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IDENTIFICATION OF NONLINEAR NORMAL MODES AND
COUPLED NONLINEAR MODES

1 Introduction

The characterization of a mechanical system by its modal parameters is of great interest in
many fields of vibration engineering (experimental identification, vibration control, vibration
analysis, etc.,). In the case of a linear structure, the modal theory is well known, and it is
normally used in order to express free or forced oscillations as a linear combination of the
normal modes, which form an orthogonal closed set. Over the years, many investigators have
focused on the nonlinear extension of the definition of the normal mode defined in the
classical theory of vibration.

After giving the definition of Nonlinear Normal Modes (NNM) and explaining some of
their proprieties, this report shall present an approximate approach, based on harmonic
balance, defining the Coupled Nonlinear Modes (CNM) and its uses.

The studies have concentrated on the free vibration of mechanical systems in terms of an
analytical solution and, in parallel investigations, comparing the results by modal
identification using time-frequency transforms (Gabor Transform) for lightly damped
systems.

This report focuses on nonlinear mechanical system endowed with linear and cubic
stiffness. For some of them a procedure for the identification of modal frequency modulation
laws is proposed. The next phase will be an experimental validation. The report closes by a
short introduction of a proposed experimental representation, which is to be used to replicate

the simulations of a coupled nonlinear system.



2 Definition and proprieties of NNM

The first original work on NNM was by Rosemberg [22, 25, 26, 30], who defined normal
modes for an autonomous mechanical system as a particular kind of motion that satisfied the
follow proprieties (where #; is the motion of the i™ d.o.f)

1. There exists a T =constant, such that

uit)=u(t+ 1)

i.e. the motion of all masses is equiperiodic

2. Ift. is any instant of time, there exists a single 7 in #,<¢<,+ 7 /2 such that

ui{ty)=0

In words, during any interval of half period, the system passes precisely once through its

equilibrium configuration

3. There exists a single #;#, in ,<t<t,+ 1/2 such that

uift)=0
i.e. during any interval of half period, the velocities of all masses vanish precisely once.
4. Let r (fixed) be any one of the i=1, ...,n. Then every u;(t) and u,(z} may be written, for
all ¢, in the form
;=1
In other words, the displacement of any one mass at any instant of time determines

uniquely that of every other mass at the same instant of time.

Rosemberg defined also the similar modes when it happens that:
Ui Ue=Cjp
i.e. the modes are similar when there is a linear relationship between the motions of every

d.o.f.

In the configuration space the equation u;=u;(u,) represent the trajectory of the mode,
thus if the modes are similar, in the configuration space, they are represented by straight lines,

otherwise they are represented by curved lines. In the same space onc can represent the

! In these Memorandum the subscript convention applied throughout is:

=11 index for d.o.f.
J=1,...n index for mode
k=1 ...m index for time segment



potential energy U of the system as a closed, smooth surface surrounding the origin of the
configuration space. It was demonstrated that this surface and the trajectory of the mode
u;=u,(u,) are always symmetric with respect the origin. Moreover all the trajectories (similar —

non similar modes) terminate on the surface U/ orthogonally.
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Figure 2.1: modal line and U surface in the configuration space (Ref-[23])

Rosemberg was able to demonstrate that the follow classes of mechanical system always
possess similar modes:
¢ Linear systems
o Uniform systems, (systems with every mass identical and stiffness equal)
¢« Homogeneous systems (a2 chain of masses with restoring forces expressed by
polynomial of the same degree)

¢ Symmetric systems

At this point it is appropriate to remember that:

1) In a linear system, the normal-mode vibrations are always similar; the normal mode
coordinates decouple the equations of motion for arbitrary motions; mode and period
of the normal-mode vibration are independent of the energy level of the motion.
Linear combinations of solutions are also solutions.

2) If the system is nonlinear, the normal mode coordinates decouple the equations of the
motions for that mode only. If the normal-mode vibration is similar, the mode is
independent of the energy level, but not the period. Linear combinations of solutions

are no longer solutions.



3) If the system is nonlinear and the normal mode vibration is non similar, mode as well

as period depend on the energy level.

One of the most important methods to calculate the NNM is the method of multiple scale
[11], by this one is able to study the problem of the bifurcation and the stability of the modes.
It means that the number of the NNM could be bigger then the d.o.f. of the system and some

of them could be unstable.

2.1 A 2d.o.f. symmetric system
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Figure 2.2: 2dof system

Vakakis [7, 13, 20] considered the symmetric system govermed by the follow

equations of the motions:

¥, +x eri3 +k(x1—x2)3 =0

X, +x, +x) = k(x, —x,)’ =0 (2.1)

Because the system is symmetric then the modes are similar:

x, = cx, @2)
So substituting (2.2) into the equations of the motion (2.1)one obtains
% +x 41+ k(1-c)’Ix =0
(2.3)

1
¥ 4+ x ——[k(1- e) +clx] =0
c
and putting equal the coefficients of the cubic terms the following equation results:

E(1+e)e—1P =c(1-¢?)
from which one can have the following solutions:



¢, =1

mﬁ(zzc_um)
The solutions ¢ ; always exists and do not depend upon the coupling stiffness &, whilst the
solutions ¢34 exist only when A4=(1 - 4k)>0, that is £<0.25.
In that situation there are 4 solutions, one of which (for ¢=-1) is unstable. This means that the
solution ¢=-1 for £A<0.25 bifurcate into two localized modes. The situation is represented n

Figure 2.3.

NON-LINEAR NORMAL MODES

c=-1

— T "
Bifurcating NNMs

| i :
Z15 ~10 -5 0 o

Q

Figure 2.3. NNM of the system with cubic nonlinearities as a function of the stiffness parameter K:
stable; ———- unstable (ref. [13])

The stability of the modes can be investigated by various methods (Poincaré maps, Multiple
scales, etc..)

Since a single mode is able to decouple the equations of motions, the frequency of the mode
as the frequency of a Duffing oscillator can be calculated”.

For a Duffing oscillator

Ptoix+w’ =0 (2.4)

The main frequency can be approximated by

w=.lo; +%ya§ (2.5)

where a, 1s the amplitude of oscillation.

* In practice one can substitute one of the modal relationships found (x3=c§c 1) into one of the equations of motion,
(2.1) in order to have an equation of a nonlinear SDOF.



Some numerical simulations of the unforced system have be produced for various values of &

and initial condition in order to force the system towards a modal motion.

