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Abstract

Built-up structures include joints such as spot welds, bolted joints, gaskets eic., whose
physical properties, e.g. stiffness, thickness, damping, often vary substantially from one
structure to another. Uncertainties in these physical properties lead to significant
uncertainties in the dynamic behaviour of the structure, and there is therefore an interest in
predicting the statistics of the response given the statistics of the joint properties.

There are two main issues. The first involves quantifying the statistics of the joint properties,
which, for line junctions, potentially includes spatial correlation. The second issue is the
development of a computationally efficient numeric procedure to calculate the response
statistics. This report addresses the second issue. Component mode synthesis (CMS) is used
to describe the behaviour of the connected components. This approach reduces the size of a
numerical model, while the uncertainties are then associated with the properties of the
structure at the interface. Various methods are then considered by which the response
statistics can be estimated. Numerical examples are presented.
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1. Introduction

Higher frequency noise and vibration modelling in built-up structures such as cars, aircraft,
manufactured products etc. is an increasing problem in modern industry. Audio-frequency
noise and vibration performance is important, and hence the engineer needs to design for
low-noise products. One problem faced by the engineer, however, is that mass-produced
products are never exactly the same because of manufacturing variability and so on. Thus
some of the structures are noisier than others. The engineer needs to take into account
uncertainties and variability in the properties when designing for noise and vibration
behaviour, to eliminate, as far as is practical, the occurrence of structure, which are
unacceptably noisy or vibration-prone.

The long-term aim of this research is the development of engineering tools for numerical
modelling, product refinement and Virtual Prototyping, particularly where product variability
and data uncertainty is a major problem. Specific attention will be focussed on the behaviour
of built-up structures where there is uncertainty and variability in the properties of the jomts
that connect the various component parts. Uncertainty and variability in the properties of
different physical realisations of a system produce variations in their responses and therefore
differences in the noise and vibration behaviour of the items. These differences become
larger at higher frequencies. Thus the engineer is interested in not only the ‘baseline’
response prediction, but also estimates of the statistics or spread of the responses of different
realisations of the structure.

One existing technique for vibration modelling involves a finite element analysis (FEA) of
the structure. This is appropriate if the properties are known exactly and if the frequency is
low. An alternative approach for high frequencies is statistical energy analysis (SEA) [1],
which assumes wide random variations in the properties of the structures. In the ‘mid-
frequency’ range, which is the subject of this report, a statistical approach is required, but the
properties do not vary as widely as assumed in SEA.

A number of statistical approaches have been developed to allow for uncertainties in the
parameters of a structure to be included in a numerical analysis [2]. Parameter uncertainties
can be incorporated in deterministic models, often by finding perturbaiional relations
between parameters and response quantities [3,4,5,6]. Also important are stochastic FE
methods [7,8], where the continuous physical properties of the structure vary statistically and
are meshed in a manner analogous to that used to discretise the structure itself.

Monte Carlo simulations can also be used, by repeating an exact calculation many times with
different sets of parameters. These approaches can be prohibitively expensive, and are
typically applied to cases of modest uncertainty at low frequencies.

In the mid-frequency range the wavelength of interest is such that large FE models are
typically needed for the solution. Even a single deterministic solution of a large FE model is



a computationally expensive task. When uncertainties are included in the structure repeating
an exact calculation many times for evaluating the response statistics, e.g. as in the case of a
Monte Carlo simulation, becomes impractical. Developing techniques that reduce the order
of large FE models and allows the introduction of uncertainties in the structure in a fast and
robust way is a major need.

In this report a sub-structuring technique, Component Mode Synthesis (CMS) [9] is
preferred. In CMS the structure is divided into substructures, each modelled individually, and
the uncertainties introduced locally in the substructures. The substructures are then
assembled to produce a much smaller model of the structure as a whole. Several advantages
of this method are shown via a straightforward numerical example.

A comparison is made between a full FEA and a CMS-FEA. The response statistics are
evaluated via a Monte Carlo simulation. The CMS-FEA is computationally much cheaper
while a high accuracy is in general retained. However, a direct Monte Carlo simulation, re-
solving for the complete structure (FEA) or locally for each substructure (CMS-FEA) is still
a computationally expensive task. The development of alternative methods such as
probabilistic dynamic synthesis [10], perturbational methods, etc, to substantially reduce
computational cost is therefore needed.

In chapter 2 the CMS method is introduced. In chapter 3 full FEA and CMS-FEA of an
example structure are compared. Advantages deriving from the use of CMS are shown. At
this stage the model is still deterministic. In chapter 4 the need to introduce uncertainties in a
structure and to consider variability in its responses are explained. In chapter 5 uncertainties
are introduced in the properties of the joint of the example structure. A direct Monte Carlo
simulation is performed to evaluate the response statistics. Full FEA and CMS-FEA are
compared.

A direct Monte Carlo simulation is still an expensive computational task. In chapter 6 a
perturbational method is introduced, for which the response statistics are evaluated at an
insignificant cost. Results and comparisons between the various methods presented (FEA vs.
CMS-FEA via a direct Monte Carlo simulation and a perturbational method) are the long-
term aim of this research.



2. Component Mode Synthesis

2.1. Introduction

Component mode synthesis is, in essence, a method for reducing the order of large finite
clement models. Large models are typical of complex built-up structures, such as airplanes,
cars, helicopters etc.

The method has fundamentally three steps. In the first step the structure is divided into
substructures. Then a reduced-order component-mode model represents each substructure.
Finally the component models are coupled to form a reduced-order system model.

While there are many methods for reducing the order of large finite element models, CMS is,
in most cases, the most systematic and efficient procedure for developing a satisfactory
reduced-order model. Among the first to contribute to this method are Gladwell [11], Hurty
[12], Craig and Bampton [13], Goldman [14], Hou [15], Bajan et al. [16], MacNeal [17], and
Benfield and Hruda [18].

