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I. INTRODUCTION

An important issue with regard to the environmental impact of rail traffic is the
problem of ground vibration produced by trains running on the ground surface or in
tunnels. The frequency associated with this problem ranges from 4 Hz to 200 Hz
[Grootenhuis 1977]. For trains running on the surface of a ground consisting of layers
with horizontally parallel interfaces, the semi-analytical wavenumber-frequency
approach can be used [Sheng 2001]. If the ground has arbitrary geometry or if it has
some inclusions (i.e. a tunnel) then numerical approaches must be employed. Two
numerical approaches are used most commonly, one is the finite element method (FEM)
[e.g. Petyt 1990}, and the other is the boundary element method (BEM) [e.g. Dominguez.
1993].

It is important to model travelling wave behaviour. For this the ground must be
modelled as an infinite medium. However, using FEM an artificial boundary must be
introduced and only part of the ground is discretised. The artificial boundarie of the
ground must incorporate the travelling wave propagation of an infinite medium. In other
words, proper boundary conditions, often termed ‘transmitting boundary conditions’, for
the artificial boundary must be introduced in order to ensure that no wave of significant
amplitude is reflected. With such boundary conditions applied, the vibration levels due to
applied point (nodal) forces can be calculated. The difficulty in using FEM is that, for a
three-dimensional problem of large size there is a large number of elements involved in
the analysis. Whereas infinite elements have been developed for two-dimensional
problems in elasto-dynamics, they have not been well developed for three-dimensional

problems with moving sources.

The BEM is very well suited to the analysis of the dynamics of infinite media.
Boundless regions are naturally represented. The radiation of waves towards infinity is
automatically included in a BEM model which is based on an integral representation
valid for internal or external regions. However, BEM is not optimal for thin structures
such as tunnels since both faces of a structure have to be discretized, and BEM has
numerical problems for thin domains. Therefore for the dynamics of soil-structure
interaction, a combination of FEM and BEM appears logically in which the finite

structure is modelled using FEM and the ground i$ modelled using BEM.




A three-dimensional FE/BE model has been implemented [Andersen and Jones
2001 a, b] for the study of train-induced ground vibration. Normally this model is very
complicated to use and, because of the extremely large computing resources that are
required, cannot be run many times in order to carry out an investigative study for the
whole frequency range of interest for structure-borne noise from tunnels. The three-
dimensional FE/BE model is useful for many foundation problems where the structure is
of limited extent and in which the response of the ground is not required at great

distances.

In general situations, the geometry of the ground-tunnel structure is invariant with
respect to any translation along the tunnel axis. This feature is also kept for many
vibration mitigation devices, such as ditches and wave impedance blocks (WIBs)
[Takemiya and Yuasa 1999]. For such structures, an approach was recommended by, for
example, Aubry [Aubry et al 1994] in which the problem is transformed into a sequence
of two-dimensional models depending on wavenumbers in the tunnel direction. For each
longitudinal (tunnel direction) wavenumber, the finite cross-section of the tunnel lining is
modelled vsing the FE method and the wave propagation in the surrounding soil is
modelled using the BE method. The actual response of the structure is constructed from
that at each wavenumber using an inverse Fourier transform algorithm. The simplicity of
this approach comes from the fact that the discretization is only made over the cross-
section of the ground-tunnel structure, and therefore the total number of degrees of
freedom is greatly reduced compared to the corresponding three-dimensional model.
Therefore the memory requirement of this approach is low. Usually calculations are
performed for a number of discrete values of wavenumber, which may take a long time if
this number is large. However this might be overcome by performing calculations for a

few propagating wavenumbers which are dominant over any other wavenumbers.

In addition to tracks and tunnel linings, there are many other built structures
which have a constant cross-section and a large length, e.g., water pipes and stiffened
plates used in vehicles and long bridge decks. Dynamically, such a structure behaves as a
one-dimensional wave guide. The dynamic properties of a waveguide are described by its
dispersion curves and mode shapes of the cross-section. In some simple cases, the
dispersion curves can be evaluated by using one of the simplified theories (e.g., Euler-
Bernoulli and Timoshenko beam theory, the thin shell theory, etc.). However, when the
cross-section possesses a complex shape, or when the excitation frequency is high, such

simplified theories are not applicable. In this case, two different numerical techniques
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based on finite element discretization may be used for numerical computation of the
dispersion curves and mode shapes. The first one, presented in reference [Thompson
1993] has been used to compute the dispersion properties of a rail. This method is based
on the work of Mead [1973] concerning periodic structures. The length of the periodic
structure element is required to be small enough so that waves of short wavelength can be
considered. However, too small a length of element would produce computational
difficulty. The second one was first proposed by Gavric [Gavric 1994, 1995] for
computing the dispersion curves of thin-walled waveguides and free rails. This method is
based on factorization of the function describing the displacement field. A finite element
discretization is made over the cross-section for each wavenumber in the longitudinal
direction. Since, in actual applications, calculations are performed only at a series of
discrete wavenumbers, this method may be called the discrete wavenumber finite element
method. Recently, Shah et al [Shah, Zhuang, Popplewell and Rogers 2001] employed this
method to analyse the wave propagation property of thin-walled structural members

using in-plane and out-of-plane plate elements.

In the application of BEM to the study of ground vibration, the Green’s functions
play a key role. The Green’s functions are defined as displacements (or other quantities)
of an elastic body due to a single unit concentrated load. The Green’s functions are
available for a homogenous full-space for stationary harmonic sources [Eason, Fulton
and Sneddon 1956] and for a layered half-space for both stationary and moving harmonic
sources [Sheng, Jones and Petyt 1999]. Here the Green’s functions for a whole-space,
expressed as a function of two Cartesian coordinates and a wavenumber in the third
(axial) dimension are required. These Green’s functions, sometime called ‘two-and-half-
dimensional Green’s functions’, have also been derived for moving harmonic sources
[Sheng, Jones and Thompson 2002] and for stationary harmonic sources [Tadeu and
- Kausel 2000]. If the Green’s functions of a homogenous full-space are employed, then
not only the interface of the ground and the built structure, but also the ground surface
and the interfaces of the layers must be discretised. In other words, only part of the
ground surface and interfaces is taken into account, thus introducing artificial boundaries.
However, since the Green'’s functions for a full-space are formulated in a closed form,
they are efficient to us.e. If the layered half-space Green’s functions were employed, then
for a ground consisting of parallel layers, only the interface of the ground and the built

structure would need to be discretised. However, the Green’s functions for a layered half-



space are expressed in terms of boundless integrals, the evaluation of which is time

consuming.

In Section 2, the discrete wavenumber finite element formulation is derived for a
finite length of a structure using the second Lagrange’s equation. It seems to be more
rigorous to apply the Lagrange’s equation or the Hamiltonian principle to a finite domain
than to an infinite domain. The development of the discrete wavenumber boundary
element method is presented in Section 3, including thé two-and-half dimensional
reciprocal theorem in elastodynamics, the Fourier transformed moving Green’s functions
for a homogeneous whole-space, the discretization of the integral equation over the
boundary and the evaluation of singular integral terms. The coupling between a finite
element domain and a boundary element domain or between multiple boundary element

domains is dealt with in Section 4.

2. DISCRETE WAVENUMBER FINITE ELEMENT METHOD

2.1 DIFFERENTIAL EQUATIONS OF MOTION OF AN ELEMENT

Suppose an elastic body is infinitely long in the x-direction and its cross-sections
normal to the x-axis are invariant with x. The x cross-section, A, is discretized into a
number of small elements. The same discretization is also made on the x + dx cross-
section. An element area, dA, on the x cross-section and its counterpart on the x + dx
cross-section define an element prism. The displacements of the nodes of the element dA

are denoted by a 3n vector
{C](x,t)} = (h‘.l,Ul,W],Mz,Uz,WZ,"‘,Mﬂ,Un,Wn)T (21)

where, » is the number of the nodes on the element. The corresponding node force vector

is denoted by {F(x,t)}. A shape function matrix of order 3 x 3 is defined and denoted
by[D(y, z)], so that the displacements of the element at any point (x, y, z) may be

approximated as
{u(x,y,z,0}) = w(x, y,z,0,0(x,y, 2,0, w(x, y,z,0)" =[P(y, ){g(x,1} (2.2)

The kinetic energy of the element prism (its length is dx) is given by



=.%. L plix, v, 2,01 {i(x, v, z,1) }dAdx
=214 [ PO, D [0y, 2)1dAIG(x, 1) e
=3 {g(x )Y [M1{4(x,0)}dx

where, p is the density of the material and
[M]= LPICD()’,Z)]T[(D(% 2)]dA

is the mass matrix of the element, which is independent of x.

