)

where,

(P} =(Py.Py. Bp)' (24)
(F(B))=(F,(B).F, (B)E,, (B 25)
(T,(B =T, (BT, (BT (B (26)

The second boundary integral equation is equivalent to the algebraic equation

obtained by equating equation (11) to equation (27), i.e.

—~ P p— N — ~
WFa.mI(E, (B + 8= I8 (B.m—T, (B} 27)

k=-{N-1)
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From equations (23) and (27}

(DB, m)le™ (P} +27R, [D(B,m)F,, (B} =22R, Y [0r(B.m~k)H{T, (B))

k=~(N-1)

which gives

(F, () =18(8,mT" Y 18: (Bum—A0N(F, ()] - TN Rz e " (P} (28)

k=~(N-1)

Inserting equation (28) into equation (27), for m = — (N-1),..., N, yields

S @ my1 [T B, YO, BN T (D) +(F, (B)) = ke ™ (P} (29)
Femi{N-1) ”RZ

From equations (29) and (28) the tube-soil interaction stresses and the fictitious forces
can be worked out. Since the flexibility matrices of the substructures are of order 3x3,

equation (29) is of order 6NX6N.

4. DISPLACEMENTS OF AN OBSERVER PLANE IN THE GROUND

As has been stated in Section 2.2, the response of the ground with the tube is
identical to that of the perfect ground due to the fictitious forces. The Fourier transforms
(with respect to both x and y) of the displacements of the top interface of the /xth layer in

the free ground due to the fictitious forces on the fictitious interface are given by

(gfﬁo - T.(8.9)
B0 b= [B(B.7.9e ™ [THT,(8,8) R, dS (30)
ﬁ}IRO ’ TG (ﬁs 19)

where, [é( B,v,9)] is the Fourier transformed moving dynamic flexibility matrix of the

free ground, with the source position corresponding to &, and {7] is the coordinate

transformation matrix, given by

1 0 0
[T]1=|0 cosd -—sind 3D
0 sind cosd
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Since [O(B, 7, DI[TIe"™**? s a periodic function of $ of period 27 , it may be written

that

(BB, 7. Tl = 3 (3(B,7,m)le™? (32)

m=—cw

Inserting equations (7), (8), (9) and (32) into equation (30}, gives

grko
B, o t=27R, 3 [0(B.y,—mT,(B)) (33)
1”;‘;i',,go o

5. THE CASE OF AN UNLINED TUNNEL

If the tunnel is unlined, then the displacements of the free ground on the interface
T" under the action of the externally exerted moving loads and the fictitious moving

forcesT (x.6,f), T,(x,0,t) andT,(x,0,1), are identical to those of the outer surface of

the excavated cylinder due to the fictitious forces. The displacements of the free ground

on T, similar to equation (20), can be written as

(95,00} = 27R, S Y10 (B,m~ONT, (B)}e™ + i[ér (B.m—k)le " {Ple™
m—eok=—w0 - k=—0n
(34)

The displacements of the excavated cylinder, similar to equation (11), can be written as

55.0)) = 27R, 3 [F(B.m)le" (T, (B)} (35)

==

From equations (34) and (35)

~ ~ N B N .
27R, [P, mUT, (B} =278, Y [Qr(B.m~K)NT, (B} + 3 [0 (B,m—k)e ™" (P)

k==(N-1) k=-(N-1)

ie.
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~[PB.m" 310 (Bm~NT, (B} + (T, (B}
k=—{N-I)

10 (36)
= #&[l’fj(ﬁ, m)]—l Z[Qr (ﬁ,m,—k)]e_ikg“ {P}

k==(N-1)
from which {fn ()} can be determined.

