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ABSTRACT

This report presents the results of a theoretical study of active control of sound
transmission through an opening connecting two rooms. The system studied consists
of two lightly damped enclosures connected by a small window. A sound source is
placed in the first cavity and a set of secondary loudspeaker sources are located
along the perimeter of the window. The goal is to reduce the global acoustic potential
energy in the receiver room by driving the control loudspeakers to cancel the
measured acoustic pressure by an equal number of error microphones placed close to
the loudspeakers.

This report introduces the theory of an impedance matrix model used to predict the
sound transmission between the two cavities that are coupled via the window. The
sound transmission between the two cavities has been modelled by considering the
window to be virtually divided into rectangular elements, each of which behaves like
a baffled piston. In this way a matrix formulation has been derived which gives the
sound pressure in the two rooms and at the error sensors as a function of the primary
and secondary sources strengths.

Simulations have been carried out for both passive and active sound transmission
with different numbers and configurations of control units. The aim of this study is to
assess whether or not it would be worth studying and developing a “window active
noise control system”.
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1. INTRODUCTION

During the past three decades, a lot of research about the active control of sound has
been carried. In this area the first subject of study and modelling was the control of
sound in ducts. At low frequency, the problem is in one dimension and the method
generally used to cancel sound in ducts is the reflection of the primary wave
disturbance by means of one or more secondary sources. This is usually achieved by
cancelling the acoustic pressure at the secondary sources positions’. At low
frequencies the sound cancellation requires a single input single output control system
which is composed by a loudspeaker and a microphone that play respectively the role
of actuator or secondary source and error sensor.

Most of the concrete problems are in three dimensions. For example, the problem
analysed in this report is about the transmission of noise through an opening
connecting two rooms. Everybody has already experienced this common problem. It
can be at home when you hear the sound of radio from a near room or in transport
vehicles with an opened window. The purpose of this study is to cancel the pressure
at the middle of the openingz. The aim of the project is to reduce this kind of
transmission using a local active sound control technique.

Here two enclosures are considered with a primary source placed in the first of them.
An active control system at the opening is theoretically studied. As Romeu et al.
(2002), the strategy is to cancel the pressure at the window but here, we use several
secondary sources placed just close to the error microphones. The purpose is to obtain
an appreciable diminution of the global acoustic potential energy in the second cavity
using this control system. The collocated positioning of a microphone error sensor to
each control loudspeaker should enable the implementation of feedback control.
Indeed, it is hoped the response functions of each microphone sensor-loudspeaker
actuator are minimum phase with real part positive so that decentralised feedback
control could be implemented®. If feedback control can be implemented then both
tonal, deterministic, and random disturbances could be controlled.

The report is organised in three parts. In the first part (section2), the geometric and
physical constants of the system studied are given. In the second part (section 3), an
impedance matrix model is formulated in order to derive the acoustic potential energy
in both cavities. The opening, which transmits sound from one cavity to the other,
acts as a sound source. Therefore, it has been approximated with a grid of rectangular
elementary pistons moving at different velocities. The third part (section 4) describes
the passive sound transmission through the opening for the model chosen. Some
techniques to validate it are presented and several simulations results are discussed.
The last part (section 5) is dedicated to active control simulations assuming ideal
feed-forward control. The strengths of the secondary sources are driven in order to
cancel the sound pressure measured at the error microphones. Finally, the potential
energy has been plotted to evaluate the global benefits of such a control system on
both cavities. The simulation results shown correspond to four different
configurations, according to whether the active control system has one, two, four or
eight control units.



2. THE SYSTEM STUDIED

As shown in Figure 2.1, two rectangular lightly damped enclosures connected by a
window are considered.
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Figure 2.1: View of the cavities and the opening in between
Figure (2.2) presents a top view of the system: a sound source is placed in one of

the corners of the first cavity. This position has been chosen in such a way as that
all the acoustic modes are excited.
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Figure 2.2: 2D view of the system studied



The window can be equipped with a variable number of loudspeakers and
microphones, playing the role of secondary sources and error sensors respectively.
In order to simplify the calculus of the optimal secondary sources, we have
assumed that the number of microphones L is equal to the number of secondary
sources. Moreover, the microphones are assumed to be placed close to the
window, but on the side of cavity 2.