- The potential energy of the element is given by [Petyt 1990]
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where, E is Young’s modulus of the material and v is Possion ratio. The strain
vector {€} may be written as
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(2.8)



0O 0 0 ~ _
0o 2 o 1 00
oy 000
0o o 2
(Bl =| 5 oz (B] 0 0 0
1 =18 9 0 2=
By 010
567_ 0 0 0 01
7z
o 2 2 0 0 0
i oz Oy |

Thus equation (2.5) becomes

U =L [ (B), {u}+B,1-& (u))7 [DIABY, () + [B, 2 () dAdx
- L[ (B0, 2001+ [B,I0G. L g} -
(DB, a0} + [BLIO(, DL a(x.0) iAds
- Lg(e) ([ (BLIOG, D) IDIBY [0, 2dA gt
+ a1 ([ (B0, 2D IDUBLIO. DAL g(x0))ds
32 g0V ([ (B[00 )T [DIBLLD(y, A g 1))
+ 22 gty ([ (BLIOG, D) [DIBLIO(: 1A )L g0

Letting

(K], = [ (IBLID(y, 2D [DIBLID(y, 2)1dA
[R], = | (IBLID(y, )] [DIBLIP(y, 2)ldA

[R], = L([B]z[‘l?(y, DD [DIBL[D(y,2)ldA

then

|»—~

U = Lig(x0) [Kllg(x.0)dx + 2{q(x, D) [RI - q(x))dx
+ L g DY IRI] (g, D1+ 32 (D) IR, (£ q(x )

M]H

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The virtual work done by the stresses on the x and x + dx cross-sections of the

element prism is given by
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(2.15)
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where, {dg(x,t}} represents a virtual displacement vector satisfying—a%{é‘q(x, )} =0, and
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Thus

W =L [ {840 [0(, 2T (B, + 1B, DD, ). 1) HAds

= [ (89Ce D) 00 T (B[00, DL 0} + LI D) {q .0 pidd
= {3g(x,0)" [ [0, DT (BLID(y, DL q(x.0)}dAdx

+{8g(x)) [ [0, T (BLID(, D{ L a(x.0)}dAdx

ie.
oW = {0q(x. ) [RI, {2 (. 1)}dx +{8g(x, 1)) [R]y (-5 g, 1)) (2.18)
where,

[R); = | [@(y, D) [BLID(y, 2)ldA (219)
[R], = [ [®(y, 21 [B],[®(y, 2)}dA (2.20)

The generalised force vector is therefore given by
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(Q@.D) = (Fr0}+IRL L g0 01+ [R5 a(x0) (2.21)
Inserting equations (2.3), (2.14) and (2.21) into the second Lagrange’s equation

d 9T ,oU =12,

yields the differential equation of motion of the element

[M1{G(e, 0} + Ko {q(n 0} + (AR], ~[RI(E 4060}~ Rl g(x0)) = (F(x.0)
(2.23)

which may be written as
[M 1§D} + Ko (a0} [KL (£ a0} - [KLiZ5 a0} = (F(eD)  (2:29)

where, [K], =[R], —~[R];, [K], =IR],.

It can be seen from equations (2.4), (2.11), (2.13) and (2.20) that, [M], [K], and
[K], are 3n x 37 symmetric matrices, and [M], [K], are positive definite and [K], is non-

negative. All these matrices, including [R], and[R];, are constant, independent of

wavenumber . It can be shown that
[R]] =IRI, | (2.25)

thus [K], is an anti-symmetric matrix. In fact,
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Equation (2.25) is proved by inserting equations (2.26) and (2.27) into equations (2.12)
and (2.19) respectively.

Similarly, it can be shown that [R], = [R].. It should be noted that the

matrices[K], and [M] are not equal to the stiffness and mass matrices of the either of the

corresponding plane-stress or plane strain dynamic prdblems.
2.2 GLOBAL FINITE ELEMENT EQUATION AND MODAL ANALYSIS

The conventional finite ‘summation’ of the element matrices in equation (2.24) is
still applicable to obtain the corresponding matrices of the assembled finite element
model and thus the global differential equation of motion. This is still represented by

equation (2.24). Now by applying the Fourier transforms
FB = [fme™dx, fx)=5 [F(Be*dp (2.28)

and letting [Sheng, Jories and Petyt 1999]
F(B.0 = F(Be " | (2.29)
equation (2.24) becomes

— @ MG} + (K, +iBIKY, + BIKL NGB = {F(B)) (2.30)

where, it has been assumed that the nodal forces all are harmonic with frequency 2 and

moving in the x-direction at speed ¢. The equivalent frequency @ is given by

w=Q-f 231
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From equation (2.30) the transformed displacement vector {G ()} can be worked out and

then the actual displacements may be obtained using a Fourier transform algorithm.

The characteristic equation of the free vibration of a waveguide is obtained by

setting {F( £} =0 in equation (2.30),

(K1, +iBIK], + B2IK], — 0 IMING(B)} =0 (2.32)

For a given frequencyw, equation (2.32) leads to a complex quadratic eigenvalue
problem. The number of eigenvalues and corresponding eigenvectors is equal to twice
the number of degrees of freedom. The eigenvalues can be real, purely imaginary or
complex. It can be seen from equation (2.32) that, due to the anti-symmetry of

matrix[K],, if Bis an eigenvalue then both —f and £ £ *are as well, where, 8% denotes

the conjugate of £. This means that waves can propagate in both the positive x- and

negative x-directions. The eigenvectors corresponding to £ and 8 * are conjugate.

The real eigenvalues are the wavenumbers of propagating waves in the
waveguide and a knowledge of them is most important in applications. Eigenvectors

associated with a real eigenvalue can be either real or complex.

A complex eigenvector associated with a real eigenvalue £is denoted by

{A}+i{B}. From equation (2.32)

(K1, +iBIKT, + IR, -0 IM1({A}+i{B)) =0
which gives

(&1, + B°IKY, ~ 0> M1 A} - BIK],{B} =0
ALK LA} +(K], + K], -0 M 1) B} =0

ie.

| ﬁz[mz 0 ]+ ﬁ[ 0 —[KL}{[K]O 0 ]_mz[[M] 0 D({A}) —0233)
0 [K], (K], © 0 [K] 0 [Mij\{B}
Given 2 0, equation (2.33) describes a conventional eigenva1u¢ problem in which, the

eigenvalue is @ and the eigenvector is ({A}7, {B}7).
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Generally, as the frequency increases the number of propagating waves also
increases. An evanescent wave at low frequency becomes a propagating wave when the
excitation frequency reaches a cut-on frequency. At a cut-on frequency the wavelength is

infinite (wavenumber is zero). Thus, at a cut-on frequency @, , equation (2.32) becomes
(&1, - 031M 1)1 =0 234)

This is a conventional linear eigenvalue problem. Since matrix [K1, is non-negative

rather than positive definite, some eigenvalues of equation (2.34) will be zero. They
correspond to the ‘rigid modes’ of the cross-section (the cross-section remains
undeformed). The non-zero eigenvalues of equation (2.34) correspond to modes which

will deform the cross-section.
2.3 VALIDATION

The solution derived in this section and the corresponding computer program has -
been validated by calculating responses of a circular cylinder of infinite length subject a
harmonic load. The analytical solution for such a cylindrical structure subject to moving
harmonic loads has been derived by the present authors [Sheng, Jones and Thompson
2002]. The parameters of the cylinder used here are listed in Table 2.1. They correspond

to a typical railway tunnel radius and concrete lining.

TABLE 2.1
. Parameters for a circular cylinder
Young’s Possion’s ratio Density Loss factor Inner radius  Outer radius
modulus (kg/m3) (m) (m)
(x10° Nm?)
37.6 0.15 2400 0.05 3.4 3.6

2.3.1 DISPERSION CURVES OF THE CYLINDER

Since its thickness (0.2 m) is small compared to its average radius (3.5 m), the
cylinder may be regarded as a thin sheﬂ and the dispersion curves may be evaluated
. using one of the thin shell theories. Figure 2.1 presents the dispersion curves of the
cylinder, of circumferential orders O to 8, calculated using the Donnel-Mushta thin shell

theory [Leissa 1973].

Two types of propagating waves are clearly shown in Figure 2.1 for

circumferential order zero (i.e., the axially symmetric modes). For frequencies lower than

.14 -



160 Hz, the two dispersion curves are straight lines. The upper straight line represents the
torsional waves (a circumferential mode) while the lower straight line (an axial mode)
represents the Jongitudinal waves. These two types of wave have small contributions to

radial motions.

For circumferential order m = 1, the waves of the first mode for low frequencies
are close to the bending (flexural) waves of the cylinder when it is regarded as a beam. It
should be noticed that, the bending mode degenerates to a simple translation and hence
zero frequency as the wavenumber decreases to zero whatever the thickness of the shell.
However, Figure 2.1 indicates a small cut-on frequency resulting from the thin shell

theory approximation.

18| -

08 -

m=0
06 i
m=1

Wavenumber (rad/m)

m=3
m=0

02l m=2 R
m=1

ms ™ LA L

] 20 40 80 80 100 120 140 160 180 200

Frequency (Hz)

Figure 2.1, Dispersion curves of the cylinder of circumferential orders O to 8, calculated using the

Donnel-Mushta thin shell theory.

The cut-on frequencies correspond to zero wavenumber. It can be seen from
Figure 2.1 that for the tunnel lining, cut-on frequencies in the range up to 200 Hz include
the modes up to circumferential order 8. Ground vibration from underground trains

typically covers the range from about 20 Hz to 200 Hz.

