)
' s V Institute of Sound
and Vibration Research

Equipment Isolation of a SDOF System with an Inertial
Actuator using Feedback Control Strategie — Part I: Theory

L. Benassi, P. Gardonio and S.J. Elliott
ISVR Technical Memorandum No 883

February 2002

University
of Southampton




SCIENTIFIC PUBLICATIONS BY THE ISVR

Technical Reports are published to promote timely dissemination of research results
by ISVR personnel. This medium permits more detailed presentation than is usually
acceptable for scientific journals. Responsibility for both the content and any
opinions expressed rests entirely with the author(s).

Technical Memoranda are produced to enable the early or preliminary release of
information by ISVR personnel where such release is deemed to the appropriate.
Information contained in these memoranda may be incomplete, or form part of a
continuing programme; this should be borne in mind when using or quoting from
these documents.

Contract Reports are produced to record the results of scientific work carried out for
sponsors, under contract. The ISVR treats these reports as confidential to sponsors
and does not make them available for general circulation. Individual sponsors may,
however, authorize subsequent release of the material.

COPYRIGHT NOTICE
(c) ISVR University of Southampton All rights reserved.

ISVR authorises you to view and download the Materials at this Web site ("Site™)
only for your personal, non-commercial use. This authorization is not a transfer of
title in the Materials and copies of the Materials and is subject to the following
restrictions: 1) you must retain, on all copies of the Materials downloaded, all
copyright and other proprietary notices contained in the Materials; 2) you may not
modify the Materials in any way or reproduce or publicly display, perform, or
distribute or otherwise use them for any public or commercial purpose; and 3) you
must not transfer the Materials to any other person unless you give them notice of,
and they agree to accept, the obligations arising under these terms and conditions of
use. You agree to abide by all additional restrictions displayed on the Site as it may
be updated from time to time. This Site, including all Materials, is protected by
worldwide copyright laws and treaty provisions. You agree to comply with all
copyright laws worldwide in your use of this Site and to prevent any unauthorised
copying of the Materials.



UNIVERSITY OF SOUTHAMPTON
INSTITUTE OF SOUND AND VIBRATION RESEARCH

SIGNAL PROCESSING AND CONTROL GROUP

Equipment Isolation of a SDOF System with an Inertial Actuator using
Feedback Control Strategies - Part 1: Theory

by

L. Benassi, P. Gardonio and S. J. Elliott

ISVR Technical Memorandam No. 883

February 2002

Authorised for issue by
Prof S J Elliott
Group Chairman

® Institute of Sound and Vibration Research







ABSTRACT

Vibration isolators are required to protect a delicate piece of equipment from the vibration
of a structure to which it is attached. This report describes a theoretical investigation into
an active vibration isolation system in which an electromagnetic inertial actuator is
installed on top of a piece of equipment which is connected to a vibrating base structure
through a passive mount. Several feedback control schemes are discussed, and simulation
results are reported.

In addition, low and high frequency stability issues are investigated. Sensors and actuators
together with associated signal conditioning equipment play an important role in active
vibration control, but often place limits on the control performance. It is discussed how
electronic components, which are a major source of instability, make an unconditionally
stable system into a conditionally stable one.
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1. INTRODUCTION

Isolators are generally required to protect a piece of delicate equipment in a severe
vibration environment.

Very little can often be done to reduce the base vibration since it is either of high
impedance or characterized by complex dynamics. The isolation of any vibration-sensitive
equipment from base vibration is therefore usually performed on the transmission paths
{mounts). The fundamental benefit provided by any mount is reduced structural vibration.
In many applications, unwanted noise is a direct result of structural vibrations. Therefore,
mounts also provide noise reduction benefits. In general, these mounts may be modelled
as a combination of both resilient and energy dissipating elements. However, with such
passive mounts there is a trade-off between low and high frequency isolation
performances depending on the damping of the mount. In fact, a major challenge is to
make the mount as stiff as possible, statically, to better support the equipment, and
dynamically as soft as possible, to better isolate it. This is difficult to accomplish with
passive elastometric mounts, as described by Crede and Ruzicka (1996) and Ungar (1992).
To provide a more favourable static and dynamic stiffness compromise, active isolation
solutions must be used, which are usually based on mounts and actuators.

Applications with actuators and passive mounts in an active isolator package provide
many benefits including simplicity, effective vibration isolation, noise attenuation, higher
static stiffness, dynamic adaptability, and safety. This suggests that there is ample
motivation for the use of active mounting systems.

A very large number of published papers have been concerned with vibration isolation
problems and feedback active vibration control methods have been discussed. Karnopp
(1995) proposed a velocity feedback control method for obtaining a non-resonant
response, which has been applied to various vibration isolation systems.

Position feedback makes the rigidity increase and the transmissibility decrease, as
mvestigated by Bhat (1991). However, to have zero transmissibility, the rigidity must be
infinite, so the feedback coefficient must be infinite. Hence it is impossible to have zero
transmissibility by using the usual feedback control methods.

One way of overcoming the trade-off between damping low-frequency resonances and
achieving good high-frequency isolation is thus to use skyhook damping. This was
investigated by Beard, von Flotow and Schubert (1994). In their study, skyhook damping
implementation was possible using reactive actuators since no base dynamics were taken
into account in the frequency range of control, so that an inertial ground was available.
The effect of skyhook damping has also been investigated for a finite mobility base (Kim,
Elliott and Brennan, 1999) using reactive actuators.

In the study by Serrand et al. (1998 and 2000}, the effect of the base structure dynamics on
the formulation of direct velocity feedback (DVFB) control was investigated. In the case
- of a reactive implementation of the control actuators, the secondary forces were generated
by reacting off the flexible base structure, therefore the classical model of perfect skyhook
damping was not valid and the inherent stability of DVFB control (Balas, 1978) had to be
reconsidered. It was found that no instability or vibration amplification was encountered
from potential re-excitation of the flexible base by the secondary actuators in the
frequency range of analysis. Moreover, changes in the dynamics of the base plate did not
destabilize the control system, illustrating its robustness.
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On the other hand, considering the effects of the equipment and the mounts on the stability
of the overall system, there are severe limitations. In theory, DVFB is unconditionally
stable, provided the equipment can be modelled as a rigid body and the mounts as a
Iumped parameter spring and dampers. In practice, instability occurred at a very low
frequency due to phase shifts of the electrical equipment used, the flexibility in the
equipment structure, and the effect of resonances in the mount.

Actuators are used in active vibration control to generate a secondary vibrational response,
and in practice they can be configured either to react off the base structure or function as
an inertial actuator (also called proof-mass actuator.) This was investigated by Elliott ez
al., {2001). This choice also influences the stability limit. In general, the design of a
feedback controller involves a trade-off between performance (the attenuation of the
disturbance) and robust stability (the ability to remain stable under changing conditions).

The impedance and mobility matrices approach (IMM) was employed in this study.
Recent studies on active isolation by Gardonio et al. (1997a, 1997b, 1998) have suggested
the need for mathematical models which give a detailed analysis of the coupled vibration
transmission mechanism and, at the same time, provide a summary of the overall
phenomenon and thus allow a global interpretation of the dynamics of the active isolator
system. Good results have been obtained by using the IMM approach where the systemn is
divided into individual components and each component is studied in terms of input and
transfer mobilities or impedances.

This report deals with the stability analysis of a single degree of freedom system,
composed of a piece of equipment, which is mounted on a vibrating mass through a
mount. Active control is performed through an inertial actuator.




