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Abstract

Inverse filtering in a single or in multiple channels arises as a problem in a
number of applications including telecommunications, active control of sound and
vibration, sound reproduction and virtual acoustic imaging. In such cases one is trying
to deconvolve the effect of the transmission path from the received signal, control a
physical plant, accurately reproduce a given set of audio signals or implement a cross-
talk cancellation network.

In the single-channel case, when the plant C(z) sought to be inverted has zeros
outside the unit circle in the z-plane, an approximation to the inverse 1/C(z") can be
realised with an FIR filter if an appropriate amount of modelling delay is introduced
to the system. But the closer the zeros of C(z!) are to the unit circle in the z-plane the
longer -in terms of number of coefficients- the FIR inverse has to be. This type of FIR
inverse filters can reach several tens of times the number of coefficients in the plant.

In the work presented here a simplified single-channel version of a virtual
acoustic imaging system is considered and an off-line implementation of the required
inverse filtering is presented that utilises a variant of the backward-in-time filtering
technique usually associated with zero-phase FIR filtering. On this basis a single-
channel mixed phase plant can be inverted with an IIR filter of order roughly equal to
that of C(z"), thus decimating the processing time required for the inverse filtering

computation.
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1. Introduction

The need to design a digital filter (or matrix of digital filters) that approximates
as closely as possible the inverse frequency response of a given single-channel system
(or the inverse of the frequency-response-matrix of a given multi-channel system)
appears in a number of applications including transmission channel equalisation [see
1], active control [see 2 and 3], sound reproduction {see 4, 5 and 6] and virtual
acoustic imaging [see 7]. In what follows, the specific problem of inverse filter design
for a Virtual Acoustic Imaging System is addressed, an IIR digital filtering structure
being proposed and simulated in MATLAB. A simplified single-channel version of
the problem is considered but a description of the inherently multi-channel] structure
of such a system is first given in order to illustrate the context of the problem at hand.
The IIR filtering structure is then described and finally the results of the simulations

are presented and discussed.
1.1. General model of a Virtual Acoustic Imaging System

A Virtual Acoustic Imaging System is defined in [8] as a sound reproduction
system that gives “... a listener the impression that there is a sound source
[henceforward termed the virtual source] at a given position in space where no real
source exists”. As is also described in [8], “one way to achieve this is to ensure that
the sound pressures that are reproduced at the listener’s ears are the same as the sound
pressures that would have been produced there by a real source at the same position as
the virtual source”. This situation is depicted in Figure 1-1 in which a practical way to
achieve what was just described with a standard stereophonic sound reproduction
system comprising two loudspeakers is proposed. Specifically one can place an actual
sound source at the desired position of the virtual source, record the sound field
generated at the ears of the listener when a given input signal is fed to this source and
then try to reproduce exactly the same sound field at the listener’s ears using the
sources comprising the Virtual Acoustic Imaging System. Evidently, for this to be
possible, the given input signal would have to be appropriately pre-filtered before

been fed to the real sources.



Real source 1  Real source 2

Virtual source

Ci1

Ear 1

Listener

Figure 1—-1 The objective of a Virtual Acoustic Imaging System

In Figure 1-1, each one of the symbols ¢; denotes the Head Related Transfer
Function (HRTF) relating the sound pressure at ear number i to the j-th source’s
(electrical) input'. Similarly, each of the symbols a; denotes the HRTF relating the
sound pressure that would have been produced at ear number i should source was
reproducing sound from the location of the virtual source to the input signal to that
source. With this arrangement, if one does not have the possibility of physically
recording the sound pressures at the listener’s ears, they can simulate them by filtering
the input signal through the pair of HRTFs denoted by a; thus obtaining an
approximation of the sound pressures that would have been produced by the virtual
source at the listener’s ears if this source was actually reproducing the input signal.

The schematic of Figure 1-1 translates to the block diagram shown in Figure 1-
2 where the input signal x(n) is, as was mentioned above, pre-filtered through a matrix
of inverse filters H before it is fed to the loudspeakers comprising the system. In the
block diagram, A denotes the target matrix i.e. a matrix containing an adequate
amount of modelling delay® and, in the case when we are simulating the desired sound
pressurcs as explained above, the HRTFs Iabelled a; in Figure 1-1. With this

arrangement the obvious goal is to design an optimal matrix of digital filters H so that

"In the relevant literature the term transfer function is strictly associated with the frequency domain
description of a system but in what follows we use the acronym HRTF interchangeably to refer either
to a system’s z-transform representation or to the corresponding time sequence,

% The feature of modelling delay is discussed below.
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the vector of reproduced signals labelled in Figure 1--2 as d is as close as possible to

the desired signals labelled as d.

