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Abstract

This report investigates the dynamic characteristics and control mechanisms
associated with an active vibration isolation system of a flexible equipment structure
attached by four mounts to a rigid base. Four electromagnetic control actuators are
installed in parallel with each of four mounts, and stingers are used to connect the
actuators, flexible equipment plate and mounts together. The control strategy applied
is decentralised velocity feedback control, where each of the four actuators is operated
independently by feeding back the absolute velocity response of the flexible
equipment at the same location. Although one end of each actuator is collocated with
a sensor location, the control system is not collocation control because of the
flexibility of the equipment structure. Isolation of low frequency vibration is
considered where the mounts can be modelled as lumped parameter springs and
dampers, but the flexible modes of the equipment must also be considered. The
dynamic characteristics and control mechanisms of the mounted flexible equipment
structure on a rigid base as well as on a flexible base have been analysis theoretically
by means of the impedance method. As an initial study, only the results of the
mounted equipment structure on a rigid base are presented and discussed in this
report. It has been shown analytically that the system is unconditionally stable, and so
perfect vibration isolation is theoretically achievable. Various single channel control
and multichannel control systems have been implemented experimentally, and the
results are discussed in comparison with the theory. The measured system response
and closed loop attenuation are very similar to the predicted results. Good stability
properties are found in the experiments and attenuation of vibration levels of up to 30
dB at all resonance frequencies can be achieved with a gain margin of over 14 dB for
various implementations of control systems. Control performance has been assessed
both theoretically and experimentally in terms of absolute velocity response as well as
the kinetic energy of the mounted flexible equipment. Global reductions in vibration
level have been achieved at all resonance frequencies of analysis. If very high
feedback gains are used in the experiments, however, instability is encountered at
about 1 Hz due to some undesirable phase shifts in the electrical equipment used.



1. Introduction

Isolating a piece of delicate equipment from the vibration of a base structure is of
practical importance in various engineering fields. Examples are the instrument boxes
in aeroplane and telescopes in satellites. Passive mounts are widely used to support
the equipment and protect it from severe base vibration. However, conventional
passive mounts have an inherent trade-off between low and high frequency isolation
performances depending on the dissipating elements used [1]. Low mount damping
brings poor performance at low frequencies, while high mount damping brings poor
performance at high frequencies. Although the use of an active control system can
overcome these limitations and allows high levels of vibration isolation, generally the
best isolation performance is achieved at all frequencies of interest when an active
system is used in combination with a passive mount.

When an active isolator is designed, two configurations are possible, i.e., the
secondary actuator can be placed in series or in parallel with the passive mount. Beard
et al [2] investigated the first configuration by coupling a piezoelectric actuator in
series with a passive mount. However, the effectiveness of such a mounting design
was shown to be dependent heavily upon the high stiffness of the actuators. Due to a
very small deflection capacity, the use of such actuation is limited for the isolation of
very small amplitude motion of base structure. In many situations, the base vibration
is of the order of millimetres. As a result, an actuator with a long throw, such as
electromagnetic shaker, is required. An experimental study on the active vibration
isolation of a rigid equipment structure, where two electromagnetic shakers were
installed in parallel with two passive mounts, was reported by Serrand and Elliott [3].
An active isolator can be achieved by feedback control strategies, among which
velocity feedback control is one of the most popular. The absolute velocities of a plant
structure measured by identical sensors are directly fed back to the actuators, which is
easy to implement in practice. In particular, when one end of the actuator is collocated
with the sensor and the other reacts off an inertial ground, the multichannel control
system is proven to be asymptotically stable [4,5]. Using velocity feedback control,
Kim et al [6] investigated a general four-mount active vibration isolation system for a
three-dimensional rigid equipment structure. It was shown experimentally that a
decentralised feedback multichannel control configuration was able to reduce the
equipment vibration at all frequencies of interest.

This research is an extension of the work [6] investigating the four-mount active
vibration isolation for a three-dimensional flexible equipment structure. Using a
similar experimental configuration to reference [6], electromagnetic actuators were
installed in parallel inside the mounts, connecting the flexible equipment and the
mounts to an active isolation system, Particular emphasis is placed on the isolation of
low frequency vibration (0~200Hz), assuming the mounts to be springs and dampers.
The objective of this research is to investigate the performance and stability issues
associated with this four-mount vibration isolation system for a flexible equipment
structure using the decentralised velocity feedback control. The initial results of the
active vibration isolation system on a rigid base are described in this report. The
dynamic characteristics of the multiple mounted flexible equipment structure arc
analysed using the impedance method. In addition, plant responses of the coupled
system on a rigid base have been measured in the experiment and compared with
those from simulation. The Nyquist criterion is employed to analyse the stability of



the active isolation system. Performances of the single channel and multichannel
velocity feedback control are presented and discussed.

2. Theoretical analysis of the mounted equipment

2.1 Impedance representation of a single mount system

Considering the connection of the equipment, mount and the actuator, Kim et al [6]
presented a simple model for the active vibration isolation of a single mount system
using the impedance method. The model can be extended to study a single mount
active isolation of a flexible equipment. Figure 1(a) shows a one-dimensional
mounted equipment structure, where the flexible equipment is supported by a passive
mount consisting of a spring %, and a damper ¢, The actuator, which generates a
control force, f, is installed to connect the equipment and the mount into a whole
isolation system. The whole system on a rigid base can be represented in terms of
impedance as shown in Figure 1(b), where Z, Z,, and Z, denote the impedances of the
actuator, flexible equipment and mount, respectively. On a rigid base, f; is the primary
excitation force as well as the secondary force, inducing a velocity v, in the flexible
equipment., Compared to the electromagnetic shaker and the equipment, the mount is
assumed to be massless. For the convenience of the theoretical analysis, no time delay
is assumed in the electric controller.

™ f V, }Equipment Lo+,

ky, 1Cm e Mount

}Rigid Base

(a) one d.o.f system (b) impedance representation
Figure 1 Single mounted flexible equipment on a rigid base

Let the force acting through the mount be f,, the flexible equipment response can be
written as,

Z,+Z . =S~ fu (1)



Jn=2Znv, 2)
where, Z, =Y, Z, = jom, and Z, =c, +k,/jo. It is noted that in this one-
dimensional analysis, the moment of inertia of the actuator could not be taken into
account. In addition, the impedance of the flexible equipment is obtained by inverting
the corresponding mobility ¥, , and the actuator is assumed to have the same velocity
as the flexible equipment for the connection used in this research. By combining
equation (1) and (2), the single mount system on a rigid base can be described by,

(Z,+Z,+Z, .= . (3)
The model can be further extended for a generalized case, i.e. a single mount active
vibration isolation system on a flexible base. The base structure is excited by a
primary force f;, and vibrated with a base velocity vy, as shown in Figure 2. Using the
same method, the base response is described by,
Zy,=f,~fu—fe “)
fo=Z,.(v,—v,) (5)
Tt is noted that for the case of a flexible base, the force f generated by the actuator is
no longer a primary force. Thus the flexible equipment response is expressed by,
Z, +Z . =f.t ] (6)
Combining equation (4), (5) and (6), the dynamic behaviour of an active isolation of a
flexible equipment on a flexible base can be described in matrix form,

Z,+Z,+Z, —Z, ||v.|_ f. o
-z, z,+Z, |lv,] |fo—f

T ._“..%m Ve }Equipmel‘lt

. Mount

}Flexible Base

(a) Physical representation (b) Impedance representation
Figure 2 Single-mount vibration isolation systcm on a flexible base

Because the passive system is stable, the velocity responses can be obtained by
inverting the impedance matrix in equation (7). In this research, the control system
employs the direct velocity feedback control strategy that uses the measured velocity
signal v, from the equipment to activate the actuator with a constant gain of —H . At



low frequencies, the control force generated from the actuator is approximately
proportional to the input velocity signal, i.e., f, =—Hv,. Thus, equation (7) becomes