2. ACTIVE ISOLATION OF A LUMPED MASS EQUIPMENT MOUNTED ON A
SPRING-DASHPOT-MASS BASE VIA A SPRING-DASHPOT MOUNT

In this study, a matrix model has been used which assumes that the system is divided mto
four elements: the vibrating base, the passive mounts, the equipment, and the inertial
actuator. The dynamics of each of these elements modelled as lumped systems is
evaluated using point mobility terms. Fig. 1 shows the typical system that has been used in
the first section of this study and the numerical values assumed for the simulations. With
these values the base has a natural frequency of about 1.75 Hz and a damping ratio of
about {=0.5%, the actuator has a natural frequency of about 10 Hz and a damping ratio of
about {=4.5%, and the equipment mount has a natural frequency of about 21.5 Hz and a
damping ratio of about {=5.2%.

r m, = Inertial Actuator Dynamic Mass = 0.91 Kg
Inertial

iy
_l_ ¢, = Inertial Actuator Damping Factor = 5.8 Ns/m
Vg L e % k, @qa k, = Inertial Actuator Spring Stiffness = 3900 N/m

Actuat
ctuator m, = Equipment Mass =2.9 Kg
¢= Passive Mount Damping Factor = 33 Ns/m
Ricid ; k.= Passive Mount Spring Stiffness = 48000 N/m
Equipment | Equipment, m, ms= Base Mass = 2900 Kg
y _L ¢, = Base Damping Factor = 330 Ns/m
Passive ¢ omL—/—) ki k; = Base Spring Stiffness = 112000 N/m
Mount g, = Primary Force (disturbance)
mp Ga = Secopdary Force (conu:ol)
. | v, = Inertial Actuator Velocity
Vibrating /) * v, = Equipment Velocity
Base Cp{ —— | ap ks v; = Base Velocity

NN N NN N NN
Fig. 1 Schematic of a vibration isolation system with an inertial actuator.

The following definitions of mobilities and impedances have been used to describe the
system throughout this work:

Y =— L. Mobility of the actuator mass 2.1)
jorm,
Y =— = Mobility of the rigid equipment (2.2
jom,
Y, = 1 = Mobility of the vibrating base (2.3)
jom, +c, +—=
Jj
Kk
Z, =c, + — =Impedance of the actuator damping and stiffness (2.4)
j@
k
Z_ =c,, +-2 =Impedance of the passive mount (2.5)
jo



jom,

A= - = Total force on the equipment per g, when v,= 0 (2.6)
Z,+ jom,
jom,z, :
B= Tt = Impedance of the total force on the equipment per v, when g.= 0 (2.7)
a Jma

2.1 Velocity Feedback Control with Inertial Actuators

The analytic equation that describes the influence of the primary and secondary
excitations on the sensor output, which is the equipment velocity, can be shown to be

YA(+Y,Z,) Y% Zn
v, = g, + g, (2.8)
1+Z,(Y,+Y, +Y,BY,)+Y,B 1\+Z,(Y,+Y,+Y,BY,)+Y,B
or
v.=G,q,tG,9, (2.9)

where G, is the plant and Gy is the disturbance due to the primary excitation. When
DVFB, described by
q,=-hyv (2.10)

v e

is used to control the equipment velocity as in Fig. 2, the corresponding Bode plot of the
plant is reported in Fig. 3. The Nyquist plot (Fig. 4) shows a portion of the curve at low
frequency which lies on the negative side of the x-axis, and the correspondent root locus
(Fig. 5) shows how the poles and zeros of the system behave when the feedback gain *;
varies from O to +ee. In particular the real part of the actuator complex conjugate poles
become positive when %, = 58 leading the system in the unstable region. Note that the
base resonance is so low that it does not significantly aiter the system stability.
Substituting (2.10) into (2.8), the closed loop behaviour can be written as

Y;szm (2.11)

Vo=
* 1+Z (Y. +Y,+YBY))+Y.B+Y A(1+Y,Z )h, %

The transmissibility of the system (Fig. 6), defined as the ratio between equipment
velocity and base velocity, is given by

Y.Zn (2.12)

T 1+Z, Y +Y.B+Y Ah,

o=

Yy

"~ When h, is set to zero, (2.12) provides the transmissibility of the system without control
(passive system.) In Fig. 6, for gains below the critical point, the attenuation does not
seem to be pronounced. In particular, when the gain is set to 57, the maximum attenuation
is about 8 dB, while the average attenuation within the 15-25 Hz frequency range, is about
3 dB. In sum, the implementation of DVFB control leads to a trade-off between
performance and stability.
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Fig. 2 Schematic of a vibration isolation system with an inertial actuator and
equipment velocity feedback control.
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Fig. 3 Bode plot of the equipment velocity per secondary excitation of a vibration
isolation system with an inertial actuator and velocity feedback control.
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Fig. 3 Root locus of the transfer function between secondary excitation and equipment
velocity of a vibration isolation system with an inertial actuator and velocity feedback
control. Note that the base dynamics becomes unstable for very large gains.
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Fig. 6 Transmissibility of a vibration isolation system with an inertial actuator and
velocity feedback control. Velocity feedback gain h, = 0 (bold line), h, = 10 (faint
line), h, = 57 (dashed line.) The higher the gain, the more energy is taken away from
the structure. However, the higher the gain, the closer to instability the actuator mode
is.

The second part of this memorandum presents a review of different strategies for active
isolation (Miu, 1993, Preumont, 1997 and 2001, Howard and Hansen, 1997) using inertial
actuators. Six alternative control strategies have been considered: integrated velocity
feedback control, force control, integrated force control, force and velocity control,
integrated force and velocity control, and integrated force and integrated velocity control.
The purpose of this section is to study the feedback stability limits of the different control
strategies, paying attention to their closed loop performance and robust behaviour.,

2.2 Integrated Velocity Feedback Control

When the feedback gain £, is replaced with an integrator, the feedback stability of the
closed loop system is then dramatically improved (Fig. 7.) This is better illustrated by the
Nyquist plot in Fig. 8 and the root locus in Fig, 9. In this study the transfer function of the
controller was chosen to be

A,
H(jw)=— (2.13)
W
Considering (2.8) as the open loop response, by feeding back
9, =—H(jw)y, (2.14)

the following closed loop transfer function is obtained:
7




Y,Y,Z
v, = 2oL —g, (219
1+Z, (Y, +Y, +¥,BY,)+Y,B+Y,A(+Y,Z, ) H(jow)

while the transmissibility is given by

Ye o Y.z, (2.16)

1+Z Y, +Y,B+Y,AH(jow)

Vs

This is illustrated in Fig. 10. Although high gains might be required, the integrated
velocity feedback controller provides a very good attenuation not only about the inertial
actuator frequency, but also within a considerable frequency range, which also includes
the base-equipment structural mode. In particular, for ;,=1000, the average attenuation
within the frequency range 7 Hz to 27 Hz is over 20 dB.