Figure 2.1 shows that below 200 Hz, the propagating wavenumbers (/) are less

than 2 rad/m. In other words, the wavelengths in the axial direction are greater than about
3.14 m. This information is important in the determination of the wavenumber spacing

used in the inverse Fourier transform.
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2.3.2 DISPLACEMENTS OF THE CYLINDER

Figures 2.2 to 2.4 present comparisons between the FEM solution and the analytic
solution. They show the radial displacements along the generator containing the loading
point which is on the outer surface of the cylinder. Figures 2.2 and 2.3 are for a unit
stationary load of, respectively, 80 Hz and 200 Hz, acting in the radial direction. Figure
2.4 shows the response for the load of 200 Hz moving at 100 m/s in the axial direction. In
the finite element mesh, 60 eight-noded quadrilateral elements are employed. The size of
each element is 0.2 m in the cylinder thickness direction and 0.37 m in the
circumferential direction. In the performance of the inverse FFT, 2048 samples are used
with a spacing of £ equal to 0.0025x2x (rad/m). These figures indicate that a high

computational accuracy of the FEM model has been achieved.

x10”

Displacement (m)

1.5} B

i L I I i 1 1 1 1

2
-50 -40 -30 -20 -10 0 10 20 30 40 50

Distance along the axis of the cylinder (m)

Figure 2.2. Radial displacements of the generator containing the loading point due to a unit radial

harmonic load of 80 Hz. ——, from the analytical model; ~ - —, from the FEM model in which 60 eight-

noded quadrilateral elements are used.
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Figure 2.3. Radial displacements of the generator containing the loading point due to a unit radial

harmonic load of 200 Hz,

, from the analytical model; — — —, from the FEM model in which 60 eight-

noded quadrilateral elements are used.
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1 L
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2 I ! L 1 : 1
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Figure 2.4. Radial displacements of the generator containing the Ioading point due to a unit radial

harmeonic load of 80 Hz moving at 100 my/s. , from the analytical model; — — —, from the FEM model

in which 60 eight-noded quadrilateral elements are used.
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3. DISCRETE WAVENUMBER BOUNDARY ELEMENT METHOD

3.1 THE TWO-AND-HALF DIMENSIONAL RECIPROCAL THEOREM IN
ELASTODYNAMICS

Suppose an elastic body is infinitely long in the x-direction and its cross-section
normal to the x-axis is invariant with x. The cross-section is denoted by A and the
boundary of A in its own plane is denoted by I'. For this elastic body, two elastodynamic
states are defined. The first one is described by displacementsu, (x, y,z,1) , body forces
pb, (x,y,2z,t) and boundary tractions p, (x,y,z,t), where k= 1, 2, 3 corresponding to x-,
y- and z-directions, and p is the density of the elastic body. The second state is described
by u: (x,¥,2.t), pb, (x,y,2,t) and pz (x,v,2,1). A reci'procal relation between these two

states exists and is stated as [Dominguez, 1993]

[ [tpy xupdedl + [ [ptb, #u; +ugpis; +vouu; )dvdA =
N N 3.1
[ (o =w)dedl + [ [p(b; *u, +ugai, +viu,)dxdA

where, the summation convention over the repeated index applies, ‘*’ denotes the

Riemann convelution which applies only with time ¢ and is defined as

o5 h(t) = Oj g(t —Dh(t)dr, fort =0 52

0, fort <0

and

. a 3 Vs 90
o = 1, (1,9,2.0), ity = 24 15L0) 33

are initial displacements and velocities.

Since the elastic body is infinitely long in the x-direction, the two elastodynamic

states can be expressed in terms of the Fourier integral, for instance

0w

1 (%, 3,50 =5 [@,(B,y z.)ePdx (3.4)

-0
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where,

o

7,837 = [u,(xy,z.0e™dx (3.5)

-

is the Fourier transform of #, (x, y, z,t) . Inserting equation (3.4) into equation (3.1),

gives
@

-0

f fP edpx Ju e dp dedf +[ Lo( [Bee™dp+ [a;e” dp’ dedA-:—

| ?ﬂﬁ%e"ﬁ‘dﬂx e dp dxdA+ | Ip[ [rue™apx fmierap decLA—

(3.6)
[ ]| Trremaps faeap )dxdﬁj Ip[ [Be™ap [a,eap dedA+

—toh\ —aD G0 -0 -0

) jp( [#ge™adpx jzz e dp’ xdA+ | Ip( [Pore™dp jﬁk Beqpg dedA

—co -0 —0

The triple integrals in equation (3.6), e.g. J( ka B J'" Brdp de can be

=00\ —D

simplified by making use of the fact that 7, and i, are independent of x, i.e.

j(jp e dp = ju ‘BB ]dx— | j{( P, *ii,) [e j “BEx 1 \dBd (3.7)

—0—a0

Since _“ej(ﬂ+ﬁ')"dx =276(f + B"), where, &) is the Dirac-§, and p, = p, (5,y,2,t),

—on

u, =i, (8, y,2,1), then equation (3.7) becomes

Ip e dp ju e dp’ de 27 j I(Pk*uk)5(ﬁ+ﬂ)dﬁdﬁ

0G0

=2r J([ﬁk(ﬁ,y,z,r)* i, (B, y,z,t)]5(ﬂ+ﬁ')dﬁ'Jdﬁ
ie.
J‘pk ‘ﬂxdﬁ* Iu e:ﬁxdﬂ ]dx 27 I[pk(ﬁ ¥, 2, )*uk( B.y,z,0ldf (3.8)
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It can be seen from equation (3.8) that the integral on the right-hand side may also be

expressed as
J.[:U-k (ﬁ: ¥, Z,I) * E;(_ﬁa Y. Z,I)]dﬂ = j[ﬁk (_ﬂS ) Z’t) * EI: (ﬁ’ Y, Z,t)]dﬂ (39)

By inserting equation (3.8) into the left side of equation (3.6) and equation (3.9)
into the right side of equation (3.6), it can be shown that equation (3.6) holds if for every

value of

(1B, (B, 3,20 * B, (=B, 3. 2.0MT + [ pIb, (B.y.2,0) * T, (-, y, 2, )ldA

+ [ Pl (B3, 2)x (=B, 7. 2.0VdA+ [ pl9y (8,3, )% By (=B, ,2,0)1dA =
[(Bi =By, 2.0* & (B y, 2.0l + [ plb, (~5.3,2.0)*7, (B, y,2,)ldA

+ [ Pl (=B, 3.2 %8, (B y,2,00dA+ [ p[Fy (=B, 3, D)X T (B, y, 2,1)}dA

(3.10)

Now it is assumed that the first elastodynamic state is due to harmonic loads of
angular frequency £ moving in the positive x-direction at speed ¢ while the second state
is due to harmonic loads of the same frequency but moving in the negative x-direction at

speed c. Thus, it may be written that [Sheng, Jones and Petyt 1999]

i, (B, v, 2,t) =i, (B,y,2)e" " =i, "IV (3.11)
De(B.y,2.8) = B (B, y, 20" = p O (3.12)
b (B.y:2.0) =b (B, y,2)e" ) = p e N (3.13)
T, (B3, 2,0) = (B, y, 2)e" @ = fi e (3.14)
Do (B, 7:2.8) = P (B, ,2)e MY = pre Ay (3.15)
b, (8,3, 2.0 =b; (B,, 0™ = Breomr (3.16)

Equations (3.11) and (3.14) imply that

Hoy =0y, oy =1y 5 Vo =1(Q— PO)iE, , ¥y, =i(Q+ o), (3.17)
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Inserting equations (3.11) to (3.17) into equation (3.10) and performing the convolution

defined by equation (3.2), yields

1e" T HY L Do (B, y. 2ty (- B, y, 2)dl + 1" Lpl;k (B, y.2)i; (=B, y,z)dA
+i(Q - ) [ o, (B 9,2)0, (B, y,2)dA+
i(Q— e’ | pil, (B, y,2)iE; (=B, y,2)dA =

' . ) N _ (3.18)
1O [ By (=P, 3,0, (B, 3, )AL +16CY [ pb (B, 3,203, (B, y,2)dA

+i(Q = fo)e’ T | pil (=B, : D) (B, 3. 2)dA+

HQ = ey’ | pity (=B, ¥, )i (B, y, 2)dA

which leads to

[PB.y. 2 =f,7,)dT + | pb (B, 7,20, (=f, y,2)dA = 519

[Be=8,3.20(B,y, 2T + | pb, (=, 7.2), (5.7, 2)dA

Equation (3.19) represents the reciprocal relation between the two states in the
wavenumber domain, and therefore is termed the two-and-half dimensional reciprocal
theorem in elastodynamics. Equation (3.19) recovers the reciprocal theorem in

elastodynamics for a plane-strain problem when J is set to zero.

Now the displacements and stresses in the second elastodynamic state are
assumed to be identical to those of a whole-space (the elastic body is a part of the whole-
space) due to a harmonic load of frequency €. This load moves at speed ¢ in the negative

x-direction along a straight line which passes through (y,, z,) and is parallel to the x-axis.

Thus the body force for the second state is given by

b (x,y,2,0) = 8(x + ct)S (Y~ y4,2 — 25)5 €™ (3.20)
where, J§,, is Kronecker’s delta. Fourier transforming equation (3.20) yields

b, = 8(y = ¥o.2— 2,08, ", which, according to equation (3.16), means

pb. =8y~ y0,2—20)8y (3.21)

Inserting equation (3.21) into equation (3.19) gives
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Syt (B, Yy 20)
= l[ﬁk(ﬁa y:z)iz.;’ (’“‘ﬁs}'sZ;J’oazo)"ﬁ;(_ﬁ:y,ﬁyo’zo)ﬁk(ﬂs v, z)}dl’ (3.22)

-+ Lpgk(ﬁay,Z)ﬁ;(_ﬂ,y!Z;y(}!ZO)dA

Equation (3.22) is an integral equation which associates the displacements at

- point(y,,z,) with the displacements and tractions on the boundary, and the externally

applied body forces. In equation (3.22), &, (-5, ¥, 2, ¥4, 2,) and By, (=B, ¥,2; ¥, 2, ) are
used to denote the Fourier transformed moving Green’s functions (displacement and
traction) due to the moving load defined in equation (3.20). The first subscript indicates
the response direction while the second denotes the source direction. These Green’s
functions have been derived by the present authors in [Sheng, Jones and Thompson
2002] and will be presented in the next sub-section. Equation (3.22) may be expressed in

matrix form

{U(B,yy:20)}
= [T 5.9, 530, 2T (BB, 3, D1~ [F (-, 7,2 y0, 0V EB 3 DI (3.23)

+ [T 8,323, 2)1 {ph (B, y.2)}dA
where,
(i@} = (@, iy, ;)" (3.242)
is the displacement vector at (y,, z,) .
(PY=(Py. Pr. Ps)" | (3.24b)

is the surface traction vector,

(U =|ity, 0y iy ' (3.24c¢)

51*1 Pz Pn
[P'1=|Pn DPrn Dx (3.24d)
Py Pun Pw
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is the traction Green’s function matrix.