The CMS method has several advantages. By reducing the order of large FE models in a
manner similar to a general mode substitution criterion it addresses principally the need to
reduce computational cost. Often components made independently have properties that are
also statistically independent and the CMS, being a sub structuring technique, allows each
substructure to be treated almost independently. This gives the analyst a wide range of
possibilities, such as modelling each substructure in different ways, e.g. via a FE model, a
statistical energy representation (SEA), using analytical models, using experimental data
such as frequency response functions, etc. The independent ways in which the substructures
can be treated also gives advantages in terms of minimising the re-analysis time when
localised modifications are investigated (i.e. the re-analysis has to be run locally rather then
globally).

The aim of this report is to develop a robust and fast technique for including uncertainties in
the joints of built-up structures. It is clear how CMS can be useful when, in order to evaluate
the response statistics of interest, instead of running a Monte Carlo simulation on the full
structure, the uncertainties can be introduced locally in a substructure rather then globally in
the structure. Only a local analysis has to be performed, in order to retrieve the same
statistics, reducing enormously the computing time.



2.2. Background Theory

The first step in the analysis is to divide the complete structure into a number of
substructures. A substructure is typically connected to one or more adjacent substructures by
interfaces. The substructure nodal coordinates are partitioned into interior coordinates (i.e.
not shared with adjacent substructures), and interface or coupling coordinates (i.c. shared
with adjacent substructures).

Figure (1) illustrates a simple cantilever beam that is divided into three substructures; the
middle one is a typical substructure with interfaces. The coordinate sets C and [ represents
the coupling and interior coordinates respectively.

I
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Figure (1): a typical substructure with interfaces.

The equation of motion of the s™ undamped substructure in its FE representation may be
written as

e} ey + (KT &f ={r ¥ (1.1)

where [M, [K]",{x}’ and {f}® are the mass matrix, stiffness matrix, displacement vector,
and vector of externally applied forces, for the s™ substructure respectively. Different sets of
coordinates can be used to partition {x}°. A full description is given in reference [9, 11-19],
and in section 2.2 for a specific CMS method.

Once the substructure procedure is established, the next step in the analysis is the definition
of a set (or sets) of component modes, followed by the coupling of component models to
form a reduced-order system model.



In CMS, the substructure’s physical displacement coordinates {x}* are typically represented
in terms of component-generalised coordinates {g}* by the Ritz coordinate transformation

{x}’ =lwT{g} (L.2)

where the component mode matrix [y]’is a matrix of pre-selected component modes. The
term component mode is used to signify a class of assumed modes that are used as basis
vectors in describing the displacement of nodes within a substructure. Component normal
modes (eigenvectors) are one class of assumed modes [9]. A large variety of component
modes can be involved in a component mode analysis, to form the matrix [¥]°. Such
component modes are typically constraint modes, rigid body modes, attachment modes,
inertia relief modes, normal modes (both fixed-interface and free-interface), etc, for which a
full description is found in references [9, 11-19].

Two decisions must be made in forming the component mode matrix []’: first, the types of

component modes to include, and second, the number of modes of each type that has to be
retained in the analysis. There are various methods of component mode synthesis each

related to the choice of component modes to be included in [y]’. It is of vital importance to
select a good transformation matrix.

In [20] Noor and Peters list the following criteria for selection of the vectors to form the
transformation matrix [y]':

“Linear independence and completeness;

Low computational expense in their generation, and simplicity of automatic selection of their
number;

Good approximation properties, in the sense of high accuracy of the solution obtained using
these vectors;

Simplicity of obtaining the system response characteristics of interest using these vectors.”

A combination of constraint modes (which includes rigid-body modes) and fixed interface
normal modes fulfils all of the above criteria. A description of the fixed-interface approach is
given in section 2.2. Methods that employ free-interface normal modes, together with their
static corrections (interface attachment modes, etc), are in general much more difficult to
implement than fixed interface. In general, if any reduced set of component normal modes or
any other set of assumed modes is used without including a complete set of either interface
constraint modes or interface attachment modes, the component mode set is not statically
complete, so the first criterion is violated. We can therefore recognize three main variants of
CMS methods, each related to the specific set of component modes selected to form the
transformation matrix [y}’ : fixed-interface methods, free interface methods and hybrid
methods (a combination of fixed-interface and free-interface methods). The fixed-interface
methods tend to have improved convergence characteristics. In case of FE models, the Craig-
Bampton fixed-interface method [13] is frequently used. Free interface methods are more
useful when considering experimentally derived component modes.



Once the component-mode matrix [w]® is established, the transformation (1.2) is used
together with the equation of motion of the substructure (1.1) to form the component modal
model. In order to reduce the order of the model, a reduced form of the matrix []" is

considered. Here a fundamental assumption is made which states that only a few modes
contribute to the response of the complete structure. Then, only a certain number of modes

are retained in [w]° leading to a reduced order model. The reduced order model is in the
form

[MP{GY +IKT (g} ={f} (1.3)
where the system matrices are

M) =T IMYIw), (KT =l 4Py, {FF =P (f) (1.4)

The last step of the analysis is the synthesis process, where the local finite element models of
each substructure are then coupled together by enforcing continuity. There are several ways
in which the compatibility equations can be applied to the system. In [13], Craig and Chang
introduce a generalized procedure for coupling component models to form system equation
of motion. In general, constraint equations in terms of component coordinates can be written
as

[Cligl=0 (L.5)
In [9], the synthesis of the equations of motion is based on Lagrange’s equation of motion

with undetermined multipliers. A simpler way is used in [6], where a matrix transformation
takes into account the coupling between the different component coordinates, namely

{q}=[D]l{p} (1.6)

where {p} represents the coupled component modal coordinates. Other techniques are
possible, all leading to a reduced order of the complete system equation of motion

[MUPH+[KH{p}=1{f} (1.7)

where the global mass and stiffness matrices of the complete structure are in general sparse,
and expressed in terms of global coupled component modal coordinates.