Expanding (2.16), it can be noted that the zero (anti-resonance) of the system is not
affected by hj,, while the actuator-dominated resonance (pole) and the structure-dominated
resonance are. In particular, & acts directly on m, . Therefore, when h; increases, the
actuator-dominated resonance decreases. At the same time, %, acts on the stiffness of the
structure-dominated resonance, so when h;, increases, this latter resonance increases. This
behaviour is also shown in fig. 10.
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a
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Frequency (Hz)

Fig. 7 Bode plot of the equipment velocity per secondary excitation followed by an
integrator of a vibration isolation system with an inertial actuator and integrated

feedback control. The open loop transfer function Gljw)H{jw) is reported.
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Fig. 8 Nyquist plot of the transfer function between secondary excitation and
equipment velocity followed by an integrator of a vibration isolation system with an
inertial actuator and integrated feedback control. @ varies from 0 to + oo,
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Fig. 9 Root locus of the transfer function between secondary excitation and equipment
velocity of a vibration isolation system with an inertial actuator and integrated
feedback control.
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Fig. 10 Transmissibility of a vibration isolation system with an inertial actuator and
integrated velocity feedback control. Integrator gain hy, = 0 (bold line), by = 10
(faint line), and h;, = 1000 (dashed line.)

The closed loop system is unconditionally stable for any feedback gain A;. This is true
only for ideal integrators. In fact, when the pole of the integrator is not exactly zero, the
derivative of the Nyquist plot about =0 is not zero, but it is positive. Therefore, from
w=0, the Nyquist plot initially starts in the third quadrant. This means that the curve
encircles the point (-1,0) for Ay, greater than a certain critical value. In other words, for real
integrators, the system becomes conditionally stable. In this case, in the root locus the
complex conjugate poles relative to the inertial actuator cross the imaginary axis, rather
than staying on the negative side of the x-axis. Also, high frequency causes of instability
may affect the overall system.

A robust analysis on the system with integrated feedback shows how sensitive the closed
loop system is with respect to some of the most common causes of high and low
frequency instability. In real systems many other components are present in the control
loop (Ananthaganeshan, 2001, and Ren, et al., 1997.) Fig. 11 illustrates a more realistic
block diagram for a real system based on integrated control. Accelerometers are very
common vibration transducers, and their output is often amplified by a charge amplifier,
which behaves like a high-pass filter. If velocity is needed, the measured signal must be
integrated. Ideal integrators do not exist, therefore their dynamics must be taken imto
account in the overall stability analysis. In the control segment of the loop, after the
controller, a power amplifier is usually employed to amplify the signal and make it
appropriate for the actuator. Also, a delay is usually present, mostly due to transmission
lags of the electric signal.
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Fig. 11 Block diagram of a realistic negative feedback control system including the
plant, the integrated controller, and the electronic components.

The following equations illustrate the dynamics of the components in Fig. 11. The
numerical values have been chosen according to off-the-shelf commercial components
currently used in the laboratory. In particular, the charge amplifier cut-off frequency is 1
Hz. In the case subject of this study, the plant is different from (2.8) because in this case
its output is acceleration, not velocity. The controller is composed of a second order high-
pass filter and an integrator:

G(jw) =

H(jw)=

JOY,A1+Y,Z )

i+Z2,(Y,+Y,+Y,BY,)+Y,B

—%0.1326

h,

i

CAI (Jw) =
Int(jw) =

PA(jo)=

(1+ j0.1326)7 1+ je0.0909
0159
1+ jw0.159

1+ jw0.251
Jw0.1326
1+ jw0.1326

2.17)

(2.18)

(2.19)

(2.20)

@21

The open loop frequency response function of the system shown in Fig. 11 can be written

as

G (jo)H,(jw) = G(jo)CA (jo)Int(jw)H (jo)PA (jw)e ™™ (222)

while the closed loop frequency response function is given by
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_ G,(jw)
" TR GGayH Gy P (2:23)

where
JOY. Y, Z,

= (2.24)
1+Z,(Y, +Y, +Y,BY,)+Y,B

G,

A description of the effects of the main causes of instability is given in Benassi (2001). In
particular, the overall frequency response of all the electronic components, given by

G, (jo)= CA (jo)Int{ jw)H( jw)PA,(jw)e " (2.25)

is reported in Fig. 12.
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Fig. 12 Bode plot of the overall frequency response of all the electronic components.

Given the realistic system in Fig. 11, described by (2.17) through (2.24), and also
assuming a time delay 7=0.001 seconds, the maximum gain & that guarantees the system
to be stable is 22. This is illustrated in Fig. 13. For this value of the feedback gain, the
maximum attenuation in the closed loop response (Fig. 14) is computed to be 6 dB, while
the average attenuation between the two main resonance frequencies is 3 dB.

At the critical point (-1,0), the frequency value that the Nyquist plot assumes is 9.4 Hz.
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Fig. 13 Nyquist plot of the transfer function between secondary excitation and
equipment velocity of a realistic vibration isolation system with an inertial actuator
and integrated feedback control. Realistic electronic components are used, the delay
is assumed to be 0.01 seconds, and the feedback gain is set to 22. o varies from 0 to
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Fig, 14 Transmissibility of the ideal system without control (solid line) and the
realistic (faint line) vibration isolation system with an inertial actuator and integrated
velocity feedback control. Realistic electronic components are simulated, the delay is
assumed to be (.01 seconds, and the feedback gain is set to 22
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2.3 Force Feedback Control

Applying force feedback control to the original system is the next logical step. Fig. 15
shows the implementation. The total force g, is measured by a force gauge, which is
located between the inertial actuator and the equipment. This signal is then multiplied by
the feedback gain Arand fed back to the secondary excitation. The system equation is
given by

y o AUSZ,(0+T,) . Y.Y,Z, B
‘T Z (Y + Y, +YBY,)+ LB ® 1+Z,(Y, +Y, + ¥,BY,)+ 1,B

g, 2.26)

or
q, = qua + Gdfqp (2.27)

where Gyis the plant and G is the disturbance due to the primary excitation. The control

law is specified by
qu = _h‘fq( (2.28)

The corresponding Bode plot (Fig. 16) shows the inertial actuator mode at 11 Hz, and then
the passive isolation system behaviour at about 22 Hz. In this ideal case, the closed loop
system is unconditionally stable, as illustrated by the Nyquist plot (Fig. 17) and the root
locus (Fig. 18.)

Recalling the possible causes of instability, a potential instability at low frequency due to

phase shifts of the electronic devices may occur. In the ideal case the derivative at @ = 0O is
zero, but in real systems it might be positive, compromising the robustness of the overall
system and making it conditionally stable.
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[ - - 1 g

r Equipment, m,

Cm | == K

mp
Vb J_ * kp
ap

| 77}
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Fig. 158 Schematic of a vibration isolation system with an inertial actuator and force
feedback control.
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Fig. 16 Bode plot of the total measured force per secondary excitation of a vibration
isolation system with an inertial actuator and force feedback control.
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Fig. 18 Root locus of the transfer function between secondary excitation and total
measured force of a vibration isolation system based on an inertial actuator and force
Jfeedback control. Note that the base dynamics becomes unstable for very large gains.

By substituting (2.28) into (2.26) the following is obtained. It describes the influence of
the primary excitation on the measured signal (Fig. 19.)

YYZ B
g, = e b g, (2.29)
1+Z,(Y,+Y, +¥,BY,)+Y,B+ A(1+ Z, (Y, + ¥, )k,
Similarly,
: 2
g =—2 .y - Jomk—wme, (2.30)
1+ Ah, k,+ joc, —@'m,(1+h,)
and this is shown in Fig. 20. The transmissibility is given by
YYZ (1+ Ah
Ve o XZ,0+ Ah,) (2.31)
v, 1+Z. Y, +YB+A(+ZY)k,

The very interesting effect of the analysed force feedback controller is to be able to move
the actuator resonance to lower frequencies, while its magnitude increases. This is not the
only result. In fact, by examining the total measured force per primary excitation, the
second outstanding result is the considerable force attenuation that this control offers at
frequencies higher than the inertial actuator mode. Thirdly, when #s increases, the
structure-dominated resonance decreases. When, As tends to infinity, the structure-
dominated resonance tends to a frequency which would be the resonance on an equivalent
system in which m, and m, are joined together.
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The physical interpretation of the force feedback control can be understood by analysing
the system from a different point of view. By feeding back the inertial actuator
acceleration, the behaviour of the closed loop system is identical to the behaviour of the
closed loop system when force feedback control is applied (Benassi, 2001) In particular, it
is found that, when hr = m, h,, the two systems are equivalent, where A, is the inertial
actuator acceleration gain. This leads to the conclusion that force feedback control has the
physical meaning of adding an “apparent” mass to the inertial actuator mass. Therefore, at
higher frequencies than the inertial actuator resonance, the system appears to be more
massive.