3.2 THE FOURIER-TRANSFORMED MOVING GREEN’S FUNCTIONS FOR A

HOMOGENEOUS WHOLE-SPACE

The integral equation (3.22) or (3.23) requires the Fourier-transformed moving

Green’s functions for a homogeneous whole-space. These Green’s functions due to a unit

harmonic load of frequency Q acting on the x-axis and moving at speed c in the positive

x-direction are listed and discussed in this sub-section. The detailed derivation can be

found in reference {Sheng, Jones and Thompson 2002].
'3.2.1 DISPLACEMENT GREEN'S FUNCTIONS

The displacement Green’s functions are given by

Ty (B,7,0) = 5701 B°Ko(py7) = DKo (2,0)]

. - i
(B, y,2) =, (B, y.2) = ﬁ%%mlf} (pi7) = P2 K, (py1)]

ﬁ 2 r[PlK (pr)— P2 K (pyr)]

T3y (B, y,2) = (B, y.2) = 2mpw?

3 (3,2 = ko

+ 2ok (p) -2 K, (p,))

”12()6 y,Z)"uza(/B ¥,2)= [PzK (pyr)— le (pr)]

27rpa)2 r5l

(B, y,2) = (& PIK,(p) ~ PYK, ()1 + 0 Ko (pyr) €

27rpa)2
+ Lk (0 -5 K, (1))

(L p2K, (pyr) ~ Ky (0] + @K,y (p,r) /2

(3.25a)

(3.25b)

(3.25¢)

(3.25d)

(3.25¢)

(3.250)

In equations (3.25), K, (-) (n=0, 1, 2) is the modified Bessel function of order n of the

second kind,

@ =Q- fc

’ 2
P = ﬁ Cz’pz 162_(3_%

-23.
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(3.26b)



are wavenumbers in the yz plane
y* o+ z° (3.26¢)

¢, and ¢, are the complex P- and S-wave speeds of the material. Equation (3.25) shows

that matrix [[7 "1, defined by equation (3.24c), is a symmetric matrix.

3.2.2 ANALYSIS OF THE DISPLACEMENT GREEN’S FUNCTIONS
3.2.2.1 Moving harmonic load

In this case, the load frequency Q # ¢ and the load speed ¢ # 0. There are two

special situations that must be identified.

(1) When 8 = 0 (therefore @ # 0 according to equation (3.26a)), a plane-strain problem

results, and equation (3.25) gives the Green’s functions for a whole-plane (yz plane):

—~ _ 1 'Qf_
M“(O, ¥, Z) - 27&',0622 Ko(l C, (327&)
i, (0,y,2) = #,(0,7,2) =0 - (3.27b)
i1 (0,y,2) =i;3(0,y.2) = 0 (3.27¢)
~ 0, i or __l_K +K / 2
iy (0,7,2)= 2,L.p{,,zt K, (%5 LD+ K, (D) 5 a0
+a)rc K, (la)r) a)rc wre K (l )}

13, (0,y,2) = i, (0, y,z)—%?[ K (m:r) K (za)r)] (3.27¢)
30, y,2) = 5~ {4 K (20 -1 ;K 2D+ K, 4D/ ¢

2 (3.270)

+ WKl (i%) - a)iic;2 K, (l“c';)}
(2) Whene = 0 (from equation (3.26a), 8 = ¢ 0), the following limits can be derived:

K,
(plr)w ZK o(Por) _ [3’ ( clg VK, (fBr) | (3.28a)
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K, K
(plr)a)z (pzr) zﬁ ( EI%—)[KQ(ﬁr)"F#KI ()] (3.28b)

K (P;?‘)sz (pzr) zﬂ( CZ)[K (ﬂi”)-i- 7 K (ﬂ?’)] (3.28¢)

Thus from equation (3.25),

i)\ (8,y,2) = 4%; ————)K (fr) (3.292)
L
73,08 ,2) = 4 (e~ K () + K ()] (3.29)
e 11
5(B.3,2) = s e~ K (5r) + K, () (3.290)
T3(8.9.2) = g VB G = LK, (81) + B K (] + 2K, (1)
P (3.29d)
+(a§? DK B+ K (6r])
iy (f,7,2) = 4£p T =PI () + o Ko (] (3.29¢)
~k ﬁz
Uy (B,y,2) == (———)[K (ﬁf')-"—K (BrN+2K(Br)/c;
4”” pr i (3.29f)

Cz)[K (ﬂr)+ﬂ K, (BN}

3.2.2.2 Stationary harmonic load

In this case, Q% Oandc = 0. There is only one situation that must be considered,

i.e. when = 0. In this case equations (3.27) apply.

3.2.2.3 Moving constant load

In this case, 2 =0andc # 0. When f =0, w also vanishes according to equation
(3.26a). From equations (3.25), the displacement Green’s functions in this case are given

.by

~% 1 i
Uy = 2mp ¢ (3.30a)
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iy =0 =0 (3.30b)

Ly =ity =0 (3.30c)

AN — 1n( 1—c?/c? r) (3.30d)
27pc;

fy =iy =0 (3.30e)

iy —— zéucg 111(1/1 —c/el r) (3.30)

Equations (3.30d) and (3.30f) show that the displacements i, and ii,, cannot be
handled numerically in this case. However, since they are weakly singular at £ = 0, there

is no difficulty to convert the displacements from the wavenumber domain into the
spatial domain by an inverse Fourier transform algorithm (e.g. FFT). This is
demonstrated by the exact solution for an undamped homogeneous whole-space subject
to a constant moving point load. This exact solution has been derived by Eason, Fulton
and Sneddon [1955/1956]. The comparisons are shown in Figures 3.1 and 3.2 for the
‘subsonic’ case in which the load speed, 605 m/s, is slightly lower than the shear wave
speed in the whole-space, 610 m/s (see Table 3.1). To produce the responses from the
Fourier transformed moving Green’s functions, the FFT technique is applied using 2048
samples with a spacing of ff equal to 0.0025x2x rad/m. A high computational accuracy is

achieved by the FFT, as shown in these two figures.

TABLE 3.1
Parameters for a whole-space _
Young’s Possion’s ratio Density Loss factor P-wave speed  S-wave speed
modulus (kg/m’) : (mn/s) (m/s)
(x10° Nm™®
1770 0.4 1700 0.15 1500 610
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T
1

-y
T
1

o

vertical displacement (m)
L

-3 1 L i ! ! ! 1 1 i

50 .40 30 20 10 0 16 20 30 40 50
Distance along the x-axis (m)

Figure 3.1. Vertical displacements along the straight line (y = 0 m, z = 5 m) due to a unit vertical

constant load moving along the x-axis at 605 my/s.

, from the Green’s function via an inverse FFT; — —

—, from the exact solution for a point moving load.

05L N

N

Longitudinal displacement (m)

-3 i L 1 L I L I 1 I

-50 -40 -30 -20 -10 0 10 20 30 40 80

Distance along the x-axis {m)

Figure 3.2. Longitudinal displacements along the straight line {y =0 m, z =5 m) due to a unit
vertical constant load moving along the x-axis at 605 my/s. ——, from the Green’s function; — — —, from the

exact solution for a point moving load.
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3.2.2.4 Stationary constant load

In this case, QO =0andc =0, and therefore w is always zero. This corresponds to

an elastostatic problem, which is not the concern of this study.
3.2.3 SINGULARITIES OF THE DISPLACEMENT GREEN’S FUNCTIONS

The displacement Green’s functions are singular at r = 0. The order of the

singularities is summarized in Table 3.2.

TABLE 3.2. Singularities of the displacement Green's functions at r =0

F=0,0=0#0 | =0,0=0=0 B0 | f=Q/c#0,0=0
(Equation (27)) (Equation (29)) | (Equation (25)) (Equation (29))
f[;'; ~ ln("c%) ~1nar ~ In p,r ~ (1)
i ~In(izr) ~1/(fr)? ~In p,r ~1/(fir)?
i ~In(i2r) ~1/(fr)? ~In p,r ~1Kfr)?
i, 0 0 0 1/(fr)
i, 0 0 0 1/(fr)
7 0 0 0 LA Br)

Table 3.2 shows that, except for a particular value of £, the displacement Green’s
functions are, as in the case of the plane-strain problem, weakly singular at » = 0. The

solution of the boundary integral equation (3.23) should be avoided for this particular

value of §.

3.2.4 STRESS GREEN’S FUNCTIONS AND SURFACE TRACTIONS

The Fourier transformed moving stress Green’s functions can be obtained

following Hooke’s law which, after being Fourier transformed, reads

By = B+ 2000 + A2 a""ﬂ + a‘;:f ) (3.31a)
Ty = ifAdky + (A + 2#) 2’ + A %’;33’ (3.31b)
Ty = AR + Aoz ot 21 + (A+2 1) 5=t ”” (3.31c)

-28.




i oy, Oy,

T,y = ,u(af-+73}z—l) (3.31d)
—, 55* N —~k

Ty = #Wj"“ﬁﬂ“sz (3.31e)
. Oy, .

