)
' s V Institute of Sound
and Vibration Research

Wave Reflection and Transmission in Thin Beams in the
Presence of an Undamped Absorber

H.M. El-Khatib, B.R. Mace and M.J. Brennan
ISVR Technical Memorandum 903

February 2003

University
of Southampton




SCIENTIFIC PUBLICATIONS BY THE ISVR

Technical Reports are published to promote timely dissemination of research results
by ISVR personnel. This medium permits more detailed presentation than is usually
acceptable for scientific journals. Responsibility for both the content and any
opinions expressed rests entirely with the author(s).

Technical Memoranda are produced to enable the early or preliminary release of
information by ISVR personnel where such release is deemed to the appropriate.
Information contained in these memoranda may be incomplete, or form part of a
continuing programme; this should be borne in mind when using or quoting from
these documents.

Contract Reports are produced to record the results of scientific work carried out for
sponsors, under contract. The ISVR treats these reports as confidential to sponsors
and does not make them available for general circulation. Individual sponsors may,
however, authorize subsequent release of the material.

COPYRIGHT NOTICE
(c) ISVR University of Southampton All rights reserved.

ISVR authorises you to view and download the Materials at this Web site ("Site™)
only for your personal, non-commercial use. This authorization is not a transfer of
title in the Materials and copies of the Materials and is subject to the following
restrictions: 1) you must retain, on all copies of the Materials downloaded, all
copyright and other proprietary notices contained in the Materials; 2) you may not
modify the Materials in any way or reproduce or publicly display, perform, or
distribute or otherwise use them for any public or commercial purpose; and 3) you
must not transfer the Materials to any other person unless you give them notice of,
and they agree to accept, the obligations arising under these terms and conditions of
use. You agree to abide by all additional restrictions displayed on the Site as it may
be updated from time to time. This Site, including all Materials, is protected by
worldwide copyright laws and treaty provisions. You agree to comply with all
copyright laws worldwide in your use of this Site and to prevent any unauthorised
copying of the Materials.



UNIVERSITY OF SOUTHAMPTON
INSTITUTE OF SOUND AND'VIBRATION RESEARCH

DYNAMICS GROUP

Wave Reflection and Transmission in
Thin Beams in the Presence of an
Undamped Absorber

by

H.M. El-Khatib, B.R. Mace and M.J. Brennan

ISVR Technical Memorandum No: 903

February 2003

Authorised for issue by
Professor ML.J. Brennan
Group Chairman

© Institute of Sound & Vibration Research






ABSTRACT

A wave propagates unchanged along a uniform member and if it is incident on a
discontinuity, then part of it is reflected and the other part is transmitted (unless
energy absorption exists in the discontinuity) with change in amplitude and/or phase.
The amplitudes of these reflected and transmitted waves are less than the amplitude of
the incident wave. However, the amount of energy reflected and transmitted depends
of the characteristics of the discontinuity.

The transmitted flexural waves may cause unpleasant consequences and serious
damage to sensitive recipients through beam structures.

Complete suppression of those transmitted waves can be achieved at any frequency of
interest by attaching a single tunable device.

Suppression of such waves has been achieved in the past by other workers over smail
range of frequencies. Improvements can be made to those tunable devices to oBtain a
satisfactory degree of suppression over a wide range of frequencies.

Simplicity of design and installation are of the main interests in the developed model.
This memorandum contains some background about tunable neutralisers, and an
application of an undamped neutraliser to suppress the transmission of flexural waves

ont an Euler-Bernoulli beam with new independent tuning parameters.
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1- INTRODUCTION.

A vibration neutraliser wave model was developed in this report under idealised
conditions. The optimal characteristics of a neutraliser modelled as point translational
impedance of a thin beam were determined for optimal isolation.

The performance indicators such as the bandwidth under non - idealised conditions
were determined.

The subject of adaptive — passive control has been the interest of many workers, for
example reference [1-3].

Controlling the transmission of flexural waves on a Euler — Bernoulli beam has been
investigated by Clark [4] and expanded by Brennan [5] to include optimaily tuning
parameters to suppress an incident propagating wave. The control used is a two — tier
control system consisting of an open — loop part that tunes the neutraliser so that its
natural frequency coincides with the forcing frequency, and a closed — loop control
algorithm that fine tunes the neutraliser to suppress the incident propagating wave.
This report includes further investigation about the tuning parameters. The energy
flowing in the thin beam due to propagation of waves and the intersection of opposite
decaying nearfields has been modelled numericaily.