2.3. Fixed-Interface CMS

Component coupling is straightforward if the component-mode matrix fir]® consists of only

interface constraint modes and fixed-interface normal modes. Such a choice of []° was first
introduced by Hurty [11] and then simplified by Craig and Bampton. [13].

Following [6], a simple way of describing how the method works is presented. A distinction
is made between three sets of coordinates used to describe the response of the structure:
nodal degrees of freedom {x}, uncoupled component modal degrees of freedom {g}, coupled
component modal degrees of freedom {p}. The last are similar to {g} except for the fact that
they take into account the compatibility equations between the boundary degrees of freedom
of all the substructures.

The nodal degrees of freedom {x} represent the physical displacement of the complete
structure. The vector is partitioned into the degrees of freedom associated with each
subsystem so that

xp=1{" : ' 2.1)

where N is the number of substructures in which the structure has been divided, and each
clement of {x} is a column vector of nodal degree of freedom for the relative substructure.

Each sub-vector of {x} is further partitioned into interior and coupling degrees of freedom.
The degrees of freedom associated with the s™ subsystem are then given by

o (x)]
{x}' ={ t} (2.2)
X

[

where the subscripts i and ¢ refer to interior and coupling degrees of freedom respectively.
{x,} can be any set of specified generalized coordinates describing the deformation of the
interior of the substructure. The coordinate {x,}* represents physical displacements of

coupling degrees of freedom. The coupling degrees of freedom in a given substructure are
later related to those in the adjacent substructures through the use of a number of constraint
equations. The above partition leads to

mc oMY ks k2T (%)
i ic “I + i ic fi = fr (23)
MG M | % K, K. % fe

10



where [M;1°, [K;T, IM.T... {f*Y, {f;)}, are the appropriale partition of the
substructure matrices and the force vector of the externally applied forces respectively,
expressed in nodal degrees of freedom{x}. If we have n*nodal coordinates, n] interior

coordinates and ncoupling coordinates, with n* =n +n_, the substructure sub-matrices

will be of dimensions [M 1 5[K; 1 M1 ... {f°Y . {f]} respectively.

nfxn nixnf nixnl nxl nlxl
The undamped equations of motion for the uncoupled complete structure then take the form
M NE K" Hxp={f"} (2.4)

where the matrices [M *] and [K *], following the partition (2.2), are block diagonal with
each of their sub matrices in the form (2.3). The superscript indicates again the coordinate
system in which they are defined.

A local modal analysis of each substructure is then performed with the coupling degrees of
freedom associated with each substructure being fully constrained. A subset of the local
modes is generally considered. The nodal degrees of freedom are related to the uncoupled
component modal degrees of freedom by the transformation matrix

{2} =lpl{g) | 2.5)

where [y ] takes the form of a block diagonal matrix of dimension n* by n”; where n" is the

number of nodal coordinates and n? is the number of uncoupled component modal
coordinates. The s™ sub matrix on the diagonal of [y ] is given by

s ¢N,. ¢C '
[w] _{O I} (2.6)

. x‘. 5 ¢ ¢ L q 5
X, o I X,
where [¢.] represents the vector of constraint modes, N, the number of retained fixed

interface normal modes and [¢, ] the vector of retained fixed interface normal modes.

Constraint modes are defined as the mode shapes of interior degrees of freedom due to a
successive unit displacement of coupling degrees of freedom, all other coupling degrees of
freedom being totally constrained. To determine the constraint modes the forces at all interior
degree of freedoms are set equal to zero. Equation (2.3) gives

{0} =[K P {x ¥ +IK; P {x Y (2.8)

11



or
(2} =K IR {x Y =10 P{x ) (2.9)

The substructure normal modes are defined as the normal modes of the substructure with
totally constrained coupling degrees of freedom. These are obtained from the equations

(x) ={¢g)e, @’ IM;T{4}=[K;T{8]} (2.10)

The eigenvectors of equation (2.10) are the normal modes of the constrained substructure.
These eigenvectors form the respective columns of the matrix [¢,, ]’ . The mode shapes are
assumed to be mass normalised so that

[0, 1T (KX 10y, 1 = [diag(@ )] 2.11)
and
[0 1 M1y =1 e

The transformation (2.5) together with the uncoupled system equation of motion (2.4) gives
the uncoupled component modal equation of motion for the complete structure

(Mg + 1K gl ={f"} (2.13)

where the global mass and stiffness matrices and the forcing vector are respectively in the
form

M =[p) M 1w], (K= K" wl, {f'} =1 {r"} (2.14)
where [M 9], and [K 7] are block diagonal, with their s™ sub-matrices given respectively by
[MF =[] (MY, (K] =Wl KT W] (2.15)

Partitioning these sub-matrices into normal and constraint mode terms and noting that the
fixed interface normal modes are mass and stiffness orthogonal gives

1 oMz i, O]
Mq s _ ic , Kq L local 216
] [M‘" Mé"j ] [ 0 Kfj e

The normal modes are stiffness orthogonal with respect to the constraint modes whilst the
constraint modes are neither mass nor stiffness orthogonal. The sub-matrices [M1]°, [M 1],

[M?]° and [K.] are generally full, and [M 2] = [Mfi]r

12



The local FE models are then coupled by enforcing continuity between the various coupling
degrees of freedom. The uncoupled component modal coordinates {g}can be related to a set

of coupled component modal coordinates {p}, using the transformation matrix {B], so that