For high gains, the actuator resonance frequency becomes smaller than the first mode of
the system (due to the base). In this configuration its amplitude is very small and the
system is very well damped throughout the entire frequency spectrum. However, the
problem of obtaining such high gains in practice remains.

Fig. 21 shows the transmissibility of the system. It can be noted that there is amplification
of the equipment velocity. Since the aim of this study is to minimize the equipment
velocity, this strategy seems to be counterproductive.
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&

g

lqlqu

-150 L 1 I
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Fig. 19 Bode plot of the transfer function between primary excitation and total
measured force of a vibration isolation system with an inertial actuator and force
feedback control. Three force feedback gains hy have been analysed: he = 0 (bold
line), hy= I (faint line), and hy = 10 (dashed line.)
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Fig. 21 Bode plot of the transfer function between primary velocity and equipment
velocity (transmissibility) of a vibration isolation system with an inertial actuator and
force feedback control. Three force feedback gains hy have been analysed: hy = 0
{bold line), hy= 1 (faint line}, and hy= 10 (dashed line.)
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In real systems based on force control, unlike the integrated control solution, the force
gauge measurement does not need to be integrated. In other words, the charge amplifier
and the integrator of Fig. 11 are replaced by a slightly different charge amplifier described
by (2.30). The following equations illustrate the dynamics of the components:

A+ Z, (Y, +1,))

G(jw) = 2.32
(@) 1+Z,(Y,+Y, +Y,BY,)+Y,B (2-32)
_ - ’h,;0.1326
H(jw)= 5 (2.33)
(1+ jw0.1326)
CA, (jay = 2202385 (2.34)
1+ jw0.2385
PA,(jy = 2291326 (2.35)
1+ jw0.1326
The open loop frequency response function of the system can be written as
G(jo)H,(jw) = G(jo)CA,(jw)H (jo)PA (jw)e " (2.36)
while the closed loop frequency response function is given by
Ly (237)
1+G(jw)H,(jw)
where
v.Y,Zz, B
G,(jw) = e (2.38)

1+2,(Y,+Y, +Y,BY,)+Y,B

A quantitative performance comparison is now performed. Given the realistic system
described by (2.32) to (2.38), and also assuming a time delay 7=0.001 seconds, the
maximum gain Asthat guarantees the system to be stable is 0.036. This is illustrated in Fig.
22. For this value of the gain, the maximum attenuation of the transmitted force in the
closed loop response (Fig. 23) is computed to be 7 dB, while its average value at
frequencies higher than 9.4 Hz is 3 dB. Fig. 24 shows the corresponding response of the
equipment velocity per base velocity.

In sum, although force feedback control is a very effective control strategy, in real systems
it raises robustness issues, which greatly limit its performance. Also, if the aim of the
confroller is to minimize the equipment velocity, force feedback is not a good solution.
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Fig. 23 Bode plot of the transfer function between primary excitation and total force
of the ideal system without control (solid line} and the realistic (faint line} vibration
isolation system with an inertial actuator and force feedback control. Realistic
electronic components are used, the time delay is assumed to be 0.001 seconds, and

the feedback gain is set to 0.036.
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Tig. 24 Transmissibility of the ideal system without control (solid line) and the
realistic (faint line} vibration isolation system with an irertial actuator and force
Jfeedback control. Realistic electronic components are used, the time delay is assumed
to be 0.001 seconds, and the feedback gain is set fo 0.036.

2.4 Integrated Force Feedback Control

By replacing the force gain in Fig. 15 with an integrator, an integrated force feedback
controller is obtained. The total force is measured, integrated, and then fed back into the
inertial actuator. Analytically, the equation for the whole structure is given by (2.26),
while the control law is described by

g, =—hy = (2.39)
Ja

The Bode plot (Fig. 25), the Nyquist plot (Fig. 26) and the root locus (Fig. 27) show a
very interesting behaviour. The ideal system is unconditionally stable and in particular at
low frequencies the system dynamics tends to increase its damping and its robustness.

It can be noted that the integrated force being fed back is proportional to the absolute
velocity of the actuator mass.

Problems for real systems arise at high frequency, though. In the Nyquist plot, the second
smaller loop, due to the passive mount interaction with the base end equipment, is very
close to the x-axis. This property can be validated by analysing the root locus and in
particular the behaviour of the high frequency complex conjugate poles. When the
feedback gain % is increased, the mode tends to get very close to the imaginary axis. High
frequency instabilities in the active feedback control system typically arise from four
sources: low-pass filter module of the charge amplifier, control force shakers,
accelerometers, and time delays. Due to any or a combination of these causes, the high
frequency loop in the Nyquist plot may cross the x-axis, causing a closed loop instability
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for a certain critical gain. Thus, in real systems with high frequency electronic flaws, the
integrated force feedback control may be conditionally stable.
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Fig. 25 Bode plot of the integrated force per secondary excitation of a vibration
isolation system with an inertial actuator and integrated force feedback control.
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Fig. 27 Root locus of the transfer function between secondary excitation and
integrated force of a vibration isolation system with an inertial actuator and
integrated force feedback control.

The total force measured by the force transducer per primary excitation is reported in Fig.
28, and its equation is given by

_ joY,Y,Z B
Joll+Z (Y, +Y, +Y,BY, )+Y,Bl+ A1+ Z (¥, +Y )k,

g, q, (2.40)

Fig. 29 shows the equipment velocity response per base response, which is given by

v joY,Z, (1+ Ah,)

[

v, Jjoll+Z,Y +YBl+A(+Z,Y)h,

(241)
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Fig. 28 Bode plot of the transfer function between primary excitation and total force
of a vibration isolation system based on an inertial actuator and integrated force
feedback control. Three gains hy have been analysed: hy = 0 (bold line), hy = 100
(faint line), and hy = 300 (dashed line.)
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A robust analysis on the system with integrated force feedback is described by the
equations (2.32), and from (2.34) to (2.39) illustrate the dynamics of the components. In
particular:

~®’h,0.1326 1
(1+ jw0.1326)° 1+ jw0.251

H{jw)= 2.41)