Mode ! (1) Mode 2 (c3) Mode 3 (ca) Mode 4 (c1)
(1,1 (1,-0.382) (1,-2.618) (1,-1)Unstable
axex’ =0 | $+x+1.528x° =0 | ¥+x+10472x =0 | i+x+2.6x" =0
Amplitude a.f. e.f. a.f. e.f a.fl ef a.f. e.f
1 0.21 0.21 0.23 0.23 0.47 0.47 0.27 0.27
2 0.32 0.32 0.38 0.37 0.91 0.96 0.47 0.47
3 0.44 0.44 0.54 0.54 1.35 1.30 0.69 0.7
4 0.57 0.58 0.70 0.71 1.79 1.80 0.90 0.95
5 0.71 0.72 0.87 0.91 2.24 2.20 1.12 1.25
6 0.84 0.88 1.04 1.13 2.68 2.60 1.34 1.3
7 0.98 1.05 1.20 1.43 3.13 3.10 1.56 1.5

Table 2.1: Comparison between analytical frequencies (a f) and the experimental (e.f.) ones for k=0.2 (<0.23 bifurcated

modes), values in Hz

A good agreement between the analytical frequency (a.f) and the experimental (ef) is

observed, especially at low amplitudes.
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Figure 2.4: Time histories of the simulation with the following initial condition: displacement (1,1),

velocity (0,0), i.e. Mode 1 with amplitude 1 in the table 2.1
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Figure 2.5: FFT of the simulation pictured in figure 2.4
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Figure 2.6: Plot of the response displacements, x; vs X, of the simulation

pictured in figure 2.4
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Figure 2.7 Plots of the velocity vs displacement of the simulation pictured in figure 2.4

The stability could be investigated by Poincare maps [10], checking that the eigenvalues of

the Hessian of the Poincaré maps of the simulation are between —1 and 1. This means that

every couple (2 5y of the Hessian must be inside the triangle pictured in Figure 2.8

Where Zand 7 are, respectively, the determinant and the trace of the Hessian.
A
7 T —
b/
-1 \
™~

Figure 2.8: stability area in 20 7 plane

7

In this way it was possible to check the stability of the motion of the mode and to find that the

mode (1,-1) is unstable.



Other simulation in free vibration has been performed for a system without bifurcation. It was

considered for £=0.5.

Mode 1 (¢;) Mode 2 (c3)
(1,1) (1,-1)
¥+x+x =0 ¥+x+5x =0
Amplitude a.f. e.f. a.f. ef.

1 0.21 0.21 0.35 0.34
2 0.32 0.32 0.64 0.64
3 0.44 0.44 0.94 1
4 0.57 0.58 1.24 1.2
3 0.71 0.72 1.55 1.5
6 0.84 0.88 1.86 1.8
7 0.98 1.05 2.16 2.1

Table 2.2: : comparison between analytical frequencies (a.f.) and the experimental (e.f.) ones for k=0.5 (>0.25), values in Hz

At this point the equation of the system in a matrix form can be written as
Mg+S,x+8,x* +8,x° =0 (2.6)

where

10 1 0 —x, X 1+k —k
M = S, = , S, =3k , S, =
0 1 0 1 : X, —X ~k 1+k

If B is the modal tensor between the physical and modal coordinates, that is x = Bq, where
q= (q, ] are the modal coordin'ates,.the system in the modal space can be described by:
4> '

B'MBi+B™'S Bx+B”'S,Bx’ +B™'S,Bx’ = 0 2.7)

. 1 1 L (0.5 05
Inthiscase B= ,and B™ =
1 -1 0.5 =05




The equations of the system become:

G, +q,+q, +3¢,4; =0 2.8
G, +q, +2q1(L.5+2k)+3(1+ Sk)g,ql =0

and for k=0.5 are:

G, +q, +5q; +10.5¢,4; =0

I - 1 .
For the initial condition x, = {J, the modal coordinates become:

ey [0S 0sYT)_[1
Q=2 % "0s —osl1) Lo 2.10)

Tt means that only the first modal coordinate is excited and the system could be reduced to:
g, +¢, +q; =0, that is the equation of a Duffing oscillator.

The solution of the system in physical coordinates will be:

_ _ 1 1g, _ | 9n
S 6
g (2.11)

In the same way one can operate for the second mode with initial condition x, = ( J .

gy _[08 0.5Y 1) [0
=2 %" _osh-1) L1 2.12)

that leads to the equation §, + ¢, +5¢; =0, and then
1 1Yy O
X2=Bq2=( 1][ J:[qﬂJ
1 —1Agx 4 (2.13)

Observation: during the modal motions the coupling terms g 12" and q2q12 disappear, so, in

this way, the NNM are uncoupled into separate equations of motion.

Shaw and Pierre [21]show that, in same cases, it is possible to neglect the coupled terms in

order to reconstruct the answer of the system to whatever initial conditions.

10



Unfortunately this is not always true, in fact, for the system above, it is not possible to
reconstruct the answer from general i.e. where even if the shapes of the signal of the
displacements of the physical simulations and the ones reconstructed by modal simulations
are similar, they have different spectrograms. Hence the response solution of a nonlinear

system 1s not a combination of NNM.

3 The Invariant Manifold Approaches

Shaw and Pierre reformulated the concept of NNM for a general class of nonlinear discrete
oscillators. Their analysis was carried out in the real domain and was based on the
computation of Invariant manifolds of motion on which the NNM take place. The
parameterization of the invariant manifolds of the NNM was performed by employing two
independent reference variables; a reference positional displacement and a reference
positional velocity.

In this formulation NNM are defined as the invariant subspaces in phase space of the
nonlinear equations of motion governing the dynamical system.