The displacements of the observer plane, similar to equation (33), are given by

o .
B0 =278, 3 108, riom (D)) + e ™ () G7)
]',DI,RO p=—0

6. VALIDATION AND EXAMPLE RESULTS

In this section, validation of the method is performed and example results are
calculated for a ground with a lined tunnel with a radius of 3.5 m and for the same ground
with an unlined tunnel of the same radius. The material properties of the ground are listed
in Table 1 and those for the lined tunnel (tube) in Table 2. These parameters are adopted
from reference [Jones, Thompson and Petyt 1999]. The axis of the tunnel is at 16.5 m
below the ground surface. A unit vertical harmonic load is applied at the invert of the

tunnel and therefore is at 20 m below the ground surface.
6.1 VALIDATION

To validate the approach developed in this paper and the computer program that
implements the calculation, displacements are calculated for the ground surface due to a
unit vertical harmonic load of 40 Hz moving at 100 m/s along a horizontal line passing
through (x = 0, y = 0 and z = 20 m) and parallel to the x-axis {the xy plane coincides with
the ground surface and the z-axis is directed downward). The material properties of the
ground are chosen as those listed in Table 1. The response of the ground may be
evaluated using two models, i.e. the free ground model and the ground/unlined tunnel
model. Both the models should give almost the same results if the radius of the unlined
tunnel in the ground/unlined tunnel model is small (e.g. 0.1 m). Results from these two
models are presented in Figures 2 and 3. Figure 2 shows the vertical displacements along

the x-axis on the ground surface. The longitudinal displacements along the x-axis on the
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ground surface are shown in Figure 3. A good agreement between these two models is

achieved.
TABLE 1
Parameters for the ground
Young's Possion’s ratio Density Loss factor P-wave speed  S-wave speed
modulus (kg/m3) (m/s) {m/s)
(x10° Nm*®)
1770 0.4 1700 0.15 1500 610
TABLE 2
Parameters for the lined tunnel
Young's Possion’s ratio Density Loss factor Inner radius  Quter radius
modulus (kg/m’) (m) (m)
(x10° Nm®)
37600 0.15 2400 0.05 34 3.6

Vertical displacement (m)

2 ; L L : L I i : L
-50 -40 -30 -20 -19 0 10 26 30 40 50

Distance along the x-axis (m)

Figure 2. Vertical displacements along a straight line (y = 25 m} on the ground surface due to a
unit vertical harmonic load of 40 Hz moving in the x-direction at 100 m/s at a depth of 20 m. —,

calculated using the free ground model; — — -, calculated using the ground/unlined tunnel model, with the

radius of the tunnel being 0.1 m.
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Longitudinal displacement (i)

L L I L L t
-50 -40 -30 <20 -10 a ic 20 30 a0 S0

Distance along the x-axis {m)

Figure 3. Longitudinal displacements along a straight line (y = 25 m} on the ground surface due to
a unit vertical harmonic load of 40 Hz moving in the x-direction at 100 m/s at a depth of 20 m. —,
calculated using the free ground model; — — —, calculated using the ground/unlined tunnel model, with the

radius of the tunnel being 0.1 m.

6.2 DISPERSION CURVES OF THE LINED TUNNEL (TUBE) AND GROUND

For the ground with the lined tunnel, both the dynamic properties of the tunnel
(tube) and that of the ground (with a hole) affect the whole system. The dispersion curves
of those two sub-structures may be used to interpret the results and therefore are

presented in this sub-section.
6.2.1 DISPERSION CURVES OF THE TUBE

Figure 4 shows the dispersion curves of the tube. They are obtained by projecting
the Fourier transformed radial displacements of the tube due to a radial harmonic load on
the frequency-wavenumber plane. The displacements are calculated using the cylinder
theory [Sheng, Jones and Thompson 2002] for different wavenumbers and different
frequencies. Since the thickness of the tube (0.2 m) is small compared to its average
radius (3.5 m), it may be regarded as a thin shell and the dispersion curves may be
evaluated using one of the thin shell theories. Figure 5 presents the dispersion curves of
the tube, of circumferential orders 0 to 8, calculated using the Donnet-Mushta thin shell
theory [Leissa 1973]. Comparison between Figure 4 and Figure 5 shows that, the Donnel-

Mushta theory gives highly precise results though it increases the cut-on (natural)
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frequencies. The cut-on frequencies calculated using the Donnel-Mushta thin shell

theory, are listed in Table 3.