Table 2.1 below summarize the geometrical and physical properties of the system.

Speed of ¢, =343ms™
sound
— =3
Air 0, =1.21kgm
density
L,=08m
Dimensions L, =0.6m
of cavity 1 L. =07m
zl '
L, =06m
Dimensions L, =0.5m
of cavity 2 L, =04m
Position o = 0.01m
of the y, =0.01m
primary z, =0.01m
source £
Dimensio dy =0.1m
ns of the dz =0.2m
window
Position ng’ = Ix,
of the _
centre of Yy =0.1m
the Z, = 0.15m
window

Table 2.1 Geometry and physical constants for the system




3. MATRIX MODEL FOR THE SOUND TRANSMISSION

In this section, it is described the impedance matrix model used to derive the acoustic
response of both cavities for a given primary harmonic acoustic excitation in the first
cavity.

The responses of both cavities in a frequency range 0 to 1 kHz have been calculated
assuming the primary source to be harmonic with time dependence of the form
exp( jwr). The velocity-type and pressure-type parameters used in the model have
been taken to be real part of a counter clock while rotating complex vectors, ¢.g.
phasors. The velocity or pressure parameters are therefore given by
v() = Re{v(@)e’™} or p(t) = Ref p(@)e!™) where w(w)and p(w) are the velocity
and pressure phasors at the instant £ =0.

In order to study the influence of the window on the sound field, we have virtually
divided it into rectangular elements, each of which behaves like a piston. Therefore
the mathematical model built in for the simulations considers the window divided into

a grid of rectangular elements whose dimensions have been taken to be [, =dy/n,

and 1., = dz/n,, where (n,)*is the total number of elements.

= LTI
NI 77

clerrert W

[ LSS
[ /S S
[ [ /LSS

Figure 3.1: Velocity notation used in the mathematical model

The influence of the window on each cavity has been considered separately. Hence
the phasors of the transverse velocities v (w) and v{’(w) at the centre of the

elements of the window due to the sound in cavity 1 and 2 respectively have been
grouped into the following vectors:

Sl (@) Ve (o))
Cl C2
V@=L =@ (31,32)
vCh(w)) vh (@)




where P =n” is the total number of elements. Similarly, p5' (@) and p' () are the

vectors with the sound pressure phasors in front of the window at the centre positions
of the erid of elements, on both sides of the window.

Pw1 (a))

p. (w) = p (@) - (3.3)

pwP (a))

pwl (a))

piw)= p v (@) : (3.4)

pwP (a))

The primary excitation is given by the complex strength g, of the primary source in

cavity 1.
The complex strengths of the L secondary sources introduced for the active control

are grouped into the following vector:

qsl (CU)

q, @)=y, Qﬂ( ) (3.5)

QSL (CI))

We have assumed that the primary and each secondary source are point monopoles
sources. The phasors of sound pressure at the L error microphones, placed exactly at
the window, have been grouped as follows:

¥ ()]

p’ (@)= 2 (@) (3.6)

kpi (w)]



3.1. Impedance functions

The pressure at the centres of the window elements generated by the two cavities is
given by the following impedance equations:

P (@) =25 (w)g, (0) + L, (0)V (@) + L1, (w)q,(w) (3.7

WKW

P (w) =725 (w)v (@) + Z°2q, () (3.8)