That is for a nonlinear system the /™ equation could be written:

i+ f(x,8)=0 (3.1)
or
X =y,
3.2
.}-}i =—f:(X,Y) ( )

Suppose that there exists a motion for which all displacement and velocities are functionally
related to a single reference displacement-velocity pair, (x,,¥,):

X =X (x,n) Y =Y(x.») (3.3)
An NNM is defined as a motion that takes place on the two-dimensional invariant manifold

defined by equation (3.3).
The great advantage of this approach is that this definition is valid also for non-conservative -

systems as well. The solution is expressed in term of a power series, and substituting the

expansions into the equation of the system a nonlinear algebraic system is obtained. A

11



drawback of the invariant manifold approach was that the nccessary computations became
cumbersome, even for simple, lower dimensional nonlinear systems.
A further development of the manifold approach was proposed by Nayfeh and Nayfeh [14,
15], who reformulated the methodology on a complex framework. The following coordinate
transformation is introduced:

x5 =6+, % = jo ¢+ 8 (3.4
where indicates the complex conjugate

The modes could be expressed by:
¢ =hi£,8) (3.5)

4 Coupled Nonlinear Modes (CNM)

As shown previously, the solution of a nonlinear system is not a linear combination of the
NNM even in an approximate way. Bellizzi and Boch [31, 32, 33] developed the concept of
CNM to analyze a lightly damped mechanical system with strongly nonlinear restoring forces.
The free oscillations (with arbitrary initial condition} of a conservative non-linear system are
approximated by a linear combination of harmonic terms. Each harmonic term depends on a
mode shape vector and its corresponding frequency. Each pair consisting of a frequency and a
mode shape vector defines a CNM. One important aspect of the CNM is that the frequencies
and mode shapes depend on the amplitude of all of the modes.

A CNM is a harmonic approximation of the NNM when every modal amplitude is 0, except
the /™ corresponding to the /* mode.

Tt is assumed that:
x; = ZYﬁa}. cos D (1) (4-1)3
i

where a;,Yj; and @, are, respectively, the modal amplitude, the modal component and the

modal angular frequency.

> Where @ (1) = [Qj(s)dsmj(f)

12



Substituting this into equations of motion and applying the harmonic balance procedure yields

the nonlinear algebraic system:

R jF cos® ,d® =[M1Y,Q’ (4.2)
a .
J

where [M] is the mass tensor, F; is the restoring force on the i degree of freedom and

f()do = (2:[),, j T(.)dd},dd),_ D, (4.3)

Adding a normalizing relationship to these it is possible to solve the nonlinear algebraic
system for fixed modal amplitudes, in order to obtain the coupled nonlinear modes as a
function of the modal amplitudes:

Y{anas,....as) Qanay,....a) 4.4)
When this procedure is applied to a lincar system the mode shapes and the frequencies do not
depend on modal amplitudes and, corresponding to the eigenvalue problem for a linear
system, the harmonic balance procedure yields an exact solution.

By application of the harmonic balance method it is possible to analytically calculate the
Coupled Nonlinear Modes (CNM) for many types of mechanical systems, i.c. one can
calculate the relationships between the modal parameters (modal components and modal
frequencies) and the modal amplitudes. Likewise one can calculate Nonlinear Normal Modes
(NNM), putting all modal amplitudes equal to 0 except the jth corresponding to the U NNM.

Alternatively modal parameters have been determined experimentally (or from numerical
simulations) both for conservative systems (for example by FFT) and for non-conservative
systems (for example by Gabor Transform). A higher level identification procedure could be
to try to identify the relationships between modal parameters and modal amplitudes n order

to compare them with those calculated analytically by the method of harmonic balance.

5 NNM calculated by the method of harmonic balance.

The aim is to know, in order to specify, the initial conditions to give to a nonlinear
conservative system, initially at rest, so that the subsequent free vibration consists of motion

in a corresponding particular NNM.

13



Consider a MDOF nonlinear system described by the following equations of motion:
mx, +F,(x,.,x)=0 (5.1)
where F,(x,,...,x,) is the restoring force, generally nonlinear, and in the following examples

assumed to be a polynomial in the degrees of freedom.

By the method of harmonic balance one can write:
Xy =Y Y (O)a,()cos D (1) (5.2)
j

where a; ,¥; and @, are, respectively, the modal amplitude, the modal component and the

modal angular frequency. If the system is conservative, these modal parameters do not depend

on time, so one can write:
x,(t) = ZYﬁaj cos(wt + ;) (5.3)
j
and the velocity is:
x,() =—2Yﬁajcoj sin{@ ;£ + ;) (5.4)
J

Thus the initial conditions at =0 are:

% (0) =) Ya,cos(p;) (5.5)
j
£,(0)==> Y,a,0,sin(p,) (5.6)
j
Assume that the initial velocities equal zero also the phase will be equal to zero, without loss
of generality.
%(0)=0 Viel.n—>e@,=0 VYjel.n (5.7)

Thus one can re-write the initial displacements

x,(0) = ZYﬁaj (5.8)
i
or in a matrix form it 1s:
xl (0) Y‘]! YZI nl al
x, (0) _ Y, Y - Yola (5.9)
x(0)) \¥, L, Y. A\a,

14



In order to know the initial displacement to give the system in order to obtain a NNM motion
every modal amplitude must be 0 except the ™ corresponding to the 7" mode. Thus the

equation of motion can be written:

x;(t)=Y,a; cos(® ;1) (5.10)
Hence substituting these solutions into the expressions for the restoring force F,(x,,...,x;) one

can solve the system:

(272[),; [+ [F cos0 do..do, =a,m,¥,0} (5.11)
¢ 0

Normalizing the modal component ¥; with respect to division by Yj;, assuming this latter is

non-zero, results in / equations and / unknowns. (Yi(a), w(a;)).

To find the initial displacement in order to have a motion corresponding to the /™ NNM, then:

0 a, 1
x,(0) 1 1 - 1Y0 Yoa, | | ¥,
0 Y, Y., - Y : : :
xz-( ) _| et w2 — - a, (5.12)
: : : a; Yya, Y
xn (O) Yirf YZﬂ Y Hnn
0 Y.a. Y.

Jntt i Jn

i.e. the j* column and the NNM frequency @j(a;) can be determined.

5.1 A numerical example

Consider a 2d.o.f nonlinear system whose equations of motion are:

¥, +150x, +150x +200(x, — x,)+100(x, —x,)* =0

(5.13)
¥, +175x, +200x3 —200(x, — x,)—100(x, —x,)> =0
Firstly the NNM is calculated.
The displacement can be written:
1) = t
xl() al COSG)I( ) (5-14)

%2 (1) =1Y,a,cosm, ()

Substitution into the expression for the restoring forces produces the following relationships:

15




2 2 2@ ,
— I ,[Fl cosmdwdw, = a,o;
4= 5 3 )
a2 (5.15)
2 LB g 4

J JFE cosw,dw,dw, =Y,,a,0}
0

2
0

A7

if a;=1, one solution of the system is:
Y1,=.91164
@,°=280.22 (rads/s)’, that is equivalent to a frequency 2.66 Hz.
The corresponding initial displacements in the degrees of freedom are then:
x(0)=1
x,(0)=0.91164
Numerical simulation and integration of the original equations of motion of this system with

these initial displacements is shown below.