Given the realistic system described above, and also assuming a time delay 7=0.001
seconds, the maximum gain Ay that guarantees the system to be stable is 8.5. This is
illustrated in Fig. 30. For this value of the gain, the maximum attenuation in the closed
loop response (Fig. 31) is computed to be 33 dB, while the average is 8 dB within a very
large frequency range between 5.2 Hz, where the Nyquist point is passed, and at least 2
kHz, upper bound of the computer simulation. This method is not only robust, but
performance is also very acceptable, if compared to the other solutions described so far.
Fig 32 shows the transmissibility of the system. In sum, integrated force control is a good
choice in terms of reducing the transmitted force, while it is a poor strategy if the aim is
equipment velocity attepuation.
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Fig. 31 Bode plot of the transfer function between primary excitation and total force
of the ideal system without control (solid line) and the realistic (faint line) vibration
isolation system with an inertial actuator and integrated force feedback control.
Realistic electronic components are used, the time delay is assumed to be 0.001, and
the feedback gain is set to 8.5.
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Fig. 32 Transmissibility of the ideal system without control (solid line) and the
realistic (faint line) vibration isolation system with an inertial actuator and integrated
force feedback control. Realistic electronic components are used, the time delay is
assumed to be 0.001, and the feedback gain is set to 8.5.
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2.5 Force and Velocity Feedback Control

A combination of force and velocity feedback control is now studied. The control to the
inertial actuator is the sum of a total force feedback and a velocity feedback, therefore two
sensors are needed (force and velocity) and one actuator. This transforms the control
problem into a multiple-input-single-output (MISO) system. The aim of this and the
following sections is to find an appropriate set of gains for different control loop strategies
in order to minimize the equipment velocity. The block diagram of a multichannel
teedback control system is shown in Fig. 33.

dijw)
Primary
disturbance
Gjw)
_ Plant
n{jw) - + -
“_j> Glo) | > Yiw)
+
Secondary
actuator
signal Controller Response
Hjo) K |

Fig. 33 Block diagram of a multichannel feedback control system including the plant,
the controller, and the disturbance source.

From the block diagram follows that

G,(jw)
I+G(jaonH(jw)

y(jw)= d(jo) (2.42)

The application of the force and velocity controller to the system is presented in Fig. 34.
In this case, both total force and velocity are measured at the equipment. While (2.42) still
holds, the output and input variables are

y(jw)= {V} (2.43)
g,

d(jw)={g,} (2.44)

u(jo)=1g,} (2.45)
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The system equation is given by

{q} =G(jo)g, }+ G, o), }

!

and the control law can be written as

2.} —Hum{"e}
4q,
where

Y,Al+Y,Z,)

1+ Z, (¥, +Y, +1,BY,)+ 1B
Gjw) = AQ+Z, (Y, +1,))

1+ 2, (Y, +Y, +Y,BY,)+Y,B

YY,Z,
1+Z (Y, +Y, +Y,BY, )+Y B
BY)Y,Z,
1+Z,Y,+Y, +Y,BY, )+Y,B

Gd(.]a)) =

H(jw)=[h h,]

In terms of transmissibility, the above equations can be rewritten as

ve
y(jw)= { }
g,

d(jo)y="4,}

u(jwy=1g,}

{ve} = G(jo)lg, G, o), }

{

g,

fa.}= —H(jw){”'}
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(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)



Y.A
1+Z Y +YB
AU+ Z.Y)
1+Z Y. +Y.B

G(jw) = (2.56)

YZ

1+Z Y +Y B
BY Z,
1+Z Y +YB

G,(jw)= (2.57)

H(jw)=[h h,] (2.58)

while (2.42) still holds. Fig. 35 shows an equivalent schematic of a vibration isolation
system. The equations describing the inner loop can be written as

open e

g9, =2, +Gq, (2.59)

q,=H(f, —q,) (2.60)

and substituting (2.60) into (2.59), the total measured force becomes

z,, GH
=—2* y 4+ 2.61
4 1+GH ° 1+GH 2 ( )
ZO {rs B -
It should be noted that Z,, = ——=—<<Z_ andif GH >>1 then g, = f,, which means

closed open
1+GH
that the total transmitted force can be regulated using the command signal, which is
chosen to be the output of the outer contro! loop. The outer loop is a velocity feedback

controller, and by doing so 4.7 4» Wwhich indicates that a skyhook damper is
v

4

implemented.

29




l_ Equipment, m,

Ve

Cm L= ki Ve

v T
e Ll .
P

NN N N NN NN

Fig. 34 Schematic of a vibration isolation system with an inertial actuator and the
swm of force and velocity feedback control.

Hig
Va +
== % ke H Z,
e -

r e

mp
Vi Cp _1__I q¢ kb
P

L=

NN NN NN NN NN

Fig. 35 Equivalent schematic of a vibration isolation system with an inertial actuator
and the sum of force and velocity feedback control.

When the force control gain is set to zero and the velocity feedback gain can vary, the
overall system behaves like the a DVFB system. In this case, there exist a velocity gain at
which the curve passes through the origin, making the closed loop system unstable. At
higher gain values, the curve encircles the critical point obtaining the same instability
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effect. This behaviour was actually expected, since the system with velocity feedback and
no force feedback is equivalent to the system of Fig. 2. Similarly, when the velocity
feedback gain is set to zero and the force feedback gain can vary, the overall behaviour is
equivalent to a force feedback control system.

A very interesting behaviour is found when the two controllers are operative
simultaneously, as illustrated by the Nyquist plot in Fig. 34. Starting from a stable initial
system, when the velocity gain is increased above the critical point, the closed loop system
becomes unstable (faint line.) At this point, if the force control feedback gain is increased
(dotted line), the overall ideal closed loop system becomes unconditionally stable again. In
sum, it is found that force feedback control is able to stabilize those systems with velocity
feedback that are unstable due to the high velocity gain. Like in the previous case, the
force controller adds an “apparent” mass to the inertial actuator mass, while the velocity
controller adds damping to the system. An important aspect is that for a given force
feedback control gain, the velocity feedback control gain that provides the same damping
as the velocity gain used for a lower value of the force gain is greater. Alternatively,
higher velocity gains are required in order to obtain the same damping effects when the
force gain is increased.
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Fig. 36 Multichannel Nyguist plot of the determinant of (I+G(j@)H(jw)). The plant is
a vibration isolation system with an inertial actuator. The controller is the sum of
force and velocity feedback. In this case both force and velocity feedback effects are
present: h, = k= 1 (bold line), h, = 200 and hy= 1 (faint line), h, = 1 and he= 2
(dashed line), h, = 200 and hy= 2 (dotted line.) @ varies from () to + =

The question that must be posed now regards the performance of the double controller in
the context of the complete system. Fig. 37 shows the effect of the primary excitation on
the total measured force at the equipment. When force feedback control is added to the
system, significant attenuation is experienced starting from the inertial actuator modal
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frequency. Also, force feedback is able to stabilize systems (dotted line) that were unstable
(faint line) by using velocity feedback only. Considering the total transmitted force to the
equipment as the variable that must be minimized in order to have good vibration isolation
of the equipment, the conclusion is that force control is definitely a better solution than
velocity control or even a combination of the two control strategies.

Fig. 38 shows the transmissibility of the systemn. Although the force feedback control does
not seem to be very effective in adding damping to the system (the attenuation is not
outstanding), it stabilizes the system (dotted line) that was previously unstable (faint line.)
On the other hand, considering the equipment velocity as the variable that must be
minimized for vibration isolation purposes, the velocity control strategy offers better
results than the force controller, especially within the frequency range where the structural
mode lies. However, force control is needed to stabilize unstable velocity controlled
systems.
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Fig. 37 Bode plot of the transfer function between primary excitation and total
measured force of a vibration isolation system with an inertial actuator and the sum
of force and velocity feedback control. Four cases are reported: hy = 0 and h, = 0
(bold line), hy= 0 and h, = 200 (faint line, unstable), hy= 2 and h, = 0 (dashed line),
hy= 2 and h, = 200 (dotted line.) The second case causes closed loop instability. This
problem is solved by increasing the force gain.
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Fig. 38 Transmissibility of a vibration isolation system based on an inertial actuator
and the sum of force and velocity feedback control. Four cases are reported: hy = 0
and h, = 0 (bold line), hy = ( and h, = 200 (faint line, unstable), hy= 2 and h, = 0
(dashed line), iy = 2 and h, = 200 (dotted lihe. )If k= 0 and h, = 200 the system is
unstable, but can be stabilized by increasing hyto 2.