Vector of
Aoy desired signals
d2x[
+
Input signal  —— Vectgr of|
x(m) error signals
€2x1
3 P Cio B Vector of
reproduced signals
Vector of source dacr
input signals
Voui

Figure 1-2 Block diagram of a Virtual Acoustic Imaging System

Using the z-transforms of the signals and systems involved in Figure 1-2 we

derive the following equations for the error signal e:
e(')=d(")-d(z")
=A()-X()-C(z")Hz")x (=)

It is now obvious how the design of the system under discussion reduces to an

(1.1)

inverse filter design problem as from equation (1.1) it is evident that the optimal value

for H will be given by:
ant (Z_l): (:-.r (Z_I)A(Z_]) (12)

1.2. Single-channel version of the problem

The single-channel equivalent of Figure 1-2 is shown in Figure 1-3 where all
the signals and systems are taken in their z-domain representation’. As can be seen in
that figure, in one channel our problem essentially coincides with the typical
equalisation problem in which we aim to design a filter 4 that inverts the planit4 Cso
that the actually reproduced signal d (n) 1s as close as possible to a delayed version of

the input signal x(n). In other words, one seeks to design 4 so that the following z-

domain equations holds

* For notation-simplicity reasons we did not include a single-channel equivalent of the target matrix A
in the version of the problem presented here but it is easy to see that this does not really restrict the
generality of the analysis that follows.

* In what follows, using control theory terminology, we call the transfer function ¢ (or the mairix of
transfer functions C) “the plant”.



H(zYHY-CzH=2" (1.3)

3y Desired signal
D)

Modeling delay
element
Input signal Error signal
x(z') E(z)

>

4R
ANPA

Equalized signal

b(z")

» H(z') » Cz')

Inverse plant
filter

Figure 1-3 Single-channel block diagram of a Virtual Acoustic Imaging System

Now assuming that the plant is a causal all-zero system containing no pure
delay as is described in (1.4), and further assuming that it is minimum phase, i.c. has
all its zeros inside the unit-circle in the z-plane, no modelling delay would be

necessary and the optimal inverse filter would be given by equation (1.5)

C(z'1)=00+clz'l+...+cnz_" (1.4)
H(z'*)=-c~;é7)- (15)

However, even though the assumption that the plant is modelled as a causal all-
zero system is quite realistic, hardly ever does one come across an experimentally

measured plant that has all its zeros inside the unit circle in the z-plane. Hence, for

every z; for which 'C(zj"1 )‘ >1 we will have a pole outside the unit circle in the

inverse filter H(z'") of (1.5). As is explained in [9 pp. 356-359], each pole inside the
unit circle appears in the impulse response corresponding to the inverse z-transform of
H(z") as a geometric series that decays forward in time while each pole outside the
unit circle as a geometric series which either increases exponentially in forward time
or decays in backwards time. So evidently, in the usual case where the plant Cz"Hto
be inverted is mixed-phase, the filter of (1.5) is either unstable or non-causal and,

thus, in both cases non-realisable.



The typical technique to address such a problem when one is to invert a mixed
phase plant [see e.g. 10 pp. 236-244] is to introduce an adequate number of modelling
delay samples A so that H(zY is a delayed and truncated version of the -both in
backwards and in forward time- infinitely long ideal inverse. In order to show
analytically that such a realisable approximation to the ideal but non-realisable
inverse is possible, we take a factorisation of C(z’") into a factor Com(z”") with all its
roots strictly inside the unit circle and a Cm(z‘[) with all its roots outside or on the
unit circle. In this view equation (1.3) translates to (1.7) where we have used the fact
that there will always be two polynomials Rouin(z”') and Ruax(zh) in negative powers of

z such that equation (1.6) holds”. Thus

-1 -1
el S (16)
@) @) Cu@) Cp)

and the expression for the inverse filier becomes

~A
Zz

Cmin (Z_] ) : Cnmx (Z_l )
R (Z—I)Z—A N R (Z—I)Z—A

H(z )=
(1.7)

min HLX

Cmr'n (Z_] ) Cmax (z_l )