Wavenumber (rad/m)

a 1] 40 60 &0 100 120 140 160 160 200
Frequency (Hz)

Figure 4, Dispersion curves of the tube (bright curves). They are obtained by projecting the
Fourier transformed displacements, which are calculated using the cylinder theory for different

wavenumbers and different frequencies, on the frequency-wavenumber plane.
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Figure 5. Dispersion curves of the tube of circumferential orders 0 to 8 , calculated using the

Donnel-Mushta thin shell theory.
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It can be seen from Table 3 that for circumferential order m = 0 ~ 5, the minimum
cut-on frequencies of the ring modes range from 0 to 74 Hz, which is within the

frequency range of interest for ground vibration induced by tunnel trains.

TABLE 3
Natural (cut-on) frequencies of the tube (from the Donnel-Mushta thin shell theory)

Circumferential order  Cut-on frequency (Hz)  Cut-on frequency (Hz) Cut-on frequency (Hz)

(Axial modes) (Radial modes) (Radial modes)
0 0 0 182.12
1 118.72 2.13 257.57
2 237.45 8.75 407.28
3 356.19 25.64 575.97
4 474.91 46.62 750.99
5 593.64 73.63 928.76

Two types of propagating waves are clearly shown in Figure 5 for circumferential
order zero (i.e., the axially symmetric modes). For frequencies lower than 160 Hz, the
two dispersion curves are straight lines. The upper straight line (first mode) represents the
torsion waves while the lower straight line (second mode) represents the longitudinal

waves. For a thin circular cylindrical shell, it can be shown that the dispersion equations

for the longitudinal waves and the torsion waves are given by

g =7 (38)

A

p=""— (39)
\} 20+v)p

These two types of wave have small contributions to radial motions, especially for low

frequencies as can be seen in Figure 4.

For circumnferential order m = 1 (Figure 3), the waves of the first mode for low
frequencies in the tube are close to the bending (flexural) waves of the tube when it is
regarded as a beam. It should be noticed that, as shown by Gazis [Gazis 1959], the
bending mode degenerates to a simple translation and hence zero frequency as the
wavenumber decreases to zero whatever the thickness of the shell is. However, Figure 5

indicates a small cut-on frequency resulting from the ‘thin shell theory’.
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Figures 4 and 5 show that within 200 Hz, the propagating wavenumbers (/) are
less than 2 rad/m. In other words, the wavelengths in the axial direction are greater than

about 3.14 m.
6.2.2 DISPERSION CURVES OF THE GROUND WITH A HOLE

1t is difficult to calculate the dispersion curves of a half-space with an unlined
tunnel (a hole). Instead, the dispersion curves of a whole-space of the same material with
the same hole are computed using the cylinder theory presented in reference [Sheng,
Jones and Thompson 2002]. Figure 6 shows the results of such a calculation. The bright
curve indicates the dispersion curve of the whole-space with an unlined tunnel of radius
3.5 m. Also shown in this figure are the Rayleigh wave dispersion curve of the material
and the shear wave dispersion curve of the material. It can be seen that, the waves
propagate along the hole in the whole-space at phase speeds which are between the
Rayleigh wave speed and the shear wave speed. This kind of waves are called tube waves
[Aki and Richards 1980] which propagate along the axis of the hole with energy confined
to the vicinity of the hole. They exhibit dispersion with phase velocity increasing with
wavelength. At wavelengths much shorter than the radius of the hole, they approach the
Rayleigh wave of the material. The phase speed reaches the shear wave speed at a
wavelength of about three times the radius (in the present case, this is about 10 m, or
alternatively, the wavenumber is about 0.6 rad/m). Beyond this cut-off wavelength, they

attenuate quickly by radiating S-waves.