Also the acoustic pressure at the error microphones is given by:
pY (@) =25 (0)q, (@) +[ 25 () + ZEHOVE (@) +[Z (@) + 2 ()], (@) (3.9)

ew ew

where the elements of the eight impedance matrices and the two impedance vectors
are defined as follows (Nelson and Elliott, 1992):

i wn[(xwi’ywi’zwi)w:rzl(xp’yp’zp)

c1il 2 |
z,, (Wy=wp,.c, — (3.10)
g nlz:‘ll) Vl[2é’nla)nlw+-](a)~_wr?1)]
ij 2 ML il xwi’ wi’Zwi n ‘xw" w"zw'
zZ° J(w)=—Sa)pUcU‘2w (Y )w_‘(zf y; 2 (3.11)
nl=0 ‘/!,{Z;nlwnlw-'_.](w _wn[)]r
. Nl
Z‘S;lh[ (CI)) — a)pacoz 2 w;zl (xwi ? ywi * zwi )w.nl ();sl ? yx;’ zsI) (312)
ni=0 V1[2§nimn1w+f(w _a)m)]
26 2 ¥ 2 K s Ywio T MWna \ Xy o Vo Loy
Z,. "(60)=~‘>‘a);0¢,c[,‘ZQj 2 (s Yoio2ui e w22 ) (3.13)
im0 Vo[20 0,0+ j(@° —w,,)]
. N2
ZESZ'J ((I)) e wpocoz Z anZ (xwt’ s Yovi» Sy )¢n2 (Jisl * ysfz’ Zsf) (314)
a0V, [2§n2wn2w + j(@" — )]
. UYL K Y Za W (X, 5,02
zef,l“(a))-—“w,onco‘zw ot Vet Ze w_‘(z" y‘; ) (3.15)
i Vi2¢,0,0+ j(@° -]
. 5 N1 " xe s Yor» 2, . xw" w"zw'
nglkd(w):_swpocﬂ_zw (K> Yo s T W o i Vg j) (3.16)

ri=0 1'/] [2{7110)11160 + j(wz - a)f?l )}



z8 (w) =

ZeCS]k,l (a)) -

7 jzk.l (@) =

where

[

J
sy
o
@,z

WX ¥,2)
0,2 (%, ,2)
&

énz

Sap,c,’ NZ Buo Fet> Vet Zex W2 (Kry2 Yo > 2oy ) (3.17)
R V2[2§n2wn2w+j(a)2 _wjz)]

2 A Wni(xek’yelc’Zek)w'nl(fsl’yslz’zsl) (3.18)
o Vi2l,0,0+ j(0° —w,)]

wp,c,

N2
wPaCoz Z Bro (Xois Yor s 2t )¢n'2 (xzaz ’ ysi'z’ Zy) (3.19)
n2=0 Vz[2§n2wnzw + ]((1) - a)nz )]

is the angular frequency of excitation,
is the complex operator,

are modal indices,
is the angular frequency of the n;-th mode of cavity 1,

is the angular frequency of the n;-th mode of cavity 2,

is the n;-th eigenfunction of cavity 1 at position {(x, y,z),
is the na-th eigenfunction of cavity 2 at position (x,y,z),
is the damping ratio of the of the n;-th mode of cavity 1,

is the damping ratio of the of the np-th mode of cavity 2,

is the air density,

is the speed of sound,

is the volume of cavity 1,

is the volume of cavity 2,
is the surface of the window.

NB: As shown in Figure (3.2), considering @ — 0, then for a force exerted on the
window, if the pressure increases in the second cavity, the pressure should decrease in

the first cavity, hence, ZS.™ has minus sign in accordance with physics.

O

Nressure ™ Nressure N

Figure 3.2: diagram for the sign convention of pressure.



3.2. Approximations

In the above formulation, the following approximations were made:

1. The damping ratio is the same for all the modes: ¢, =¢,, =0.01 Vn, Vn,.

2. We consider the sound field to be represented by a finite number of modals
contributions by truncating the series representation after Ny (resp. N2) terms (Nelson
and Elliot, 1992). To avoid numerical problems with MatLab, we had to take into
account more than 5000 modes. This approximation is valid for frequencies up 1000

Hz.

The eigenfunctions of the first cavity can be written as:

( Y=AE, 1E2E 7 x |cos| =2 cos| —=2 (3.20)
a6y, 2 1En1.2En13 COS ¥ zZ | .
W 1 y Li%nl, 1,3 [xl [ [

1l z1

where L, L, L, are the dimensions of the cavity and #n, denotes the trio of modal
integers ny,, n,, and n,,. The normalisation factors are built as follows: ¢, , =1 if

n,=0andé¢,, =2ifn, >0.