A robust analysis on the system with force and velocity feedback is now proposed. Fig. 39

shows a realistic block diagram for the real system.

d(j®w) Primary

\U/ disturbance

Y(jw)

S

Response

G4jw)
Charge
Plant Amplifier Integrator
ujw) +

G(jw) CA(w) Int(jow) |
Secondary *
actuator
signal Delay Power Amplifier Controller

D(jw) PA(jw) -Hijw) K

Fig. 39 Block diagram of a real negative feedback control system including the plant,
the integrated force controller, and the elecironic components.
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The following equations illustrate the dynamics of the components in Fig. 39. The
numerical values have been chosen according to off-the-shelf commercial components.
Like in the previous analysis, the charge amplifier cut-off frequency is 1 Hz and each
controller is modelled using a second order high pass filter, simulating the gain
electronics:

JwY,Al+Y,Z, )
. {1+Z, (Y, +Y, +Y,BY,)+V¥,B
G’(Ja)) - A(]. 'f' Zm(}fe + YL)) € (262)
1+Z,(Y,+Y,+Y,BY,)+YV.B
| —wm0.1326  -@°h,0.1326
H(jw) = : - S . (2.63)
| (1+ j®0.1326)  (1+ jw0.1326)
jw0.159
.« | 1+ jw0.159
CA(jw)= 302385 (2.64)
1+ jw0.2385
!
Int(jw)=|1+ jw0.251 (2.65)
1
PA(j) = JQoJ326 JQ04326 (2.66)
1+ jw0.1326 1+ jw0.1326
D(_]CU) = [e—jaJ0.00l e—ij.Oﬁl] (2.67)

The stability of this realistic multichannel confrol system is determined by examining

whether the locus of the determinant of [I+Gjw)H,(jw)] encloses the origin as @ varies
from -eo to +e0, where

G,(jw) = G(jo) (2.68)

H, (jo)=CA(joYnt(jo)H(jo)PA(juw)D(jw) (2.69)

Only in (2.68) and (2.69) the product is an array multiplication, not a matrix
multiplication. The closed loop frequency response function is given by

v, =[1+G,(o)H,(jo)] G, (jo)g, (2.70)
where
joy.Y,Z,
. 1+Z2 (Y. +¥, +Y BY )+Y B
G, (jow)= mite b e= b € (2.71)
atJ BY.Y,Z,

1+Z, (Y, +Y,+Y,BY,)+Y,B
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A performance comparison follows. Given the realistic system in Fig. 39, described by
(2.62) through (2.71), and also assuming a time delay 7=0.001 seconds, a set of maximum
gains k; and hythat guarantee the system to be stable are, respectively, 1.65 and 0.01. This
is illustrated in Fig. 40. For these values of the gain, the maximum attenuation in the
transmissibility (Fig. 42) is 8 dB, while its average is 4 dB within the 18-25 Hz frequency
range. Regarding the attenuation of the force transmitted to the equipment (Fig. 41), this
choice of feedback gains does not provide good results. In fact, rather than an attenuation,
an amplification is experienced at frequencies greater than 20 Hz. It is important to notice
that when %; is dominant compared to %y the Nyquist plot assumes a shape that reminds of
the DVFB case, while when %ris dominant compared to &;, the Nyquist plot reminds of the
force feedback case. In the former case, the equipment velocity performance is privileged
with respect to the total transmitted force, whereas in the latter case the opposite occurs. In
sum, the two gains act like two tuneable devices: F&; improves the equipment velocity
attenuation, hris more effective on the total transmitted force attenuation. In other words,
it is a matter of balancing the two values within the stability region, which does not mean
that setting the two gains to their maximum values, which were obtained in both the
DVFB and force feedback cases, guarantees the best performance of the MIMO system. In
general this solution leads to an unstable system.
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Fig. 40 Multichannel Nyquist plot of the determinant of (I+G(jw)H(jw}). The plant is
a realistic vibration isolation system with an inertial actuator. The controller is the
sum of force and velocity feedback. Realistic electronic components are used, the time
delay is assumed to be 0.001 seconds, the force feedback gain is 0.01, and the velocity
Jeedback gain is 1.65. wvaries from 0 to +e=
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Fig. 41 Bode plot of the transfer function between primary excitation and total
measured force of the ideal system without control (solid line) and the realistic (faint
line) vibration isolation system with the sum of force and velocity feedback control.
Realistic electronic components are used, the time delay is assumed to be 0.001
seconds, the force feedback gain is set to 0.01, and the velocity feedback gain is set to

1.65.
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Fig. 42 Transmissibility of the ideal system without control (solid line} and the
realistic (faint line} vibration isolation system with the sum of force and velocity
feedback contrel. Realistic electronic components are used, the time delay is assumed
to be 0.001 seconds, the force feedback gain is set to 0.01, and the velocity feedback

gain is set to 1.65.
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A combination of force and integrated velocity was also analysed, but the results are quite
similar to the previous case both in terms of robustness and performance. 6 dB was the
maximum attenuation and about 4 dB was the average (within a limited bandwidth) of the
equipment velocity closed loop response. With respect to the previous case, the only
advantage is that there is attenuation in the transmitted force for most of the selected
control gains. This solution does not offer more than a mere integrated velocity feedback.

2.6 Integrated Force and Velocity Feedback

Among the energy absorbing controls, DVFB and integrated force feedback control are
two of the most effective treatments. When these methods are both applied to the system
in Fig. 1, the obtained Nyquist plot is shown in Fig. 43. Equations (2.42) through (2.49)
describe the ideal system, with the exception of the control law, which in this case is given
by

H(jw)=h L (2.72)
jo

The ideal closed loop system is conditionally stable when the velocity gain dominates over
the integrated force gain, whereas when either the integrated force gain dominates or when
the two gains are balanced, the closed loop system is unconditionally stable. This is not
true for real systems, as expected.
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Fig. 43 Multichannel Nyquist plot of the determinant of (I+G{ja)H{(jw)). The plant is
a vibration isolation system with an inertial actuator. The controller is the sum of
integrated force and velocity feedback. Different force feedback and velocity feedback
gains are reported: hy= 1 and h, = I (bold line), hy= 0 and h, = 50 (faint line), hy=
10 and h, = 0 (dashed line), hy= 10 and h, = 100 (dotted line.) @ varies from 0 fo
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Fig. 44 shows the effect of the primary excitation on the total measured force, while Fig.
45 shows the transmissibility of the system. Performance greatly depends on the choice of
the two feedback gains.
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Fig. 44 Bode plot of the transfer function between primary excitation and total force
of a vibration isolation system with sum of integrated force and velocity feedback
control. Different force feedback and velocity feedback gains are reported: hy= 0 and
h, = 0 (bold line, no control), hy = 0 and h, = 50 (faint line), hy= 10 and h, = 0
(dashed line), hy= 10 and h, = 100 (dotted line.)
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Fig. 45 Transmissibility of a vibration isolation system with sum of integrated force
and velocity feedback control. Different force feedback and velocity feedback gains
are reported: hy= 0 and h, = 0 (bold line, no control), hy= 0 and h, = 50 (faint line),
hy= 10 and h, = 0 (dashed line}, hy= 10 and h, = 100 (dotted line.)
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For realistic systems based on integrated force and velocity feedback control, equations
(2.62) through (2.71) describe the system, except for the control law, which is given by

(2.73)

— @*h0.0633 — %0.0633 hy }

U [(H jw0.0633Y  (1+ jw0.0633) 1+ jw0.251
Such a high time constant for the integrator within the force feedback device implies that a
very precise integrator is used. This time constant determines the size of the first internal
low frequency loop: the smaller the time constant, the bigger the size of the loop.