Z,+Z,+Z,+H -Z, {|v.| |0 8
—~(Z,+H) Z,+Z, | v,] |/, : )

2.2 Impedance representation of a muitiple-mount system

The impedance representation of a single mounted flexible equipment structure can be
generalised for the more genecral case where the flexible equipment structure is
supported by a set of mounts. As an extension to Figure 1, the multiple-mount
vibration isolation system on a rigid base is represented in terms of impedance as
shown in Figure 3(a). The number of mounts under consideration is M, and the total
number of modes in the flexible equipment is N. Again no mass effects are considered
in the mounts. Since M mounts are used, the end velocities of all mounts are denoted
as M length vectors v, to the flexible equipment. M actuators are used to connect the
mounts and the flexible equipment, providing M length of primary force vector f.
Assuming a force vector fy, acting through the mounts, the dynamic behaviour of a
multiple mounted flexible equipment structure on a rigid base can be written as,

(Z,+Z )y, =f -1, )]

£ =Z_v, (10)

Flexible
f equipment
TVe ( N modes )

Zn| © f - M mounts

7 Flexible base
b | @Ddp ( L modes )

{(a) Rigid Base (b) Flexible Base
Figure 3. Impedance representation of a multiple mount vibration isolation system

where, Z,, Z, and Z, denote the impedance matrix of the actuators, flexible

equipment and mounts, respectively. In particular, Z, = Y, !, provided the mobility

matrix Y. of the flexible equipment is invertible. The mobility matrix is invertible if
the elements of the vector v, are linearly independent. Impedance matrixes Z, and Z,



are (MxM) diagonal matrixes, whose diagonal terms are the impedances due to the
mass of each actuator, the stiffness and damping of the corresponding mount,
respectively. As an extension to equation (3), the multiple-mount flexible equipment
structure on a rigid base can be represented by,
Z,+Z,+Z )v, =1, (11)
Considering the multiple-mount vibration isolation sysiem on a flexible base as
shown in Figure 3(b), the dynamic behaviour of the flexible base is strongly coupled
with the mounted flexible equipment. Assuming that the flexible base is excited by a
primary force vector f, the base response can be written as,
Z,v,=d,-f, -f

[

12)
where, d, =Z,Y,f, , in which Yy are the mobility matrix of the uncoupled flexible
base due to the primary force vector fp. By extending equation (5) and (6), the
dynamic behaviour of the multiple-mount active vibration isolation of a flexible
equipment on a flexible base can be described in matrix form,

Z,+2,+Z, -Z, \A f, (13)
A Z, +Z_||v,| |d,-f.

Equation (13) is a compact description of the whole mounted flexible equipment-base
coupled system in terms of impedance at the mount positions. It is a simple extension
to equation (7) for the single mounted system. If the control strategy can be
implemented to achieve f, =—Z, v, in equation (13), perfect vibration isolation from

the flexible base can be achieved. In this case, the mounted flexible equipment
structure and the flexible base are uncoupled. The flexible base would behave as if
there was no mounted flexible equipment structure attached, and the mounted flexible
equipment structure would behave as if it was placed virtually on a rigid base. It is
noted that the impedance matrix Zn can be constructed from the impedance of each
mount, while the impedance matrixes Z. and Zj are determined from their
corresponding mobility matrixes Y and Yy, providing they are invertible. Mobility
matrix Yeis generally invertible if the total number of the flexible equipment modes N
is not less than the number of mounts, M, i.e. N = M . The same applies to Yy, so that
the condition is L> M where L is the total number of base modes considered. In this

case, the velocity responses in {ve vy }T are linearly independent and the complete

impedance matrix of the coupled system of (2Mx2M) size is invertible.
Again by adopting direct velocity feedback control, the control force vector fe
generated by the multiple actuators is,
f. =—Hv (14)

It is noted that, each of the actuators is operated independently by feeding back the
equipment absolute velocity with the same gain at each mount location. This is termed
as decentralised control, where the control gain matrix is diagonal. Substituting
equation (14) into (11), the response of the multiple-mount flexible equipment
structure on a rigid base is given by,

Z,+Z,+Z,+Hyv, =1, (15)
It is noted that for a rigid base, one of the actuators generates a primary force as well
as a sccondary force. Detailed implementations of the single channel and
multichannel velocity feedback control of the mounted flexible equipment structure
on a rigid base are described in section 4.3 and thus omitted here for brevity.
The system response of the multiple-mount flexible equipment structure on a flexible
base is obtained similarly by substituting equation (14) to (13),



Z.+Z,+Z +tH —-Z, |}V, 0
= *(16)
-(H+Z,) Z +Z,|\v, d,

Conventionally, control performance is discussed in terms of transmissibility, which
is defined by v, /v, for a single mount active isolation system. Because of the special

installation of the control actuator in this research, the dynamic behaviour of the
mounted flexible equipment structure is strongly coupled with the dynamics of the
flexible base as can be seen from equation (7) and (13). In this case, v, changes after

attachment as well as a change of the control gain, therefore, the transmissibility does
not represent the absolute vibration response of the flexible equipment. Thus, the
absolute velocity of the mounted flexible equipment structure is more preferable as a
control performance measure for mounted active isolation system. Pan et al [9]
studied the dynamics of an active isolator by considering the power transmission,
which extended the modelling of the passive mount system in terms of power to the
modelling of the active isolation system. Power is not only considered as a good
parameter for describing vibration, but also power minimization has been applied as a
new control strategy for the active vibration isolation system. Kim et al {6} employed
the kinetic energy of a rigid equipment to investigate the control performance of a
multiple-mount active isolation system. Using the same idea, the kinetic energy of the
flexible equipment will be employed as the contro} performance measure in addition
to the absolute velocity in this study.

If the active controlled multiple-mount flexible equipment-base system is stable, the
velocities at both ends of the mounts can be obtained by taking the inverse of the total
system impedance matrix. However, because the number of flexible modes of the
equipment is greater than that of the mounts generally, i.e. M < N, the kinetic energy
of the equipment can not be obtained directly from equation (15) or (16), which only
gives velocity responses at the mount locations. Thus it is necessary to consider the
dynamics of the active vibration isolation system in modal co-ordinates. Assuming
that the equipment, a flexible rectangular plate, is described by the physical co-
ordinate system r, the kinetic energy is given by,

Ef= %‘ [p.@ofas 17)

where, v,(r,®) is the velocity at the position r, and 0, ¢, and S, are the material

density, thickness and area of the plate, respectively. The vibration response in the
flexible equipment can be represented by a summation of N modes, which is
expressed by a product of a shape function and an amplitude function [10],

N
v (r,w) = Y. ¥, (y)a,(@=vy"a (18)

n=1
where T denotes the transpose, and the N length column vectors ¥ and a consist of the
arrays of the modal shape function y,(r) and the complex amplitude of the modal

velocity a, (@) respectively. It is noted that the modal functions refer to those of the
uncoupled equipment plate instead of the complete coupled system. If the modal
shape function ,(r) is normalised according to S, = L w2(r)dS , the Kinetic energy

given in equation (17) can be rewritten as,

Ef = %Laﬂa (19)



where, M, is the total mass of the flexible plate, i.e. M, = p,S,, and the superscript "

denotes the Hermitian transpose. For the particular installation of the actuators that
can be assumed as rigid masses, the kinetic energy stored in the actuators must be
considered when discussing the control performance. Therefore, the kinetic energy of
the mounted flexible equipment structure is,

E, =~ﬂ—§f—aﬂa+%AHJ3A (20

where, A={wn 636 @, }T denoting the heave, pitch and roll velocities of the

actuators, can be determined from the velocities of the flexible equipment at the
mount positions. The inertia matrix of the actuators, J .. is given by,