Now the right-sided time sequence6 corresponding to the first term in (1.7)
will be stable since all the roots of Cun(z '} are inside the unit circle but for the
second term one will have to choose the left-sided time sequence among the two
possible time representations since it is the only one which is stable. But, even though
the elements of such a sequence appear in negative time, the delay introduced by the
term z* shifts these elements by A positions forward in time. This way one can
truncate this double-sided infinitely long inverse time sequence keeping only a finite
number of samples appearing in positive time and this is the FIR inverse filter that is

used when modelling delay is used for the inversion of a mixed phase plant.

*The polynomials Rz} and Rpulz)) are guaranteed to exist as a partial-fraction expansion of the
left-hand side of (1.6) [see 9 pp. 188-197] as a proper collection of terms can readily show.
® The terms right-sided and left-sided sequence are used as in [11 pp. 45-52]
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2. The IIR inverse filtering structure

2.1. Problems faced with conventional IIR filter design

The technique presented above is guaranteed to give an FIR filter that
approximates the inverse quite satisfyingly but usually leads to very long filters.
Specifically, as is explained in [12], the closer one or more of the zeros of Cz" are to
the unit circle, the slower the inverse time sequence will decay, the zeros close but
inside the unit circle slowing the decay of the forward-in-time part and those close but
outside the unit circle that of the backwards-in-time part. As will be made apparent
below, it is quite common for measured HRTFs to have several tens or even hundreds
of zeros clustered virtually on the unit circle in the z-plane thus demanding an FIR
filter of several thousands of coefficients and a quite large amount of modelling delay
in order to approximate closely the ideal non-causal inverse time-sequence. An
undesirable implication of this fact is that, since the output of filters of this length
requires a quite substantial amount of processing time to be computed, the inversion
of a typical measured HRTF network of the type shown in Figure I-1 can be
implemented in real-time only by use of dedicated signal processing hardware and by
no means in an ordinary personal computer.

A possible way out of this restriction would be to try and implement the inverse
filtering by use of IIR filters hoping that equivalent performance could be achieved
with -a much lower number of coefficients and thus less computation demand.
However, the problem with this approach is that a number of established IIR filter
design techniques that would seem well suited for this purpose fail mainly due to
numerical problems.

Namely, the whole family of algorithms associated with the design of fixed
parameter IR filters based on the minimisation of some sort of mean-square-error
cost function in the time domain (e.g. Prony’s or Shank’s methods [see 9 pp. 706-
7100) require the computation and usually the inversion of auto-correlation and cross-
correlation matrices of the same order as the number of samples of the inverse time
sequence to be modelled. Since the inverse time sequences we are dealing with here
can be several thousands of samples long, the use of this family of design methods is

not feasible for obvious numerical reasons.



Similar considerations apply to the algorithms that iterate towards the optimal
IR inverse of a given order by minimising a cost function defined on the basis of
either the output or the equation error signal [see 13]. As argued in [14], under certain
conditions -related to the initial conditions of the output error technique and the
absence of measurement noise for the equation error technique- these algorithms do
indeed succeed in converging to the optimal recursive inverse filter but only when the

plant’s order is kept to no more than a few tens of coefficients.
2.2. The proposed IIR inverse filtering algorithm

It was shown in section 1.2 that the reciprocal of the z-transform of the plant
1/C(z"") can be written as the sum of two rational terms one of which has all its poles
inside and the other either on or outside the unit circle [see equation (1.6)]. We also
described how a realisable approximation to the ideal can be implemented by means
of an FIR filter with the introduction of modelling delay. Here, in order to explain
how the proposed TIR inverse filtering technique works, we start again from equation
(1.6) and shifting the notation from polynomials in the z-variable to polynomials in
the delay operator ¢ [see 21 pp. 48-51] we write the stable but non-causal inverse

tmpulse response as

-1
L _Ru(@) | Ru@ o
C(q ) Cmin (q ) Cnurx (Q)

