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ABSTRACT

Vibration isolators are required fo protect a delicate piece of equipment from the vibration
of a structure to which it is attached. This report describes a theoretical investigation into
an active vibration isolation system in which an electromagnetic inertial actuator is
installed on top of a piece of equipment which is connected to a vibrating plate through a
passive mount. Double feedback control schemes are discussed, and simulation results are
reported.

For each case subject of this study, the stability region and the ability to minimize the
equipment velocity are discussed. It is shown that a phase-lag compensator within the
internal control loop and an external velocity feedback control loop offer a very promising

solution both in terms of stability of and performance of the system.
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1. INTRODUCTION

Isolators are generally required to protect a piece of delicate equipment in a severe
vibration environment. Using passive mounts there is a trade-off between low and high
frequency isolation performances depending on the damping of the mount, as described by
Crede and Ruzicka (1996).

To provide a more favourable static and dynamic stiffness compromise, active isolation

solutions must be used, which are usually based on mounts and actuators.

Actuators are used in active vibration control to generate a secondary vibrational response,
and in practice they can be configured either to react off the base structure or function as
an inertial actuator (also called proof-mass actuator). Inertial actuators do not need to react
off a base structure, so they can be used as modules that can be directly installed on a
vibrating structure. This feature makes them very attractive. This was investigated by
Elliott et al., (2001), and Benassi et al., (2002a). Tt was found that the design of a feedback
controller based on inertial actuators involves a trade-off between performance (the
attenuation of the disturbance) and robust stability (the ability to remain stable under
changing conditions). In particular, different strategies for active isolation using an inertial
actuator were studied. Once the theoretical analysis was completed, a realistic case using
real commercial components (Ananthaganeshan et al., 2002) was analysed.

It was found that while single loop feedback control strategies such as velocity feedback,
integrated velocity feedback, force feedback and integrated force feedback often offer
severe limitations both in terms of stability and performance, double loop feedback control

strategies based on a combination of the above show very promising results.

This report deals with the stability and performance analysis of a single degree of freedom
system, composed of a piece of equipment, which is mounted on a vibrating plate through
a mount. Double active feedback control strategies are implemented through an inertial
actuator and a couple of sensors. The objective of this work is to investigate feedback
control strategies in order to minimize the equipment velocity over a wide bandwidth

(Active Vibration Isclation).



2. ACTIVE ISOLATION OF A LUMPED MASS EQUIPMENT MOUNTED ON A
VIBRATING PLATE VIA A SPRING-DASHPOT MOUNT

In this study, a matrix model has been used which assumes that the system is divided into four
clements: the vibrating plate, the passive mount, the equipment, and the inertial actuator. The
dynamics of each of these elements is evaluated using mobility functions. Figure I shows the
typical system that has been used in this study and the numerical values assumed for the
simulations. With these values the actuator has a natural frequency of about 10 Hz and a
damping ratio of about {(=4.5%, the equipment mounting system has a natural frequency of

about 21.5 Hz and a damping ratio of about {=5.2%, and the vibrating base has a first natural

frequency of about 44.8 Hz and a damping ratio of about (=4.8%.

i, = Inertial Actuator Dynamic Mass = 0.91 Kg
Hig _l v ¢, = Inertial Actuator Damping Factor = 5.8 Ns/m
¢ k, = Inertial Actuator Spring Stiffness = 3900 N/m

Inertial
Actuator | e Ca | =/ ky m,= Equipment Mass = 1.08 Kg
.= Passive Mount Damping Factor = 18 Ns/m
k., = Passive Mount Spring Stiffness = 20000 N/m
Rigid
Equipment e _—l Ve The mechanical properties of the vibrating plate, which
) c J_ k is a steel plate with two clamped edges and two free
]-ESSWC e " edges, are fully described by Gardonio et al. (1997a)
ount

g, = Primary Force (disturbance)
g, = Secondary Force (control)
Gy l v, = Inertial Actuator Velocity
v, = Equipment Velocity
Figure 1 Schematic of a vibration isolation system with an inertial actuator.

Vibrating Base

Details of the mobilities and impedances used to describe the system throughout this work
can be found in Benassi ef al. (2002b), while Appendix A describes the sign conventions
and the complete mode! equations. In particular, we are interested in the behaviour of the
inertial actuator, whose schematic is shown in Figure 2. g, is the total transmitted force
underneath and it can be expressed as a function of the control force and the equipment

velocity as follows



Figure 2 Schematic and sign convention of an inertial actuator.

g = —w’m, jomk, —wmgyc, )
¢ = ) 2 4y~ . )
k, + joc, —wm, k, + joc, —w°m,
or, in a more compact expression
q = an - Zapenve (2)

where G can be regarded as the blocked actuator response, and Z,,., as the open loop
impedance of the passive components of the inertial actuator.

The magnitude and phase of the blocked actuator response is plotted in Figure 3(a) from
which it can be seen that g/g, is negative at low frequency. In fact, when g, is positive
(the actuator mass is expanding), the passive components within the actuator (spring and
damper) are expanded and therefore they generate a force which tends to restore the

system to its natural condition. Given the sign convention described above, this force is
equal to — g, Also, it can be seen that g, tends to g, for w>>a,, where @, =k, /m, .

The magnitude and phase of the frequency response of the passive components of the
inertial actuator is shown in Figure 3(b), in which it can be seen that the real part is always

greater than zero (passive behaviour).
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Figure 3 Magnitude and phase of the blocked frequency response of the inertial
actuator (a), and magnitude and phase of the frequency response of the passive
components of the inertial actuator (Z,,, in Equation ( 2}).