The expression of ¢_, is similar except that it involves the dimensions and the modes

of the second cavity.

For the first cavity, the natural frequencies are given by:

_ nm?t : nm?r ? nl’Sﬂ' :
a)nl =Cy + + (321)
L.vcl Ly} Lzl

and for the second cavity:
nrl [ n,T R
W, =cy )| 2] +| 22| 4|22 (3.22)
sz Ly2 LzZ

3.3. Acoustic Sound Pressure at monitor sensors

The complex pressure at a set of monitor sensors in the both cavities is given by the
following relations:

pE (@) = 5 (w)gq, (@) + L, (0) Vi (@) + Zy (@), (@) (3.23)
pr (@) =Z (@) (@) + L (0)q, (@) (3.24)

8



where the elements of transfer coefficients are defined as follows:

r o2 w1 Konrs Yo s L W on Xp> 2
zo Yy =wp,c, > Voo (XY )? 1(2 K yf ,) . (3.25)
ni=0 V] [2é‘n1wnla)+ J(a) —CO”_] )]

N Xprs mr’zmr n xw" w"zw'
2 wn]( mr y )lt”' ](2 /f y; j) (3.26)
al=0 ‘/1 [2§nlwn1w + _](C() - a)nl )]

z8" (@) =—Swp,c,

N1
Z’S“lref (CU) _ a)pgcoz Z W (xmr s Yor 1 Zonr )Wni (;xsl » y;‘ ’ Z.\'I) (327)
) nl=0 ‘/1 [24’3160111(0 + J(w - a)nl )]

. N2
25 ) =-Sup,e,} 3, Bt Yo Zue W G Vo B (3.28)
n2=0 VQ, [zé’nza)nza) + ]((I) - a)nz)]

N2
28" (wy=wp,c,’ D Gz o Yo )¢f’2(f“ . y”z’ L) (3.29)
i V(20 0,0+ j(w° —w,, )]

Knowing the sound pressure at a given point in one of the cavities gives some
indications about the benefits of the active control of sound transmission. However, it
is much helpful to determine the global acoustic potential energy in each cavity.

3.4. Total time-averaged potential energy

In this subsection, the method to calculate acoustic potential energy is only given for
the first cavity, but the resulis can be easily applied to the second cavity by adapting
the notations.

The total time-averaged acoustic potential energy in the first cavity is:

1
ES = o (0,2 P drdydz 3.30
; 4poc;fm'Po( y.2) [ dedy (3.30)

where p,, is the superposition of the sound pressures due to the different sound

sources.
As done above, the approximate solution for the complex acoustic pressure in the
harmonically excited lightly damped sound field in cavity 1 can be written using the

following truncated series expansion:

Nl
Py, ) = Y a4 W (%, 7, 2) (3.31)

nl=0



Then, using eq. (3.30-31) and the modal orthogonality property, the total acoustic
potential energy can be evaluated from the sum of the squares of the complex mode
amplitudes:

Cl Vl i |2
EC = la, 2. (332)
! 4p(}c§ nl=0 :

The total time-averaged acoustical potential energy of the first cavity per unit primary
excitation can be deduced from eq. (3.32) adopting the vector notation (3.33) for the
sum of the squared mode amplitudes:

a,
a
a“ =" t, E;'(w)= —Vl-TaC‘HaC* , (3.33-34)
: 4p,c,
7
where ' is the hermitian transpose operator and:
a®(w) =T (w)g, (@) + T, @)V, (@) + T (w)q, (w), (3.35)
and:
nl, n x bl E) Z
79" @) = ap e, P ) (3.36)

V2l 0,0+ j@* —o))]

Wnl (ij’ ywj’zwj)
V20 w00+ j(@ o))

T (@) = -Sawp,c,’ (3.37)

@

M () = apy . wm(xﬁ-pyf“z;z) . (3.38)
V28,040 + j@" —w,)]

10



4. PASSIVE SOUND TRANSMISSION

The passive sound transmission between the coupled cavities has been studied first by
plotting the acoustical potential energy in both cavities as a function of the frequency
of excitation.