{g}={Bl{p} 2.17)
whilst the uncoupled component modal coordinates of substructure s ,{g}", are related to the
set of coupled component modal coordinates by the appropriate partition of [B],i.e.,

{q}° =[BI'{p} (2.18)
The undamped global equations of motion are then given by:
[MPUpY+IK? H{pY={f"} (2.19)
where the global mass and stiffness matrices and the global force vector are given by
[M71=[BI"{M)[B], [K*1=[BI[K"][B], {f’"}=[BT {f"} (2.20)

Due to the block diagonal nature of the matrices in equation (2 19), the global mass, stiffness
and force matrices can be written in the form

1 M?,B
o) I Mf;zB
M7]= : : : (2.21)
B Mgl BzTMt(":'ﬁ ’ ZB$ rcs S
_wiicaf.l 0 T O |
O a)licrzf,z O
Py —
(K7]=| : : 0 (2.22)
0 0 ZB‘ ¢ B
— g -
il
.qz
Fr1=| (2.23)

Y
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In (2.19) [M?], [K”] and {f"} have dimensions n” xn”, n” xn®, and n” x1, respectively,
where n? is the number of coupled component modal coordinates. Since in the analysis only a
subset of modes for each substructure is considered, the resulting assembled matrices for the
complete structure are of order n”, which is substantially less than the number of nodal degrees
of freedom »* in a full FE. The order of the structure is therefore substantially reduced.

14



3. A Numerical Example: Deterministic

Properties

3.1. Model Description

In this and the following sections a full FEA and a CMS-FEA are performed on a case-study
example. The aim is to show the advantages of using a CMS-FEA in terms of computing
time saving while high accuracy in the results is generally retained. The interest of this
research is to show the advantages of using such a method when including uncertainties in
the structure especially in the property of the joints. Therefore a case-study example
consisting of three plates joined together is considered. The plate of small dimensions
characterise the joint connection. Bach plate is clamped at one edge, with two edges being

free, as shown in Figure (2).

yLa

Figure (2): the model consisting of three plates joined together.

The dimensions of the structure are:

first plate: length
width
thickness

second plate: length
width
thickness

third plate: length

width
thickness

15

0.5
0.05

V2
0.5
0.05

0.1
0.5
0.05

[m]
[m]
[m]

[m]
[m]
[m]

[m]
(m]
fm]



All three plates are of the same homogeneous, isotropic, material; namely steel, whose
properties are:

Young’s modulus: £ = 210 [GPa]
Density: p = 7850 [Kg/m’]
Poisson’s ratio: v = 03

The material behaviour is assumed to be elastic.

The MATLAB Structural Dynamic Toolbox (STD) was used to develop the FE model. The FE
model consists of 1848 nodes and 1744 finite elements. For each node all the degrees of
freedom are retained. Type Quad4 elements have been used with some drilling capabilities,
according to the definition given in the MATLAB STD manual. The resulting model has a
total of 11088 degrees of freedom

16



3.2. Full Finite Element Analysis

In the first step a full FEA is performed. The transfer mobility between the excitation and the
observation points chosen as in Figure (3) is then evaluated. The excitation/observation
points are chosen to lie away from the plane of symmetry (i.e. xz)} of the structure. The
cigenproblem is solved for the undamped structure. Proportional damping of 1% is then
added for the evaluation of the frequency response functions (FRFs).

Sl

e e e oy
SIS ISR
S Y Y Y
RIS e S
RS
SR
Ses

Figure (3): excitation/observation points.

The full FEA took 420 seconds to run (on a Pentium 4, 1.7GHz), and 300 modes found up to
16000 Hz. Figure (4) and (5) show the mobility up to 10000 Hz and in the low frequency
range respectively. The frequency resolution is 1 Hz.
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Figure (4): 0-10000 Hz plot of mobility between the chosen e/o points,
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Figure (5): 0-2000 Hz plot of mobility between the chosen e/o points.

The plots show many modes of vibration in the frequency range of interest. Each mode
involves generally in-plane and out-of-plane motion in all 3 plates. The proportion of energy
in each plate, considering in-plane and out-of-plane motion, varies from mode to mode. This
results variations of the general amplitude of the frequency average mobility. Some modes
are characterized by large amount of energy in one plate only, e.g. bending substantially of
only one plate. Other modes involve motion of two or more plates.

A brief description of the mode shapes that characterize the dynamic of the model is
presented. The first modes of the structure correspond to the bending modes of the two larger
plates. The nodal displacements are in the same direction as that of the excitation force. In
Figure (6) is shown the first mode of the structure, which is at 128 Hz. This mode is
predominantly the first bending in the zx plane of the second plate.

Figure (6): mode I at 128 Hz, mainly the first bending of the second plate in the zx plane. -

18



Figure (7): mode 2 at 210 Hz, mainly the first bending of the second plate in the zy plane.

The second mode is at 210 Hz. This mode is predominantly the first bending in the zy plane
of the second plate. At higher frequency bending modes of the first plate can be observed.
Figure (8) shows the third mode of the structure. Its natural frequency is at 246 Hz and is the
mainly first bending in the zx plane of the first plate. As the frequency increases the structure
shows several mode of vibration that involves mainly the deformation of the first or the
second plate. Some mode shapes, such as the one shown in Figure (9), involves significant
deformation of the third plate, i.e. the joint, in an indirect way. The motion of the third plate
is mainly driven by the deformation of the first and the second plate, which show in Figure
(8) their third and second bending in the zx plane respectively.

Figure (8): mode 3 at 246 Hz, mainly the first bending of the first plate in the zx plane.
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Figure (9): mode 7 at 650 Hz, the motion of the third plate is mainly driven by the deflection
of the two other plates.