Again, in (2.1) the first term of the right-hand side is a rational expression in the
delay operator g’ thus corresponding to an infinite time series advancing in forward
time while the second term is a rational expression in the forward shift operator g thus
corresponding to an infinite time series advancing backwards in time. But, unlike
what was done before, this time in order to realise the filtering through the anti-causal
part of the inverse impulse response we utilise the fact that given a finite-length
impulse response H(q'f) and an input signal x(n), the same output y(n) will be
obtained if one filters x(x) through H(g™"y or if, alternatively, filters a time-reversed
version of x(n) through a time-reversed version of H(g') and then reverses the
outcome in time [see 15 pp. 431-433]. For the purposes of the problem discussed here
the above translates to the fact that the (non-realisable) output that one would get by
filtering x(r) through the second term of the right-hand side of (2.1) can be obtained

by simply reversing x(n), filtering it through the mirror-image of this anti-causal



infinite impulse response obtained by replacing g with ¢™', and finally reversing the
output. Using the “A” symbol to denote reveision in time, what was said above is
formally written in the next formula the filter appearing in the right-part of which

being trivially realisable. Thus

R, (q)

war (9)

R (q7)

y(n)— x(n) e jz(n)“ x(n) (2.2)
Co(47)
So to summarise, given a signal s(n) that it the output of a plant C(g™") been fed

with an input signal x(r), in order to recover x(n) one has to:

i) Compute the decomposition of equation (2.1),

ii) Filter s(n) through the minimum phase term,

iii) Filter a time-reversed version of s(n) through the mirror image of the
maximum phase term as shown in the right-part of (2.2) and reverse the output in time
and finally,

iv) Add the two outputs to obtain x(n)

2.3. Practical issues regarding the implementation of the
proposed algorithm

Before we present the simulation results obtained in MATLAB using the
inverse filtering technique described above, there are a number of points that have to
be made in relation to the algorithm listed in the last part of section 2.2, First one has
to say that even though the algorithm presented above is rather straightforward to set
down analytically it is more complicated to realise numerically, the critical point in its
implementation being the decomposition described in equation (2.1) or equivalently
equation (1.6). In the simulation results presented in section 3 the decomposition was
computed by use of the residiuez MATLAB command [see 16] which introduced
numerical error to the whole chain of computations’. This fact reduces the
effectiveness of the algorithm to a considerable degree since (as will be demonstraied
in the next section) the higher the order of the plant to be inverted the less accurate the

inversion.

"It is easy to see that when a rational expression with real coefficients is expanded to partial fractions,
the coefficients of these fractions have to be either real or to appear in conjugate pairs. Still, in the
expansion computed by means of the residiez command some of the roots in the fractional expansion
were only approximately conjugate and thus the (very small) imaginary parts that appeared in the final
coefficients of the two terms in the right-hand side of (1.6) had to be set to zero.
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On the other hand, more sophisticated numerical techniques can be used to

compute the decomposition of equation (1.6) as it is easy to see that this equation can
be reduced to the Diophantine equation (2.3) in the unknown polynomials Ru(z™")
and R..(z ') which, given that the greatest common divisor of C,u(z™) and

Cua 27" ) is 1, will always have a solution [see 18 pp. 41-59].

R

min

(z"-C, (zD+R (z7")C,(z")=1 (2.3)

Dedicated algorithms exist for the numerical solution of this kind of equation
formulated in the time-domain [see 19 and 22] and hopefully better results can be
obtained when these numerical techniques are incorporated into the proposed
algorithm. Alternatively, homomorphic signal processing techniques can be used for
the decomposition of the plant’s reciprocal z-transform to minimum and maximum
phase components [see 20 and 11 ﬁp. 500-527] but this direction has not yet been
studied in the course of the present research project.

A second shortcoming of the method as presented up-to-now is that it is strictly
off-line as for the implementation of the 3" step of the algorithm listed in section 2.2
one has to have knowledge of the whole input signal before the inverse filtering
procedure can start. Furthermore this step increases the amount of memory required
for the filtering procedure since the whole input signal has be stored in memory
before the recursive filtering is computed unlike the typical FIR case where only a
number of input samples equal to the filter’s length have to be kept in memory for the
computation of each new output sample.

A way around these restrictions, however, would be to segment the input signal
and process one segment at a time. Effectively, this is equivalent to introducing an
amount of modelling delay equal to the segment’s length and truncating the maximum
phase component’s infinitely long impulse response to the same ]engths. This way,
superior performance to that of an FIR inverse can be achieved with far fewer
coefficients and with no restrictions other than the introduction of an amount of
modelling delay equal to the one required by the FIR inversion.