4.1. Boundary conditions
The pressure and the transverse velocity are continuous crossing the window, hence:

vl =vi(w=v, (o), pSl(w)y=p(w). (4.1-2)

4.2. Acoustic potential energy

Without control, there are not any secondary sources. Then from eq. (3.7) and (3.8) '
using boundary conditions (4.1)-(4.2) above, the transverse velocity at the centres of
the elements of the window can be expressed as:

v, (@)= (Z (@) -2, (@) L, (w)g, (@) (4.3)

Then, the acoustic potential energy of the first cavity can be calculated using eq. (4.3)
and (3.34-38):

Cl _ Cl C c2 -1y Cl
2% (@) = {19 @)+ T @25 @) - 25, @) 25 @) ], @) 4
The acoustic potential energy of the second cavity can be obtained as well:

2% () = I @22 @) - 28 @) 28 @]y, (@) (4.5)

4.3. Simulations results

Having implemented the expressions above in a MarLab computer code, the total
acoustic potential energy in both cavities has been plotted with reference to a larger
and larger number of window elements for a modelling of the window in a more and
more accurate way. For instance, Figures (4.1) and (4.2) show the results obtained
when the window is virtually divided into 4 or 64 rectangular elements.

The simulations carried out have shown that the estimate of the acoustic potential
energy of the second cavity was a good approximation with a (8,8) grid. From now on
the results presented will be those obtained for this grid.

11
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Figure 4.1: Time averaged acoustic potential energy in cavity 1 (left) and cavity 2
(right) without control, modelling the window with (2 ,2) grid.
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Figure 4.2: Time averaged acoustic potential energy in cavity 1 (left) and cavity 2
(right) without control, modelling the window with (8 ,8) grid.

Looking globally to both Figures 4.1 and 4.2, some general remarks can be made:

1. In the first cavity, for excitation frequencies under 500 Hz, a relatively large
number of modes of the cavity are excited and resonance peaks of amplitude from 30
dB tol5 dB are found.

2. In the second cavity, for excitation frequencies under 500 Hz, a lower number of
modes seems to be excited which however have relatively high amplitudes.

3. Most of the resonance frequencies in the two cavities differs from the natural
frequencies of the cavities modes (see table below) because of the coupling effect of
the window which generates a new set of coupled modes. Some of these modes are
quite similar to those of the two cavities considered individually with a small
perturbation in correspondence of the window. Other are instead quite different to
those of the two cavities when considered individually and are indeed given by the
coupled acoustic field in the two rooms. .

12



4, Above 600 Hz the phenomenon of modal overlap takes place.

These results were expected: indeed the primary source placed in cavity 1 is exciting
most of the cavity modes. In contrast the sound in cavity 2 is determined by the
window which is exciting only part of the cavity 2 modes. Also it should be noted
that a relatively lower frequency resonance is found at about 100 Hz. This is due to
the low frequency volumetric acoustic mode of the two cavities coupled together.

Mode 1 Frequency 1 (Hz) Mode 2 Frequency 2 (Hz)
(1,0,0) 214.4 (1,0,0) 282.8
(0,0,1) 245.0 (0,1,0) 343.0
(0,1,0) 285.8 (0,0,1) 428.8
(1,0,1) 325.5 (1,1, 446.5
(1,1,0) 357.3 (1,0,1) 515.3
(0,1,1) 376.5 (0,1,1) 549.1
(2,0,0) 428.8 (2,0,0) 571.7

Table 4.1: First seven natural frequencies of cavity 1 (left) and cavity 2 (right).