2.1 Inner Loop: Force Feedback Control

Given the inertial actuator, when force feedback control is implemented, the schematic is
shown in Figure 4. The total transmitted force g, is méasured and fed back to the inertial
actuator through a constant real positive gain H{jw)=h. The command signal f can be
considered, in control terms, as the reference point. It will be used when the outer loop 1s

implemented, but understanding its role is essential at this stage.

(a) m
a I Vs
Je - Hjw) Ga €a _I_ k,
: .
(b)
fe 4a q:

Y

G(jo)

v

—?_—b H{jw)

Figure 4 Schematic of an inertial actuator and implementation of the inner
total transmitted force feedback control (a), and equivalent block diagram (b).




The Nyquist plot of the blocked actuator response is shown in Figure 5. The stability
analysis of such a system plays an important role in the discussion about whether force
and velocity feedback control is a good solution to the equipment isolation problem. At
low frequency, the Nyquist plot lies very close to the critical point and therefore instability
is likely to happen especially to real systems where an additional phase shift is present due
to the electronic components. In sum, from a stability point of view, the force and velocity
controller raises some concerns and special attention must be paid when real systems are
implemented. This is mainly due to the fact that even under ideal conditions, at low
frequency the overall system works close to its stability limit.

It can also be noted that at high frequency the plot does not go to the origin and this is due
to the fact that at high frequency the magnitude in the corresponding Bode plot (Figure

3(a)) is constant.

Imaginary

] -4 -2 o} 2 4 ]
Feal

Figure 5 Nyquist plot of the blocked actuator response described in equation
(1)

The secondary force (control signal to the inertial actuator) is given by

q, =h(f. —4q,) (3)



which, substituted into (2), provides the closed loop total transmitted force as a function of

the command signal and the equipment velocity. This is given by

Z Gh
open
= .+ v 4
“ T e @
When the single terms are expanded, the expression becomes
2 . 2
—w mah’ Jmaka —m,c, v (5)
q, = - e
Yok, 4 joc, —@tm 1+ k) k,+ joc, ~@*m,(1+h)
which can be grouped as
9, = A f. — By, (6)

The total transmitted force ¢, per unit control command f; is plotted in Figure 6(a). When
the gain 4 increases, the total transmitted force tends to the control command. This means

that using the outer control loop it is possible to transmit all the desired force to the

equipment. In fact, it should be noted from equation (4) that Z, , = ﬁ;ﬂﬁ << Z,,,and if
.I._

GH >>1 then g, = f., which means that the total transmitted force can be regulated using

the command signal f,.

A second important aspect is that, when the gain h increases, the actuator resonance is
shifted to lower frequencies, while its magnitude increases, getting closer to the unstable
region. This was also described by Benassi et al. (2002a). In fact, it was found that total
transmitted force is proportional to the acceleration of the actuator. Hence, force feedback
is equivalent to feeding back the actuator acceleration. This leads to the conclusion that
force feedback control has the physical meaning of adding an “apparent” mass to the
inertial actuator mass. '

In Figure 6(a) the dashed line shows a peak whose magnitude is lower than the peak
depicted using the faint line. This is due to a numerical approximation of the software. In
reality the former peak should be higher then the latter. This indicates the fact that the
inner force feedback loop is able to bring the inertial actuator resonance to lower
frequencies, while its magnitude increases, which is an indication of the fact that the

system is closer to instability at such low frequency.



Figure 6(b) shows the total transmitted force ¢, per unit equipment velocity. Even in this
case the resonance frequency shift can be observed, and this implies that when the inner
feedback gain # is increased, ¢, /v, tends to zero, which indicates that for high gains the
system behaves as if the inertial actuator is no longer present. In general though, for

reasonable values of 7, the magnitude of ¢, /v, is much lower if compared to the

uncontrolled case.
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Figure 6 (a): Total transmitted force per unit control command when different
inner loop gains h in H(jw)=h are used: h=1 (solid), h=20 (faint), h=100
{(dashed), and h=100,000 (dotted). (b): Total transmitted force per unit
equipment velocity when h=0 (solid), h=20 (faint), h=100 (dashed), and
h=100,000 (dotted).

2.2 Inner Loop: Integrated Force Feedback Control

In Figure 4, if H(jw) = h/(jw) then integrated force feedback control is implemented.
The correspondent Nyquist plot (Figure 7) entirely lies on the positive real axis. This is
due to the effect of the integration on the plot in Figure 5. As a result, that plot is rotated
by 90° clockwise. Therefore, when the phase lags due to the electronic components are
introduced, the overall system remains stable within a large set of gains. In other words,

the ideal system is unconditionally stable, thus the integrated force feedback tends to make

the overall system more robust.

e,
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' Figure 7 Nyquist plot of the blocked actuator response when H{(jw)=h/ja..

In this case, the secondary force is given by

Y =h22(f ~q) %
_](U

w ) . .

The contro] law is written in the form h—_g—, so that the gain % is unitless and wp=1 rad/s.
jw

When (7) is substituted into (1), the total transmitted force becomes

2 . 2
- m,h B jomk, ~wm,c, y 8)

k, + joc, — o m, + jomh”C k, + joc, - m, + jomh

4;

which can be written in the compact form
q, = Ach = Byv, ©)

The total transmitted force g per unit control command f. is plotted in Figure 8(a). Unlike
the previous case, the resonance frequency does not change when the gain increases. On
the other hand, ¢, tends to f, when very high gains are implemented. For reasonable values
though, the magnitude decays past the resonance frequency and a phase shift occurs.

Compared to the force feedback control in which ¢, tends to f; as well, here the magnitude



assumes lower levels, which implies that higher 4 values are needed in this scheme
compared to the previous one in order to obtain the same levels of g;.