Ty = /"W:‘Hﬁﬂuzr (3.318)

where A and u are the Lamé constants.

The surface tractions are given by

—~ —~k i~

P T T "

—~k —~ kK ~ 2

Poui=| %y Tay (3.32)
~t jorgd ~F fi3

P Ty Tay

where, n = (0,n,,n,) is the unit normal vector at the surface, pointing outwards from the

elastic body.
3.3 DISCRETIZATION USING QUADRATIC SHAPE FUNCTIONS

Following the general development of the BEM, the boundary integral equation is

established by taking point(y,, zo)'onto the boundary I" in equation (3.23). This leads to

(7B, ¥0:2))
= [T 8.9.2:50 20V (BB 3 D}~ [F" (5,3, 250, 2 (G(B. 7. 0T (333)

+ [0 8,35 30.2)T {05 (B.7,2))dA

where, (y,.2,) € '. A discretization is done for equation (3.33) and only a single type of

boundary element is used. This type of element has three nodes and uses quadratic shape

functions, as illustrated in Figure 3.3. -
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Node 3

Material is on this side

\ Unit vector normal

Node 2 to the boundary

Node 1

Figure 3.3. Three-noded, quadratic shape function boundary element

Let
-~ ; ~] ] e e} e 3 T
(MY = ,u2,u3,u1 ,u2 ,u3 U Uy Uy

(BBY = (Bl P2y B3, Bl By P By » 3 B3)

(3.34)

(3.35)

be two 9x1 vectors consisting of the nodal displacements and tractions, respectively, for

the 3 nodes in element j. Also let

{Y}j = (yl,Zi,yz,Zz,yng)T

be a 6x1 vector consisting of the coordinates of the element nodes. Then the
displacements, tractions and coordinates along the boundary element may be

approximated by
{#(B,y. 0} ={E(B,O)} = [®ONIUAY
(BB, ¥, 0} = {B(B. O} =[POUBBY

(y,2)" =[PEUyY

where,

(DO =[] ¢,[1]; ¢,11L], (W] =[g 1], §,lI], $:111,]

-30-
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are shape function matrices, [/], and [[]; are the 2x2 and 3x3 unit matrices and
$(O)=FEE-D,4,@) =(1-EN4,&) =L+, ((1=£=) (3.41)

are the shape functions.

Inserting equations (3.37), (3.38) and (3.39) into equation (3.33), and letting the

point (y,, z,) be node i, yields

NE . _ _
@y + 3 [ 1P pomoemr sy

NE e (3.42)
=S L1 p.emieenr Emy + Ep)

AN

where, {# ()} is the displacement vector of node i, [ *(—ﬂ,g"’)},}. and [P"(-8, £)];are

the displacement and traction Green’s function matrices with the source at node i (called
the collocation point) and the observer located by equation (3.39) at boundary element

I i NE is the number of elements and

BBV = [0 (£,7,2:50,21 (b (B, y,0)}dA (3.43)

represents the contribution from the body forces.

For a system of elements with a total of N nodes, equation (3.42) has the form

! | i

ity P,

| i P
aey AT e - el t=fer 612 - 6t} LBy

ﬁf ﬁf

Uy i

(3.44)

where, i=1, 2, ..., N. Here the element matrices, [ﬁ 1? and[G? (both of them are 3x3

matrices) are assembled as in the finite element solution process. To make it clearer,
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suppose node 3 is common to elements I, and I, (the other nodes for element I} are 1

and 2 and those for element T, are 4 and 5, see Figure 3.4). Letting

NN TG
= [P 0% 4 @F 4.0 4QOF pOLI (349)
[y e |

[P . Ol
= [P Chon HOF AT HOF AT (3.46)
=lh oy g

then

[A]? =[h)? (3.47a)

(A1 =[A)} +[R15 (3.47b)

[AT* = AL (3.47¢)
Equation (3.44) may be written in a more compact form

[H{Ti(8)} = [GUB(B)} +{B(H) (3.48)

where, [H] and [G] are 3NX3N matrices. This is the so-called (global) boundary element

equation.
3.4 EVALUATION OF SINGULAR INTERGAL TERMS

In constructing the global equation (3.48) the integrals in equation (3.42) are
evaluated for the Green’s functions on each element making up the total integration
around the boundary. For a collocation point nof belonging to an element, the integrals
along this element can be carried out using a standard numerical integration method. In
the present study a 10-point Gauss-Legendre quadrature rule is used. The high order of

this quadrature reflects the high polynomial order of the integrands.

When a collocation point is on an element the integrands become singular for

both the evaluation of {H] and [G]. The singular terms for constructing matrix [G] may
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be integrated after a special treatment that takes into account the presence in the
integrands of a weak singularity which is of logarithmic order, as identified in Sub-
section 3.2.3 an shown in Figures 3.4, 3.6 and 3.8. A commonly used method is to
perform a non-linear transformation with a vanishing derivative of the first order at the
singular point, so that the singularity in the integrands can be eliminated [Johnston and
Johnston 2002, Singh and Tanaka 2001]. The integrals containing a singular term may be

written in general as
1

1= [F&)In(p,r)ds (3.49)
-1 ’

where, f(&£)is a regular function and r = r(£) vanishes at £ = —1,00r 1 depending on the
collocation point being the first, the second or the third node of the element. Without loss

of generality, the collocation point is set to be the first node, so thatr(-1) =0. By

applying transformation

g=2 =1+ (3.50)

where k is a positive integer and £’(~1) = 0, then equation (3.49) becomes

1
I= [fE@)In(p,rEe)E M)t (3.:51)
-1

It can be shown that

lim ln(r P r(EO)E () =0, for k=2 (3.52)

i.e. the integrand in equation (3.51) has no singularity, and can be integrated without any

difficulty.
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Figure 3.4. Displacements along a straight element due a longitudinal load applied at the middle

node.
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Non-dimensional length along the element

Figure 3.5. Tractions along a straight element due to a longitudinal load applied at the middle

node.
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Figure 3.6. Displacements along a straight element due to a lateral load applied at the middle

node.
1 T i T T T T T T
40
-1 1 1 ] 1 ] 1 ! 1
=
g 1 T T T T T T 3 T T
k=)
©
E
i 0
©
g
1 -1 L I I I 1 } 1 1 I
50 T T T T T T T T ¥
d 0 J[
-50 ; 1 1 I

1 ] ] ] i
-1 08 -06 -04 -0.2 0 02 04 0.6 0.8 1
' Non-dimensional length along the element

Figure 37. Tractions along an straight element due to a lateral load applied at the middle node.
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Figure 3.8. Displacements along a straight element due to a vertical load applied at the middle

node.
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Figure 3.9, Tractions along a straight element due to a vertical load applied at the middle node.
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The singular terms for constructing matrix[H ], however, are of higher order and

are not integrable. This is shown in Figures 3.5, 3.7 and 3.9, where, tractions along a
straight element due to a load applied at the middle node are plotted. The vanishing
tractions in some subplots are true only at points which are not located at the middle
node. At the middle node, the tractions can only be described by the d-function in these
subplots. However the integrations for these terms over a finite segment of the boundary
containing the singular node have a finite result. This is because the integrands are either
a J-like function at the singular node or have singular terms of opposite signs either side
of the node and these cancel. The implication of this is that the integral cannot be
evaluated using any quadrature scheme on an element-by-element basis and an

alternative method must be devised.

In the case of a stationary harmonic load, the difficulty may be overcome by
employing the rigid body motion technique combined with either a fully or a locally
enclosing elements technique [Jones, Thompson and Petyt 1999]. However, for the
moving load case, this technique is inappropriate, since the strong singularity in the
traction Green’s functions corresponding to the static state is not easily identified. A new

technique is therefore developed based on the FEM presented in Section 2.

As shown in Figure 3.10, boundary elementsI’| andI’, have a common node 3.

Suppose the two boundaries form an obtuse angle at node 3, then two finite elernents
may be formed by these two boundary elements plus 5 fictitious boundary elements (in
dashed lines). Using eight-noded, quadratic shape functions and the two-and-half
dimensional finite element method developed in Section 2, a global finite element

equation can be formed for these two finite elements:

@) [{Fy)

~12 o2
[KT :{“} - (3.53)

{L“Z}IB {ﬁ}ﬂl

where,[K] is the global dynamic stiffness matrix of these two finite elements,

{i7} and {ﬁ } are, respectively, the nodal displacement vector and nodal force vector of

nodej(f=1,2, ..., 13). Suppose that, except for the tractions on boundaries I, tol’,
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there is no other excitation, then the nodal force vector {ﬁ 1 =0. Thus from equation

(3.53) the following equation can be derived

(i {F}
ey 4 = (3.54)
{iz}iZ {F}IZ

Note that the tractions at nodes 1 to 12 have been assumed to be continuous. In other
words, tractions ‘before’ and ‘after’ each of the nodes are the same. Tractions and
displacements of boundaries I'; to I'g are interpolated by the values at the nodes. For

example

Node 8 - '.\
-

Node 6

Node9 » @ .

- T, rs N\

Node10 @ ¢
-~
-~ \
Node 11 ,. \ Node 5
.7 Ts Nodel3 .\
® N

s Node 4

Node 2

Node 1

Figure 3.10. Two eight-noded, quadratic function finite elements.