15 i T T T T T T T

1.5 1 I I ; 1 i 1 1 |
0 2 4 6 8 10 12 14 16 18 20
sec
CH?2
1 T T 1 T T i T T
| T
|
0 |
-0.5
| I
- I ! 1 ! 1 ] ! ] )
0 2 4 ] 8 10 12 14 16 18

SeC

Figure 5.1: time histories of the simulation putting x;0=1 and x2,=0.91164 as initial conditions

The FFTs of the simulated response signals, given below, show a single main peak at 2.65
Hz.:
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The FFT of the response signals displays a single peak at 5.95 Hz.:

FFTCH1 FFTCH?2

Figure 5.4: FFTs of the simulation x;9=1 and x2=-1.0895 as initial conditions

Alternatively, by specifying the amplitudes @,=0 and a,=1, the same solutions are obtained,
namely

Y5,=-1.0895 and frequency squared @’ =1364.6 (rads/s)2

And ¥2,=0.91164 and frequency squared @,°=280.22 (rads/s)z, as previously.

5.2 A particular case
The previous example examined in section 2.1, (equation of motion (2.1) with £=0.2) is now
analysed by harmonic balance, in order to extract the NNM. Setting one of the two modal
amplitudes to zero then the response is expressed by:

x,(t) = acoswft)

x,(t) =Y, acosa(r) (.16)
Solving the nonlinear algebraic system, the solutions obtained are:

Mode 1 Yi2=1 w’=1+0.754a"

Mode 2 Yip=-1 w'=1+0.75a"+6ka’
and
Mode 3 (and 4) o? =025+ 3ka’Y, —3a°Y, (5.17)

k

18



It is observed that
1) the mode shapes do not depend on modal amplitudes, in fact this system exhibit
similar modes because it is symmetric.
2) These solutions correspond to that ones found previously (in 2.1).
3) Mode 3 and 4 are the same mode, depending upon the normalization adopted.

4) When £>0.25 then one has just modes 1 and 2.

For an example, k=0.2 (<0.25), one obtains the following numerical solutions:

Mode 1 Yi=1 @*=1+0.754>
Mode 2 Yip=-1 *=1+1.954"
Mode 3 ¥1=-0.38197 ?=1+1.14164"
Mode 4 Y1=-2.618 w*=1+7.8544"

As shown previously it is possible demonstrate that for this value of X Mode 2 is unstable, but
it exists, that is, if the system is excited with some particular initial condition one can have a
motion corresponding to the second mode.

The CNM corresponding to arbitrary initial conditions is
x,(t) = a, cos @, (f) + a, cos w, (¢) (5.18)
x,(t) =Y,a, cosa(t)+Y,a, cosa,(t)

Choosing some initial condition, for example an initial displacement of (2,0) and initial

velocity (0,0), one obtains just one solution with physical meaning corresponding to two real

CNMs, that is:

1
Mode1: ¥, = (J w? =3.25 (rad/sec)’ £i=0.29 Hz

1
Mode2 ¥, :( J w? = 4.45(rad/secy’  £,=0.34 Hz

It is possible to check these results simulating the system with the same initial conditions.

From these simulations it is clear that there are two main frequencies (or modal components).
By analysis of the simulations in a frequency domain, one can extract these two main
frequencies corresponding to the two main peaks of FFT and the two modal shapes from the

FFT modulus and phase. This is illustrated in the following figures.

19
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Figure 5.6: FFTs in modulus and phase of the simulation putting x;0=2 and x:0=0 as initial co
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Observe the 2 main peaks at:

Frequency (Hz.) Modulus Phase (rad.)
0.31 134.8 -0.35
CH1
0.36 257.5 -0.754
0.31 166.6 -0.4
CH2
0.36 254.6 2.364

Table 5.1 main peaks of FFTs of the simulation putting x;,=2 and x:=0 as initial conditions

These correspond to the two CNM.:
Mode 1: (1, 1.24)  £,=0.31 Hz.
Mode 2: (1,-0.99) f,=0.36 Hz.

6 Similar modes (NNM-CNM) for nonlinear (cubic stiffness)

mechanical system.

It is known that a nonlinear mechanical system could possess either similar or non-similar
NNM. If the system has similar NNM it also has similar CNM, and this means that its modal
components ¥ do not depend on the modal amplitude @;. Moreover if in the system there is

only linear and cubic stiffness, by the method of harmonic balance it can be shown that the

square of the modal angular frequency associated with the j* CNM is always a linear

combination of the square of the modal amplitudes, that is:

H
r 2 2
w; =wy; + E c,;a;
=l

wherew; is the modal angular frequency, @; is the /* modal angular frequency associated

(6.1)

with the linear stiffness, # is the number of the modal component, ¢; is the j”’ constant.

The square of the /* modal angular frequency associated with the 7% NNM is:

2 2 2
w; =0y +c,a;

And, in particular, for 1 d.o.f system (Duffing Oscillator) ¢ is:

c=SH
4M
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where i is the cubic stiffness.

7 Damping considerations

In the first instance one can introduce linear viscous damping ( Cx ). Suppose the system 1s a

single d.o.f. nonlinear damped system:
M+ Cx+ Kx+ o’ =0 (7.1)

where ¢ is the viscous damping ratio. Normalization with respect to the mass M:
J'c'+2w'c+w§x+%x3 =0 (7.2)

In * the following frequency relationship is derived:
3pipa’ )
N U S Ao ) DYV DO 73
[ p+p+ 2L ] : (13)

where @}, is the damped angular frequency.

2 2
Letting {a)g + %_ﬂj‘ij =o’ (the square of the undamped angular frequency),
50
(— ), + o’ )2 +4v wl =0 (7.4)

and hence the damped natural frequency is given by: @), = (0* —2v?) + 2vi,jo’ —v?
If the damping is small, neglect the term v* and re-write:

w, = o’ (1+i2v) (7.5)
whose modulus is

o3 = 021 = 47 (7.6)

- When v <107, then one can assume @, = ®

¢ Timonshenko, Young, Weaver, “Vibration Problem in Engineering” Wiley & Sons 1974 pp.176-186
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For a single d.o.f. system hysteretic damping, which is proportional to the linear stiffness, is a
more realistic model and thus, as in the linear case, the NNM are able to decouple the system
in the /™ equation of the type:

G, +2v,q;+kq;+7;(4,,9,5-4,)=0 (7.7)

whete f,(¢,,4,,--q,)1s a cubic function in the variables (¢,,¢,,-¢, ) -

From the analysis one has the square of the 7™ modal angular frequency associated with I

NNM in terms of the modal amplitude and undamped natural frequencye;, .