Figure 8(b) shows the total transmitted force g, per unit equipment velocity v.. When the
inner feedback gain % is increased, an attenuation can be noted within the resonance
frequency, but at higher frequencies, ¢, /v. decays. In other words, the system becomes so
damped that its resonance disappears and it seems that the inertial actuator has been

removed.
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Figure 8 (a): Total transmitted force per unit control command when different
inner loop gains k in H(jw)=h/jw are used: h=1 (solid), h=20 (faint), h=100
(dashed), and h=100,000 (dotted). (b): Total transmitted force per unit
equipment velocity when h=0 (solid), h=20 (faint), h=100 (dashed), and
h=100,000 {dotted).

An intermediate scheme based on the measurement of the integrated total transmitted
force to the equipment was also analysed. The inner feedback gain H{jw) was chosen to be
a positive real constant 4. The Nyquist plot is shown in Figure 7 and the total transmitted
force per unit equipment velocity is shown in Figure 8(b). Unlike the other schemes, the
total transmitted force per unit control command f, shows the weakness of this strategy. In
fact, for very high values of the gain % , g, / . tends to k, but when h assumes reasonable
values, g, / f. tends to ja, which means that it is frequency dependent. For this reason, the

implementation of this feedback control scheme is not recommended.



From a stability point of view, the force feedback control scheme does not guarantee a
good stability margin at low frequency. This is especially true when the outer velocity
gain is increased. In addition, when real electronic components are added to the ideal
system, the stability margin rapidly decreases and the overall system falls very close
towards the unstable region. On the other hand, from a performance point of view, this
scheme offers very good results using lower power than the other schemes.

When an integrator is added to the system, the overall system significantly improves its
stability characteristics. This can be noted in the Nyquist plot, which is rotated by 90°
clockwise. On the other hand, if high performance is needed, very high gains are
necessary and therefore a lot of power is consumed. At the same time, using these latter
schemes, attenuation over a large bandwidth is possible.

The idea is then to alter the inner loop in such a way that it behaves like a force and
velocity feedback controller at frequencies higher than a certain appropriate value, which
will be discussed. in the next section and it behaves like an integrated force and velocity
feedback controller at low frequencies. By doing so, the system will preserve high stability
characteristics at low frequency and will also preserve good performance at high
frequency, which will be obtained using relatively low energy levels.

All these aspects will be discussed in the next sections.

2.3 Inner Loop: Phase-lag Compensator

[+ . . .
In Figure 4, if H{(jw)= h’M then the correspondent Nyquist plot is shown in

Figure 9. It can be noted that the behaviour of the closed loop system from a stability point
of view is in between the behaviour of the previous two cases. In particular, at low
frequency the closed loop system is almost as robust as the integrated force feedback case.
A detailed discussion on the appropriate choice of @;is given in Appendix B. It is shown
that the choice of w; becomes of critical importance in order to assess a reasonable trade-
off between stability of the overall system (especially at low frequency) and its
performance. In fact, when @, is small, the system behaves similarly to the force and
velocity implementation scheme. On the other hand, when @; is chosen to be large then

stability problems are likely to happen at higher frequencies.

10
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Figure 9 Nyquist plot of the blocked actuator response when the phase-lag
compensator is implemented.
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The control law is written in the form h’aj-.—], so that the gain A’ is unitless and
Ja

@,=2122=138.16 rad/s. In order to make 4’ comparable to the gains described in the

previous sections, it is necessary that

=t (10)
@
The secondary force is given by
i+
G =W I==1(f - a) an
jw

Substituting equation (11) into (1), the total transmitted force becomes

_ —w’m b+ jom, W o,
k, + jwe, —@ m,(1+R)+ jomh ',

q;
(12)
_ jom k, —w*mc, ,

k, + jwc, —@*m, (L+ 1)+ jomPo,

which can be written in the compact form

11



g, = Ay f. - By, (13)

Figure 10(a) shows the total transmitted force to the equipment per unit control force. As
‘the gain h increases, g, tends to f. at all frequencies. Compared to the previous scheme
(Figure 8(a)), at frequencies higher than the resonance, the magnitude is steadier,
indicating a better performance at high frequency since g; is closer to f; than in the
previous case. Also, unlike the previous case, there is no phase lag at frequencies higher
than the resonance.

Figure 10(b) shows the total transmitted force per unit equipment velocity. When the gain
h increases, g/ v. tends to zero, but this is actually achieved for very large values of the
gain. Otherwise, the behaviour is similar to the previous case. Compared to the
uncontrolled case (solid line), when the controller is activated the first resonance is no
longer present in the ¢/ v, equation. This can be physically explained considering the fact
that when the gain 4 in the phase-lag compensator increases, the closed loop system tends

to an equivalent system in which the inertial activator has been removed.

(a) (b)
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Figure 10 (a): Total transmitted force per unit control command when different
inner loop gains h in the phase-lag compensator are used: h=1 (solid), h=20
(faint), h=100 (dashed), and h=100,000 (dotted). (b): Total transmitted force
per unit equipment velocity when h=0 (solid), h=20 (faint), h=100 (dashed),
and h=100,000 (dotted).
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2.4 Quter Loop: Force Feedback and Velocity Feedback Control

Figure 11 shows the schematic of the entire system when the inner loop is implemented.

(@)
_i y
fi—»{f_——» H{jm)
q;
152
Vibrating Plate
qp l
qpl
) ,
Gdje)
fe ta ; QL’

%?_——* Hijw) »  Gliw)

Figure 11 Schematic of a vibration isolation system with an inertial actuator
and implementation of the inner total transmitted force feedback control (a),
and equivalent block diagram (b).