M, 0 O
J,={0 J, O 1)
0 0 J,

where, M, is the total mass of the actuators, /g and 1, are the moment of inertia of the
actuators in respect to the pitch and roll motions, respectively. In order to calculate the
kinetic energy, the dynamic response of the multiple mounted active vibration
isolation system described by equation (15) or (16), needs to transform from the
physical co-ordinate to modal co-ordinate, by replacing the physical velocity response
vector v with the modal velocity vector a. According to equation (18), the equipment
velocity response vector Ve at the mount positions can be expressed by,

v, =Pyha (22)
where, matrix W, is a transformation matrix which transforms the N length modal
velocity vector a to the M length physical velocity vector Ve. Since W}, is a (MxN)
size matrix where M <N (underdetermined), a can not be obtained directly from ve
[11] because ¥y, is not invertible even in the least square sense. This is the reason
why a modal domain formulation is necessary. Substituting equation (22) into
equations (15) and (16), the dynamics of the multiple mounted flexible equipment
structure on a rigid base in modal co-ordinates is described by,

Z,+Z,+Z, +Ma=f, (23)
and on a flexible base,
Fe+ia+im+ﬁ —‘PMZm]{a}:{O} o)
—(Z, +H¥y  Z,+Z,|(Vs]

where the modal impedance matrices are given by,
Z, =Y Z, =¥, 7, Yy Z, =¥YuZ, ¥y  (252b0)
H=Y,H¥y f, = Puf, (26a,b)
Tt is noted that, Z,, Z,and H are obtained by transformations from physical co-
ordinates into modal co-ordinates, while Z, is directly obtained from the inverse of
modal mobility matrix Y, of the flexible equipment. This is because the matrix Z, of
rank N can not be obtained from ¥, Z Wa, whose rank is M, where N>M . It is
noted that, Z, is diagonal, while Z,, is generally non-diagonal but symmetric

€

although Z_ is diagonal. The non-diagonal terms act as coupling terms between the
equipment modal responses. The general representations of equations (23) and (24)

9



are valid regardless of the difference of M and N. Since the modal velocity vector a
can be obtained by inverting the modal impedance matrix in equations (23) and (24),
the control performance of the multiple-mount active isolation system can be assessed
in terms of kinetic energy determined by equation (20). The physical velocity vector
v at the mount positions can also be obtained from equation (22).

In summary, a general theoretical analysis of a flexible equipment supported by a set
of mounts on a rigid base as well as on a flexible base is presented in this section. It is
very useful to fully understand the mechanisms of a simple case of a mounted flexible
equipment on a rigid base before moving to a more complicated one on a flexible
base. Therefore, a 3-dimensional flexible equipment structure with four mounts on a
rigid base has been studied theoretically and experimentally, and discussed in the
following sections.

2.3 Simulation of a four-mount active isolation system on a
rigid base

In this section, simulations are performed for a flexible equipment structure on a rigid
base with four passive mounts and electromagnetic actuators as shown in Figure 4. It
is assumed that the flexible equipment is of uniform and all four mounts are massless
and have the same mechanical properties. Particular interest is the low frequency
range (0~200 Hz), where the mount can be modelled as a parallel connection of a
spring and a damper. Relevant physical and geometry properties used in the
simulation are tabulated in Table 1 and 2. The theoretical stiffness and damping
properties of the mounts were chosen to best fit the measured natural frequency and
bandwidth in the experiments.
For the convenience, the locations of the four mounts are denoted as nodes 1, 2, 3, 4
as shown in Figure 4. When the flexible equipment on a rigid base is excited by one
of the actuators via a white noise signal, the plant response G at each mount location
is calculated according to equation (11), which is expressed,

G=@Z, +7Z,+Z.)" (27)
It is noted that, ( )™ is the inverse of the impedance matrix of the mounted flexible

equipment structure. In particular, Gy is the velocity response at the ith mount location
due to unit force excited at the jth mount location. The magnitude of each simulated
plant response as well as its phase angle is shown in dashed lines in Figure 6 to Figure
21. Each peak in the plant response figures corresponds to a resonance frequency of
either a rigid or a flexible mode. Each motion can be clearly distinguished by
comparing the other plant responses and checking the corresponding phases at that
particular frequency. Using the simple impedance modal outlined in the previous
section, only the heave, the pitch and the roll rigid body modes of the mounted
flexible equipment structure are considered. However, only one rigid body resonance
is predicted from the simulation, as seen from the plant response G;; in Figure 6. This
can be explained by looking at the natural frequencies of the mounted flexible
equipment structure. The resonance frequencies of the three rigid body modes can be
estimated by the following equations, which give 17.40, 17.78 and 17.43 Hz
respectively,

10



1 4k B
Ly VTR s

where, K is the spring stiffness of cach mount, 7, and I, are the moments of

inertia of the mounted flexible equipment structure in respect to the Y and X axis as
shown in Figure 4. The resonance frequencies of the three rigid body modes are so
close that they are merged into one large peak instead of three small ones. This
explanation is further substantiated from the experimental observations as seen from
the experimental plant responses in solid lines from Figure 6 to Figure 21. The
frequency of the first flexible mode of the mounted flexible equipment structure is
predicted to be around 50.7 Hz, with the second around 132.1 Hz. The theoretical
analysis has been validated through a detailed comparison with the measured plant
responses of the mounted flexible equipment structure on a rigid base from the
experiment, which is described in the following section. After the whole plant matrix
G is obtained, stability of the active four-mount vibration isolation system can be
assessed using the generalized Nyquist criterion [12].

Actuators

Mounits

Flexible Hj

kilei|fa Equipment k3]cz | fez

Figure 4. A four-mount flexible equipment structure on a rigid base
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Table 1. Physical properties

Material of the flexible equipment plate Aluminium
Density of the flexible equipment plate 2700 kgm'3
. M, Mass of the flexible equipment plate 0.3564 Kg
Equipment , 10 pJop-2
Structure Young’s Modulus 7.1x10"" Nm
Poisson’s Ratio 0.33
Damping ratio ¢, =0.01
Mount k., spring stiffness of each mount 1.2x10* N/m
oun cm, Damping of each mount 11.5 Ns/m
Actuator M, Mass of each actuator 0.91 Kg

Table 2. Geometric data

(LexLext), Dimensions of the flexible equipment plate (mm)
Mount locations on the flexible equipment {(mm)

Location of node 1

Location of node 2

Location of node 3

Location of node 4

(300 x 160 x 3.54)
I, =117, 1, =47
(L,/2-1,,L,/2-1,)
(£./2+1,.L,/2-1,)
(L./2+1,,L,/2+1,)
(L./2-1,,L,/2+1,)

12



3. Experimental study of a four-mount flexible

equipment structure on a rigid base

3.1 Description of the experimental set-up

The four-mount active vibration isolation system has been built as shown in Figure 4.
The mounted flexible equipment structure was installed on the top of a rigid base, i.e.,
a thick steel plate. It is noted that the mounted equipment structure refers to a
combination of the flexible equipment, i.e., the aluminium plate of thickness 3.54
mm, four rubber mounts and four electromagnetic shakers, which acts as the
actuators. To achieve the same parallel installation of actuators with the mounts as
shown in Figure 4, the four actuators are fixed on the flexible equipment and are
mounted on top of each mount position. The mount is made of natural rubber with a
hollow cylinder shape, which is connected to the flexible equipment by a stinger
between the actuator and a mount foot through the mount as shown in Figure 5. The
physical and geometric properties of the experimental sct-up, as well as the locations
of the mounts, are the same as those in the simulation as shown in Tables 1 and 2.