As a last point we have to mention that, even though the proposed technique

was formulated in a single-channel context, a multi-channel generalisation is feasible

% The segmentation of the input signal does not have to affect to affect the filtering through the
minimum phase part as an appropriate number of the filter’s outputs can be stored in memory and used
as the initial conditions of the filtering of the next segment to arrive.
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that could easily fit as a solution to the inverse filtering demands of the generic
Virtual Acoustic Imaging System described in section 1.1. This is because, as is
described in detail in [4], the inverse of the filter-matrix C corresponding to the
transfer function of a multi-channel plant can be realised by a matrix H containing
rational expressions in the z-variable having numerators of order equal to the plant’s
order (and thus typically very low) and all sharing a common denominator. It is
exactly this denominator that requires very long FIR filters to be realised in a non-
recursive fashion but could, however, be implemented with proper use of the
technique described above, and, even more important, only once for all the elements

of H.

3. Simulation results

The inverse filtering algorithm presented above was simulated in Matlab and in
this section we present the results we obtained and compare them with the results we
get when we use conventional FIR inverse filtering to equalise the same plant. As a
typical case of electroacoustic plant we chose to invert an HRTF measured by
Gardner and Martin at the MIT Media Lab [see 17] and specifically the one measured
with the source placed exactly in front of the KEMAR dummy head’. This HRTF
(henceforward denoted as ¢) is 128-samples long and is depicted in Figure 3—1 where
the distribution of its roots in the z-plane is also shown. As it can be seen in this
figure, the plant is mixed-phase and as was mentioned above most of its roots are
clustered very close to the unit circle. A 1500-coefficients FIR inverse of this plant
(henceforward denoted as k) was computed in the frequency domain as the inverse
DFT of the reciprocal of the plant’s DFT after proper zero padding was applied in
order to make use of the FFI’s computational advantage and to avoid circular
convolution effects [see 11 pp. 105-109]. The modelling delay was chosen to 700
samples. This FIR inverse is shown in Figure 3-2 (left part) along with the result we
get when we convolve this inverse with the plant (middie part) and the difference
between this convolution result and the ideal delta function &n-700) (right part). As

can be seen in this figure the inversion should be quite successful when £ is used but a

® Thus the chosen HRTF is the one contained in the left and right channels of H0e000a.wav (both
channels contain the same time sequence as is explained in [17])
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residual mismatch error should still be present between the delayed input and the
equalised signal as part (c) of the figure suggests.

(a) (b)

0.4
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0.3 B 2
~ 02} 15
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-0.4} -2 :
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Figure 3—1 (a) Measured HRTF’s time history and (b} its zeros in the z-plane

(a) (b) x10 ()

- ; 0.2 . + - . . ; :
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
sample number n sample number n sample number n

Figure 3-2 (a) 1500-samples-long FIR inverse A(n) with 700 samples of modelling delay,
(b) convolution of () with i(n) and (¢) mismatch between the ideal d(»-700) and c(n)®h(n)

Next, in order to test the performance of the IR algorithm presented above and
to compare it with the corresponding performance of the FIR filter of Figure 3-2, we
created a random signal of 2.10* samples (henceforward denoted as x) shown in part
(a) of Figure 3-3 and filtered it through the cascade arrangement of c(x) with h(n).
The output yrr(#) of this filtering procedure should be a delayed version of the input

signal and this is shown in part (b) of Figure 3—3 where the first 10* samples of the
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difference yrr(n)-x(n-700) are displayed. The same input signal x(n) was then
processed through the IIR filtering procedure described above to acquire the output
yir(n). The difference between the equalised output yur(r) and the original input x(x)
is shown in part (¢) of Figure 3-3.

(@ x 107 (b} x 107° {c)

—

o

put signal x(n)

|
-

Random in
1
n
Residual error of FIR inversion

Residual error of 1IR inversion

|
Lo

-4

s 1 _1 '5 ]
0 5000 10000 0 5000 10000 0 5000 10000
sample number n sample number n sample number n

Figure 3—3 (a) Random input signal x(n1), (b) Performance of the 1500-coefficients FIR
inverse and (¢) Performance of IIR inversion utilising approximately 250 coefficients

It is evident from the comparison of the middle and the rightmost parts of
Figure 3-3 that, using as many coefficients as twice the plant’s order'® i.c. less than
one fifth of the number used for the conventional FIR equalisation, the IR filtering
procedure introduced here achieves better results.