The report consists of four chapters. An introduction about flexural wave motion in
beams is introduced in Chapter 2.

Chapter 3, “Tuning an undamped vibration neutraliser attached to a beam,’” presents
an introduction about tunable neutralisers and the proposed tuning parameters to
suppress the incident propagating waves using an undamped neutraliser. Reflection
and transmission of the different flexural waves were also been included.

Chapter 4, “Numerical Examples,”” present the results concerning the numerical
simulations performed. The first low of thermodynamics “’Energy Conservation’ has
been satisfied. The width variation of the transmission stop — band is included.

The most important remarks obtained from the numerical work are introduced in
Chapter 5 “’Conclusions & Discussion’’. In addition to the scheduled future work in

this area.



2- FLEXURAL WAVE MOTION IN BEAMS.

The elastic wave motion in one — dimensional structures is addressed in this chapter
specifically beam structures. The three principle types of structural wave motion
(axial, torsional, and flexural) through which energy may propagate through the
structure are introduced in the first section. The second section highlights the bending
waves in beam like structures. Expressions of vibrational power flow were derived in
the third section, from knowledge of flexural wave motion in beam structures.

Finally, reflection and transmission of flexural waves due to boundary conditions and

discontinuities were briefly described.

2.1 Structural Wave Motion.

Waves are everywhere in nature. A wave can be described as a disturbance that
travels through the medium from one location to another. To fully understand the
nature of a wave, it is important to consider the medium as a series of interconnected
elements or particles. The interaction of one element in the medium with the next
adjacent one allows the disturbance to travel through the medium. Waves come in
many shapes and forms. While all waves share some basic characteristic properties
and behaviours.

The three principle types of structural wave motion are introduced in this section.
2.1.1 Axial wave motion.

Figure 2.1, below shows an element of a rod, 8x, undergoing longitudinal motion.
The wave in which the direction of the disturbed particles coincides with the direction
of wave propagation is defined as longitudinal wave. It should be noted that pure
longitudinal motion could only occur in solids whose dimensions are much greater

than the resulting wavelength.
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Figure 2.1. Rod element in axial vibration.



However, if a bar undergoes low frequency in-plane excitation, the dimensions of the
bar will be very much less than the resulting wavelength and then the motion can be
described as quasi-longitudinal [6].

Consideration of the conditions of the dynamic equilibrium of the beam element

shown in the Figure above yields the equation of motion in the x-direction.

o%u 0u
E—=p—, 2.1
P 1)
where #, o, A, and E are defined respectively as the bar’s displacement, axial
stress, cross sectional area, and Young’s modulus while p is the density.

The solution to this second order differential equation is given in many established

textbooks, e.g. [6,7,8], for harmonic excitation as follows

u (x, f) — a+ei(m:-k,x) + a—ei(mrﬂ‘qx}, (2.2)
where k, = @,/p/E is the axial wavenumber.

Hereafter the harmonic time dependence ¢ will be suppressed. The solution

therefore consists of two waves harmonic in space and time. a” -travelling-in the
positive direction from left to right and will be called as positive — going propagating
wave. While a~ travelling in the negative direction from right to left and this will be
called negative — going propagating wave.

2.1.2 Torsional wave motion.

When a bar of rod is excited by a torque (a moment whose axis coincides with the
principal axis of the structure), which varies with time, torsional motion will occur.
All points of the cross section of the bar are displaced circumferentially due to applied
torque.

Torsional wave motion can be arranged in two classes of structures as shown in
Figure 2.2. Those whose cross sections are rotationally symmetric about the principal

axis (Figure 2.2(a)) and those whose cross sections are not (Figure 2.2(b)).

Z Z
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Figure 2.2. Torsional motion of beam-like structures.



Consideration of the dynamic equilibrium of the element, dx, in terms of the applied

torque, 87T, and the resulting angular acceleration, 270/ d1%, gives the pure torsional

wave equation for a circular section bar.