Since the objective of this work is to minimize the equipment velocity, the analytical
expression for the equipment velocity as a function of the primary force g, and the total
transmitted force g, was obtained:

Y.z .Y, YI+¥,Z,)

p, = + 14)
TRz vy ez, " (

where

13



Y =

-4

. = Mobility of the rigid equipment

jam,

Y, = : = Mobility of the vibrating base
jom, +c, +——
Jem,, T ¢, jw

k .
Z =c, +-= =Impedance of the passive mount

m i3

jo
Substituting equation (6) into (14), the expression of the equipment velocity, when the
force inner loop is implemented, is given by
Y, YA(U+Y,Z,)

Y.z
v, = £ q,+ = f. (15)
1+Z, (Y, 1Y, +V,BY,)+ VB, '* 1+2,(Y, +Y, +Y,BY,)+Y,B,

Ht

e

Figure 12 shows a schematic of the system when both inner and outer loops are
implemented. It can be noted that the outer loop is a velocity feedback control scheme,
and it aims to take energy away from the system, through its constant real positive gain
Zp. In particular,

fo==Zyv, (16)
Substituting (16) into (15) the equipment velocity per primary force is given by

YeZm Yb

v, = q, (17
1+2, (Y, +Y, +Y,BY y+Y,B,+Y A (1+V,Z, )Z,

Figure 13(a) shows the equipment velocity per unit command signal for different values of
the inner loop gain k. Similarly to Figure 13(b), the effect of increasing the equipment
velocity and the shift of the first resonance can be noted.

Figure 13(b) shows the equipment velo%:ity per unit primary force for different values of
the inner loop gain /. It can be noted that the inner loop causes v, to increase, but has the
beneficial effect of bringing the first resonance to lower frequencies (in particular, see the
faint line).

Figure 13(c) shows the Nyquist plot of v./f., which effectively determines the stability of
the closed loop system once the outer velocity feedback control is implemented. When the

inner force feedback gain % is increased, considering that the system with the inner control

14



loop is unconditionally stable (Figure 5), the effect of increasing Zp is good attenuation
and unconditional stability for all frequencies greater than the first resonance, which
happens to be at very low frequency. When Zp increases, the closed loop system behaves
as if the velocity feedback loop dominates over the inner loop, therefore the overall system
becomes conditionally stable (i.e. for some Zp greater than a certain value the very low

frequency resonance brings the system to instability).

(a)

» D ———?—‘ H(jw)

qr

Ve

Vibrating Plate

“]
"

Gdjw)

%l Giw ——é)ﬁ”i»

Y

?.—' Hijw)

Figure 12 Schematic of a vibration isolation system with an inertial actuator
and implementation of the inner total transmitted force feedback control and the
outer velocity feedback control (a), and equivalent block diagram (b).

However, in order to bring the system to the unstable region, high values for Zp are
needed, much higher than the critical gain that can be experienced using a mere velocity
feedback. This latter property is due to the interesting feature of the force and velocity

feedback scheme of making stable those systems that were previously unstable. In fact, as

15



shown in Section 2.1, at low frequency the Nyquist plot lies very close to the critical point
and therefore instability is likely to happen especially to real systems where an additional
phase shift is present due to the electronic components. It was found (Benassi et al.,
20022) that force feedback control is able to stabilize those systems with velocity feedback
that are unstable due to the high velocity gain.

In sum, from a stability point of view, the force and velocity controller raises some
concerns and special attention must be paid when real systems are implemented. This is
mainly due to the fact that even under ideal conditions, at low frequency the overall
system works close to its stability limit.

On the other hand, when the inner gain h assumes reasonably low values, part of the
Nyquist plot in Figure 13(c) relative to the first resonance lies within the unit circle
centred at (-1,0), which indicates enhancement in the overall closed loop response.

Figure 13(d) shows the equipment velocity per unit primary excitation. The effect of the
inner force gain A=100 can be seen from the presence of the shifted first resonance at low
frequency. In particular, its magnitude is negligible and its presence can only be noticed
from the phase plot. Performance-wise, it is shown that good vibration isolation conditions
can be achieved with relatively low gains. Being able to obtain the desired condition
spending low energy quantities is important, even if most of the times these conditions
are, as explained above, within a narrow stability margin. In conclusion, there is a trade-
off between performance and robustness, which makes the force and velocity control
scheme very attractive on one hand, but on the other hand it makes it impractical. In fact
the problem is that, when the gain k increases, the actuator resonance moves to lower
frequencies. In this case, the Nyquist plot of the inner feedback lies, at low frequency,
closer to the cﬁtical point and therefore in real applications the overall system might

become unstable.

16
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Figure 13 (a): Equipment velocity per unit command signal when different
inner loop gains h in H(jw)=h are used: h=1I (solid), h=20 (faint), h=100
(dashed), and h=100,000 (dotted). (b): Equipment velocity per unit primary
force when h=0 (solid), h=20 (faint), k=100 ( dashed), and h=100,000 (dotted).
(c): Nyquist plot of the equipment velocity per unit control command when
h=20 (faint), h=100 (dashed), and h=100,000 (dotted). The solid line shows the
case when no control is implemented. (d): Equipment velocity per primary
excitation when the inner loop gains h=100 and different outer velocity
feedback control gains are used: Zp=0 (solid), Zp=>50 (faint), Zp=100 (dashed),
and Zp=200 (dotted).
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The impedance of the equipment when the inner total transmitted force feedback control

and the outer velocity feedback control are implemented is given by

aTa

k,+ joc, ~ o m,(1+h)

jom, k, —w* +hZ
7 = Jem W ma(ca p) (18)

which is plotted in Figure 14. It can be noted that, even when using low gains, the
equipment impedance g, /v, = Z,, past the first resonance frequency, which indicates that
the overall system tends to a skyhook damper implementation. In conclusion, damping is
added to the system in the form of the desired impedance Zp, which is a positive real

constant value that can be imposed by the designer.
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Figure 14 Impedance of the equipment when the inner total transmitted force
feedback control and the outer velocity feedback control are implemented. h=10
and ZD=2 0.