1 Electromagnetic Actuator
2 Bolt

3 Support (height = 40 mm)
4 Stinger

5 Flexible Equipment Structure (Al)

6 Adapter (Al)

7 Rubber Mount (height = 30 mm,

outer dia. = 30mm, inner dia. = 10 mm)

8 Accelerometer
O Steel Washer

Figure 5 Connection of the actuator, flexible equipment and the mount.
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3.2 Experimental plant response of the four-mount active
isolation system

When the mounted flexible equipment structure was excited by one of the actuators
via a white noise signal generated from an FFT Analyzer (Advantest R9211C), the
acceleration signal at each mount location was measured using an accelerometer
(B&K type 4375). The acceleration signal was passed to a general signal conditioner
(B&K type 2635) and converted to a velocity signal by an integrated module inside
the signal conditioner. It is noted that the integrator is operated in conjunction with a
highpass filter. In this study, the cutoff frequency of the highpass filter was set to be 1
Hz. Finally the velocity signal was inputted into the analyzer to measure the
frequency response function. It is noted that there is a built-in filter in the analyzer to
reduce aliasing. The plant responses of the mounted flexible equipment structure on a
rigid base in the experiment are shown in solid lines in Figure 6 to Figure 21. As
pointed out in the previous section, stability analysis of the active vibration isolation
system can be evaluated after the plant responses of the mounted flexible equipment
structure on a rigid base are obtained. Moreover, the theoretical model developed in
section 2 has been validated by a comparison between the corresponding plant
responses from the simulation and those from experiment. In order to match the first
flexible resonance of the plant response measured from experiment, the thickness of
the flexible equipment plate in the model is set to be 2.9 mm. This lowers the
frequency of the first flexible mode in the model and is thought to compensate for the
frequency lowering effect of the rotational moments of inertia of the shakers in the
experimental arrangement, which were not accounted for in the model.

The first main peak noticeable in the experimental driving point plant responses is
related to the rigid body modes of the mounted flexible equipment structure. This is in
accordance with the prediction given in section 2.3 because the frequencies of the
three rigid body modes are very close to each other. In particular, the measured
natural frequencies of the rigid body modes (17.42, 17.98 and 17.45 Hz) are very
close to those from simulation (17.40 Hz, 17.78 Hz and 17.42 Hz). It is noted that the
corresponding experimental rigid body frequencies are obtained from the mode
decompositions described in section 4.2. The following peaks correspond to the
flexible modes, with the first one at about 50.5 Hz, the second at around 140.0 Hz and
the third at around 189.6 Hz. The experimental plant measurements have some
discrepancies at frequencies below 10 Hz compared with the simulations, which
suffer from the poor coherence due to the low sensitivity of the actuators and the
sensor used. Although the frequency of the first flexible mode is very close to that
from simulation, the resonance of the second flexible mode occurs at 140.0 Hz in the
experiment, instead of around 132.1 Hz as predicted from simulation. These are
because that, the four mounts are assumed to be identical in the simulation, while in
the experiment, they have small differences which may be traced back to the
installation of the experimental set-up. There is a slightly discrepancy in each
experimental driving point plant response, which is also due to the fact that the four
mounts used in the experiment are not exactly the same.
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4. Discussion of results

4.1 Comparison of plant responses from simulation and
experiment

Matching the results of a theoretical model to measurements from experiment is a
good way of evaluating the degree of confidence in using the theoretical model to
predict the dynamics of the mounted flexible equipment structure, assuming all the
parameters affecting the system are properly considered. In addition, it is a powerful
tool for interpreting and understanding experimental results as it superposes a
theoretical background to the phenomena observed from experiment. Therefore, the
plant responses from simulation (dashed line) are compared with those measured from
the experiment (solid line) as shown from Figure 6 to Figure 21 in order to validate

the theoretical model developed in section 2. It is noted that, the plant response G;; is

the velocity response measured at the ith node when the mounted equipment structure
on a rigid base is excited by unit force at the jth node.

Both simulation and experiment demonstrate that coupling in the mount nodes is
significant at the natural frequencies of the rigid body modes, since the rigid body
modes generate almost the same amplitude of vibration at the four nodes of the
mounted flexible equipment structure with very similar phase shifts. The coupling is
also significant at the resonance frequency around 50.6 Hz of the first flexible mode.
It is found that the driving point plant responses from the simulation agree well with
those from experiments, with the frequencies and mode shapes listed in Table 3.
However, for the off-diagonal terms in the plant response matrix, there are some
discrepancies noticed in the frequencies above 60 Hz between the simulation and
experiment. The experimental plant responses clearly show a third flexible mode in
the frequency band of analysis, compared to only two flexible modes predicted from
simulation. As pointed out earlier, there are small differences in the four mounts used
in the experiment, whereas four identical mounts with the same properties are
assumed in the simulation. In summary, the plant responses from simulation are
reasonably close to those from experiment, which demonstrates that, the dynamics of
the four-mount flexible equipment structure can be understood using the theoretical
model outlined in the previous section.
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Table 3. Natural frequencies of the mounted flexible equipment structure

Simulation Experiment
Frequency . Mode shape Frequency . Mode shape
(Hz) Motion T3 34 (Hz) Motion T 2 3 4
17.40 Heave + + + + 17.42 Heave + + + +
17.78 Pitch + - - + 17.98 Pitch + - - +
17.42 Rell + + - - 17.45 Roll + + - -
Flexible Flexible
20.6 (Torsion)  ~ *° 303 e
Flexible Flexible
132.1 (Heave) + + + + 140.0 (Pitch) + - - +
Flexible
189.6 (Torsion) + - + -
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4.2 Stability assessment of the four-mount active vibration
isolation system

Before any control strategy can be applied to an active vibration isolation system, it is
very important to perform a stability analysis first. A general block as shown in Figure
22 can be used to represent the velocity feedback control of the four-mount flexible

equipment structure, which is described by,

v, =G f, (29)
Primary
Matrix of the disturbances
plant response
f. +, 4
# G(] a)) = N Ve

- H(](())L.__.____—

Feedback
gain matrix

Figure 22 Equivalent electrical block diagram for a velocity feedback control system

Stability of a multichannel velocity feedback control system can be determined from
the open loop frequency response function matrix, L( jo) = G(jo)H(jw), using the
generalised Nyquist criterion [10], which states that the closed loop control system is
stable provided none of the eigenvalue loci of L(jw) should encircle the (~1,0) point
in the complex plane. When an identical constant control gain of H is used in each
control channel, i.e, equi-decentralised control, the feedback gain matrix is simply
given by,

H 0 0 O
H 0 0
H(jo)=H= 30
(jo) o 0 H 0 G0
0 0 0 H

Therefore, L(jw) can be rewritten as

L(jo)=H G(jw) €29
The stability analysis of the four-mount flexible equipment structure is thus simplified
to study the Nyquist plots of the eigenvalues of the plant response matrix G(jw) . The
four-mount active isolation system is stable if none of the eigenvalue loci of G(jw)

encircles the (-1,0) point. If none of the eigenvalue loci crosses the negative real axis,
the system is unconditional stable. For the special case of a single channel velocity
feedback control using a constant gain at the ith mount position, the stability can be
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assessed by examining the Nyquist plot of the corresponding diagonal velocity
response term, G, (jw).
The relationship between the plant response G{jw) and its true eigenvalue matrix

Q(jw) can be expressed by,

G(jo)Q(jo) = Q(jm)Q(jw) (32)
where, Q(j®) is a diagonal matrix of the true eigenvalues A,, and Q(jw) is the
matrix of the true eigenvectors of the plant response matrix G(jw) at the frequency
@ . Therefore, the true eigenvalues are calculated in this case by,

Q(jw)= Q7 (jo)G(jo)Q(jw) (33)
For the four-mount flexible equipment structure, the plant response matrix G{jw) of
size (4x4) has four frequency dependent true eigenvalues. Stability of the
multichannel velocity feedback control of the mounted flexible equipment structure
can thus be assessed on the corresponding Nyquist plots of the true eigenvalue loci.
There is an inherent numerical difficulty in obtaining the true eigenvalue loci in order
within MALAB, and a detailed description of an algorithm to solve this difficulty is
given in Appendix A.
It is often convenient to judge the stability of the multichannel control system in the
transformed coordinates [6] to prevent such an inherent numerical difficulty in
obtaining the true eigenvalues of the plant response matrix G(jw). As a result,
another approach is also investigated in which the mode shapes of the eigenvectors
are assumed and the corresponding eigenvalues are calculated. The assumed
eigenvectors comrespond to the mode shapes of the heave, pitch, roll and torsion
vibration modes and are given by,

1 1 1 1
~ |1 -1 1 =1
= 34
Q I -1 -1 1 G
1 1 -1 -1
The assumed eigenvalues are then calculated from the following equation,
Q(j@)=Q7G(jo)Q (35)

Although the matrix Q( jw) calculated from the assumed mode approach is not

completely diagonal in this case, the off-diagonal terms are rather small compared
with the diagonal ones as demonstrated in Appendix B. Therefore, the use of a

diagonal approximation to €( j@) to assess the stability of the multichannel feedback

control system of the mounted flexible equipment structure appears to be a reasonable
one. .