In section 2.3 we mentioned that the critical point in the implementation of our
TIR filtering procedure is the decomposition of the rational expression 1/Cizh
corresponding to the reciprocal of the plant’s z-transform as it is this stage of the
procedure that is extremely sensitive to numerical error. From the results presented
above it is evident that the introduced algorithm can indeed invert the 128-samples-
long measured HRTF but as it can be seen in the rightmost part of Figure 3-3 the
residual error has a rather substantial value. This is exactly due to the fact that the
decomposition into minimum and maximum phase parts is not as accurate as one
would desire. In order to emphasise the proposed technique’s potential advantages we
turn now to a more favourable situation for the algorithm where we try to invert a

shorter plant thus reducing the numerical strain imposed in the decomposition of

10 This is can be readily made evident by simple inspection of equation (2.1)
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equation (2.2). To this aim we have run the algorithm using a truncated version of
c(n) comprising only its first 92 samples and shown in Figure 3-4 along with the
distribution of its zeros in the z-plane

@ | )

0.4

o
(&)

o
o

@
—

(o]

|
=
—

Imaginary Part

I
o
)

First 92 samples of c¢{n)

0 20 40 60 80 100 -1 0 1
sample number n Real Part

Figure 34 (a) Truncated version of MIT’s HRTF and (b} its zeros in the z-plane

As can be seen in Figure 3—5 when set to invert this shorter -but again mixed-
phase- plant our algorithm leaves a residual error of around 180dB with reference to
the input signal x(rn) using 92 feedforward and 92 recursive coefficients. On the other
hand the error for the conventional FIR inverse filter with 1000 coefficients is barely
around 25dB, the performance of the FIR inversion remaining significantly inferior
even when 4000 coefficients are used. It is thus evident that if a means to successfully
compute the decomposition of (2.1) for longer plants is established, results superior to
the ones obtained by the conventional FIR inversion technique with modelling delay
can be achieved with far lower computational demands.

As a final set of results we compare in Figure 3-6 the residual error we obtain
when we try to invert the truncated plant with the proposed IIR filtering technique
versus the ones we get when an FIR filter using 8000 coefficients is used. It can be
seen in this figure that only when more than 40 times more coefficients are used does
the conventional FIR inverse give equivalent results with our algorithm and this only
when the exactly optimum choice of modelling delay is made, as a comparison of the

middle and the right parts of Figure 3-6 suggests.
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Figure 3-5 Comparison of the performance achieved in the inversion of the truncated HRTF
by the proposed algorithm utilising approximately 200 coefficients, 2 1000-coefficients FIR
filter and a 4000-coefficients FIR filter
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Figure 3—-6 Performance comparison of the proposed algorithm and two 8000-coefficients
FIR filters with different modelling delays

4. Conclusions

We presented above a technique based on IIR filtering that can be used for the
equalisation of mixed phase single-channel plants and which was shown to achieve
superior results compared to the conventional FIR-based technique albeit requiring far
less processing power. The successful implementation of the proposed algorithm

would mean that the inversion of longer, and consequently more accurate, measured
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HRTFs could become practical (it could for example be used to design inverse filters
for the 512-samples-long set of measured HRTFs included in the MIT-database or
even better for the inversion of subject-specific measured HRTFs).

The weak point of the proposed implementation was pointed out and possible
ways to improve it were suggested. It has to be said though, that even a trade-off
between extremely high computational demand in the inverse filters’ design for a
significantly lower demand in the actual filtering process is indeed preferable since
the inversion of the plant is a “one-off” operation that can be carried out by a very
powerful machine unlike the filtering process which has to be computed time and
time again in a possibly low-end-of-the-range machine every time the “user” wants to
create a virtual image.

Furthermore, in spite of the fact that the presentation was restricted in a single-
channel and formulated in a way that an on-line realisation is not possible, ways to
overcome these restrictions were proposed. The actual implementation of the real-
time, multi-channel generalisation of the algorithm and of course a set of subjective
experiments for the evaluation of a Virtual Acoustic Imaging System based on the

algorithm are going to be the next steps of the present research project.
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