4.4. Validation of the model

The analysis of the passive sound transmission was useful to validate the model.
Several points have been checked such as:

_ Problems have been found for the inversion of the impedance matrices Z
whose elements are given by a summation of modal terms as described in Section 3.1.
Thus, the values of each of ¥, (X, Y. 2,;)and @,,(x,;,,;.2,;) for a window in

the middle of the cavities were verified for some of their natural frequencies. The
results were coherent. For instance, the coefficients were even and odd with an origin
at the middle of the window according to the modes considered. Indeed, after many
considerations, the problem proved to be of numerical origin. The contribution to the
impedance functions of the low frequency modes has been found to differ by
fractions at the various centre points of the window elements. As a consequence the
impedance matrix was found to be singular. The solution to the problem was to
increase the number of natural modes taken into account. A number of 5000 modes is
generally required for the given dimensions of the cavity and for the frequency range
(0 — 1 kHz) chosen.

- The calculus of the potential energy was validated comparing simulations results
to those obtained for one room in paragraph 10.10 of Active Control and Sound
(Nelson and Elliott, 1992)".

At the best knowledge of the authors, the literature does not offer a similar study to
that presented in this reported. So there is no comparison possible to compare and

13



validate the model developed and here presented. The method used for the coupling is
the decomposition of the opening in some small elements. An integral method has
been presented by Morse and Ingard (1987) but the special case of considering a set
of control sensors-actuators makes it to be difficult to be implemented The technique
of the decomposition in elements has the advantage of an easy manipulation and

gives good results.

14



5. FEEDFORWARD CONTROL

5.1. Principle

The basic principle of Active Noise Control is to cancel the sound pressure at some
determined error points using a set of loudspeakers that are driven by either a Single
Input Single Output or a Multi Input Multi Output a feed-forward controller which
uses a reference signal about the primary disturbance. Figure 5.1 give an example of
this technique applied to sound control in a duct. There is a detection sensor with
output signal x(¢), a secondary source, being driven by the signal y(¢), and an error

sensor with output waveform e(#) (Nelson and Elliott, 1992).

sound from

o T T

detection sensor CITOT SENSOF

¥ Xt souee - A1) y )

G(jw)

electronic confroller

Figure 5.1: General Physical Block Diagram of a single channel control system for
the control of random noise, using an acoustic detection sensor (Nelson and Elliott,
1992).

However for the problem under study the disturbance is generally of random type
which poses several problems for the implementation of a feed forward control
scheme. Random disturbances can be better controlled using feedback control
schemes which however require more care at design level particularly for stability
issues.

The specific case under study considers the excitation to be purely harmonic and ideal
feed-forward control is implemented. The error microphones where the sound
pressure is cancelled are localised on the window. But, what interest us is to diminish
the global pressure in the cavity 2. Therefore the control effectiveness will be
assessed by comparing the acoustic potential energy in the two rooms before and after

15



control. The “collocation” of the sensors (microphones) and actuators (loudspeakers)
should then enable the implementation of a feedback control system which would
enable the control of both tonal and random disturbances.

5.2. Configurations

A limited number of configurations is studied in this report, as shown in Figure (5.2)
below: ’

e o

Case (2} Case (b)

Case (c) Case (d)

Figure 5.2: Positions of loudspeakers and microphones at the window.

To simplify the formulation for the calculus of the optimal secondary sources
strengths, the number of secondary sources and error sensors will be assumed to be

equal.

5.3. Mathematics

At the window, pressure is given by eq (2.7) and (2.8). Since, the pressure and
velocity are continuous across the window, we can determine v,, in function of g, and
q; as follows:

V= Vyp gpt Vs qs (51)

with
V= (25, 200" (20, = L)) (5.2)
V= (Zon = 23,)'2,, (5.3)

16
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The optimal control sources are then found by imposing the sound pressure at the
error sensor positions to be zero so that:

— c2 2 . o
q, =-(Z2+ZEOWV, +ZS+ZS) 1(z§; +(Z+ L)V, (5.4)

ew

Finally, using eq. (5.1) and (5.5), it is possible to express v as a function of g,,.