The mode of vibration shown in Figure (10) has a natural frequency of 1232 Hz and it is the
lowest mode that has substantial bending of the third plate. This mode of vibration is of
interest since it is hikely to result in a high leve] of variability in the FRFs, when uncertainties
are introduced in the joint properties. '

In Figure (4) low amplitudes of mobility can be seen in the 1600-2800 Hz band and in the
4000-5500 Hz band. In both bands are involved modes of vibration of the type shown in
Figures (11) and (12) respectively. These are mainly in-plane modes of vibration for the
complete structure, for which the displacements in the z direction are negligible if compared
to the displacements in the xy plane. Therefore due to our choice of excitation/observation
points, these modes are either weakly excited or respond weakly.

Figure (10): mode 17 at 1232 Hz, lowest mode that has substantial bending in the third plate.
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Figure (11): mode 24 and 42 at 1644 Hz and 2740 Hz respectively. Mainly the 4" and 6™ in-
plane symmetric motion of the structure respectively

Figure (12): mode 72 and 73 at 4038 Hz and 4047 Hz respectively. Mainly the 5" and 8™ in-
plane anti-symmetric and symmetric motion of the structure respectively.

Figure (4) shows also the typical transition from low frequency to high frequency behaviour
as the frequency and the modal overlap increases. At low frequency there are distinct
resonant peaks. As the frequency increases, the peaks become less distinguishable. The half-
power bandwidth of a mode (response within 3 dB of the peak) becomes comparable with the
resonant frequency spacing. The half-power bandwidth is given by

Af =n(f)f, (3.1)

where n(f ) and f, are the loss factor and the resonance frequency respectively. For our

structure the loss factor is assumed independent of frequency. The half-power bandwidth is
therefore a function of frequency. Thus as f, increases, so does Af . At high frequencies, the

modes overlap, i.e. a resonance peak lies within the bandwidth of its neighbourhoods and
individual resonances can no longer be distinguished from one another. This can be
quantified by the modal overlap factor M, which is defined as

M =n(f n(f)f (3.2)

where n( f ) is the modal density. The modal density is defined as the expected number of

modes per unit frequency. The modal density is an asymptotic value and can be defined
strictly only for frequency bands characterized by a sufficient number of modes. It is an
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extensive parameter and is independent of the boundary conditions. For a plate in bending
the flexural waves predominantly contributes to the number of modes in a given band. The
modal density then takes the form

A [12p(1-v?
=2 3.3

where A is the area, E, p and v the material properties and £ the thickness of the plate.
Equation 3.3 shows that for a plate in bending n( f ) is independent of frequency.

Tf we take into account for each plate of the structure only the bending modes, then the modal
density of the whole structure will have the same expression of 3.3 with A given by the sum
of the surface areas of the three plates. We obtain n( f )= 0.0082 which are roughly 8 modes

per kHz.

The loss factor and the modal density are independent of frequency, the modal overlap factor
becomes therefore a linear function of frequency, as shown in Figure (13).
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Figure (13): modal overlap factor M.

Using equation (3.1) we can conveniently rewrite equation (3.2) as

Af
M=—— 33
yn(f) G-

where 1/n(f ) is the average spacing between natural frequencies. We can therefore

distinguish zones in frequency characterised by high values and low values of the modal
overlap factor:
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M <<1 low modal overlap factor
M >>1 high modal overlap factor

Mid-frequency is typically characterized by M =1.

From Figures (4) and (13), we can see that below 5000 Hz the structure response is
characterised by a low modal overlap factor, while above the structure vibrates mainly in a
mid-frequency manner.

The sensitivity of a structure to uncertainties is generally a function of frequency, i.e.
variability in the structure’s response tends to increase with frequency. Peaks can be
indistinguishable even in frequency ranges characterised by low modal overlap factor. The
definition of a stochastic modal overlap factor describes this phenomenon, as will be shown
in chapter 5.
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3.3. CMS-Finite Element Analysis

In this section the same problem is analysed using CMS-FEA. The complete structure is
divided into three substructures and one coupling interface. A CMS fixed-interface method
has been preferred for its simplicity of implementation. Three separate local analyses, one for
each substructure, are performed. For each substructure a certain number of component
modes is retained, as listed below:

first plate: 150 fixed-interface normal modes, up to 25000 Hz
96 constraint modes

second plate: 200 fixed-interface normal modes, up to 30000 Hz
96 constraint modes

third plate: 50 fixed-interface normal modes, up to 32000 Hz
96 constraint modes

For all three plates the same number of constraint modes is retained, corresponding to the
dimension of the vector of the coupling degrees of freedom. At this stage no reduction
technique is applied to the vector of coupling degrees of freedom. The reduction in the order
of the complete structure will only be due to the reduction of the vector of the interior
degrees of {reedorn.

Once the transformation matrix [ ] for each substructure is established, and the global
matrices of the reduced order system assembled, the reduced order eigenproblem is solved.
The CMS-FEA took 180 seconds to run, almost 60% less than the full finite element
analysis. The order of the model was reduced from 11088 for full FE to 688 for the CMS
model. In Figure (14) a comparison between the mobility computed by the full FEA and the
CMS-FEA is presented.
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Figure (14): mobility computed by the full FEA and the CMS-FEA.
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Almost exactly the same response is predicted, apart from some small variations in the higher
modes due mainly to the number of fixed-interface normal modes retained for each plate and
some differences at lower frequencies due mainly to small residual effects in the coupling. In
Figure (15), a comparison of the natural frequencies is presented. Good agreement is found
up to 10000 Hz
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Figure (15): natural frequencies computed by the full FEA and the CMS-FEA.