38 _ 9’0
e Par =

where G and O represents the shear modulus and the angular displacement

G

respectively. The required solution to Eq.(1.3) may be given by

0 (x) =a'e™ g ™, (2.4)

where k, = @\(p/G is the torsional wavenumber.

2.1.3 Flexural wave motion.

When a beam is excited transversely, it gives rise to flexural wave motion in the
structure. If the frequency of excitation if low, i.e. the resulting wavelength is large
compared to the beam dimensions then the high frequency effects associated with the
shear deformation and rotary inertia of the cross section can be assumed to be
negligible. The inclusion of these terms for high frequency beam vibration is termed
“Timoshenko’” beam theory [9]. If however, those additional terms can be ignored
then simpler *’Euler-Bernoulli’” expressions can be used to describe the beam motion.

Figure 2.3, shows an element of a beam, ox, vibrating in flexure. Inherent in the

assumptions relating to Euler-Bernoulli beam, theory is approximation that plane

sections remain plane and perpendicular to the neural axis of bending.

EI (Bending Stiffness) > x
< L »
AY & a0
¢ . Q + a— Ox
Bending Moment X
(M) Y
— M+ oM ox
ox
Shear force (Q)
> X

Figure 2.3. Beam element vibrating in flexure.



The sign convention adopted is shown in Figure 2.4 together with the forces and

moments acting on an elemental length of the beam in its distorted form.

__________ b om o
1

Figure 2.4. Definition of positive shear force and bending moment.

The corresponding shear force (0 and bending moment M as defined in Figure 2.4 are
then

3 2
o =g

ﬁa_x"?’ ax?’

Consideration of the dynamic equilibrium of the beam element results in the Euler-

Q=-EI

Bernoulli flexural wave equation as derived in [10].
*w F*w
El —+pA——=0. - (2.5
ox* P ot : 23)

For simple harmonic motion w{x,t)=W (x)e™, the equation of motion becomes

d*w
4
X

EI —pA@W'W =0. (2.6)

Again the solution to this fourth order equation is given in many well-established

texts on mechanical vibrations as follows:

ikex - kex

w(x)= ate ™ rad ale™ +age, 2.7

where

k, = 4fpAl EI Jo, 2.8)

is the flexural wavenumber and ® is the circular frequency while p, A, and EI have

their usnal meanings. Hereafter £ will hold the meaning of flexural wavenumber.

The displacement of the beam structural element is considered as the sum of the four
wave components. Two farfield propagating waves; the positive — going a® and the
negative — going @~ wave. In addition to these propagating waves, a set of nearfield
or non — propagating cvanescent waves, «,, in the positive direction and a, in the

negative direction. These evanescent waves are only of significant interest in the



nearfield of a source or discontinuity. Their amplitudes decrease rapidly with distance
by a factor of over 500 in one wavelength [11], and can therefore be ignored at
sufficiently large distances.

From Figure 2.3, flexural waves cause two internal loads to act on a beam element, a

shear force (Q) and a bending moment (M ).

Considerations of both these loads is important, where these may help in analysing
wave motion and components of power transmission.

However, there is another importance of taking evanescent waves under consideration
in the nearfield of a sound where the intersection of two evanescent waves of opposite

directions may produce some energy as will be shown later.

2.2Bending Waves in Beam Structures.

Bending or flexural waves are by far the most important for sound radiation because
of the rather large lateral deflections associated with them. These waves are easy to
excite in beamn structures and cause serious effects.

Since this work is primarily concerned with the vibrations of beam — like structures
representative of an infinite thin beam, the following will be related to flexural wave
motion.

This section introduces the possible excitations in thin beams, the characteristics of
flexural waves, and a brief description of the evanescent waves.

2.2.1 Wave excitation in thin beams.

There are two other major types of waves may propagate through beam structures
besides the bending waves. Although the flexural waves are the most dominant due to
simplicity in excitation.

Figure 2.5 shows the possible propagating waves due to location of the excitation

point.



d-

Figure 2.5. Different propagating waves due to location of source of vibration.

(a) Exciter is located on the x-axis at right angle to the z-axis.

(b) Exciter is located at distance L from x-axis with slope to the z-axis.
(¢) Exciter pointing at x-axis with slope to z-axis.

(d) Exciter pointing in the direction of x-axis with a slope.