Figures 4 and 6 indicate that, along the axis of the tube waves in the tube

propagate faster than those in the ground.
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Wavenumger (rad/m)

Frequency {Hz)

Figure 6. Dispersion curve (bright line} of the whole-space with an unlined tunnel of radius 3.5 m.
It is obtained by projecting the Fourier transformed displacements of the hole surface, which are calc’:ul;aﬂted
using the cylinder theory for different wavenumbers and different frequencies, on the frequency-

wavenumber plane. Also shown are the Rayleigh wave of the material {

) and the shear wave of the

material (———).

6.3 RESPONSES TO A VERTICAL STATIONARY HARMONIC LOAD OF 200 HZ

Calculation has been carried out for a unit vertical stationary harmonic load of
200 Hz. The load is applied at the invert of the tunnel. Figure 7 shows the amplitudes of
the vertical displacements on the ground surface for the lined tunnel. Those for the
unlined tunnel are shown in Figure 8. It can be seen that, due to the presence of the
tunnel, the propagation property in the tunnel direction and in the lateral direction
(normal to the tunnel) is quite different. This is more obvious for the unlined tunnel. For
waves to be clearly seen, Figures 9 and 10 show instantaneous vertical displacements

along the x- and y-axes.

For the ground with the unlined tunnel, the wavelength at large distance in the
lateral direction is about 3 m (Figure 10). This wave corresponds to the shear wave of the
ground (the shear wave speed is 610 m/s, as indicated in Table 1, and the Wave}ength at
200 Hz is about 3 m). The wavelength in the x-direction has a longer wavelength 7.5 m
(Figure 9), which corresponds to the P-wave in the ground. The tube wave propagating
along the surface of the tunnel is confined to the vicinity of the hole and has insignificant

contribution to the responses on the ground surface.
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For the lined tunnel (tube), most modes have wavenumbers ranging from
1.4 rad/m to 1.8 rad/m (Figure 5), i.c. the wavelengths of the propagating waves in the
tube ranges from 3.5 m to 4.5 m, shorter than the diameter (7 m) of the tube. This is the

reason for the more nearly circular wave field on the ground surface for the lined tunnel

than for the unlined tunnel (Figures 7 and 8).

50

0

Distance along the y-aiis (m) Distance along the x-axis (M)

50 50

Figure 7. Vertical displacement amplitudes (in metres) on the ground surface due to a unit vertical

harmonic stationary load of 200 Hz acting at the invert of the lined tunnel.
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Distance along the x-axis (m)

Distance along the y-axis (m)"

60 -&0

Figure 8. Vertical displacement amplitudes (in metres) on the ground surface due to a unit vertical

harmonic stationary load of 200 Hz acting at the invert of the unlined tunnel.
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Figure 9. Vertical displacements along the x-axis on the ground surface due to a unit vertical

harmonic stationary load of 20 Hz. , for the ground with the lined tunnel; — — —, for the ground with

the unlined tunnel.
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Figure 10. Vertical displacements along the y-axis on the ground surface due (o a unit vertical

, for the ground with the lined tunnel; — — —, for the ground with

harmonic stationary load of 200 Hz.,

the unlined tunnel.

Figures 11 and 12 show the vertical displacement amplitudes along the x- and y-
axes on the ground surface. It can be seen that beyond 20 m from the load, the responses

along the x-axis for the lined tunnel are less than those for the unlined tunnel. The reverse

is true for the responses along the y-axis.
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Figure 11. Vertical displacement amplitudes along the x-axis on the ground surface due to a unit
vertical harmonic stationary load of 200 Hz. ——, for the ground with the lined tunnel; — — —, for the

ground with the unlined tunnel.
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Figure 12. Vertical displacement amplitides along the y-axis on the ground surface due to a unit

vertical harmonic stationary load of 200 Hz. , for the ground with the lined tunnel; — — —, for the

ground with the unlined tunnel.