In the following sections uncertainties and variability will be introduced in the structure. The
advantages of using CMS-FEA for the evaluation of the response statistics are then seen. A
substantial reduction in computing time will be found, when long Monte Carlo simulations
are needed for the evaluation of the response statistics. The statistics obtained by the full
FEA and the CMS-FEA agree very well.
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4. Uncertainty and Variability

Uncertainty and variability in the properties of a structure, such as its mass, stiffness and
dimensions, arise from a number of causes, and are characterized by the sensitivity of the
response of the structure to typical variation in its properties.

A first source of uncertainty is related to the fact that typical design models are assumed to
be robust for the entire manufactured ensemble of structures. Manufacturing variations and
tolerances, dimensions, the properties of joints and welds etc. and the material properties
such as density and elastic modulus, typically differ from one item to the next. Measurements
taken on a set of nominally identical structure in general show an amount of variability, e.g.
the same modes of vibration are found at slightly different frequencies. The amount of
variability generally increases with frequency.

A second source of variability is due to the fact that the properties of a single structure might
vary with time due to environmental effects (such as changing temperature), ageing, wear
and changes in operating conditions (e.g. load, orientation). Measurements taken on a single
structure at different times, i.e. under different weather conditions, humidity, temperature
etc., will in general give different values for the measured responses; again the amount of
variability increases with frequency.

On the other hand, the variability of measurements will results in a level of uncertainty in the
exact values of the properties to use in a numerical model. Thus the predictions of a
numerical model will generally differ from the actual behaviour of the structure. As a result,
the parameters in a numerical model differ from those of the actual structure, and the
parameters of the actual structure will in general be different to those of other nominally
identical structures.

It becomes therefore of practical interest, to predict not only the ‘baseline’ response, but also
to estimate the statistics or spread of the responses of different realisations of the structure,
which are more representative of the ensemble behaviour.

Uncertainties can be quantified in a numerical model in different ways. One possibility is in
terms of physical properties of a structure, i.c. geometric properties (length, thickness etc),
material properties (density, elastic modulus, stiffness etc.) and the properties of joints (weld
positions, stiffness etc). These variables are then used to define mass and stiffness matrices in
a FE model. The physical properties are continuous random fields defined over the whole
structure or substructure, and consequently there are spatial correlations and cross-
correlations (e.g. spatial correlation in the thickness of a plate). This resulis difficulties in
including the uncertainties in the numerical model, e.g. how these correlations can in practice
be measured.
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Alternatively, uncertainty can be defined in terms of the modal properties of a structure, for
example its natural frequencies. The natural frequencies are discrete, and there are relatively
few in a given frequency range. Furthermore, they are relatively easy to measure. It should be
noted that the physical and modal properties are uniquely related. The modes are uniquely
defined once the physical properties are known, and they can be found numerically from the
physical properties by modal analysis.

A number of statistical approaches have been developed to allow for uncertainties in the
parameters of a structure to be included in a numerical analysis. The amount of variability,
i.e. the sensitivity of the structure’s response to uncertainties, is generally related to the
frequency range of interest. At low frequency a single deterministic FEA is generally ok to
describe the behaviour of a structure. At high-frequency, as the response gets more sensitive
to uncertainties, statistical approaches such as statistical energy analysis (SEA) [1], which
assumes wide random variations in the properties of the structures, are suitable. In the mid-
frequency range, which is the subject of this paper, a statistical approach is required, but the
properties do not vary as widely as assumed in SEA.

Parameter uncertainties can be incorporated in deterministic models in several ways [2].
Monte Carlo simulations are generally used to find the response statistics, by repeating an
exact calculation many times with different sets of parameters. Stochastic FE methods [7,8]
can be used, where the continuous physical properties of the structure vary statistically and
arc meshed in a manner analogous to that used to discretise the structure itself. A possible
alternative is by finding perturbational relations between parameters and response quantities
[3.4,5.6].

At mid-frequency the characteristic wavelengths of interest are such that large FE models are
generally needed for modelling even a single realisation of a structure. In addition the
variability in the structure’s response due to uncertainties becomes significant in this
frequency range. Repeating the solution procedure for the evaluation of the structure’s
response statistics as in a Monte Carlo simulation becomes unfeasible. Reducing the order of
the model becomes a major task and CMS [9] can achieve this. Furthermore the uncertainties
are introduced locally rather than globally in the structure. Even using CMS this is still a
computationally expensive task, and hence there is a need to develop methods to
substantially reduce computational cost.

A local modal/perturbational method [3,4,5,6] is presented in chapter 6. This method
encompasses both the advantages deriving from the use of a sub-structuring technique and
the use of a perturbational approach. This method adopts a fixed interface/constraint mode
model and a local perturbation to estimate frequency response functions and their statistics.
The statistics follow from the perturbation at an insignificant cost. Ail the methods discussed
above are generally employed when the degrees of uncertainty is low. For larger degrees of
uncertainty alternative approaches are then required.
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5. A Numerical Example: Uncertain Properties

5.1. Model Description

The numerical model considered in this section is the same as that presented in chapter 3. In
the previous chapter the numerical model was deterministic. In this section uncertainties are
introduced in the structure and the interest is turned on the response statistics rather than the
response of a single realisation of the structure. When variability is considered a single
realisation of the structure is not representative of the behaviour of the ensemble. Therefore
there is the need to evaluate statistics of the ensemble, i.e. mean value, percentiles, standard
deviation, etc.

For large FE models a sub-structuring technique, such as CMS, is generally suitable even for
a single deterministic realisation of the structure. When statistics of the response are of
interest, using a sub-structuring technique is almost mandatory. Evaluation of the response
statistics via a Monte Carlo simulation is a costly prohibitively procedure; several advantages
of using CMS fixed-interface method are shown below.