(B} @y

(BB, 3. 0} =[DEONBY” - H(B, 7,0} =[@EOR{EY" | (3,2 €T (3.55a)
{(BY , {ir}!
(B} (i}

(BB, 3,2} =[OENPY }, {7 (B, 7.0} =[DER{E) ¢ (y,2) el (3.55b)
(Y @y
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{pY iy’
(BB, ». D) =[OORIPY 1. {#(B. 3.0} =[POR (I} ¢ (3.0 el; (3.550)
{py @y

The virtual work done by the tractions is given by

By
3]
oW =" [ S(EY (PYr = 6 iy 3 -+ 1,1, BT (3.56)
= ‘ ~\12
{p}

where [77] is a symmetric, positive definite matrix of order 36x36, and is only dependent
on the geometry of the boundary.
The same virtual work can be done by the equivalent nodal forces,
(Fy

=12
sw = (" @™ | @3.57)

{ﬁ}lZ )
Equations (3.56) and (3.57) give
{F} {py
| =[TKk: (3.58)

{(F}” (7"

due to which, equation (3.54) becomes

@) [
~12 =12

ke Ly P (3.59)
w2 "

For the domain shown in Figure 3.4, which is enclosed by six three-noded
quadratic function boundary elements, a global boundary element equation can be written

according to equation (3.48) (note: there is no body force)
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(@)’ {py fay
By’ @y

~2
A =P L= enrr ! (3.60)
{i}"” {p}” {iy”
which gives matrix [ﬁ’ }in terms of [é] , [TTand[K], i.e.
[H]=[GITT'[K] (3.61)

The upper-left sub-matrix of [H Jcorresponding to nodes 1 to 5 is denoted by

(1 o+ [l
T (3.62)
[hly - [l
where, for i=1,2,---5
[k, = [ 4P 4. dT (3.632)
(Al = [ 4P (B.OTd0+ [ 4P (.91, (3.63b)
[(hla = [ HOF" B.HTdr | (3.63¢)

According to equation (3.48), the global boundary element equation of the

original boundary element domain can be written as

[H{E(B)) = [GUB(A} +{B(S)} (3.64)

The elements of [H] associating with nodes 1 to 5 are given by

[H]” = [ (P ORI ‘ (3.652)
[H1? = [ (OIP A,Od0+ [ f(OIF (-, O dr (3.650)
LHT* = [ $,(OP" (. dD (3.65¢)

where, i =1,2,---5. It follows from equations (3.63) and (3.65) that
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[HY =[h];, i=12,5; j=2,3,4 (3.66)

l-j ’

Equation (3.66) gives the elements of matrix [H] not only for nodes belonging to the

same element but also for those belonging to two adjacent elements.

It should be noted that equation (3.66) does not give accurate results in some
cases. This may be overcome by adding extra nodes on the boundaries in Figure 3.10 and
correspondingly constructing finer and therefore more finite elements. By this way both
the FE equation (3.54) and the BE equation (3.60) are improved for the description of the

motion of the ‘structure’ defined in Figure 3.10.
3.5 USE OF GEOMETRICAL SYMMETRY

Many problems involve structures that have at least one plane of geometrical
symmetry. Examples include tunnels, tracks and many types of foundations. When the
geometry is symmetric the load and the response may, in any case, be decomposed into
symmetric and anti-symmetric parts. The symmetric part of the response is due to the
symmetric part of the load while the anti-symmetric part of the response is due to the
anti-symmetric part of the load. Use of the symmetry or anti-symmetry of the load-
response configurations can reduce the size (by half or so) of matrices which are to be
inverted in the boundary element method, therefore greatly improving the computational

efficiency.

In what follows, the structure is assumed to be symmetric about the vertical

planc y = 0 (so the cross-section of the structure is synimetric about the z-axis). The
nodes in the half-plane y > 0 are numbered as 1, 2, ..., N. Of those N nodes, there are N,
nodes, numbered as j,, j,,"*" j n,» O the z-axis. Since three-noded elements are used, V,

is definitely greater than zero though normally it is a small integer. The three degrees (in
the x-, y- and z- directions) of freedom of node i (i =1, 2,---N)are numbered
as3(i—D+1, 3(i—1D+2 and3(i —1) +3. The number of the mirror image node of node i,
which is located in the half-plane y <0, is denoted by i'. The three degrees of freedom
of node i* are numbered as3(i' —1)+1, 3¢’ —1)+2 and3(’ —1)+ 3. The boundary

clement equation for this structure is given by equation (3.48), i.c.

[HI{i(8)} = [GH{P(B)} +{B(B)} (3.67)
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where [H] and [G] are square matrices of order3[2(N —~ N,)+ N|].

When the loads on the structure are symmetric about y = 0, then it can be shown

that, for nodes on the z-axis

Eﬁ(j—1)+2 =0, 53(;'-1)-9_ =0, where j = j|, j,," " fy (3.68a)

1
while for node i which is off the z-axis and its counterpart, node i,

(3.68b)

Uy e = Uagnars Hagonea = “Uagnea s Yagronyes = Ui

Parcna T Pagcitr Pager = ~Pag-nsze Pag-nes = Pag-nes (3.68¢c)

Similarly, when the loads on the structure are anti-symmetric about y = 0, then for

nodes on the z-axis

ﬁB(j-—I)H = ﬁsu-nu =0, ﬁB(j—l)+3 = ﬁs(j—l);a =0 (3.69a)

where j = j, j,,--- jy,; for nodes i and i " which are off the z-axis

Ezﬁ(i'—l}ﬂ = _ﬁS{i—l)-f-l" ﬁ3(:’—1)+2 = ﬁs(:-na,zs "73(f'-1)+3 = "ﬁs(;-nu (3.69b)
ﬁ3<£'—1)+1 = _ﬁB(f—l)H’ 53(:"—:»2 = 53(f~1)+2: ﬁ3(5'w1)+3 = _ﬁS(E—l)H (3.69¢)

A size-reduced equation now can be produced by keeping the first 3N equations
in (3.67) and then using equations (3.68b and ¢) or (3.69b and c) to eliminate the
displacements and tractions of the image nodes. For future use, the equation for the

symmetric load/response configuration is denoted by

[HI"{E(B))" =[G (BB} +(B(B)} | (3.70)
while that for the anti-symmetric load/response configuration is denoted by
[HT{#(B)} =IGT BB} + By | | (3.71)

To ensure that the matrices[H]", [G]*, [H] and[G] are regular (invertible), the

zero displacements and tractions at the on-z-nodes, e.g. equations (3.68a) and (3.692),

must not be applied when constructing equations (3..70) and (3.71). Instead, such
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displacements and tractions are kept as unknowns in the construction of these two

equations.
3.6 EQUAVALENT DYNAMIC STIFFNESS MATRIX

Equation (3.48) gives the global boundary element equation. If there is no body
force applied within the boundary element domain, i.e. {B(8)} =0, then equation (3.48)

yields

[GI'[HNH(B)} = {B(B)} (3.72)

which associates the nodal (on the boundary)displacements and the nodal tractions.
Similar to equation (3.58), a transformation matrix can be constructed between the nodal

fractions and the nodal forces for the boundary element domain such that

(BB =[THB(B)} | (3.73)

which, combined with equation (3.72), gives
[TIGT [H{@(B)} = (F(B)} (3.74)

A matrix [K(B)],, 1s defined by

[K(B)),. =[THGI'[H] (3.75)

and is termed the BE dynamic stiffness matrix of the boundary element domain. It should
be noted that this dynamic stiffness matrix does not have the usual FE property of
symmetry, which is a disadvantage with respect to memory storage space. Mustoe [1980]
suggested a method by which a symmetric boundary element stiffness matrix can be
produced. However this method requires the inversion of a matrix twice the size of

[K(B)],, and therefore is very time consuming. Tullberg and Bolteus [1982] conducted a

study of seven different stiffness matrices for a BE domain, including the original non-
symmetric stiffness matrix given in equation (3.75) and six symmetric matrices. They

concluded that:

(1) The non-symmetric stiffness matrix given in equation (3.75) is the best in terms

of accuracy.
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(2) The non-symmetric stiffness matrix is as good as, or better than, a stiffness matrix
based on a finite element discretization with the same number of degrees of

freedom.

(3) The manipulated methods involving symmetric matrices show a very poor rate of

convergence compared to the direct BE.

3.7 VALIDATION

The discrete wavenumber boundary element method developed in the section
(Sub-sections 3.1 to 3.6) and the corresponding computer program have been validated
by (1) calculating the response of a homogeneous whole-space including a circular
unlined tunnel; (2) calculating the response of a homogeneous half-space; (3) calculating

the response of a homogeneous half-space with an unlined tunnel.

3.7.1 FOR A HOMOGENEOUS WHOLE-SPACE WITH A CIRCULAR UNLINED
TUNNEL

The discrete wavenumber boundary element method and the corresponding
computer program can be validated by calculating the response of a homogeneous whole-
space including a circular unlined tunnel subject to a moving harmonic load. The
analytical solution (called the ‘cylinder theory”) for such a structure subject to moving
harmonic loads has been derived by the present authors [Sheng, Jones and Thompson
2002]. The parameters of material are listed in Table 3.1. The radius of the tunnel is

3.5 m and the tunnel axis is set to be the x-axis.

Figures 3.11 to 3.13 present comparisons between the BEM solﬁtion and the
analytical solution. In the boundary element mesh, 30 three-noded quadrilateral elements
are used along the tunnel surface. In the performance of the FFT, 2048 samples are used

with a spacing of £ equal to 0.0025x2x (rad/m).
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Figure 3.11. Longitudinal displacement along the straight line (y = 0 m, z =~ 3.5 m) due to a unit
tateral harmonic load of 40 Hz moving at 100 m/s along the straight line (y =5 m, z=0m). —,

calculated by the cylinder theory; — — —, calculated by BEM.