We can calculate the value of the pressure at every point (x5',yS', z5") in the cavity 1

and (x52, y€%,25%) in the cavity 2 with eq. (3.23) and (3.24).

m

We can also plot the total energy in both cavities and evaluate the influence of the
number of secondary sources at the window. The expression of the acoustic energy in

the first cavity is obtained replacing q, and v, by their expressions in eq. (3.353).
5.4. Simulations results

The following figures present the estimate of the total acoustic potential energy with
and without control for 1, 2, 4 and 8 control units.

|Dlo‘g(E|:) (¢8)

. Pl L L L L 1 L 1 I L L 1, 1 1 1
100 e 20T o 600 600 706 BOO 80D 1000 - 166 200 a0 100 760 800 500 1000
Irquarcy tHz}

-20
] 500
Irsquancy (Hz)

Figure 5.3: Estimate of the acoustic potential energy in cavity 1 (left) and cavity 2 (right)
without control (solid line) and with control (dash line) for 1 loudspeaker (case (a)).
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Figure 5.4: Estimate of the acoustic potential energy in cavity 1 (left) and cavity 2 (right)
without control (solid line} and with control (dash tine) for 2 loudspeakers {case (b)).
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Figure 5.5: Estimate of the acoustic potential energy in cavity 1 (left} and cavity 2 (right)
without control (solid line) and with control (dash line) for 4 loudspeakers (case (c)).
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Figure 5.6: Estimate of the acoustic potential energy in cavity I (left) and cavity 2 (right)
without control (solid line) and with control (dash line) for 8 loudspeakers

( case (d)).

5.5. Analysis

1. For cavity 1, the potential acoustic energy without or with control is almost the
same for any number of control units as it can be seen in Figure 5.3-6. The control

does not affect the first room.

2. Figure 5.3, 5.4 and 5.5 show the acoustic potential energy before and after control

with references to one, two and four loudspeakers. _
For four loudspeakers an average reduction of 5 dB is achieved. More generally, the

effects of active control are visible at low frequencies but the best reduction is 10dB
less. To have an efficient control, a great number of loudspeakers is necessary.

3. Figure 5.6 shows that with cight loudspeakers, the average decrease obtained
reaches 10-15dB.

4. After 600 Hz, the control is not efficient. This is not surprising. Active control
techniques in enclosures are potentially most effective at low frequencies specifically
for frequencies at which the modal overlap is small as asserted by Nelson and Elliott

(1992).
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6. CONCLUSIONS

The study presented is concerned with the transmission of sound through an opening
connecting two rooms. In order to achieve the reduction of noise in the second cavity
a control system with an equal number of loudspeakers and error microphones placed
along the perimeter of the window has been used.
This report introduces the theory of an impedance matrix model used to predict the
sound transmission between the two cavities. The cancellation of pressure at some
error microphones using the control loudspeakers at the window has been
investigated.
Simulations have been carried out for passive and active transmission with different
numbers and configurations of control units.
The main conclusion can be summarised by the following points:
- A great number of natural modes range have to be taken into account
compared to the frequency to avoid numerical problems (inversion of a
singular impedance matrix),
- A decomposition of the window in an 8x8 grid of elementary pistons gives
a good approximation for the control] of sound,
- For an efficient control, a minimum of eight loudspeakers is required,
- The control is not affecting the first cavity.
Keeping in mind all those remarks an average diminution of 15 dB can be reached.
This work is only an introductory study. Main steps of the numerical modelling have
been validated with simpler problems.

7. FUTURE WORK

The project described in the report is only the very beginning of a new project that
will involve the Signal Processing and Active Control of ISVR for several years.
During this study, we have considered an ideal feed forward control system since we
have assumed the exact cancellation of the pressure at the error microphones.
Moreover, the dimensions of the window were much bigger than the wavelengths of
excitation. Therefore, for future work, it would be necessary to adapt the theoretical
study to a larger frequency range, with reference to a more realistic room and
window. Eventually, it will be possible to get an idea of the true potential of such a
decentralized control systems, paying attention to the modelling of sound
transmission. Then, it would be interesting to extend the study to a feedback control
architecture, taking into account the problems of stability of controllers.
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