With analogy to the result for the single d.o.f. system, if we consider v < 107", one can

assume a)jD = COJ-

8 A procedure for the identification of the frequency modulation law
of a Nonlinear mechanical system possessing cubic stiffness and
exhibiting similar modes by the Gabor Transform (GT) of the

“experimental” simulation of a known system (inverse problem)

At this point it is appropriate to propose a procedure to identify the relationship between the
modal frequencies and the modal amplitudes for a nonlinear system possessing cubic stiffness
terms and exhibiting similar modes.

The approach taken is to analyse the “cxperimental” simulation of free vibration of a
mechanical nonlinear system by the Gabor Transform (GT) in order to extract the mode
shapes and frequency modulation laws for the CNM, from which it is possible to calculate the

frequency modulation laws of the NNM.

This procedure is summarized in four principal steps:
e Stepl
After calculating the / Gabor transforms (GT;) of / experimental signals x; , for each
signal, it is possible to extract the » modal frequencies in correspondence with the
ridges of the modulus of GT;, In this way one has:
1. Assignment of n extracted frequencies at the instant of time #(1) (by operator)
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2. At the instant #(1) examine the » ridges (by Boolean operations)
In this way one has the first value of F; (matrix of the i™ signal of frequencies),
A; (matrix of the i™ signal of Amplitudes), P; (matrix of the i™ signal of Phases)
3. At the next time segment #(k+1) examine the extracted ridges beginning with
the values at the £™ instance of time.
In this way one can complete F;, Ay, Py
This can be repeated for each step of each response signal x; in order to have 3/ mxn
matrices (Fi, A, Pi)
Step 2

Extraction of similar mode shape. A decision is made to normalize the mode Y, by the

amplitude A but it is possible to normalize with respect to other components, for

example towards A ;; the procedure is, in general, always valid.
4;(t,)
A!i (rk )

a) calculate the modulus (vs time): |ij. (t, )| =

b) calculate the sign (vs time):
5, (t) = sign(eos(P, ()~ P )

¢) calculate the mode shape: Y, (z,) = 5, (7, )|Y,.J. (tk)|

il

> Y,(t,)

d) extraction of similar mode: ¥; =
13

Step 3
Extraction of modal amplitude a,(z,). As the system possesses similar modes the
modal tensor Y is constant with respect to the modal amplitude (and time) so

calculating q=Y 'x and extract a, (q is a /xm matrix) from q by the Hilbert transform.

Step 4
Extraction of the modulation laws:
Let

W, =47°F(1,. )), /™ square angular frequency on the ;"

signal

c; = (c,j,czj,...,cﬁu),.
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1 &’@) ... af)

1 a’(t N
Thentzxc where X = . algz) ' angz)

§? ’

Loaf(t,) - a;{t,)
if e; = ij ~Xe ;- 15 the error between the experimental “data” one can define the

functional £ =eyTey,equivalent to the sum of the squared errors, and by

minimisation {LS method) one can calculate the matrix ¢.

This step can be repeated for the / d.o.f., and then one has a statistical estimation for c;.

In brief :
W;isamx 1 vector (there are n x /)
Xisamx (n+1) matrix (there is 1)
¢;is a(n+l)x 1 vector (there are n x 1)

8.1 A numerical example

Consider a 2 d.o.f damped symmetric system whose equations of motion are:

X, +200x, +100x] +200(x, — x,) +100(x, — x,)°> +0.1%, + O.OS(JESII ~%,)=0

X, +200x, +100x] —200(x, — x,)—100(x, - x,)’ +0.1x, + 0.05(x, — %) =0

The system possesses similar modes. If the equations are solved analytically, using harmonic

balance, the following CNM are obtained:

1
Mode 1 ¥, =(J ! =200+ 75a] +150a}

-1 2 2 2
Mode 2 ¥, z[ : ] @, = 600+150a; +675a;

The time histories for various initial condition can also be simulated. In order to excite the
two modes choose the initial condition (2,0). The picture below illustrates sections of the

generated time histories:
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; é é 16 15 12 1% 1% 20
CH2

4 6 8 10 12 14 18 18 20

Figure 8.1: time histories of the simulation putting x10=2 and x2,=0 as initial conditions

The modal parameters are to be identified from the Gabor transform of signals shown

below:

Gabor Transformon CH 1 Gabor Transform on CH 2

Figure 8.2: Gabor transforms (GT) of the simulation putting x 10=2 and x>=0 as initial conditions

From which it is possible to extract a(2), @(?), and Y1(#), Y2(?):
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1 -1 1 -1
Y=| |and ¥, = thus Y=
1 1 1 1

The modal components are always constant, so one can calculate =Y x,

where x =[x1() x2(t)]" ; q: and g, are pictured below:

The first modal component

. | il MM ‘[’\ )f

-0.5

D ——
e
e ———

"o 2 4 & 8 10 12 14 16 13 20

15 T T T T T T T

o

J\NWWWUVW?JU‘U\“J\M-“-ﬁJWJWVE

!

Figure 8.3 the two modal components calculated by q=Y"'x

From which it is possible to extract the modal amplitudes.

Finally the frequency modulation laws are identified as:

@ =201.72+75.68a," +132.17a2

@, = 604.55+165.96a,” +630.3642

In a similar way one can consider various initial conditions to identify the same frequency
modulation laws. The table below shows the different values of the laws identified for

different initial displacements.
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Initial Conditions ( Displacement)
Analytical Values| (0.5, 0) (1, 0 (1.5, 0) (2, 0) (2.5 0) (3,0)
= 200 20023 | 200.33 | 201.18 | 201.72 | 20817 ;| 208.12 |constant
B 75 100.98 82.06 74.67 75.68 57.55 62.55 air2
= 150 125.7 140.4 140.55 | 13217 | 141.22 134.2 a2*2
t; 600 600.74 | 602.84 | 598.79 | 604.55 | 606.38 | 625.24 |constant
B 150 340.5 186.6 20696 | 16586 | 154.59 | 111.63 alr2
= 675 551.15 | 646.92 616.5 630.36 628.4 656.29 a2r2

Table 8.1: Comparison between the values of the frequency modulation laws found analytically and identified
with various initial conditions

Mode 1
40 :
30 4 —&— constant term i
—W—a1r2 |

20 1 i
g —fir— a2 2 i
‘E 10 4
£ 0-
wi

-10

-20

'30 T T T T T

(0.5, 0) {1,0) (1.5, Q) (2, 0) 250) (3,0
Initial Displacements

Figure 8.4: Error in percentage between the values of the first frequency modulation laws found analytically and
identified with various initial conditions.