Fig. 46 shows the Nyquist plot when a 0.001 second time delay is assumed, 4, = 50 and
hy=6, while Fig. 47 and Fig. 48 report the closed loop behaviour.

Although about the inertial actuator resonance frequency a considerable amplification is
present, the closed loop system is extremely robust. Also, performance is very promising:
the maximum attenuation in the equipment velocity is 22 dB, and the average 1s 9 dB. In
particular, the frequency range where the attenuation is effective is very large: from 12.5
Hz to at least 2 kHz.
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Fig. 46 Multichannel Nyquist plot of the determinant of (I+G(jw)H(ja)}. The plant is
a realistic vibration isolation system with an inertial actuator. The controller is the
sum of integrated force and velocity feedback. Realistic electronic components are
used, the time delay is assumed to be 0.001 seconds, the force feedback gain is 6, and
the velocity feedback gain is 50. w varies from 010 4=
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Fig. 47 Bode plot of the transfer function between primary excitation and total force
of the ideal system without control (solid line) and the realistic (faint line} vibration
isolation system with an inertial actuator and the sum of integrated force and velocity
Jfeedback control. Realistic electronic components are used, the time delay is assumed
te be 0.001 seconds, the force feedback gain is 6, and the velocity feedback gain is 50.
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Fig. 48 Transmissibility of ideal system without control (solid line} and the realistic
{faint line) vibration isolation system with on an inertial actuator and the sum of force
and velocity feedback control. Realistic electronic components are used, the time
delay is set to 0.001 s, the force gain is 6 (faint) or 4 (dashed), and the velocity gain is
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As Fig. 47 shows, the transmitted force to the equipment has increased, while the
equipment velocity (Fig. 48) has decreased in a very wide frequency range. This is due to
the choice of the control gatns, which is aimed to minimize the equipment velocity. A
different choice might be able to reduce the transmitted force. In other words, the double
loop control structure allows the user to tune the system in order to achieve different
control strategies. For example, if the choice of the feedback gains in Fig. 48 (faint line) is
considered not appropriate because of the increased value of the transmissibility within the
actuator resonance, another set of gains leads to a more robust system (dashed line.) In any
case, even if the performance of this latter system is worse than the former, it remains far
better than any other strategy studied in this work.

2.7 Integrated Force and Integrated Velocity Feedback

When SISO systems were analysed, in order to have the equipment velocity minimized,
the integrated velocity feedback turned out to be a good solution with respect to
performance and robustness. At the same time, in order to minimize the total transmitied
force, the integrated force feedback method seems to be a very good approach. When
these two methods are combined together in a MIMO system, the control law is given by

) h, By

H(jw)=| -2 L (2.74)
o jw

The Nyquist plot is reported in Fig. 49. Even in this case, when h; is dominant, the

behaviour of the system becomes integrated velocity feedback criented, while integrated

force feedback describes better the system when hyis dominant. In any case, the ideal

system is unconditionally stable. Also, the integrated force feedback tends to make the

_ overall system more robust. On the other hand, the performance of this solution seems to

be worse than the previous case. In fact, despite high gains are used, the equipment
velocity behaviour does not improve significantly (Fig. 51.)
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Fig. 49 Multichannel Nyquist plot of the determinant of (I+G(jw)H(jw)). The
controller is the sum of Integrated force and integrated velocity feedback. Different
Jorce feedback and velocity feedback gains are reported: hy= 1 and h, = 1 (bold
line}, hy = O and h, = 5000 (faint line), hy = 20 and h, = 0 (dashed line), hy = 20 and
h, = 5000 (dotted line.} wvaries from 0 to + o
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Fig. 50 Bode plot of the transfer function between primary excitation and total force
of a vibration isolation system with the sum of integrated force and integrated velocity
feedback control. Different force feedback and velocity feedback gains are reported:
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Fig. 51 Transmissibility of a vibration isolation system with the sum of integrated
force and integrated velocity feedback control. Different force feedback and velocity
feedback gains are reported: hy= 0 and h, = 0{bold line), hy = 0 and h, = 5000 (faint
line), hy = 20 and h, = 0 (dashed line), hy= 20 and h, = 5000 (dotted line.)
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For a realistic system, (2.62) through (2.71) are assumed and the following describes the
control law:

~@°0.0633 h ~0*0.0633  h
(1+ jw0.0633) 1+ jw0.0909 (1+ jw0.0633) 1+ jw0.251

H(jw)= |: :!(2.75)

In this case Fig. 52 shows the relative Nyquist plot when h;, =500 and #,=2, and Fig. 53
and Fig. 54 report the closed loop performance compared to open loop case. Maximum
effect was given to the ability of the velocity feedback to damp the equipment velocity
response. In fact, the maximum attenuation for the total transmitted velocity is 20 dB, with
an average value of 10 dB between the two main resonance frequencies.
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Fig. 52 Multichannel Nyquist plot of the determinant of (I+G(jw)H{(jw)). The plant is
a realistic vibration isolation sysiem with an inertial actuator. The controller is the
sum of integrated force and integrated velocity feedback. Realistic electronic
components are used, the time delay is assumed to be 0.001 seconds, the force
feedback gain is 2, and the velocity feedback gain is 500. @ varies from 0 to +eo
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of the ideal system without control {solid line) and the realistic vibration isolation
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control. Realistic electronic components are used, the time delay is assumed to be
0.001 seconds, the force feedback gain is 2, and the velocity feedback gain is 500.
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2.8 Conclusions

Inertial actuators do not need to react off a base structure, so they can be used as modules
that can be directly installed on a vibrating structure. This feature makes them very
attractive.

A review of different strategies for active isolation using an inertial actuator was
presented. For all of them, a matrix model has been used which assumes that the system is
divided into four elements: base, passive mounts, equipment, and inertial actuator.
Feedback stability limits, performance, and robustness were considered for each case. In
particular, once the theoretical analysis was completed, a realistic case using real
commercial components was analysed. Table 1 shows the comparative results. In
particular, the second and fourth columns report the maximum and average computed
attenuation values for, respectively, the total force and the equipment velocity. The third
and fifth columns show the frequency range within which the attenuations are effective.
The judgement reported in the last column evaluates the robustness of the different control
strategies when the aim is to minimize the equipment velocity.

Integrated velocity feedback control is unconditionally stable for an ideal system, while it
is conditionally stable for real systems. The performance of an ideal integrated velocity
feedback controller is good within a considerable frequency range. Its simplicity then
makes this solution very attractive. Unfortunately high gains may be needed to obtain
substantial attenuation and this is clearly a limit because in real systems high gains do not
guarantee stability. However, the realistic analysed system was insufficiently robust, with
performance limitations.