Flexural vibrations in the y-axis and torsional vibrations about the x-axis are excited
in the model given in Figure 2.5(a) as well as the one in Figure 2.5(b) besides exciting
the flexural vibration in the stiff direction (z-axis).
The model given in Figure 2.5(c) may include flexural vibration in both y and z
directions. While the model in Figure 2.5(d) may include longitudinal waves in the x-
direction (difficult to excite), flexural waves in z-axis.
When two or more constituent travelling waves of same amplitude A = A, adds up,
they may give a standing wave, which includes significant nodes (points with no
displacement) and antinodes (points with large displacement), e.g. if A =A, is real
this is
y(x,2)= 4 cos (ot + kx)+ A cos (o — kx), (2.9)
hence,
y (x,1) =24 cos (et )cos (kx). (2.10)
It is also possible to construct a travelling wave out of two standing waves, ©/2 out
of phase in time and space. ;
y(x,1)= A cos (ot )cos (kx)+ A sin (ot )sin (k)= 4 cos (0t —kx).  (2.11)
Flexural waves are unlike other wave types, must be represented by few field
variables instead of two, and the boundary conditions are more complex.
2.2.2 Flexural wave speed.
The speed at which a disturbance (wave) propagate in a structure is defined as the
phase velocity (c, ) and it is given by
c; =0/ k=4El/pAo, (2.12)
Therefore ¢, is a frequency dependent as show in Figure 2.6. Hence flexural waves
are dispersive and radiate sound strongly beyond the coincidence frequency f *.

Note that the speed at which energy propagate through structures is called group

velocity ¢, =dw/dx. One can find from Eq.(2.12) that the group velocity is twice the
phase velocity for flexural waves in a beam, On the other hand ¢, =c, for non-

dispersive systems.

# Coincidence frequency is the frequency at which the flexural waves will have the same speed as

the sound in air 340ms™
8



Longitudinal wave ¢, =~ 5000ms '

Torsional wave ¢, = 3200ms™

---------------------------------------------------------------------------------

Bending wave ¢, ~ @'

Sound in air ¢, =340ms™

Wave Speed

>

@, Frequency ® (Hz)

Figure 2.6. Wave speed for acoustic and structural waves.

It worth mentioning that beam structures retain two unique properties can be used in
differencing bars and beams. These are

- Flexural waves are dispersive.

- The displacement of the beam element may consists of four wave cmnpdnents.
Thus flexural wave motion in beam structure can be approximated by a shear wave
instead of longitudinal one in bars.

2.2.3 Effect of nearfield waves.

Inspecting the two nearfield components in Eq.(2.7) will appeal the (negative) real
exponent shows that the motion is not harmonic with respect to position along the
beam. In another words, for a given instant of time, the entire wave has the same sign.
The motion is in phase for all x, and the negative exponential term shows the motion
decays in the positive x-direction. Waves with these properties are called non -
propagating (evanescent) waves. _

These waves cannot be seen at large distances from where they are generated.

Because of this they are also called nearfield waves.



2.3 Vibrational Power Transmission in Beams.
This section present an introduction to power flow analysis in beam structures. The
effect of boundaries and discontinuities on power flow also included.

2.3.1 Transmission of energy in farfield waves.

Power is the rate at which work is done. As the wave travels down the beam, the
beam has associated kinetic and potential (spring — like) energies as explained by

Cremer [6]. To illustrate this consider a positive travelling flexural wave with real

amplitude for energy calculation a”, therefore
w(x,t):Re{aJ'e"(m"kx)}=a+ cos (@t —kx). (2.13)
consider a small element of length &x. thus the kinetic energy per unit length

1/2pA(dw/dt) is given by
E, = %pAo)za*z sin® (@r —kx), (2.14)

and the potential energy per unit length 1/2£7 (azwl axz) is given by

pot

E =~;—pAm2a+2 cos’ (of —kx), (2.15)

Note that EIk* = pAw’. therefore the total energy per unit length is

1 42
E.=E, +tE =EpAv ) (2.16)

ot pat

where v" =wa* is the velocity amplitude. These were given in many textbooks as
[6,10].

The corresponding shear force =—-FEIPw/dx’ and bending moment
M = EI9?w/3x® as defined in Figure 2.4 transmit power.