2.5 Outer Loop: Integrated Force and Velocity Feedback Control

Substituting equation (9) into (14), when the inner loop is based on an integrated feedback
control strategy and the outer loop is a velocity feedback, the expression for the equipment

velocity is given by

Y.Z. Y, YA, (1+Y,Z,)

v, = = g, + f. (19
1+Z, (Y, +Y, +Y,B,Y, )+ Y, B, 1+Z,,(Y,+Y,+Y,B,Y,)+Y,B,
Substituting (16) into (19) the equipment velocity per primary force is given by
Y,Z Y,
e“m'h qp (20)

Vv =
¢ 1+Z, (Y, +Y, +Y,BY,)+Y, B, + Y, A (+Y,Z,)Z)

Figure 15(a) shows the equipment velocity per unit command signal for different values of
the inner loop gain k. It can be noted that for high inner loop gains the first resonance is
very damped, as expected. Figure 15(b) shows the equipment velocity per unit primary
force for different values of the inner loop gain &. It is clear that the outer velocity
feedback loop is needed in order to take energy away from the system. Figure 15(c) shows
the Nyquist plot of v./f. for different inner force feedback gains, which effectively
determines the stability of the closed loop system once the outer velocity feedback control
is implemented. When the inner force feedback gain 4 is increased, since the system with
the inner control loop is unconditionally stable and very robust, the effect of increasing Zp
is good attenuation and unconditional stability. Figure 15(d) shows the equipment velocity
per unit primary excitation. The effect of the inner force gain k=100 can be scen from the
absence of the damped first resonance frequency. Performance-wise, it is shown that good
vibration isolation conditions can be achieved, but high gains are needed. Also, at
frequencies slightly higher than the equipment resonance frequency, enhancement, rather
than attenuation, is experienced. This does not indicate good performance. In sum, from a
stability point of view, the integrated force and velocity controller turns out to be very
robust. This is mainly due to the fact that even under ideal conditions, the inner loop
stability plot entirely lies on the positive x-axis semiplane. On the other hand, good
performance can be achieved, but high outer loop gains are needed, therefore high energy

is required.
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Figure 15 (a): Equipment velocity per unit command signal when different
inner loop gains h in H(jw)=h/jw are used: h=1 (solid), h=20 (faint), h=100
(dashed), and h=100,000 (dotted). (b): Equipment velocity per unit primary
force when h=0 (solid), h=20 (faint), h=100 (dashed), and h=100,000 (dotted).
(c): Nyquist plot of the equipment velocity per unit control command when
h=20 (faint), h=100 (dashed), and h=100,000 (dotted). The solid line shows the
case when no control is implemented. (d): Equipment velocity per primary
excitation when the inner loop gains h=100 and different outer velocity
feedback control gains are used: Zp=0 (solid), Zp=50 (faint), Zp=100 (dashed),
and Zp=200 {dotted).
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The impedance of the equipment when the inner and outer feedback control strategies are

implemented is given by

: YR Y=
7 = jom, (k, +h 2‘D) wm,c, @1
k,+ joc,—w m, + jomh

which is plotted in Figure 16. It can be noted that, like in the previous case, the equipment

impedance g, /v, = Z,, past the first resonance frequency, which indicates that the overall

system tends to a skyhook damper implementation. However, higher gains are needed to

achieve this behaviour.
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Figure 16 Impedance of the equipment when the inner total transmitted force
feedback control and the outer velocity feedback control are implemented. In
particular, H(jw)=l/ ja, . h=50 and Zp=20.

So far, it was shown that the force and velocity feedback control strategy is not robust, but
it performs very well. On the other hand, the integrated force and velocity control strategy
is more robust, but it requires higher gains in order to achieve comparable performance. In
the next section a solution is presented which offers both robustness and good

performance.
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2.6 Outer Loop: Phase-lag and Velocity Feedback Control

Substituting equation (13) into (14), when the inner loop is based on a phase-lag
compensator and the outer loop is a velocity feedback, the expression for the equipment

velocity is given by

Yz.,Y, Y, A (1+Y,Z,)

g, + fe 22)
(Y,+Y, +Y,B;Y,)+Y,B; 1+Z, ¥, +Y, +Y,BY,)+Y,B;

v, =
1+ Z

m

Substituting (16) into (19) the equipment velocity per primary force is given by

YeZmYb
RE—
¢ 1+Z, (Y, +Y, +Y,BY,)+Y, By + Y, A(l+Y,Z,)Z,

g, (23)