The aim of this report is to analyse the behaviour of structures with uncertain joint properties.
Therefore uncertainties are introduced in the properties of the third plate, which represents
the structure’s joint. Uncertainties can be introduced in several ways in the properties of a
structure, mainly in its physical properties or in its modal properties. The two are obviously
related. The latter are easy to measure quantities, while the former typically present the
problem of the definition of a set of joint probability functions. At this stage of the research
only uncertainties in the physical properties of the joint are considered.

In the numerical example the Young’s modulus E of the joint is considered uncertain. Its
variability is defined by a one dimensional probability density function (pdf). At this stage
for simplicity no joint-pdfs are introduced, e.g. the way in which uncertainties in E are
correlated with uncertainties in the thickness, length, etc. As E is related to the stiffness of
the joint, uncertainties in E will result in uncertainties in the joint stiffness. Changes in the
structure’s eigenfrequencies should be observed.

In this section the pdf of E is assumed to be Gaussian with mean Ep and standard deviation
0 given by

Ep

210 [GPa]

6, = O0Il=E,
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A Monte Carlo simulation with 200 members is performed. Figure (16) shows the actual
numerical distribution of E in this simulation. The plot is centred over the assigned baseline

value Ep.

96% of the realisations lie within the 20, of the mean. In theory negative values of E mi ght
occur: in practice, with 6, =0.1* E,, these are extremely rare and did not occur in the

Monte Carlo simulation. It would also be interesting to test the goodness-of-fit of the
numerical data compared to an assumed probability distribution, i.e. normal.
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5.2. Monte Carlo Simulation

In this section a Monte Carlo simulation is performed to evaluate the response statistics. For
each sample of the distribution of E, the numerical model is solved. In the full FEA the large
eigenproblem of the complete structure is re-solved each time. In the CMS-FEA the large
eigenproblem is divided into smaller eigenproblems. The re-analysis only involves the
substructures in which the uncertainties are introduced together with the assembled, global
eigenproblem, which is of very small order compared to full FEA.

The type and the number of component modes retained in the CMS-FEA are the same as
these chosen in section 2.3. The baseline mobility is presented in chapter 3, consisting of 300
modes up to 16000 Hz. Results for the mobility are shown up to 10000 Hz and the frequency
resolution is 1 Hz.

The full FEA took almost 34 hours to run {on a Pentium 4, 1.7GHz). The CMS-FEA took
almost 7 hours to run (on a Pentium 4, 1.7GHz), almost 80% less than the time need to solve
the full FEA.

In Figures (17) and (18) plots of mobility obtained from 200 Monte Carlo simulation are
presented. The former is obtained with a full FEA while the latter with a CMS-FEA. The
variability shown for both analysis methods seems to be the same over the frequency band of
interest. In both pictures can be observed how the uncertainty in the joints is influencing the
structure response. At low frequency the variability is generally small, beside a certain
amount in the system’s static response. As the frequency increase the amount of variability in
the response tends to increase and at higher frequency tends to be larger such that the shifting
in the natural frequencies is comparable with the average spacing between natural
frequencies.

In Figures (19) and (20) for completeness the plots of mobility are shown on a logarithmic
scale. Large variability can be observed around 1200 Hz, in a relative low-frequency band.
As we have seen in chapter 3, at this frequency the structure shows mainly the bending of the
third plates in the zx plane. One such mode is at 1232 Hz and is shown again in Figure (21).
The uncertainties in the joint here have great influence on the response of the structure.

Tf we compare Figures (17) or (18) and (4) which shows the baseline value of the structure’s
response, we note that despite a relatively low value of the modal overlap factor, individual
resonance peaks start to be less distinguishable from around 3000 Hz. The reason for this is
the relative importance of variability with respect to the frequency spacing. This
phenomenon can be explained if a stochastic modal overlap factor is introduced.
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Figure (17): realisations from FEA. 200 Monte Carlo simulation.
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Figure (18): realisations from CMS-FEA. 200 Monte Carlo simulation.
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Figure (19): realisations from FEA. 200 Monte Carlo simulation.
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Figure (20): realisations from CMS-FEA. 200 Monte Carlo simulation.
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Figure (21): mode 17 at 1232 Hz, lowest mode that has substantial bending in the third plate.

The stochastic overlap S can be defined as the ratio of the standard deviation of the natural
frequencies, i.e. the shifting of the natural frequencies due to variability in the structure
response, and the resonant frequency spacing. The stochastic modal overlap factor can be
expressed as

2
S = Ou, (5.1)
/n(w

where o, is the standard deviation, on average, of the natural frequencies. Since typically

, o< JE , then

o

cuﬂ

1
o — G 5.2
2 EYn ( )

where o is the standard deviation of the joint’s modulus E. Equation (5.1) can be rewritten
as

o0 O f

" Yn@) Yn(r)

As the modal density is constant, S and M becomes a function of frequency only. In Figure
(22) are compared. The figure shows that the stochastic modal overlap factor becomes
greater than unity before the modal overlap factor. The spread in the structure’s responses
becomes comparable to the resonant frequency spacing. The mean response of the ensemble
will tend not to show distinct resonance peaks in frequencies zones where the response of an
individual member will in generally. This is evident in figure (23).

(5.3)
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Figure (22): modal overlap factor vs. stochastic overlap factor.
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Figure (23): mean response of the ensemble vs. response of an individual member.

It should be noted that equation 5.2 is not exact since only £ of the joint changes while the
natural frequencies of the structure depend also on the first and the second plate. Quantifying

the contribution of the joint stiffness to o, , i.e. to the potential energy in each mode, might
be also interesting,.
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Figure (24): mean values, FEA vs. CMS-FEA.

Figures (24), (25), (26) and (27) show some response statistics. The mean values, normalised
standard deviation and 50% percentiles of the ensemble estimated by full FEA and CMS-
FEA show good agreement over the frequency range of interest.
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Figure (25): normalised standard deviation, FEA vs. CMS-FEA.