6.4 RESPONSES TO A VERTICAL STATIONARY HARMONIC LOAD OF 40 HZ

Figures 13 and 14 show the amplitudes of the vertical displacements of the

ground surface due to a unit vertical stationary harmonic load of 40 Hz exerted at the
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tunnel invert. Figure 13 is for the lined tunnel while Figure 14 for the unlined tunnel. It
can be seen that the lined tunnel greatly reduces the response at this frequency on the
ground surface compared with the unlined tunnel, especially immediately above the

tunnel. This is due to the bending stiffness of the lined tunnel (tube).

109

Distance along the y-axis (m}
50 i

Distance along the x-axis {m)

-100 -100

Figure 13. Vertical displacement amplitudes (in metres) of the ground surface due to a unit vertical

stationary harmonic load of 40 Hz applied at the invert of the lined tunnel.

g
Distance atong the y-axis ()
50 ; 50 Distance along the x-axis (m)

Figure 14. Vertical displacement amplitudes (in metres) of the ground surface due to a unit vertical

stationary harmonic load of 40 Hz applied at the invert of the unlined tunnel.

-4 -



6.5 RESPONSES TO A VERICAL MOVING HARMONIC LOAD OF 40 HZ

The amplitudes of the vertical displacement of the ground surface due to a unit
vertical harmonic load of 40 Hz, which is exerted at the tunnel invert and moves in the
tunnel direction at 100 m/s, are presented in Figures 15 and 16. Comparison between the
lined tunnel and unlined tunnel for displacements along the x-and y-axes are shown in

Figures 17 and 18.

These results reveal that the difference in the behaviour of the two tunnels is
much greater in the direction along the tunnel axis than in the direction normal to it.
Immediately above the load, at this frequency and load speed, the response levels from
the lined and unlined tunnels are similar. However, Figure 17 shows a much stronger
decay of vibration on the ground surface along the tunnel alignment for the lined tunnel
than for the unlined one. This is due to the bending stiffness of the tube. Because of the
speed of the load, a greater vibration level is observed behind the load than in front.
Turning to the behaviour in the lateral direction, Figure 18 shows a similar overall decay

of vibration on the ground surface for both of the tunnels.

50

0

Distance along the x-axis (m)

Figure 15. Vertical displacement amplitudes (in metres) of the ground surface due to a unit vertical
harmonic load of 40 Hz. The load is applied at the invert of the lined tunnel and moves at 100 m/s in the

tunnel direction.

Generally the results indicate that modelling the tunnel lining is important,
especially for the behaviour of the field in the tunnel direction. This finding demonstrates

the importance to model ground vibration from tunnel three-dimensionally.
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Figure 16. Vertical displacement amplitudes (in metres) of the ground surface due to a unit vertical
harmonic load of 40 Hz. The load is applied at the invert of the unlined tunne! and moves at 100 m/s in the

tunnel direction.
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Figure 17. Vertical displacement amplitudes along the x-axis on the ground surface due to a unit
vertical harmonic load of 40 Hz moving at 100 m/s at a depth of 20 m. ——, for the ground with the lined

wunnel; ———, for the ground with the unlined tunnel.
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Figure 18. Vertical displacement amplitudes along the y-axis on the ground surface due to a unit

vertical harmonic load of 40 Hz moving at 100 m/s at a depth of 20 m, , for the ground with the lined

tunnel; — — -, for the ground with the unlined tunnel,

7. CONCLUSIONS

In this paper, the discrete wavenumber fictitious force method has been applied to
develop a mathematical model for predicting ground vibration generated by a stationary
or moving harmonic load applied in a circular lined or unlined tunnel. In this model,
moving Green’s functions for a layered half-space and those for a circular cylinder of
infinite length are employed to establish a boundary integral equation governing
unknown fictitious forces (stresses). This boundary integral equation only requires the
displacement Green’s functions rather than both displacement and traction Green’s
functions that are required by the conventional boundary element technique. This
advantage is achieved by the introduction of the excavated cylinder into consideration.
By expressing the Green’s functions and other terms in terms of Fourier series, the
boundary integral equation is transformed into a set of algebraic equations from which

the unknowns can be determined.