Mode 2
140 _
120 4 & —e—constant temm
100 — 3112 :
g 804 —h— 2282 _‘
E 60 _:
o 40+
T
0+ !
-20 - '
-40 . : 1 . . |
(0500 (1,00 {1500 (2.0) (250 (3,0
Initial Displacements

Figure 8.5: Error in percentage between the values of the first frequency modulation laws found analytically and
identified with various initial conditions
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Examination of figures 8.4 and 8.5 show that the linear term, that 18 the constant term in the
frequency relationship, is only slightly influenced by the modal amplitudes and it is always
well identified. The small increase in the error of this first term, at the higher mitial
conditions, is due to a sort of compensation of the increasing error and reduction in the
nonlinear terms. In fact, errors of the nonlinear terms, i.e. the coefficients of the square of
modal amplitudes, at the higher initial displacements are due to a major approximation of the
analytical results. It is to be remembered that the harmonic balance method works better under
small amplitude responses. A large error in the nonlinear terms is noticed at lower initial
displacement. This is due to the fact that the system is lightly damped and analysing the time
histories in a too short time segment the amplitudes do not vary significantly. Hence the
procedure is not able to accurately identify the variation of frequency due to the nonlinear

term.

9 Non similar modes

In this section two examples are presented: a conservative and a non-conservative
system respectively, involving the calculation of CNM by the harmonic balance method. The
two systems are consist of linear and cubic stiffness and they are completely generic, that is
their CNM are nonsimilar.

In the first example, after finding analytical solutions the results of the numencal
simulation are presented and then compared. In this example a procedure is presented so as to
enable the selection of the physical solution from amongst all of those given by the nonlinear
algebraic system imposed by the harmonic balance method.

In the second example the analytical solution is presented in an implicit form. Then
the modal parameters of the mechanical system are evaluated according to the step 1-4,
presented in section 8. In the end it is verified that the analytical relationships, between the

modal frequency and other modal parameters, is a good approximation of the physical one.
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9.1 Conservative System

Consider the following 2 d.o.f nonlinear system, described by the equations of motion

¥, +150x, +150x] +200(x, —x,)+100(x, - x,)’ =0 ©.1)
¥, +175x, +200x] — 200(x, —x,) —100(x, —x,)’ =0

excited by the initial displacement (x;, x2)=(2, 0).

The analytical solution for the system, expressing the values for the amplitudes in terms of the

modal component and the initial condition:

@l ) )

thatis g, = -2 —=—,a, =2

Solving the system there are several solutions; most of them are complex (and conjugate), the
real ones are:

Y, =—1.1204,Y,, = 0.89951,@; =1511.4,w; = 540.88

Y, =0.89951,Y,, =~1.1204,0} =540.88,w; =1511.4

, =—1.7835,%,, = 0.6303,] = 2083.7,w; =1646.1

, =0.6303,Y,, =—1.7835,w] =1646.1,@; =2083.7

ol

The solutions appear in pairs and correspond to the following two solutions:

1 x, =1.1094¢c0523.27¢ + 0.8904 c0s 38.88¢ (©22)
2a
x, =0.9979¢0s23.27¢t +0.997% cos 38.88¢

x, =3.0931cos40.57¢ —1.0931cos 45.65¢

(9.2b)
x, =1.9496c0s40.57¢ ~1.9495cos 45.65¢

2)

Only one pair has a physical meaning, as it is evident plotting them in figures 9.1 and 9.2.
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It is possible to choose the correct solution by energy considerations. Because the system
considered is a conservative one, the total mechanical energy must be the same at every
instant of time. Thus if T is the kinetic energy, U is the potential energy and £ is the
mechanical energy, for this system it 1s:
E=T+U=E, (9.3)

where Fj 1s the initial energy.

Unfortunately the solution calculated using harmonic balance is approximate, it means that
energy contributions of higher frequencies are lost, and the previous relationship could not be
used. However, since the system is conservative, the root mean square of the total mechanical

energy must be less than or equal to the initial energy, in other words it must be:

_ \me 1 [@+Uya

T
£ 2 <1 (9.4)
EO EO

The solutions that do not satisfy relationship (9.4) do not have a physical meaning.

In the example considered:

U =75x7 +37.5x} +100(x, — x,)* +25(x, —x,)" +87.5x; + 50x; (9.5)

T =0.5(x +x2) (9.6)

Substituting equation (9.2a) into (9.5) and (9.6) and then into (9.4), ome has

% _ 0.965(<1), whilst substituting (9.2b) similarly % —8.85 (>1). This means that the
0 0

physical solution is the first one, it has, for that excitation, the following CNM parameters:

Mode 1: (1,0.90)  fi=3.70 Hz.
Mode 1: (1,-1.12)  fo=6.19 Hz.

Simulating the system and exciting it with the same initial conditions, that is (2,0), the

following time histories are obtained.
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The FFT of these response signals, are used to identify the modal parameters; the 2 main

peaks are observed at:

Frequency (Hz.) Modulus Phase (rad.)
3.75 923.722 -0.6
CH1
6.40 955.8316 0.0592
3.75 836.0151 -0.6
CH2
6.40 1061.3456 -3.0762

Table 9.1 :modal parameter extracted by FFT

These correspond to the two CNM:

Mode 1: (1,0.905) fi=3.75 Hz.

Mode 2: (1,-1.11) f>=6.40 Hz.

Tt is observed that the identified CNM are in good agreement with the analytical ones.