Prior to implementing the four-channel control system in this research, it is useful to
fully understand the behaviour of a single channel controller. When the mounted
flexible equipment structure on a rigid base is excited by one of the four actuators, a
single channel control can be implemented by feeding back the velocity at another
mount position to the actuator there. Alternatively, single channel control can also be
implemented in the same position using a summation box, which is specially designed
to superpose the primary excitation and the feedback velocity control signal together.
As pointed out earlier, stability of a single channel control system can be assessed by
evaluating the Nyquist plot of the corresponding plant response term, G, {(j®).
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Therefore, Nyquist plots of the diagonal terms in the plant response matrix, G(jw),

from both simulation and experiment are compared in Figure 23 to Figure 26.

For the single channel velocity feedback control, the mounted flexible equipment
system exhibits very good stability properties from both simulation and experiment,
since almost the whole Nyquist plot of the corresponding diagonal plant response
term, G, (j@), lies in the right real half plane. The big loop represents the rigid body

modes, which are appeared in the Bode plots of plant responses in the previous
section. The flexible modes of the mounted flexible equipment structure in the
frequency range (0~200 Hz) is characterised by several small loops, whose radius
decreases as the passive mounts become more efficient with the increasing frequency.
The Nyquist plots of the diagonal plant response terms from simulation look very
similar with each other, because the flexible equipment structure is symmetric and
four identical mounts and actuators are assumed. Perfect operation of the electric
equipment in the control loop is also assumed in the simulation. As a result, the
Nyquist plots of the diagonal plant response terms from simulation are totally in the
positive real half plane. In the experiment, the mounts are not exactly the same, which
makes the Nyquist plots of the diagonal terms of the measured plant response from
experiment a small discrepancy from one to another. Most of the Nyquist plots from
experiment lies in the stable right half plane, except for a small region at very low
frequencies suffered from the low sensitivities of the actuators and sensors. At low
frequencies, the lowpass filter and integrator inside the charge amplifier may cause
additional phase shift, which tends to be 75/2. This is not expected to cause

instability, but will give rise to vibration amplification at very low frequencies. The
phase shift has to be added to the phase shift of the power amplifier at low
frequencies. Theoretically, a phase advance of a little over 90° at low frequencies is
sufficient for the Nyquist plot to cross the negative real axis. Thus, the phase shifts at
very low frequencies are the causes of the small responses noticed on the upper left
side of the origin in the Nyquist plots of the diagonal plant response terms from
experiment. These effects are not large and are always associated with small
amplitude vibrations as a result of passive mounts. However, some vibration
amplification in the corresponding frequency band may be expected, which may then
induce instability if the feedback control gain is very large.

It is also noted that, the actuators are not strictly collocated with the sensors for the
installation of the mounted flexible equipment structure as shown in Figure 5, due to
the flexibility of the isolated equipment. In practice, the diagonal plant elements are
all almost entirely positive real above about 10 Hz, indicating that there is not a
significantly different vibration response between the experimental actuators and
sensor. Some additional phase shift is observed for at about 85 Hz in G, as shown in

Figure 16, but the amplitude is small at that frequency.

Stability of the multichannel control system of the mounted flexible equipment
structure on a rigid base is also assessed using the true eigenvalue method as well as
an assumed mode shape method described above. After the plant response matrix of
the mounted flexible equipment structure is constructed both theoretically and
experimentally, the amplitude and corresponding phase angle of the true eigenvalues
are obtained as shown from Figure 27 to Figure 30. Again, the theoretical results
match fairly well with those from experiment, which further validates the theoretical
model developed for the four-mount flexible equipment structure. It is noted a special
algorithm is designed to distinguish the true eigenvalues and their associated
eigenvectors at different frequencies. Figure 31 to Figure 34 show the Nyquist plots of
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the true eigenvalue loci of the mounted flexible equipment structure from simulation
(dashed line) and experiment (solid line). It is noticed that each of the plots from both
simulation and experiment only has one main loop for the configuration of the four-
mount equipment structure, because each true eigenvalue is proportional to the
amplitude of a certain mode. By assuming the appropriate mode shapes as described
in equation (34), the stability of multichannel velocity feedback control of the
mounted flexible equipment structure is further assessed as shown in Figure 35 to
Figure 42. The Nyquist plots from the assumed mode shape method agree very well
with those of the true eigenvalue loci, which shows that it is reasonable to assess the
stability of the mounted equipment structure by the assumed mode shape method. Due
to the imperfect operation of the electric equipment and low coherence suffered at low
frequencies, the corresponding plots from experiment slightly cross the imaginary axis
at very low frequencies, although its effect is very small. Smooth curves at low
frequencies are observed in the simulation since perfect operation of the electric
equipment is assumed. The loci predicted from the simulation lies wholly within the
stable right half plane. However, for the experimental results there are relatively small
loops in the middle of the frequency range as shown in the lower left half plane of the
experimental Nyquist plots from both true eigenvalue method and assumed mode
shape method. In general, they are associated with small amplitude vibration level as a
result of increasing efficiency of the passive mount with the increasing frequency. The
difference between the theory and experiment originates from the fact that the
feedback control of the mounted equipment structure implemented in the experiment
is not a collocated control strictly as pointed out previously. In the simulation, the
actuator is simplified as a rigid mass point where the velocity is measured and fed
back, whereas in the experiment the shape configuration of the actuator is comparable
to that of the equipment. The distance between the actuator and the sensor in the
experiment affects the measurement accuracy for a case of flexible equipment, which,
probably, is the origin of the low coherence observed in the middle of the frequency
band in the measured plant responses. As the velocity feedback control gain increases,
the radii of the small loops in the left half plane of the Nyquist plots of the true
eigenvalue loci will become greater and greater. Eventually the multichannel control
system of the mounted equipment structure goes unstable when the true eigenvalue
loci encircles the (-1,0) point for a large gain. In summary, as most of the true
eigenvalue loci les in the stable right half plane, good stable properties of the
multichannel control system are expected for the four-mount equipment structure. The
main threats to the control stability come from the phase shifts in the electronics of the
control loop at low frequencies as similarly pointed out for the single channel control
case and non-collocated installation of the sensor and actuator.
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4.3 Control performance analysis and discussion

4.3.1 Single-channel control of the mounted equipment struciure on a
rigid base

In this section, various single-input-single-output (SISO) control systems are
implemented for the four-mount flexible equipment structure. The acceleration signal
obtained at the control location is integrated through a charge amplifier. The resulting
velocity signal is amplified by a constant control gain using a power amplifier and fed
back to the control shaker. Thus, activated by a velocity signal, the control shaker
~ generates a control force at the corresponding control point. As mentioned in previous
section, there are two possible ways to implement the single channel feedback control
in the mounted flexible equipment structure as shown in Figure 43 and Figure 44. Due
to a limitation in extending the first configuration of feedback control to the following
four-channel active vibration control of the mounted flexible equipment structure on a
rigid base, main efforts are placed on the implementation using the second method.
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FPT ﬂaﬂﬂﬂ b
Analyzer 7 ® Charge
Ch Amplifier
a <
Out Power Ta | White Noise Signal
Amplifier | Feedback Signal
Chb «
|7 K, K
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1 force
Primary
Excitation =7 =
Mounted a 4
Equipment D