Lateral displacement (m)

a5} i

-2 r ! L 1 ) t i r 1

50 .40 30 20 -10 0 10 20 30 40 50
Distance along the x-axis (in})

Figure 3.12. Lateral displacement along the straight line (y =0 m, z =~ 3.5 m) due to a unit lateral

harmonic load of 40 Hz moving at 100 mv/s along the straight line (y =5 m, z=0m). , calculated by

the cylinder theory; — — —, calculated by BEM.
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Figure 3.13.Vertical displacement along the straight line (y = 0 m, z = — 3.5 m) due (o a unit lateral

harmonic load of 40 Hz moving at 100 m/s along the straight line (y=5m, z=0m). -, calculated by

the cylinder theory; — — —, calculated by BEM.

3.7.2 FOR A HOMOGENEOQOUS HALF-SPACE

The responses of a homogeneous half-space to surface or buried moving
harmonic loads can be evaluated using the approach presented in [Sheng, Jones and Petyt
1999] (called the layered ground model). Comparisons between this approach and the
BEM are shown in Figures 3.8 to 3.11. The load is a unit (1 N) vertical point harmonic
load moving at 100 m/s in the x-direction. Figures 3.14 and 3.15 present the results for a
load of 40 Hz acting at a depth of 3 m while Figures 3.16 and 3.17 account for a load of
200 Hz abting at é depth of 20 m. In the boundary element model a mesh of 50 elements
(for one side on the ground surface over 50 m) has been employed. In other words, there
are three elements per Rayleigh wavelength (about 3 m at 200 Hz at 100 m/s). In the
performance of the inverse FFT, 1024 samples are used with a spacing of /5 equal to

0.0025%2x (rad/m). As can be seen, a good accuracy has been achieved.
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Figure 3.14.Vertical displacement along the x-axis on the ground surface due to a unit vertical
harmonic load of 40 Hz moving at 100 m/s along the straight line (y=0m, z=-3m) atadepthof 3m. —
—, calculated by the layered ground model; — — —, calculated by BEM.

Vertical displacement {m)
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Figure 3.15.Vertical displacement along the y-axis on the ground surface due to a unit vertical
harmonic load of 40 Hz moving at 100 m/s along the straight line (y=0m, z=-3 m) at adepth of 3 m. —
—, calculated by the layered ground model; — — —, calculated by BEM.
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Figure 3.16.Vertical displacement along the x-axis on the ground surface due 10 a unit vertical

harmonic load of 200 Hz moving at 100 n/s along the straight line (y =0 m, z=-20 m) at a depth of 20 m.

, calculated by the layered ground model; — — —, calculated by BEM,

Vertical displacement (m)
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Distance along the y-axis (m)

Figure 3.17.Vertical displacement along the y-axis on the ground surface due to a unit vertical .

harmonic load of 200 Hz moving at 100 m/s along the straight line (y = 0 m, z=-20 m) at a depth of 20 m.

, calculated by the layered ground model; — — —, calculated by BEM.

3.7.3 FOR A HOMOGENEOUS HALF-SPACE WITH AN UNLINED TUNNEL

Responses of a layered ground with a circular tunnel to moving harmonic loads

have been recently modelled using the discrete wavenumber fictitious force method
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[Sheng, Jones and Thompson 2002]. This modelling aﬁproach is based on the Green’s
functions for a layered ground and those for a circular cylinder. Comparison between this
approach and the boundary element approach are in Figures 3.18 and 3.19. The tunnel
has a radius of 3.5 m and its axis is at 16.5 below the ground surface. In the boundary
element model, 80 elements (one side) have been used with an element length equal to
0.625 m for the ground surface and 20 elements (one side, the length of each element is
0.55 m) for the tunnel surface. In the performance of the inverse FFT, 1024 samples are
used with a spacing of S equal to 0.0025x2x (rad/m). It can be seen high consistency has

been achieved between these two methods.

Vertical displacement (m)

-50 -40 -3¢ -20 -10 4] 10 20 30 40 50

Distance along the x-axis {m)

Figure 3.18.Vertical displacement along the x-axis on the ground surface due to a unit vertical

harmonic load of 40 Hz at the tunne! invert and moving at 100 m/s in the tunnel direction. , calculated

by the discrete wavennumber fictitious force method; — — —, calculated by BEM.
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Figure 3.19.Vertical displacement along the y-axis on the ground surface due to a unit vertical

harmonic load of 40 Hz at the tunnel invert and moving at 100 m/s in the tunnel direction. . calculated

by the discrete wavennumber fictitious force method; — — —, calculated by BEM.
4. COUPLING BETWEEN FINITE/BOUNDARY ELEMENT DOMIANS

Up to now formulation has been derived in Section 3 for a boundary element
model of a domain consisting of a single homogeneous material. A domain such as a _
layered ground with an arbitrary geometry of the ground surface and interfaces, which
may also incorporates built structures, can be divided into a number of sub-domains each
of which is homogeneous. For each sub-domain, a boundary element equation or a finite
element equation can be constructed using the formulations derived in Sections 2 and 3.
In this study, it is assumed that, at most, only one finite element sub-domain is present,

- and the finite element equation is given by
(K] {E(B) = (F(B)) 4.1)

where, [K] , denotes the dynamic stiffness matrix of the finite element sub-domain,

{ii ()} denotes the nodal displacement vector and (F ()} denotes the nodal force vector.

For each boundary element sub-domain, the boundary element equation is given by

[H1, {#()} =[Gy A BB} +{B(B)}, (4.2)
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where the subscript ibe is used to denote a boundary element sub-domain number.

Equation (4.2) yields

[R1y A7 (B} = (B(B)} + {5 (D)}, (4.3)
| where,

[R]y, =[Gl [H],, . “.4)

5B, =[CT{B(B)}, 4.5)

The coupling between the boundary element sub-domains and the finite element
sub-domain is established on the basis of continuity of the displacement and equilibrium
of the forces at the interfaces. The equilibrium of the forces at the interfaces can be
expressed in terms of either tractions or nodal forces. In this study the coupling between
two boundary element sub-domains is performed in terms of the equilibrium of the
tractions on the interface while that between a boundary element sub-domain and a finite
element sub-domain is achieved by the use of the equilibrium of the nodal forces on the

interface.
4.1 COUPLING OF TWO BOUNDARY ELEMENT SUB-DOMAINS

Suppose boundary element sub-domain 1 has an interface with boundary element

sub-domain 2. The displacement and traction vectors of the nodes on the interface are

denoted by {iZ(8)}, and{p(5)},, and those of the remaining nodes are denoted
bY {7 () )1z { P(B)} i for sub-domain 1 and {#(8)}, . { F(S)},z for sub-domain 2. It

follows from equation (4.3) that

Rl Rl ] {{E(ﬂ)}m}: {{ﬁ(ﬁ)}lR}+ {{'S"(ﬁ)}m} 4.6)

_[R}”R [R]u] {g(ﬁ)}l {ﬁ(ﬁ)}l {E(JB)}I[
(Rl [Rlye } {{ﬁ(ﬁ)}; }= {—{ﬁ(ﬁ)},}+ {{E(ﬁ)}y} @)
Ry [Rlyge FEP)ar] UB e | 5B} '

Now{p(f)}, can be eliminated from equations (4.6) and (4.7), and an equation

governing the remaining unknowns is therefore produced,
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[R]ize [Rl s 0 |Hé@(Bhe| [{PBIe] [{F(B)i
{R]IIR [R]HI +[R]2H [R]ZIR {E(ﬁ)}] =40 + {E(ﬂ)}ll +{E(ﬁ)}21 (48)
0 [R]z [Rlowe JUE (P Yar) UPB)ar) 5B}

Equation (4.8) shows that the ‘global equation’ of the two sub-domains can be assembled

in the finite element sense.

4.2 COUPLING OF A BOUNDARY ELEMENT DOMAIN AND A FINITE
ELEMENT DOMAIN

Using the method presented in Section 4.1, a boundary element equation may be
constructed for all the boundary element sub-domains. This equation relates the
displacements at all the boundaries and interfaces to the boundary tractions as well as the

externally exerted loads. This equation may be written, according to equation (4.8), as
[R1, @ (B} ={p(BN+{5(D)},. (4.9)

Note that, elements in vector { 5()} vanish if they correspond to the nodes at the

interfaces. If, in addition to the boundary element sub-domains, a finite element sub-
domain is present, then the finite element equation (4.1) must be coupled with equation
(4.9) to give the global equation for the whole model. The displacements, tractions and

nodal forces of the nodes at the finite/boundary element domain interface are denoted

by{a (B}, PP}, and{ﬁ ()}, - Those of the remaining nodes are denoted

by {#(8)},.x and{p(B)},. for the boundary sub-domains, and {iZ(5)} .. ,{F(,B)}fm for

the finite element sub-domain. Thus equation (4.9) can be split into

[{R}W [R);ur J {{:z(ﬂ)}m}: {{f(ﬁ)}m}Jr {{f(ﬁ)},,eR} 4.10)
[R]belR (Rl (B}, {P(ﬂ)}f {S(ﬁ)}bd

while equation (4.1) becomes

[K]fey [K]fem {ﬁ(ﬂ)}l — —{F(ﬁ)}l (4 11)
[Klprr (KD e | (15D} s {F(B)} 1z -

As indicated in equation (3.74), a transformation matrix, [T}, may be constructed
to convert the nodal forces, {F (4)} ;- at the finite/boundary element domain interface into

equivalent tractions, i.e.
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(F(B)}, =[THBB)), : (4.12)

The dimension of matrix {7] depends on the number of nodes at the finite/boundary
element domain interface, and is in general much smaller than that of equation (4.9).
When the structure is symmetric about the z-axis, [7] may be constructed using half the

FE/BE interface. Inserting this into equation (4.10) gives

[[R};,m [Ryuns H{ﬁ(ﬁ)}m}= {{5(5)}bek}+ {{E(ﬁ)}w } 4.13)
TRz [TURLy {{EB}, (B}, [TH5(B) e ’

As indicated in this equation, the tractions on the FE/BE interface have been converted
into ‘equivalent nodal forces. By this means the possible discontinuity of tractions on the
FE/BE interface does not have to be considered. Combination of equations (4.13) and

(4.11), yields

[R)yre [R]pers 0 |[H{a(Bhr| BB lyr +{5 (D)} sr
[TNR]yr  [TNRYpy +[Klpn  [Klpw §IE(B)}, (=[THS (B
0 (K] s (K] [{E BN e ] (UF(B)} e

(4.14)
This is the global equation for the whole domain.