Figure 17(a) shows the equipment velocity per unit command signal for different values of
the inner loop gain k. It can be noted that for high inner loop gains the first resonance is
very damped, as expected. This is due to the fact that at low frequency the overall system
behaves as if the integrated force controller was implemented. Figure 17(b) shows the
equipment velocity per unit primary force for different values of the inner loop gain A.
Even in this case, the outer velocity feedback loop is needed in order to take energy away
from the system. Figure 17(c) shows the Nyquist plot of v./f, for different inner force
feedback gains. When the inner force feedback gain 4 is increased, since the system with
the inner control loop is unconditionally stable and very robust, the effect of increasing Zp
is good attenuation and unconditional stability. Figure 17(d) shows the equipment velocity
per unit primary excitation. The effect of the inner force gain 2=100 can be seen from the
absence of the damped first resonance frequency. Performance-wise, it is shown that good
vibration isolation conditions can be achieved. This is due to the fact that at higher
frequencies the overall system behaves as if a force feedback was implemented. Unlike
the previous case, at frequencies slightly higher than the equipment resonance frequency
attenuation is experienced. In sum, from a stability point of view, the system is very robust

and it performs very well.
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Figure 17 (a): Equipment velocity per unit command signal when different
inner loop gains h in the phase-lag compensator are used: h=1 (solid), h=20
(faint), h=100 (dashed), and h=100,000 (dotted). (b): Equipment velocity per
unit primary force when h=0 (solid), h=20 (faint), h=100 (dashed), and
h=100,000 (dotted). (c): Nyquist plot of the equipment velocity per unit control
command when h=20 (faint), h=I100 (dashed), and h=100,000 (dotted). The
solid line shows the case when no control is implemented. (d): Equipment
velocity per primary excitation when the inner loop gains h=100 and different
outer velocity feedback control gains are used: Zp=0 (solid), Zp=>50 (faint),
Zp=100 (dashed), and Zp=200 (dotted).
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The impedance of the equipment when the inner and outer feedback control strategies are

implemented is given by

7=

jom (k, + B0, Z,) - m,(c, +F'Zp)
a\va <D asta D

(24)

. 2 3 . ]
k,+ joc, —w*m,(1+Rh)+ jom hw,

which is plotted in Figure 18. It can be noted that, like in the previous cases, the

equipment impedance g, /v, = Z,, past the first resonance frequency, which indicates that

the overall system tends to a skyhook damper implementation. However, unlike the

previous case, the tendency to a skyhook damper is more pronounced in this case ad this is

due to the force-feedback-like behaviour (Figure 14) of the system at higher frequencies.
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Figure 18 Impedance of the equipment when the inner phase-lag control and
the outer velocity feedback control are implemented. h=50 and Zp=20.
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2.7 Actuator Requirement

The force requirement g, for the three double feedback control schemes of interest has
been investigated.

From the performance plots the inner and outer feedback gains (k and Zp, respectively)
have been chosen in order to determine if, given those gains which provide the desired
performance of the closed loop system, reasonable force quantities can be provided by the
inertial actuator. In other words, the following study will access if the inertial actuator can
physically provide a certain amount of force which guarantees a desired performance of
the overall system. The total transmitted force by the inertial actuator as a function of the

control force (actuator requirement) g, and the equipment velocity is given by

2 . 2
—w'm wm,k, —w m,c,
q: = . < 2 Qa - / . 261 ve (25)
k, + joc,—wm, k, + joc,—w"m,
which can be written in a more condensed expression as follows
q, = Aq, ~ By, (26)
The equipment velocity is given by
b IV ¢ Y, (14,2
vez g“m-h qp'i' e( b m) . (27)
1+Z, (Y, +Y,) 1+Z, (Y, +Y,)
Substituting equation (26) into (27), the equipment velocity can then be expressed as
Y,Z, Y, ! Y,AQ+Y,Z,)
v, = ; —q, + : 9, (28
I+2, %, +Y)+Y,B(1+Y,Z ) 1+Z, (Y, +Y)+Y,B(1+Y,Z, )
In the double feedback control implementation ¢, is given by
q, = H(jo)(f,—q,) (29)
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where H(jw) is specified depending on the inner loop feedback scheme. The outer loop

controller is given by
fe==Zpv, (30)

Substituting equation (30) into (29)
g, =—H(jo}Zpv, +4,) (31
and then substituting equation (26) into (30)

_H(jo)B-Zp)
e = . Ve
1+ H(jw)A

(32)

By substituting equation (28) into (32) the actuator requirement ¢, per unit primary force
gp is obtained. For simplicity, H will be used instead of H({jw), even though its meaning

does not change.

H(_]CU)(B - ZD)YeZmYb

1+ 2, (Y, +Y,)+Y,B(+Y,Z, )+ H(jo)A+ H(jo)AZ

m n

(33)

When the force and velocity feedback control scheme is implemented, H(jw)=h (real
positive). In this case g./g, as a function of frequency is plotted in Figure 19. It can be
noted that the actuator requirement depends not only on frequency, but also on the amount
of primary excitation. This is not specific to a certain control scheme, but it holds in
general. The effect of the inner force feedback controller can be noted by observing the
frequency shift of the first resonance when h increases. At the same time, an increase in
magnitude can be noted. This effect can be explained by comparing Figure 13(c) with
Figure 19. For high gains the closed loop system gets closer to instability, therefore higher
forces are required to control its behaviour.

The case where & = 100 and Zp = 100 shows very good performance and in terms of
actuator requirement the worst case scenario is experienced at the first resonance. At about

2 Hz, g./q, = 20 dB = 10 N/N, so if ¢, is a 1 N excitation, the actuator requirement is 10
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N. This figure seems to be a lot if compared to the excitation, but it represents a worst case
scenario and in any event it is physically achievable by small size commercial inertial

actuators. As shown in Figure 19, the actuator requirement is much lower than the level of

excitation.

|qa.fqp| dBrel. (1 N/N)
1
S
T

—40

Frequency (Hz)

Figure 19 Actuator requirement per unit primary excitation when the force and
velocity feedback control strategy is implemented. Different control gains are
used: h=1, Zp=0 (solid); h=1, Zp=10 (faint); k=10, Zp=10 (dashed);, h=100,
Z,=100 (dotted). In particular, this latter case shows very good performance,
as plotted in Figure 13(d).