Figure 43. The first configuration of a single channel control system

Using the first configuration, the SISO velocity feedback control is implemented at
one of the four actuators when the mounted flexible equipment structure is excited by
another actuator. Considering the symmetry of the mounted equipment structure,
typical velocity responses at the control position 2, 3 and 4 when the mounted flexible
equipment structure is excited at node 1, are shown in Figure 45 to Figure 47 for
simplicity. The velocity responses before control (dashed line) and after control (solid
line) are compared to investigate the control performance. In the meantime,
simulations have been performed for a comparison with the experiments in order to
interpret the experimental results with a theoretical background. It is noted that the
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physical control gain, (gain relating the secondary force to the control velocity in unit
of Ns/m), used in the simulation must account for the different gains used in the

feedback loop, which comprises the charge amplifier gain K, the power amplifier
gain K ,,, the sensitivity of the actuator K, (equal to 0.91 Nv™'). The sensitivity of

the accelerometer is directly taken into account by the charge amplifier. Therefore,
using the first single channel control configuration as shown in Figure 43, the physical

control gain is expressed by,
H=K/K_,K, (36)

When setting the sensor sens1t1v1ty properly, the integrator inside the charge amplifier
is able to output 100 mv per ms ™ input. Multiple control gains are applied via the
power amplifier in order to have a systematical control performance demonstration.
Those values are measured and equal to 12.5, 24 and 40. Therefore, physical control
gain values of 1.14, 2.18 and 3.64 Ns/m are calculated from equation (36) and
modelled in the simulation for comparison purpose. The calculations are meaningful
since the response of the actuator and sensors are reasonably independent of the
frequency. Higher physical control gains can be applied, of up to 36.4 Ns/m for this
configuration of single channel contro! in the experiment before instability occurs,
which corresponds to a gain of 40 from the power amplifier and a gain of 1000 mv per
ms” from the charge amplifier. Therefore, the gain margin of this configuration of
SISO control system is approximately 20 dB for the maximum gain used in the
comparison between simulation and experiment. Even for small physical gains as
demonstrated from Figure 45 to Figure 47, the velocity feedback controller does
effectively reduce the vibration levels at each resonance frequency as listed in Table 3
both from simulation and experiment. It is noted that, different degrees of attenuation
of vibration amplitude are found at different control position in the experiment, which
can be traced back to the differences in the four mounts. On the contrary, the
attenuation predicted from simulations is much similar to each other as four identical
mounts are assumed. Even for the single channel velocity feedback control
implemented at node 2 as shown in Figure 45, up to 15 dB reductions in vibration
level are obtained. Greater reductions in vibration level are obtained if the SISO
control is implemented at node 3 or node 4. In particular, approximate up to 25 dB (30
dB) attenuation is observed at node 3 (node 4). Generally, the effect of the velocity
feedback control gradually decreases with increasing frequency, since the control
force is proportional to the control velocity which is strongly attenuated by the passive
mount at high frequencies. In the experiment, the vibration level at very low
frequencies is actually amplified due to the phase shift as discussed in the previous
section. However, these amplifications are very small and are always associated with
small amplitude of vibration. Similar control performances have been observed when
the mounted flexible equipment structure is excited at nodes 2, 3 and 4, which are
omitted here for brevity.

With the help of a specially designed summation box, a second configuration of the
SISO contro! system is implemented as shown in Figure 44. The second configuration
of SISO control system is different from the first configuration in that the control
shakers act as both primary excitation sources and control actuators. The summation
box superposes the primary excitation signal from the FFT analyzer and the velocity
control signal from the sensor, which is placed before the power amplifier since the
electromagnetic shakers need to be connected to a low output impedance device to be
driven efficiently. Since the white noise signal generated by the FFFT analyzer must be
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amplified for the same reason, the control loop passes through both channels of the
power amplifier consecutively. In this case, the physical control gain is expressed by,
H=KK,aK,K, (37)

where, K, and K, are the gains of the two-channel power amplifier respectively,
o is the coefficient of the summation box, i.e., a=20utput/ (Zinput). In the

experiment, @ has been adjusted to a value of 1 for simplicity. X, and K, represent
the charge amplifier gain and the efficiency of the actuator respectively.
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Figure 44 The second configuration of a single channel control system

Excited by the same white noise signal as used in the first configuration, the SISO
control system as shown in Figure 44 has been investigated. In this case, the power
amplifier and the charge amplifier have the same settings as those in the first
implementation. It is noted that, K, is measured and equal to 1.6. Similar multiple

control gains have been applied via the power amplifier as implemented in the first
configuration. However, the overall physical control gains of the second configuration
of the SISO velocity feedback control system are calculated from equation (37). The
physical control gains are 1.82, 3.49 and 5.82, which are modelled in the simulation
for a comparison with experiment. Typical velocity responses at each node when the
sysiem is excited by the shaker at node 1, are demonstrated in Figure 48 to Figure 51
both theoretically and experimentally. Again, the velocity responses before control are
displayed in dashed lines and after control in solid lines respectively. Higher physical
control gains can be applied by up to 58.2 Ns/m for the second configuration of SISO
control system in the experiment before instability occurs, which corresponds to a
gain of 40 from the power amplifier and a gain of 1000 mv per ms™ from the charge
amplifier. Therefore, gain margin of the second configuration of SISO control system
is approximately 20 dB for the maximum gain used in the comparison between
-simulation and experiment. The predicted velocity responses before control and after
control match well with those obtained from experiments. As demonstrated in Figure
48 to Figure 51, the vibration levels at each node are overall reduced at all the
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resonance frequencies in the frequency band of analysis both theoretically and
experimentally. In particular, approximately up to 30 dB attenuation is obtained from
experiment at the rigid body frequencies around 17 Hz, up to 20 dB attenuation at the
first flexible frequency of 50.6 Hz. Less than 10 dB attenuation at the second and third
flexible frequencies are observed from experiment. The above observations hold true
at the direct controlled node as well as in other nodes without direct control. Greater
reductions in vibration level can be expected for a greater physical control gain within
the gain margin reported previously. Again, small amplifications of vibration
amplitude at very low frequencies are generally observed in the experiment due to the
phase shifts in the electric equipment. Although their effects are generally small and
always associated with small amplitudes of vibration level, they are the main threats
to the stability if a large control gain is applied in the SISO control system. Similar
vibration reductions have been obtained when the SISO control is implemented at
nodes 2, 3 and 4, which are omitted in this report for brevity.

In summary, two configurations of SISO velocity feedback control of the four-mount
flexible equipment structure have been investigated both theoretically and
experimentally in this section. Considerable reductions in the vibration level at direct
controlled positions as well as indirect controlled positions have been achieved at all
resonance frequencies both in the experiments and simulations. In particular, up to 30
dB attenuation. can be obtained in the experiments at the rigid body resonance
frequencies around 17 Hz, up to 20 dB attenuation at the first flexible frequency of
50.6 Hz, if adopting the second configuration of SISO control system. Similar but a
little lesser attenuation has been observed in the experiments using the first SISO
control configuration. As the passive mount performance increases, the control effect
decreases. As a result, less than 10 dB reductions in the vibration amplitude are
achieved at the resonance frequencies of the second and third flexible modes. It is
important to note that, the phase shifts due to the imperfect operation of the electrical
equipment in the experiments, cause small amplifications of vibration level at very
low frequencies (less than 5 Hz) in both configurations of the SISO velocity control
systemn. These phase shifts are the main threats to the control stability in the
experiments.
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4.3.2 Four-channel control of the mounted equipment structure on a
rigid base

A four-channel velocity feedback control system of the mounted flexible equipment
structure on a rigid base has been investigated which uses an independent SISO
controller at each mount position. Using the summation box, one of the four shakers is
also used to generate the primary excitation force as well as the control force. The
induced velocity signals at each node are measured using accelerometers and directly
fed back to the corresponding shakers after a charge amplifier and a power amplifier.
The mounted flexible equipment structure is excited by a white noise signal from the
FFT analyzer, and an equal gain of H is used to control each independent SISO
controller. In this way, the control performance of an equi-gain decentralised
multichannel control system of the mounted equipment structure on a rigid base has
been investigated with multiple control gains.