4.3 VALIDATION

The coupled discrete wavenumber FE/BE method and the corresponding
computer program have been validated by (1) calculating the response of a homogeneous
half-space which is regarded as having a layered structure; (2) calculating the response of
a layered ground; (3) calculating the response of a homogeneous half-space with a lined

tunnel.

4.3.1 FOR A HOMOGENEOUS HALF-SPACE WHICH IS REGARDED AS HAVING A
LAYERED STRUCTURE |

Results from the coupled FE/BE model for a ground are shown in Figure 4.1. The
ground consists of a layer of 2 m thickness which overlies a homogeneous half-space.
The properties of the layer and those of the underlying half-space are identical to each
other and are listed in Table 3.1. A unit (1 N) vertical point harmonic load of 200 Hz
moving at 100 nv/s in the x-direction is applied at a depth of 20 m below the ground
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surface. The vertical displacements of interface (at a depth of 2 m) in the ground are
displayed. For this ground, two boundary element sub-domains are introduced in the
model. Both the ground surface and the interface of the two sub-domains are discretized,
each with a mesh of 50 elements of one metre length over a range of 50 m (one side). In
the performance of the inverse FFT, 1024 samples are ﬁsed with a spacing of £ equal to
0.0025x2x (rad/m). Also shown are the results calculated using the layered ground model

[Sheng, Jones and Petyt 1999]. As can be seen, a good accuracy has been achieved.

x10°

Vertical displacement (1)

-5 I 1 L ! 1 1 L 1 !
-50 -40 -30 =20 -10 0 10 20 30 40 50

Distance along the x-axis (m}

Figure 4.1.Vertical displacement along the x-axis on a plane at a depth of 2m due to a unit vertical
harmonic load of 200 Hz moving at 100 m/s along the straight line (y=0m, z=-20 m) at a depth of 20 m.
, calculated by the layered ground model; — - -, calculated by BEM.

4.3.2 FOR A LAYERED GROUND

Figures 4.2 to 4.6 present the responses of a layered ground due to a vertical
harmonic load of 50 Hz which moves at 50 m/s at a depth of 20 m below the ground
surface in the x-direction. The parameters of the ground are listed in Table 4.1. Two
boundary element sub-domains are used to model the ground, and both the ground
surface and the layer interface (one side) are approximated by 50 elements which cover a
range of 50 m. The length of each element is 1 m. In other words, for each wavelength of

the shear wave in the upper layer, there are about four clements.
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TABLE 4.1

Parameters for a layered ground
Layer Depth  Young’s Poisson’s  Density  Loss factor P-wave speed  S-wave speed

{m) modulus ratio (kg/m3) (m/s} (m/s)
(10°Nm?)
1 2.0 157 0.18 1517 0.1 336 210
Half space 1062.8 0.253 1759 0.1 854 491
X 1041

Vertical displacement (m)

1 | L 1 1

-50 -40 30 -20 =10 0 10 20 30 40 50

Distance along the x-axis (m}

Figure 4.2. Vertical displacement along the x-axis on the ground surface due to a unit vertical
harmonic load of 50 Hz moving at 50 m/s along the straight line (y = 0 m, z=-20 m) at a depth of 20 m.
——, calculated by the layered ground model; — — -, calculated by BEM.
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Figure 4.3. Vertical displacement along the straight line (v = 10 m) on the ground surface due to a
unit vertical harmonic load of 50 Hz moving at 50 m/s along the straight line (y=0m, z=-20m) ata
depth of 20 m.

. calculated by the layered ground model; — — —, calculated by BEM.

Vertical displacement {m)

0.8+ E

-50 40 -30 -20  -10 0 10 20 30 40 50

Distance along the x-axis (m)

Figure 4.4. Vertical displacement along the y-axis on the ground surface due to a unit vertical

harmonic load of 50 Hz moving at 50 m/s along the straight line (y =0m, z=-20 m) at a depth of 20 m.

, calculated by the layered ground model; — — —, calculated by BEM.
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Figure 4.5. Lateral displacement along the straight line (y = 10 m) on the ground surface due to a
unit vertical harmonic load of 50 Hz moving at 50 m/s along the straightline (y=0m, z=-20m) at a

depth of 20 m. , calculated by the layered ground model; — — —, calculated by BEM.
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Figure 4.6. Lateral displacement along the y axis on the ground surface due to a unit vertical

harmonic load of 50 Hz moving at 50 m/s along the straight line (y =0 m, z=-20 m) at a depth of 20 m.

, calculated by the layered ground model; — — —, calculated by BEM.

It is shown in Figures 4.4 and 4.6 that BEM solution is valid over a lateral range
of 30 m. Beyond this, large error occurs due to the artificial boundary introduced at y =

50 m. This behaviour is quite different from that of a homogeneous half-space, where, as
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shown in Figures 3.15 and 3.17, the BEM solution remains highly accurate over the
whole BEM model, even for the homogeneous half-space including an unlined tunnel
(Figure 3.19). The same observation was made in references [Jones, Thompson and Petyt

1999] and [Anderson and Jones 2001].

4.3.3 FOR A HOMOGENEOQUS HALF-SPACE WITH A LINED TUNNFEL —
COMPARED WITH THE FICTITIOUS FORCE METHOD

Responses of a homogeneous half-space with a circular lined tunnel (tube} are
presented in Figures 4.7 to 4.9. The parameters for the half-space are listed in Table 3.1
while those of the tunnel in Table 2.1. The lined tunnel has an average radius of 3.5 m
and its axis is located at a depth of 16.5 m below the ground surface. The ground is
modelled using the boundary element method while the tunnel is modelled using the
finite element method. In the boundary element model 50 elements (one side) have been
used with an element length equal to 1 m for the ground surface and 30 elements (one
side) for the tube/soil surface. For the tunnel lining, 60 elements are distributed along its
cross-section, the sizes of each being 0.2x0.37 m. In the performance of the inverse FFT,
1024 samples are used with a spacing of £ equal to 0.0025x2x (rad/m). In addition to the
results from the coupled FE/BE model, results calculated using the fictitious force
method [Sheng, Jones and Thompson, 2002] are also shown in these figures for a
comparison. In general, the results from these two methods are close to each other.
Again, the negative effect of the edge of the BEM model is not encountered since the

ground is not layered.
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Figure 4.7. Vertical displacement along the x-axis on the ground surface due to a unit vertical

harmonic load of 40 Hz moving at 100 m/s in the x-direction. The load is applied on the invert of the lined

tunnel. , calculated by the fictitious force method; — — —, calculated by the coupled FE/BE method.

Vertical displacement (m)
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Distance along the y-axis (m)

Figure 4.8. Vertical displacement along the y-axis on the ground surface due to a unit vertical
harmonic load of 40 Hz moving at 100 m/s in the x-direction. The load is applied on the invert of the lined

tunnel.

, calculated by the fictitious force method; — — —, caiculated by the coupled FE/BE method.

_59_



Lateral displacement (m)

_2 s ! ! ] L I 1 1] i

50 40 @0 20 -0 O 10 20 30 40 50
Distance along the y-axis {m)

Figure 4.9. Lateral displacement along a straight line (y = 10 m) on the ground surface due to a
unit vertical harmonic load of 40 Hz moving at 100 m/s in the x-direction. The load is applied on the invert

of the lined tunnel. , calcufated by the fictitious force methad; — — —, calculated by the coupled FE/BE

method,

o
[= v -

Lateral displacement (m)
)
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Distance along the y-axis (m)

Figure 4.10. Lateral displacement along the y-axis on the ground surface due to a unit vertical
harmonic load of 40 Hz moving at 100 n/s in the x-direction. The load is applied on the invert of the lined

tunnel.

, calculated by the fictitious force method; - — —, calculated by the coupled FE/BE method.
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5. CONCLUSIONS

The theory for a muiti-domain FE/BE scheme has been formulated in the
frequency-wavenumber domain for the prediction of responses of structures which are
homogeneous in one direction and subject to harmonic loads moving uniformly in that
direction. The cross-section of the sub-domains may be either open or closed and may be
arbitrarily shaped. Thus this scheme is useful for the analysis of many structure-soil
interaction problems involving stationary or moving harmonic excitations, such as
ground vibration generated by underground trains. Example calculations and
comparisons with other methods show this scheme works very well. To achieve an
acceptable accuracy for a boundary element domain, more than three elements should be
implemented in each wavelength. For a coupled FE/BE domain in particular, more tests
should be conducted to identify the relationship between the fineness of mesh and

frequency.
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