The standard deviation is normalised with respect to the square of the mean value. Values
around +10 dB are shown around 4000 Hz, which reflect the large amount of variability in
the same band observed in Figures (17) and (18). It would be interesting to see the shape of
the distribution of each peak above its mean value, i.e. a direct measure of the spread of the
response. Future work will concemn the relations between all the standard deviations of
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interest. Statistics such as 90% percentiles and min/max values might also be of interest,
those would require, to better estimate the tails of the distribution, a substantial larger number
of Monte Carlo simulations.
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Figure (26): 50% percentiles, FEA.
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Figure (27): 50% percentiles, CMS-FEA.

The advantages of using a CMS-FEA are clear. The reduction in the computing time is
substantial while the results achieved gencrally retain high accuracy. However, a direct
Monte Carlo simulation is still 2 computationally expensive task. In the next chapter an
alternative method is introduced which will allow the evaluation of the statistics at a much
cheaper cost.
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6. Future Work: Perturbational Methods

Estimating the response statistics via a direct Monte Carlo simulation is generally a
computationally expensive task. As seen in the previous chapters, when the structure is likely
to be divided in substructures and uncertainties introduced locally in each substructure then,
rather than full FEA, the use of CMS-FEA in the evaluation of the response statistics already
results in a substantial reduction in the computing time. However, to define the probability
levels at the tails of the distributions a large amount of numerical computation is needed such
that a direct Monte Carlo simulation is often impractical. One alternative involves
perturbational methods [3.4,5,6], leading to combined perturbational Monte Carlo
simulations.

Perturbational methods in essence use a Taylor series expansion to relate perturbations in
properties of a structure to perturbations in the modal properties. The Taylor series is often
truncated after the first few terms and an assumption is made that the function relating the
perturbations in the properties of the structure to the perturbations in the response can be
approximated by a low order polynomial.

In order to calculate a Taylor series expansion for the dynamic properties of a structure, it is
necessary to calculate the derivatives of the global modal properties with respect to a number
of design variables, As in [3], the derivatives of the eigenvalues are given by

04, oK oM
=gl A0 6.1

where A and ¢, are the i unperturbed eigenvalue and eigenvector and & ; the 7™ design

variable. To estimate the eigenvector derivatives several ways are possible. In general the
cigenvector derivatives can be expressed in terms of a linear combination of the unperturbed
eigenvectors. The eigenvector derivatives are then given by

¢, _
% > a,0, (6.2)

P
where the index p runs over the global modes and where

r| 0K oM
98 4 L=
_¢” {asj ’"Bé‘j}?jm

" (*,-4,)

a if m#n (6.3)
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a,, = —éq)f; B’Z‘I }gﬁm ifm=n (6.4)

The use of perturbational methods in Monte Carlo simulations is particularly advantageous
when the uncertainties are defined via an ensemble of dynamic properties. In the numerical
example presented in chapter 5, the uncertainties were introduced locally in the structure via
an ensemble of physical properties. Only the Young’s modulus of the joint was considered
uncertain and a one dimensional probability density function was assigned. Since E is related
to the stiffness matrix K, we can say that approximately, the variation in one parameter is
proportional to variation in the other so that

OF o 0K (6.5)

while the mass matrix remains unperturbed. The perturbational equations 6.1 and 6.2 will
then simplify as

oA oK
L= gf . 6.6
and
a¢.
it S ‘ 6.7
%, ga,pcbp 6.7)
where
-| 0K
K [aa,. }zﬂ _f )
a,., —W Hm#*n (6.8)
a =0 ifm=n (6.9)

Nevertheless, a realistic representation of the joint uncertainties would require in general a
statistical description of all the joint properties including the definition of several joint
probability functions, which makes this way of approaching the problem difficult to
implement and impractical. Defining an ensemble in terms of the dynamic properties of a
structure is suitable for many reasons. If the ensemble is defined in terms of the statistics of
the natural frequencies of a structure, then the comparison with experimental measurerment is
straightforward.

Future work will concern the definition of a dynamic ensemble for the structure’s joints.

Perturbational Monte Carlo simulations will be computationally much cheaper while
retaining accuracy in the results.
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In [3.4,5,6], a local modal perturbational method is considered. The idea is to take
advantages of both a CMS approach and a perturbational approach. In the first step the
structure is divided in substructures and the order of the model is reduced. Uncertainties are
then introduced locally in a substructure, defining an ensemble in terms of the dynamic
properties of the substructure, i.e. in its local modal properties. A perturbational relation is
then found between perturbation in local modal properties and perturbation in the global
modal properties of the structure. A local modal perturbational Monte Carlo simulation is
then used to find the response statistics, generally at an insignificant cost.

The definition of an ensemble in terms of dynamic properties for the structure’s joints and

the implementation of a local modal Perturbational Monte Carlo simulation are the long-term
aim of this research.

39



7. Concluding Remarks

This report concerned a number of issues involved in the evaluation of the response of
uncertain complex built-up structures, particularly when there is uncertainty in the properties
of joints

To address the problem of large FE models, typical of mid-frequency analyses, a
substructuring technique, CMS, was introduced. In chapter 3 a full FEA and a CMS-FEA
were compared on a numerical model. Good agreement was found in the frequency range of
interest while the structure’s response was found by the CMS-FEA at a cheaper cost.

In chapter 5 uncertainties were introduced in the numerical model. The advantages of using
CMS, when direct Monte Carlo simulation is used to evaluate the statistics of the response
and when the uncertainties are localized in a single substructure, were shown.

Furthermore, in chapter 6 some guidelines were given for future work, concerning the use of

perturbational methods to evaluate the system’s response to avoid long computer runs, which
are typical of direct Monte Carlo simulations.
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