Typical velocity responses at each node before control (in dashed lines) and after
control (in solid lines) when the multichannel control system is excited by the shaker
at node 1 are shown from simulation and experiment in Figure 52 to Figure 53.
Similar results have been obtained for the four-channel velocity feedback control
system when the mounted flexible equipment structure on a rigid base is excited by
the shakers at nodes 2, 3 and 4, but they are omitted here for brevity. The three solid
curves in these figures correspond to three different physical control gains of 0.18,
0.91 and 2.0 Ns/m respectively. The vibration amplitude is effectively reduced at all
resonance frequencies within the frequency band of interest both theoretically and
experimentally. The larger the physical control gain, the greater reduction in the
vibration level. Stability of the four-channel control system is very good as the
maximum physical control gain of 7.28 Ns/m can be applied before the control system
goes unstable. In other words, the gain margin of the four-channel velocity feedback
control system is about 14 dB. The control performance from simulation agrees well
with those obtained from experiment except at very low frequency due to phase shifts.
Both give a reduction in vibration level at the resonance frequencies of rigid body
modes of up to 30 dB, and up to 20 dB at the first flexible frequency of 50.6 Hz. It is
noted that, nearly 10 dB reductions in vibration level at the second and third flexible
resonance frequencies are also obtained in the experiment, even though the simulation
only predicts by 3-4 dB attenuation. However, the theoretical model developed in this
research does interpret the experiment in a satisfactory degree of accuracy. The rigid
body resonances as well as the first flexible resonance are no longer noticeable after
control for the highest value of physical gain both theoretically and experimentally.
Amplifications of the very low frequency response of the flexible equipment can be
observed in the experiments due to the effect of phase shifts. Again, these effects are
very small and no instability was encountered for the multiple feedback gains used in
this investigation. However, instability occurs if the feedback gain is beyond the
reported gain margin. In conclusion, the decentralised velocity feedback control
implemented in the four-mount flexible equipment structure on a rigid base can
significantly attenuate the vibration level at all resonance frequencies within 200 Hz.
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4.3.3 Kinetic energy analysis of the four-mount flexible equipment
structure on a rigid base

The control performance of the single channel and multichannel velocity feedback
control systems of the four-mount flexible equipment structure on a rigid base has
been re-examined based on the kinetic energy. To calculate the true kinetic energy of
the flexible equipment, the vibration of both the rigid body modes and the flexible
body modes would have to be accounted for, as described in equation (20) in section
2.2. Tt is noted that, a transformation from the physical coordinates to the modal
coordinates is necessary for the calculation of the true kinetic energy in the theory
because of the flexibility of the equipment. In the experiments, however, only the
vibration levels at the four corner positions of the flexible equipment were measured,
and it is only possible to estimate the amplitudes of all the flexible modes with
accurate models of all their mode shapes, which are not available. So in this section,
the equipment has to be assumed to be rigid for the calculation of the experimental
kinetic energy, which uses the kinetic energy contained in the rigid body modes to
approximate the total kinetic energy of the flexible equipment. However, as most of
the kinetic energy of the mounted flexible equipment structure is contained in the
rigid actuators, such an assumption will not cause significant error in this research. In
particular, the velocities of the equipment structure associated with the heave (w,),

pitch (E?a) and roll (¢, ) motions, are determined from the velocities at four mount

positions,
az(v1+v2:va+v4) (38)
6, = [ +v)/ 2; 0 +72)/2] (39)
8
o, /2 2] (40)
#

where, v, v,, v,, v, are the velocities at the mount positions in the physical

coordinates. Therefore, the total kinetic energy of the mounted equipment structure, as
well as the kinetic energy associated with the heave, pitch and roll motions, have been
calculated and compared between simulations and experiments.

Multiple feedback gains has been applied for the single channel and multichannel
velocity feedback control systems of the mounted equipment structure both in the
simulation and experiment, which are described in sections 4.3.1 and 4.3.2. Therefore,
the total kinetic energy as well as the decomposed kinetic energy associated with the
rigid body modes has been calculated and shown in Figure 56 to Figure. It is noted
that, a direct comparison between the kinetic energies from the single channel control
and the corresponding ones from multichannel control is not possible because of
different feedback control gains used in the different control systems. The kinetic
energies of the mounted flexible equipment structure on a rigid base before control are
displayed in dashed lines and those after control in solid lines respectively.

The total kinetic energy is effectively reduced at all resonance frequencies within the
frequency band of interest both theoretically and experimentally. The larger the
physical feedback control gain, the greater reduction in the total kinetic energy. The
calculated kinetic energy from simulations agrees reasonably well with those obtained
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from experiments. For the single channel control system, both theory and experiment
give a reduction of up to 60 dB in the kinetic energy at the resonance frequencies of
rigid body modes, and up to 40 dB at the first flexible frequency of 50.6 Hz. 1t is
interesting to note that, nearly 10 dB and 20 dB reductions in the kinetic energy at the
second and the third flexible resonance frequencies are obtained in the experiment,
although the simulation only predicts by 3-4 dB attenuation. Similar conclusions can
also be made for the multichannel control system. In particular, the rigid body
resonances as well as the first flexible resonance are no longer noticeable after control
for the highest value of physical feedback gain used in the multichannel control
system both theoretically and experimentally. Small amplification in the experimental
kinetic energy is generally observed at very low frequencies due to phase shifts of the
electric equipment. However, their effects are very small and always associated with
small amplitude of vibration. Although no instability occurs in the experiments under
steady control conditions, instability will occur if the feedback control gain is beyond
the safe gain margin reported in the previous sections.

To remedy the assumption made in the calculation of the experimental kinetic energy,
the sum of the velocity squares at each mount position is proposed to further evaluate
the control performance of the single channel and multichannel control experiments.
The results are shown in Figure 60 to Figure 61. It is evident from both figures that
both single channel and multichannel control strategies are effective in reducing the
vibration level at all resonance frequencies of interest. Similar conclusions can be still
made.
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5 Conclusions

The objective of this research was to investigate the active vibration isolation of a
four-mount flexible equipment structure from a flexible base. This report has
described the mechanical analysis of a single-mount and multiple-mount vibration
isolation systems using the impedance method. In particular, the dynamics and control
mechanisms of a four-mount flexible equipment structure on a rigid base as well as on
a flexible, where the actuators are installed in parallel with each mount, have been
studied theoretically, by assuming the massless mounts as a combination of springs
and dampers. As an initial study, single channel and multichannel control systems of
the mounted flexible equipment structure on a rigid base have been investigated in
this report. The plant responses measured in the experiments agree very well with
those from simulation, which validates that the theoretical model developed in this
report can be used to understand the dynamics and the active vibration control of the
mounted flexible equipment structure. Stability of the single channel velocity
feedback control of the mounted flexible equipment structure has been studied based
on the Nyquist plots of the diagonal terms in the plant response matrixes from theory
and experiment, and good stability properties are assured. For the multiple channel
control system, the stability has been assessed using the Nyquist plots of the true
eigenvalue loci of the plant response matrixes as well as using an assumed mode
shape method. The implementation of four-channel decentralised velocity feedback
control strategy has been proved to have good stability properties from both methods.
Various single channel velocity feedback control systems using a constant gain have
been implemented experimentally. Furthermore, multiple feedback gains have been
applied in the four-channel equi-decentralised velocity feedback control of the
mounted flexible equipment structure on a rigid base. Both single channel and
multichannel control systems present good control performance theoretically and
cxperimentally, where the vibration levels of the mounted flexible equipment
structure are effectively reduced at all resonance frequencies of analysis. In particular,
up to 30 dB reductions in vibration levels at the rigid body modes at around 17 Hz, up
to 20 dB at the first flexible frequency of 50.6 Hz, up to 10 dB at the second and third
flexible resonance frequencies, have been achieved experimentally from both single
channel and four-channel velocity feedback control implementations in the mounted
flexible equipment structure on a rigid base. The control performances of both single
channel and multichannel control systems have been re-assessed in terms of kinetic
energy. Again, the fotal kinetic energy of the mounted flexible equipment structure
has been teduced globally all over the frequency band of analysis for both single
channe! and multichannel control implementations theoretically and experimentally.
As the initial control results on a rigid base from simulation and experiment are very
promising, following investigation will be performed on the active vibration control
of the mounted flexible equipment structure on a flexible base.
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Appendix A: An algorithm to obtain the true
eigenvalues in order