9.2 Non-Conservative System

Viscous damping is introduced into the previous 2 d.o.f symmetric system, resulting in the

equations of motion:

%, +150x, +150x] +200(x, —x,) +100(x, — x,)’ + 0.1k, +0.05(%, —%,) =0

9.7)
%, +175x, +200x3 = 200(x, — x,) —100(x, - x,)” +0.1%, + 0.05(x, —%,) =0

Using the method of harmonic balance one can caleulate Y (q,,a,), Y,(a.a,),

a)l(alaaz)awg(apag)-

The solution in an implicit form is:

©,2=(225Y1,°-75Y12°-225Y1,+187.5)a; *+
+(375-300Y22-150Y 12+150Y 5,2 4300Y 1, Y 22-150Y 12 Y22 ))an’+350-200Y 1, (9.82)

0,2=(225Y 2% 75Y2°-225Y 22+187.5)ar’+

+H375-300Y 12-150Y 55+ 150Y 12+300Y 1Y 22-150Y 22 Y157)a,*+350-200Y2  (9.8b)

Exciting the system with initial condition (2,0) results in the simulations:
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CH1
T

Figure 9.5: Time histories obtained by simulating then non-conservative system with initial condition (2,0)

Analysis of the corresponding Gabor Transform identifies the modal parameters:

1. Frequencies:

The first frequency
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Figure 9.6: Identified modal frequencies vs time
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2. Modal components (normalization towards CH 1):
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Figure 9.7: Identified modal components vs time

It is assumed that the modal tensor Y is constant for every short time-window, in this way one

can calculate the modal amplitudes as step 3 of section 5.

3. Modal Amplitudes:

The first modal amplitude
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Figure 9.8 Identified modal amplitudes vs time

Comparison of the identified frequencies with those calculated by identified modal amplitudes

and modal components using harmonic balance, equation (9.8), is displayed in the following

figure (9.9).
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Figure 9.9: comparison between identified modal frequencies (***) and calculated by modal

amplifiides and modal components using harmonic balance and equation (9.8) (+++)
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10 Physical Model

The next stage of the study will be to produce a physical system that replicates both the linear
and nonlinear characteristics. The simplest to investigate is a tension controlled system with
attached discrete masses. The nonlinear behaviour is given by the tension produced in a cable
by the motion of the masses.

In order to better explain the phenomenon one can consider the single d.o.f system pictured

below:

AS

LS

S+ARA

AUK+ARA/ NginB

SH+HAFS/
E = Young Modulus
! A = Cross Section
S = Tension force
M = Mass
777777 X = Displacement
[ =Initial length
I = Final length
d=l—1
vS ’
Figure 10.1: s.d.of. physical scheme
The equilibrium equation of this system is:
Mx+2(S+ —%E—é)sinﬁ =0
P

where: § =17 +x* =1 and sind =

one can re-write
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2
X

NP+ xt 41

ifls>sx=> P +x° =1

o =

so 1t 18 simiply

2
P

= and sind = X
21 {

In this way the equation of motion becomes

4s
LLLL LS
; D1 E = Young Modulus
A = Cross Section
L X S = Tension force
7 M, ]: M = Mass
X = Displacement
/ [/ =Hitial length
Ir=Final length
# w [ s
/
S
¥S

Figure 10.2: 2d.o.f. physical scheme

ﬂﬁ+?x+A—3Ex3 =0

This sytem can now be extended to a two degree of freedom realisation letting:

k, =% linear stiffness

k, = 7 nonlinear stiffness

Similar to the first system the 2 d.o.f. system equations of motion are:
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.S AE AE

szl +7(2X1 —x2)+ﬁxl3 +§(xl —X2)3 =0
Y AE AE

M, %, +—l—(2x2 wx1)+?x23 +F(x2 —xl)3 =0

The solution of this system, by the method of harmonic balance, is:
1 , 1 (S AE AE
i, :( J @, 23—4_(7'{'03751—315113 +0.75?—a2]

! [£+ 0.754E 43 4 3.375‘—45%2)
! ! r

<
[N
Il
TN
I
[
e
g
[AS Y

2

10.1 Design

[=40 cm (l,o=120cm)

@=0.5 mm

E=2.1 10° Kg/cm?®

A=1.96 107 cm’ assuming using 2 wires so Ay=3.927 1073 cm?

EA=82467 N

Consider a displacement on the first mass d=2 cm then the additional strain is £=1.25 107
So the maximum tension due to the displacement is T=103.08 N

The wires have an initial static tension S=20 N to add to that due to the initial displacement.
Thus T+S8=123.08 N

The static restraining force, to keep the first mass at the position d=2 ¢m is:

F=2(T+S)sin0=12.3N

In this situation one should have for the first mode a starting frequency of 7.02 Hz and a final
frequency of 3.56 Hz., while for the second mode one should have a starting frequency of
13.14 Hz and a final frequency of 6.16 Hz. It appears, for this system, that the frequencies are

always well separated.
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10.2 A Prelimanary Test Program

Step 1 Check of the Mechanical Proprieties of the wire
It consists simply of a static test on the wire: without dynamic masses various loads
can be applied on the cable in order to measure the strain and to confirm information
on the mechanical proprieties of the wire.
Step 2 Tests on 1 DOF
With the information collected in step 1 it is possible to realize an analytical model of
a 1 DOF (that is with just 1 mass). Then the result should be checked with the
experimental tests that could be performed varying:

o -theload S

o -the initial condition
Step 3 Tests on 2 DOF symmetrical system
With the information collected in 1 & 2 it is possible to make

o analytical model

o numerical simulations solving numerically motion equations

o numerical simulation by finite element methods.
Then to check the results with experimental tests that could be performed varying:

o The load S

o The initial conditions

o The relative position of the two masses (maintaining always a symmetric

system)

o The damping
Step 4 Tests on a 2 DOF unsymmetrical system
Similar to step 4 but putting the masses in an unsymmetrical position in order to have

non similar modes.
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11 Conclusion and future developments

In this report it is shown how to calculate NNM and CNM for a NDOF nonlinear
system by the method of harmonic balance. It is shown that there is a good agreement
between the analytical approximate solutions and results identified by numerical simulations.

For nonlinear mechanical systems possessing cubic stiffness and exhibiting similar
modes a procedure for the identification of the frequency modulation law is proposed. In
conditions of small amplitudes and examination of time histories in which the frequency
variation is appreciable it gives good results. At this moment an extension of the approach to
systems exhibiting non similar modes does not seem to be trivial.

The following table summarises what is now possible to do for a NDOF mechanical

system possessing cubic stiffness, by harmonic balance, in free vibrations.