Figure 20 shows g./q, when H(jw)=ha,/ jo and @y =1 rad/s. Even in this case the

actuator force requirement is physically achievable. In particular, lower values of the force
requirement are shown compared to the previous case, but it must be taken into account
the fact that when integrated force and velocity is implemented and A and Zp are both set
to 100, the performance of the closed loop system is worse than the performance of the
previous case when h = Zp = 100. Also, since the closed loop system is more stable in the
former case (Figure 15(c)), it is natural that it requires lower levels of force to control it. It
can be shown that the actuator requirement per excitation force q./q, is about 1 (on
average) when £ and Zp are set in order to perform as efficiently as the k = Zp = 100case

when the force and velocity controller is implemented.
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Figure 20 Actuator requireméf 1 per unit primary excitation when the
integrated force and velocity feedback control strategy is implemented.
Different control gains are used: h=1, Zp=0 (solid); h=1, Zp=10 (faint); h=10,
Zp=10 (dashed); h=100, Zp=100 (dotted).
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Figure 21 shows q./q, when H(jw) =
phase-lag compensator and velocity feedback controlier shows a similar behaviour as the
integrated force and velocity control scheme. This also confirms the usefulness of this
solution. In fact, not only it can perform as efficiently as the force and velocity scheme,
but also it can be as robust and in addition it requires low force levels as the integrated

force and velocity case.
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Figure 21 Actuator requirement per unit primary excitation when a phase-lag
compensator and velocity feedback control strategy are implemented. Different
control gains. are used: h=1, Zp=0 (solid); h=1, Zp=10 (faint); h=10, Zp= 10
(dashed); h=100, Zp=100 (dotted).

2.8 Conclusions

Inertial actuators do not need to react off a base structure, so they can be used as modules
that can be directly installed on a vibrating structure. This feature makes them very
attractive.

An analysis of different double feedback control strategies for active isolation using an
inertial actuator was presented. Physical interpretation, feedback stability limits,
performance, and robustness were considered for each case.

It was found that an internal feedback loop composed of a phase-lag compensator and an
external loop composed of a velocity feedback provide a very good compromise between
stability and performance of the system.

In this study it was assumed that the actuator resonance frequency was smaller than the
equipment natural frequency. This is an important assumption and details can be found in

Benassi et al. (2002a).
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Appendix A. Complete Model Formulation

The system subject of the present study is composed of a vibrating base at the bottom, a

piece of equipment mounted on top of the vibrating base through a passive mount, and an

inertial actuator installed on the equipment. Figure 22 shows how the system is modelled

and in particular it shows the sign convention. Each velocity or force is assumed to be

positive in the direction indicated by the correspondent vector.

N
Vi 'L Ji
& l f2 Tnertial
J_ Actuator
qn Cﬂ |____| krz
vz L J f} )
Mo Rigid
Equipment
5 l 7 quip
Vs S 3
Cn | == Knm Passive
Mount
Vs fs
/
i Vibrating
- if Base
7 7

o

m, = inertial actuator dynamic mass
¢, = inertial actuator damping factor
k, = inertial actuator spring stiffness
¢a = secondary force (control)

m, = equipment, modelled as a rigid mass

¢ = passive mount damping factor
k., = passive mount spring stiffness

my = mass of the vibrating base

g, = primary excitation

Figure 22 Model of the system and sign convention.

The equations that describe the system can be written as

vi =¥/
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v, =V,
fi+f2=0
ke
VEY I A
vy =V, = Vs
frtfat s
vy =Y fs
{fs}z[zl"{
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Yo = V7
fetf7=0

a
Zl2
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m
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m
222

vy =.§7.;7(f7 +qp)

F

where the mobilities and impedances are defined as

1
N, =-
Jjom,
Yy =— 1
Jjom,

Y., = plate —mobility

a _ za _
Zi] _ZZZ_

mo_ M _ mo__
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k
a a .
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Equations (34), (40) and (44) can be grouped as

w0 0 LA 0
var=| 0 Yo O RKfor+| O Jg, (45)
0 0 Yy|lh Y

and rewritten as

v=Yf+Y,q, (46)

Considering equations (36), (39), (43), and (35), (38), (42), then equations (36), (37), (39),
(41) and (43) can be grouped as

h Zlal 12 0 1w 1
far=—Z3 Zp+Z{ Z [vapt| -1, 47)
f4 0 Z3 Z3 Hvs 0
and rewritten as
f=-ZviZ,aq, 8)

In sum, equations (46) and (48) represent a condensed form of the model of the system.

Substituting equation (48) into (46)
v=[1+Y2]'YZ,q, +[1+YZ]'Y,q, (49)
and substituting equation (46) into (48)

f=[1+2ZY['Z,q, -1 +ZY]'ZYq, (50)

From equations (49) and (50} it is possible to compute all the velocities and forces of
interest within the system. Expanding equation (49), the analytical expressions for v;, vy

and vy can be obtained:
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v (1+Y4421”; +Y77Z$)Y11 SAVAS VA £

1 a
V4 :“5 ~(1+ Y5 Z5 )Yy p +B —(+ ¥, Z3)Y 0 Z 53y g, (51)
Vi EVALS (EDAVAIED AVAN WALED VAR D PV ALY o7
where

D=1+ Y Z + Y 28 Y 2 + Yy Z Y Loy + Yy (Z] + Z )+ Y 2 Y 2o + Yy Zyy (52)