The instantaneous intensity i(x,t) is given in terms of the beam deformation and

internal forces by Mace [12]

2
i(x,r)=—Qv—Mé, v:%,e 0w

=— 2.
ot oxot’ @.17)

10



where v and O are the transverse and rotational velocities of the beam. Therefore one

can find the instantaneous intensity of the positive propagating wave from Eq.(2.16)
i(x,t)=pAw’c,a” =c E,,. (2.18)

Therefore the energy per unit time is the product of the total energy per unit length

(E,, ) and the group velocity (cg )

ot
The time — average intensity (i(z)) may be of most interest in many applications and

it can be found by time — averaging the instantaneous intensity.

® prAL0]
() =— j I(t)dt (2.19)
2n
This was found to have a value equal to the instantaneous intensity. Where both Q
and M exerts equal amount of work when averaged over a cycle.
The power flow can also be found using the characteristic impedance (Z)*of the

wave [13] which can be defined as the ratio of the internal force to the resulting

velocity at a given point of the structure when a wave propagate.

i(x,1)= %z vl (2.20)
where
|E19%w /0’| .\ o2
= = pAcCy. .
owia P
Thus the power flow for both propagating waves was found.
1 _I2 _ 2
~pAre, {[a [+ 2|a||a|cos (20 + 6, +, }+]a” } (2.22)

Hence three terms are involved in the power flowing due to propagation of the two
flexural waves a* and &~ . The power flowing due to both propagating waves and the
cross-energy term, which is a frequency dependent. ¢, and ¢, are the phase shifts in
the positive and negative propagating wave respectively (the wave amplitudes may be

complex).

* Analysis of the input impedance of beams in flexure is somewhat more difficult because the
propagating velocity is frequency dependent and also because of the existence of nearfields.

11



2.3.2 [Energy flow in evanescent waves.
It is generally accepted that farfield waves can transmit energy and nearficld waves
hold energy, but they cannot transmit it through the structure [14]. This has been

proven numerically.

Consider an evanescent flexural wave, with real amplitude aj,, therefore
w{x,t)=Re{aye™ )= aze™ cos(ar). (2.23)
The total energy per unit length for the positive — going evanescent found below

1 2
E, ==pAi|, (2.24)

ot
2

.
Yy

where v}, = waj, is the velocity amplitude of the positive — going evanescent wave.

One can find that the total rate of work has a zero value using Eq.(2.16).

While the energy flow in a solitary evanescent wave is zero, two such waves of
opposite directions can produce non — zero flow of energy.

This energy flow is the result of the interaction of the waves. It is the result of the
spatial co-ordinate , and doesn’t contradict the energy conservation low [9], apd this
has also been shown numerically.

Consider two evanescent waves decaying in opposite directions, therefore
w(x,t)= |a;(,| e cos (ot + ¢, )+ |a;, | e cos(wr+9,) (2.25)

One can find that the total energy flow through a beam cross-section thus consists of

three terms.

+| —2kx +
ayle™™ +2iay

ay|cos(9, —0,) +|ay |2 ezk“.} (2.26)

i(x,t):pAof[

One of the three terms in Eq.(2.26) indicates that there is a cross — flow of energy
between the two evanescent waves, which is independent of the spatial co-ordinate.
When the displacements in the two opposite evanescent waves are not in phase, and
not in counter-phase, the work done by the stresses in one wave through the
displacements in the other wave is not zero, and that leads to a uniform flow of energy

along the structure.

12



2.3.3 Energy flow in beam structures.

The total energy flowing in a beam cross-section was found below, considering the

existence of the four wave components.

e cos(wr +9,) +

w(x,t)= |a;\',| e™ cos(wt+ ¢, ) +lay

]a‘lcos(mt+kx+ dy)+|a”

cos{®? —kx+9,).

Therefore

—|ag|[a|e* (sin (200 +Fox + ¢, +, )= cos (201 +kx+ ¢, +¢,))

+

—|ag||a”] e (sin (20— kx+0, +0, )+cos (20— kr+ ¢, +6,))~|a”
i(x,t)=%pAu)?‘cB< +las||a7| e (sin (20t + kx + b, + @, )+cos (20¢ + kx+, +0,))+
+las||a*]e ™ (sin (20t — kx + ¢, + 6, )—cos (201 — kx -+, + 0, ))
2|az||ax sin (&, - 9,)

l2

a+

(2.27)

2
> (2.28)

The total energy flow through a beam cross-section consists of seven terms. two terms

are readily recognised as the propagating pair (¢*and a”). The rest of the five terms

represents the cross-flow of energy between the different flexural waves as shown in

the equation above. They are dependent on both spatial and time co-ordinates except

the cross-flow energy between the positive and negative evanescent waves.