Results are produced from this model for a lined tunnel and an unlined tunnel of
the same radius, for a high frequency 200 Hz and a low frequency 40 Hz. The wave
propagation on the ground surface is greatly affected by the presence of the tunnel,

especially in the tunnel direction. The waveguide effect of the unlined tunnel on the
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ground surface is much stronger than that of the lined tunnel. The lined tunnel may
reduce responses of the ground surface immediately above the tunnel. This reduction is
greater for low frequencies due to the dominant bending mode of the tunnel lining.
However, away from the tunnel on the ground surface, the lined tunnel may increase the

responses at high frequencies due to its radiation of energy into the surrounding ground.
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APPENDIX COMPUTER PROGRAM

A computer program has been produced using Fortran 77 to implement the model

presented in this paper. It is initiated by typing Tunnel_TGV at the DOS prompt.
A.1 INPUT DATA

A number of parameters are required to be input from the keyboard following the

prompts from the program. The ‘aser-computer dialogues’ are listed in Table A.1.

A.2 OUTPUT DATA FILES

The output data files created by the program are all formatted files. Data are
written consecutively using WRITE (id,(E15.6)") i, where, id is the identifier of the file
into which the data in variable u is written. Therefore for each line (record) only one

value presents.

Magnitudes and phase angles of the actual displacements of the observer plane are
calculated for each of the values of x = —(ngrid / 4 —1)x Ax,---,0, Ax, - -+, (ngrid/4) x Ax,
and y = —(ngrid / 4 —1)x Ay,-+-,0, Ax, -+, (ngrid/4) x Ay, and stored consecutively,
where, Ax = 27 /(2 x ngrid x AB), Ay =2 [(2x ngrid x Ay) and 2ngrid is the number of

the samples in the inverse FFT. The magnitudes of the longitudinal, lateral and vertical
displacements of the ground are stored in files u#/0.dsp, vI0.dsp and wi0.dsp, and the

phase angles are in u/0.pha, vI0.pha and wi0.pha.
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TABLE A.1

User-computer dialogues

On the screen Data type Explanations

Input px0, pr0, pt0 and sita0 Real Load amplitudes in x-, radial and
circumferential directions and the
angle coordinate of the loading point.

Input frequency, speed, dbeta/2pi, dgama/2pi Real Load frequency, load speed and
wavenumber (in x- and y-directions)
spacing (in cycle/m)

Is there a tube? 1=yes, O=no Integer If the tunnel is lined, input I;
otherwise input O

Young’s modulus, loss factor, Possion ratio, Real If the tunnel is lined, this line appears.

density, inner & cuter radii, axis-depth of the tube Parameter for the tube (lining). Axis-
depth means the vertical distance from
the axis of the tunnel to the ground
surface.

Radius and axis-depth of the unlined tunnel Real If the tunnel is unlined, this line
appears.

Young’s modulus, loss factor, Possion ratio, Real Parameter for the excavated cylinder.

density of the excavated cylinder

Please input the number of layers of the ground Integer

(For a homogeneous half-space, the number is

Zero)

Input the parameters of layer Real For each layer, input the Yong’s

E Zita Nu Rho H modulus, loss factor, density and
thickness.

Foundation elastic or rigid? 1=elastic, O=no Integer If the layers overly a homogeneous
half-space then input 1; if the layers
overly a rigid foundation, input 0.

Input the observer-layer No. and local depth Real Input the number of the layer which
includes the observer plane, and the
vertical distance from the observer
plane to the top interface of the layer,
For a homogenous half-space, the
observer-layer No. must be 1.

Input ngrid (<=1024), npeint (<=256), Integer Where 2xngrid equals the number of

m_max(<npoint-1} discrete wavenumbers; 2xnpoint
equals the number of nodes on the
tunnel-soil interface; m_max
represents the maximum
circumferential order involved in the
calculation. Typically, ngrid =512 or
1024, npoint = 32 or 64, m_max = 30.
ngrid and npoint must be a power of 2.

Input path and directory for the outputs A character | e.g. c:\my_project

string (< 50)
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