Similar Modes Non Sinnlar Modes
To calculate NNM for a conservative
Yes Yes

system
To calculate NNM for a non

_ Yes No
conservative system
To calculate analytically CNM for

. Yes Yes
conservative systems
To calculate analytically CNM for v Yes

es

non conservative system
To calculate an easy relationship v Yes,

. €s .
between frequency and amplitudes but in an implicit way.
Identification of modal parameters of

_ Yes Yes
conservative system
Identification of modal parameters of
_ Yes Yes
non conservative system
Identification of relationship between
) ) Yes No
frequencies and amplitudes

Table 11.1: Summary on what has been achieved so far.
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The realization of the physical system described in chapter 10 is now in progress, and

the intention of authors is to realize the experimental program presented in 10.2.

43



References

10.
1.

12.

13.

4.

15.

16.

17.

I8.

19.

“A combined modal/finite element analysis technique for the dynamic response of a
non-linear beam to harmonic excitation” M.I McEwan et al. Journal of Sound and
vibration (2001) 243(4) 601-624

“A direct method for non-linear normal modes” R.H Hand, Journal of Non Linear
Dynamics (1974) 363-368

“A Modal Superposition method for non-linear structures” B. Kuran, H.N. Ozguven
Journal of Sound and vibration (1996) 189(3) 315-339

“Adaptation of the concept of modal Analysis to time-Varying Structures” K.Liu,
M.R Kujath (1999) Mechanical System and Signal Processing 413-420

“Analytical study of similar normal modes and their bifurcation in a class of strongly
non-linear systems”, T.K. Caughey, A.F. Vakakis, J. M. Sivo, Non linear Mechanics
Vol. 25 N°5 pp521-523 (1990)

“Coupling of Non-linear substructures using variable modal parameters” Y.H. Chong,
M. Imregun (2000) Mechanical Systems and Signal Processing 14(5) 731-746
“Fundamental and Subharmonic Resonances in a System with a ‘1-1” Internal
Resonance” A. Vakakis (1992) Non Linear Dynamics 3 123-143

“Is it a mode shape, or an Operating Deflection Shape?”, M.K Richardson, Sound and
Vibration (January 1997).

“Modal Analysis —Based Reduced-Order Models for Non Linear Structures —An
Invariant Manifold Approch” S.W. Shaw, C.Pietre, E. Pesheck (1991) The Shock and
Vibration Digest 31 3-16

“Non Linear Dynamics and Chaos” J.M.T Thomson (1993) John Wiley and Sons
“Non Linear Interactions Analytical, Computational, and Experimental Methods”
AJI. Nayfeh (2000) Wiley series in Nonlinear Science

“Non linear Normal Modes and Non Parametric system identification of non.linear
oscillators” X.Ma, F.A. Azeez, A.F. Vakakis(2000) Mechanical Systems and Signal
Processing 14(1) 37-48

“Non linear normal modes and their applications in vibration theory: an overview”
A.F.Vakakis Mechanical Systems and Signal Processing, (1997) 11(1), 3-22

“Non Linear Normal Modes of a Cantilever Beam” A.H. Nayfeh, C. Chin, S.A.
Nayfeh, (1995) Journal Vibration and Acoustics 117 477-481.

“Non Linear Normal Modes of a Continuous system with quadratic nonlinearities™
AH. Nayfeh, S.A. Nayfeh, (1995) Journal Vibration and Acoustics 117 199-203.
“Non linear normal modes of a planar frames discretised by the finite element
method” C.E. Mazzilli, M.E.S Soares, (2000) Computer and Structures 77 485-493
“Non linear Normal Modes of Buckled beams: Three-to-one- and oe-to-one Internal
Resonances” A.H.Nayfeh, W. Lacarbonara, C.M Chin. (1999) Non Linear

Dynamics, 18 253-273.

“Normal Modes and global Dynamics of a two degree of freedom non-linear system-I
Low Energies” A.F.Vakakis Journal of non linear Mechanics Vol. 27 N°5 pp861-
874 (1992)

“Normal Modes and global Dynamics of a two degree of freedom non-linear system-II
High Energies” A.F.Vakakis Journal of non linear Mechanics Vol. 27 N°5 pp875-
888 (1992)

44



20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

*Normal Modes and localization in nonlinear systems”, A.F. Vakakis et al..,Wiley
Series in Nonlinear Science (1996).

“Normal Modes for non linear vibratory systems™ S.W.Shaw, C.Pierre Journal of
Sound and Vibration (1993) 164(1), 85-124

“Normal Modes of Nonlinear Dual-Mode Systems”, R.M. Rosemberg, Journal of
Applied Mechanics (1960) (RM

“Normal Modes of Vibration for non-linear continuous systems” S.W.Shaw, C.Pierre
Journal of Sound and Vibration (1994) 169(3), 319-347

“On Non Linear Normal Modes of a Continuous Systems” A.H. Nayfeh, S.A. Nayfeh,
(1994) Journal Vibration and Acoustics 116 129-136.

“On Nonlinear Vibrations of Systems with Many Degrees of Freedom”
R.M.Rosemberg Advances in Applied Mechanics Academic Press New York 1966
ppl55-242

“On the Natural Modes and their stability in nonlinear two degree of freedom
systems” R.M. Rosemberg, Journal of Applied Mechanics (1959)

“Prediction of Bifurcation in a parametrically excited duffing oscillator” N.E: Sanchez
A:H Nayefeh (1990) Journal Non-Linear mechanics vol. 25 163-176

“Reduction of finite element models of planar frames using non linear normal modes”
C.E. Mazzilli, M.E.S Soares, O.G.P. Baracho Neto (2001) International Journal of
Solids and Structures 38 1994-2008

“Steady-State Undamped Vibration of a Class of Non linear Discrete System”
P.R.Sethina Journal of Applied Mechanics (1960) 187-195

“The normal modes of non linear n-degree of freedom systems”, R.M. Rosemberg,
Journal of Applied Mechanics (1962)

“Identification of Coupled Non-Linear Modes from Free Vibration using time-
frequency representations” S. Bellizzi, P. Guilleman, R. Kronland —Martinet Journal
of Sound and vibration (2001) 243(2) 191-213

“Analysis of multi-degree of freedom strongly non-linear mechanical systems with
random input Part I: Non-linear modes and stochastic averaging” S. Bellizzi, R. Bouc
Probabilistic Engineering Mechanics (1990) 14 229-244

”Analysis of multi-degree of freedom strongly non-linear mechanical systems with
random input Part IT: Equivalent linear system with random matrices and power
spectral density matrix” S. Bellizzi, R. Bouc Probabilistic Engineering Mechanics
(1990) 14 245-256

45



	Memo884cover.doc
	E COPYRIGHT NOTICE.doc
	Memo884.pdf