There is an inherent numerical difficult in obtaining the true eigenvalues of the plant
response matrix in the right order within MATLAB, because the built-in functions
automatically output the calculated eigenvalues in a specific order. For example, the
eigenvalues of a real symmetric matrix are output in an ascending order. Generally,
the built-in output order causes a significant problem in the stability assessment. A
typical plot of the calculated true eigenvalues of the plant response matrix before data
treatment is shown in Figure A1, which makes it very difficult to evaluate the stability
of the multichannel control system. An algorithm is therefore proposed in this report
to distinguish the corresponding eigenvalues from one to another using the
corresponding true eigenvectors.

The relationship between the plant response G(j®) and its true eigenvalue matrix

Q(j@) can be expressed by,

G(joQ(jw)=Q(jw)Q(jw) (Al)
where, Q(jw) is a diagonal matrix of the true eigenvalues A, and Q(jw) is the
matrix of the true eigenvectors of the plant response matrix G(jw) at the frequency
@ , whose columns are the corresponding true eigenvectors. The plant response matrix
G(jw) is obtained by,

G=(Z +Z,+Z,)" (A2)
where, Z,, and Z_ are the impedance matrixes of the actuators, flexible equipment
and mounts, respectively. In particular, Z_ = Y,', provided the mobility matrix Ye of

the flexible equipment is invertible. Impedance matrixes Z, and Zw are (MxM)
diagonal matrixes (thus symmetry), whose diagonal terms are the impedances due to
the mass of each actuator, the stiffness and damping of the corresponding mount,
respectively. Because of the uniformity of the flexible equipment plate and the
symmetry of the mount locations, Z, is symmetry. Therefore, the summation of

symmetric matrixes is symmetric. Moreover, any integral power of a symmetric
matrix is also symmetric {14]. The inverse of a symmetric matrix can be numerically
treated as a power of (-1) of the symmetric matrix and thus is symmetric. This is
proved from the Bode plots of each term in the theoretical plant response matrix as
seen in Figure 6 to Figure 21 in dashed lines. Although two eigenvectors of a
symmetric real matrix corresponding to different eigenvalues are orthogonal [14], the
preceding statement is not necessary true for a symmetric complex matrix. However,

if the true eigenvectors are denoted by ¢q,, ¢q,, '+, ¢, (in this case, n=4), which
have been normalized by qt.Tq,. (i=1, 2, ---, m),then,

r a i=k

g, = A3

where, a and b are generally non-zero complex and 12|a|>|bl. The matrix of
(o) Q( jo)| is diagonal dominant.

In the experiments, the measured plant response matrix is not strictly symmetric due
to some differences in the mounts and actuators as well as imperfect operation of the
electric equipment. However, the measured plant response matrix is nearly symmetric
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as demonstrated in solid lines in Figure 6 to Figure 21. Equation (A3) still holds true
for the experimental plant response matrix. Therefore, the property of true
eigenvectors described by equation (A3) can be used to distinguish the true
eigenvalues in a right order and the algorithm is described as follows.

Without lost generality, assuming that the eigenvectors corresponding to the i
frequency step have been distinguished in the computation loop, so a set of

eigenvectors denoted as ¢,, ¢,,, ***, g, in the right order has been obtained. For

the next (it+1)y step, using MATLAB built-in function (eig.m) to calculate the
eigenvalues and corresponding eigenvactors,
[VGs, EGsi=eig(Gs); [VGe, EGel=eig(Ge);
where, VGs and VGe are the eigenvectors corresponding to the true eigenvalues EGs
and EGe of the plant response matrixes of Gs and Ge, the suffix s and ¢ denote for the
stmulated and experimental results.
Forij =1teration (7 =1, 2,---, n, where #n is the rank of the plant response matrix),
a) Initialize:
bigs=0; bige=0;
for the theoretical and experimental plant response matrix respectively, and
bigsnurmber=ij; bigenumber=ij;
which are used to recorder the series numbers of the true eigenvectors. Remember the
true eigenvectors obtained from last step using MATLAB script,
eval(['Sv=8vector’ int2str(ij) ;']); eval(['Ev=Evector' int2str(ij} ';');
b) Calculate the scalar product between the eigenvectors from last step and these from
current step according to equation (A3), for jj=1, 2,---, n,
judges=Sv'*VGs(:,jj); judgee=Ev'*VGe(.,ij);
¢) Find out the biggest calculated value of the scalar product
if abs(judges)>bigs {bigs=abs(judges); bigsnumber=jj;} end
if abs(judgee)>bige {bige=abs(judgee); bigenumber=ij;} end
d) If the iteration variable jj is less than », then go back to b) until the biggest value
of the scalar product of the eigenvectors is found and the associated series number is
recorded.
¢) Therefore, save the corresponding true eigenvalues into the series in a right order.
eval(['Lambdas’ int2str(ii) '(' int2str(i} Y=EGs(' int2str(bigsnumber) ',"...
nt2str(bigsnumber) ');']);
eval(]'Lambdac' int2str(ii) '(" int2str(i) »=EGe(" int2str(bigenumber) ','...
int2str(bigenumber) ");']);
The above algorithm can sort the true eigenvalues associated with a specified
eigenvector (a vibration mode). After this algorithm, the true eigenvalues are much
clear as demonstrated from Figure A2. Therefore, the stability analysis can be
evaluated.
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Figure A1 Magnitude of the experimental true eigenvalues before data treatment
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Figure A2 Magnitude of the experimental true eigenvalues after data treatment
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Appendix B: Assumed mode approximation for
stability analysis

When assessing the stability of multichannel feedback control of the mounted
equipment structure, an assumed mode shape method is used to calculate the
eigenvalues to avoid the numerical difficulty in obtaining the true eigenvalues.
Therefore, assuming the mode shapes as in equation (30), the corresponding matrix,
whose diagonal terms are the eigenvalues, can be calculated conveniently according
to equation (31). Such an assumed mode shape method is valid as long as the
corresponding eigenvalue matrix is a diagonal dominant matrix, i.e., the magnitudes
of the diagonal terms are relatively bigger than those off-diagonal terms. If ideal
condition is assumed, (i.e., all four mounts are identical and massless, which can be
modelled as springs and dampers; all electrical equipments work perfectly.) the
eigenvalue matrix obtained from simulation is completely diagonal, as demonstrated
in Figure B1. In the experiment, the four mounts are not exactly the same as well as
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the imperfect operation of the electronic equipment. Therefore, the corresponding
cigenvalue matrix is not completely diagonal as shown in Figure B2. However, it is
clearly shown that the matrix is diagonal dominant, with the magnitude of these
diagonal terms larger than those off-diagonal terms by about 15 dB. As the off-
diagonal terms are small compared with those diagonal terms, the use of the diagonal
approximation to the eigenvalue matrix is reasonable to assess the stability of the
multichannel control of the mounted equipment structure.
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