Force feedback control is unconditionally stable for an ideal system, while it is
conditionally stable for real systems. Also for this case, possible instabilities may occur at
low frequency. It is not appropriate to minimize the equipment velocity using this strategy,
while, on the other hand, the performance of an ideal force feedback controller is very
good if employed to reduce the transmitted force. Unfortunately, real systems seem to be
poorly robust compared to the ideal case, therefore it is hard to obtain stable systems with
high gains. In other words, high-end components are needed in order to use the good
theoretical capabilities of this method. This is why the results on performance and
robustness shown in Table 1 do not have to mislead.

Integrated force feedback control is unconditionally stable for an ideal system, while it is
conditionally stable for real systems. Possible instabilities may occur especially at high
frequency. The performance of a real integrated force feedback controller is very good,
and its robustness is good, but only if the attenuation of the transmitted force is
considered.

Finally, a combination of force-based and velocity-based feedback control laws was
studied. First, the force and velocity feedback strategy was analysed. Being the system
linear, the overall behaviour is the superposition of a force feedback controller and a
velocity feedback controller. Ideal systems are conditionally stable, and real system may
encounter low frequency stability problems, due to the electronics. This poses robustness
problems that must be taken into account by the designer. The performance of the closed
loop system greatly depends on the choice of the feedback gains. These aspects have been
discussed. One of the main findings is that force feedback control (in ideal or semi-ideal
systems) is able to stabilize systems that were unstable if only the velocity feedback
controller was applied.

Then, the integrated force and velocity feedback strategy was analysed. Out of the 6
presented cases, this method showed an excellent robust behaviour and also good
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performance. In addition, regarding the minimization of the equipment velocity, it was
shown that the frequency range of interest in which the controller is effective is wider than
in the other methods. Integrated force and velocity control is definitely a very interesting
and very promising approach.

A combination of integrated force and integrated velocity offers a good robust behaviour
and very good performance within the frequency range between the actuator natural
frequency and the equipment natural frequency.

Max/Ave Frequency Max/Ave Frequency | Performance
Feedback Force range Velocity range of the
Controller | Attenuation Force Attenuation Velocity Realistic
(dB) (Hz) (dB) (Hz) System
DVFB -/- - &/3 15-25 poor
Integrated
Velocity ~/- - 6/3 11-23 poor
Force /3 9.4-2000 | amplification 11-22 poor
Int;gr ated 33/8 3.1-2000 | amplification 11-20 poor
orce
Force +
Velocity 6/2 10-11 8/4 18-25 poor
Intgrd.
Force + amplification 4-2000 22/9 12.5-2000 very good
Velocity
Intgrd.
Force + amplification 2-2000 20/10 10-28 good
Interd.Vel.

Table 1 Performance and Robustness comparison of the control strategies applied to
the same realistic electro-mechanical system.

In this study it was assumed that the actnator resonance frequency was smaller than the
equipment natural frequency. Appendix A reports the analysis of the opposite case. The
main resulf that can be drawn from this study is that when the inertial actuator resonance
frequency is greater than the equipment natural frequency, the overall system is more
difficult to control and the control strategies here presented do not show good results. The
best solution that was found was adopting a combination of force and integrated velocity.
When the break frequency of the actuator falls before the structural frequency and DVFB
is implemented, the closed loop system is almost always unstable as shown by
Zimmerman and Inman (1990.) This is due to the phase characteristics of the inertial
actuator. When other strategies are implemented, including double loop feedback control,
_ it was found that the performance of the overall system is not satisfactory. This is mainly
due to the inherent dynamics of the inertial actuator, which was shown to be that of a
high-pass filter whose characteristics are shaped by the spring and damper rates. In fact,
the simplest way to describe the dynamics of the actuator is by its break frequency, which
indicates the frequency at which the Bode magnitude plot of the inertial actuator breaks
flat from a 40 dB/decade rise, and the phase plot goes through 90 degrees. In other words,
the output force level is severely limited at frequencies below the break frequency, and
those modes that fall below the break frequency cannot be effectively attenuated.
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APPENDIX A: Equipment Isolation when the Inertial Actuator Resonance
Frequency is greater than the Structural Frequency of Interest

When the inertial actuator resonance frequency is greater than the equipment natural
frequency of interest, the overall system turns out to be more difficult to control, therefore,
when possible, an actuator resonance frequency below the structural frequency is
recommended (Zimmerman and Inman, 1990.)

In this study the actuator mass was changed to 0.5 kg, its stiffness was changed to 60000
N/m, and its damping to 10 Ns/m. This choice leads to an inertial actuator natural
frequency of about 18.5 Hz and an equipment natural frequency of about 60.3 Hz.

When DVEB is used to control the equipment velocity, an additional phase shift due to the
structure compromises the feedback stability. The Nyquist plot (Fig. al) shows a portion
of the curve at low frequency that lies in the negative real plane. In contrast to the
corresponding case described in 2.1, the actuator acts at higher frequencies and it must be
able to attenunate the behaviour of the equipment, which lies at lower frequencies.

When the feedback gain is set to 240, the stability limit is reached. In this configuration
the closed loop behaviour shows good attenuation (15 dB maximum, 7 dB average) within
55 and 70 Hz, but, on the other hand, it shows a structural amplification between 16 and
19 Hz. This phenomenon, which can be up to 20 dB, is exactly the opposite of what we
aimed. In other words, the inertial actuator is not able to be effective at frequencies below
its own resonance frequency, where it turns out to be counterproductive.
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Fig. al Nyquist plot of the transfer function between secondary excitation and

equipment velocity of a vibration isclation system with an inertial actuator and
velocity feedback control. @ varies from 0o +ea
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Fig. a2 Bode plot of the transfer function between primary excitation and equipment
velocity of a vibration isolation system with an inertial actuator and velocity feedback
control. Velocity feedback gain h, = 0 (bold line}, h, = 100 (faint line), h, = 240
{dashed line.) This latter case causes closed loop system to be in its stability limit.

When integrated velocity feedback is applied, the Nyquist plot is rotated by 90°, as
described in 2.2. Also in this case poor performance and poor robustness are achieved for
real systems. When force or integrated force are used as control strategy, the Nyquist plots
remind of that ones that were obtained in 2.3 and 2.4. The shape is similar, but the
behaviour is quite different, and the main reason is that this time the first loop that is
travelled (increasing the frequency) is the inner loop, which describes the structure. Since
this loop is small, large attenuations cannot be achieved. Moreover, attenuations in the
transmitted force to the equipment can be obtained, while the equipment velocity either
remains unchanged or it increases, defeating the purpose of the control system. Only force
or integrated force control strategies are therefore ineffective or counterproductive in order
to minimize the transmitted equipment velocity.

When multichannel control algorithms are implemented, the situation does not improve
much. In general, attenuation in the transmitted force can be achieved, but amplification in
the equipment velocity occurs, especially within a frequency range about the equipment
mode. This is due to the fact that force is not sufficient in order to act effectively on the
transmitted equipment velocity: velocity feedback is needed. On the other hand, the
problem with velocity feedback is that the inner loop, which describes the structure, does
not start with a vertical tangent, but shows a positive slope. Its shape is not entirely
contained on the right hand side of the (1,0) point. By increasing the velocity gain, the
inner loop expands and the values that it assumes nearby the equipment natural frequency
are larger than without control. This causes the amplification effect.

The only promising case is when force and integrated velocity are applied. This strategy
was the worst one in the previous analysis, while now it seems to be the only one that
offers some results of interest. Figs. a3 and a4 report, respectively, the Nyquist plot and
the close loop performance of this case. In particular, between 16 and 50 Hz, a maximum
velocity attenuation of 15 dB (6 dB average) is shown. A velocity transmissibility analysis
would lead to the same conclusions.
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