Similarly, expanding equation (50), the analytical expressions for fi, f; and f7 can be

obtained:
h i 1+Y,Zy 1 NZpYuZoty
fut =t -z g, + 2| U RZZBY 6D
S YiuZis YrZp(+Y,Zi +YuZy

Equations (51) and (53) lead to identical expressions as those that were used in Benassi ez

al. (2002a,b) and also in this technical memorandum.
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Appendix B. Choice of the Zero in the Phase-lag Compensator

st joto,

Given the inner loop phase-lag compensator of the form H(jw)=
jo

b

where @, =27f,, the choice of f; becbmes of critical importance in order Lo assess a
g'r?
reasonable trade-off between stability of the overall system (especially at low frequency)

and its performance. In fact, when f; izés'i small, the system behaves similarly to the force
and velocity implementation scheme. Under this condition, the system operates close to
the unstable region. When f; is chosen to be high, an improvement, both stability-wise and
performance-wise, occurs.

s+05.3

Figure 23(a) shows the Bode plot of for which f; =10.4 Hz. For comparison,

Figure 23(b) shows the Bode plot of an ideal integrator of the fo 1. —1— This kind of
s jw

integrator was used in the simulations discussed in the previous sections. It can be noted
that thee is no phase recovery when the ideal integrator is implemented if compared to
Figure 23(a). Also, the magnitude of the former compensator is much higher than the
magnitude of the latter controller, which indicates that lower gains are needed in the

former case to achieve the desired performance level.

Bode Liagram Boda Chagram

(&) ? ' ' (b)
b F o
i i”
E Fﬂquln;(mﬂuc) . . © Fracuancy (rad/ssc)
, +65.3 1
Figure 23 Bode plot of > (a), and Bode plot of — (b).
Ry
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, which implies that

In particular applications, integrators are of the form = -
l+7s 1+ jowr

higher magnitude levels are achieved. In any event, the use of high gains, especially at
high frequency, is necessary.

To summarize, the most important advantage of the phase-lag compensator is the fact that
it enhances the stability of the systemn at low frequency and, thanks to its phase recovery,
restores the original behaviour of the system at frequencies higher than f;.

Figure 24 shows the Nyquist plot of det(I + GH), where G and H are defined in Benassi

(2002a), and where % and Zp are set to 2 and 200, respectively, ad where f; is considered
variable. As f; increases, at low frequency the Nyquist plot becomes steeper, which
indicates a better stability margin. On the other hand, is f; is chosen to be large (Figure

24(b)) then stability problems are likely to happen at higher frequencies.
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Figure 24 Multichannel Nyquist plot of the determinant of (1+G(jw)H{jw)). The
plant is a vibration isolation system with an inertial actuator. The controller is
the combination of a phase-lag compensator and velocity feedback. Different
values of f; are used: (a) f; =4 Hz (solid), f; =10.4 Hz (dashed), and f; =22.5 Hz
{(dotted), and (b) fi =10.4 Hz (solid), f; =40 Hz (dashed), and f; =60 Hz
(dotted). @ varies from (0'to +oa

From a stability viewpoint, an accurate choice for the value f; would be in a region within
the second resonance frequency of the system. In fact, when f; is close or lower then the
first resonance, the system might become unstable if the electronic components are taken
into account. However, if f; is greater than the second resonance frequency, instability at

higher frequency (due to time delays in the electronic paths for example) may occur. An
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important aspect of the above conclusion is that in the analysis a fixed set of gains /# and
Zp was assumed, so it could be believed that by changing these gains the above conclusion
might not hold any longer. This is not completely correct. In fact, an accurate design
should consider both gains /i and Zp and f; as variables to be set in order to achieve the
desired stability margin and performance characteristics.

As demonstrated below, the choice of f; has not a substantial impact on the performance
characteristics of the system, but, as shown above, it is able to add margin to the stability
at low frequency. On the contrary, as shown by Benassi et al. (2002a), an accurate
selection of the gains leads to about 20 dB maximum attenuation (14 dB average) within a
very remarkable frequency range.

Figure 25 shows the equipment velocity per unit primary force of the closed loop system
when % and Zp are set to 2 and 200, respectively, and when f; is allowed to vary. It can be
noted that there is not a big difference performance-wise. One should remember that
although a different choice of 4 and Zp might lead to a better attenuation, the purpose of
this analysis is to assess the influence of f;.

An important aspect is depicted by the dashed line in Figure 25(a). When f; is lower than
the first resonance frequency, an extra peak appears in the performance plot. This is also
detectable in the rapid change in slope at low frequency in the correspondent Nyquist plot.
This is physically due to the presence of the low frequency zero in the phase-lag
compensator which becomes dominant at low frequency. Figure 25(b) shows the
behaviour of the closed loop system for a different set of f;. It can be noted that while
there exists some improvement performance-wise when f; lies in the 12-20 Hz region, for
higher values of f; the improvement is highly reduced and therefore the performance curve
tends to a limit curve. This is due to a compensation between numerator and denominator
in the v./g, equation. From a physical point of view this can be explained by the fact that
for high values of f; the behaviour of the first resonance frequencies is not affected by
such a high frequency zero.

On the whole, not only for a stability point of view, but also from a performance point of
view, f; should be chosen within the second resonance (mount-equipment) frequency

range.
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Figure 25 Equipment velocity per unit primary excitation. Different values of fi
are used: (a) f; =4 Hz (faint), f; =10.4 Hz (dashed), and f; =22.5 Hz (doited),
and (b) f; =10.4 Hz (faint), f; =40 Hz (dashed), and f; =60 Hz (dotted).The solid
line shows the case where no control is implemented.
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