2.4 Reflection & Transmission of Flexural Waves.

A wave propagates unchanged along a uniform member, if incident on a boundary

or point discontinuity then its status will change [15].

This section introduces some basic knowledge about reflection and transmission of

waves for famous boundary/discontinuity conditions. This will form a solid base in

order to solve cases with complex discontinuities (undamped neutraliser) as will be

seen in later chapters.

2.4.1 Reflection & transmission coefficients.

An incident wave (a*and/or ay) upon a boundary gives rise to reflected wave

(a” and/or a, ). While a wave incident (a*) upon a discontinuity gives rise to

reflected (a‘,a;,) and transmitted waves (b*,b;) of both kinds (nearfield and

13



farfield waves) as shown in Figure 2.7. Whose amplitudes may be found from the

well — known reflection and transmission coefficients [6], thus

a ay , b* ; by,
——-—‘:r;——:rN; :—;Nz—
at at a’ a

(2.29)

+ kl

where r and f are the reflection and transmission coefficients respectively. The

subscript N refers to reflection (7, ) or transmission (7 ) of the nearfield waves.

SIS

Figure 2.7. Both kinds of waves around point impedance.
Consider a propagating wave (a*) incident upon point impendence (general case), it
will give rise to far- and nearfield waves as shown in Figure 2.7.

The reflection and transmission cocfficients can be found by considering the

continuity and equilibrium equations of the system.
Continuity of displacement gives w, (0)=w_(0) and hence
a*+a +ay, =b" +by, (2.30)

Continuity of rotation (9w, (0)/dx =adw_(0)/dx) gives

~ia* +ia” +ay =—ib" by, (2.31)
From the balance of the shear forces and bending moments at cross sections of the
beam at either side of the point impedance Z, then one can derive the following
relations.

—a* —a +a, =-b" +by, (2.32)
and from the force equilibrium

ia* —ia” +ay—ib* +b}, =Z(b* +by ), (2.33)
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where Z =iZw/EI%® is a dimensionless factor indicates the ratio of the spring point

impedance to the beam impedance. Therefore r, ¢, and r, (ry, =ty ) were found and

these are
A
V¥ =——au=
4—Z(1+i)
4--7Z
= 2.34
=20+ 239
zZ
Ty = -
4—Z(1+1)

Replacing this point impedance with the impedance of either mass, damper, or spring,

then the above equations are satisfied. Where equating Z with either impedance of

=a), or spring (Z

spring

= icom), damper (Z

damper

mass (Z =k, /i), will result in

the dimensionless factor Z of each of the three elements. This dimensionless factor
Z has the same value obtained for each other element as shown in Appendix Al.0,
which contains the reflection and transmission coefficients of many well-known
models.

If the point impedance is assumed to be infinite, then it will be considered as pinned

discontinuity where

1+i 1-i -1
r:—(zﬂﬁz(zoﬂh=ngzl- (2.35)

2.4.2 Power reflection & transmission coefficients.

The farfield waves cause motion where they allow energy to flow through a
structure while nearfield do not as explained previously.
The power flow is proportional to the square of the wave amplitude as found from
Eq.(2.22) where the beam’s mass per unit length doesn’t change.
The power reflection ¢, and transmission o, coefficients play an important role in
expressing the amount of power flowing and reflection through a discontinuity. These

can be found below

B p
o, =—F; 0, =—, (2.36
D) )

where B, B,, and B, represents the reflected wave energy, transmitted wave energy,

and the incident wave energy respectively.
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The power reflection and transmission from the previous model shown in Figure 2.7

are found below

2
o, = |—‘—=o.s=onf. (2.37)

1le
r 2a+2

Those for the pin joint discontinuity o, and o, =0.5, therefore if there is no energy

loss at the discontinuity (damping element) then

o, +o, =1 (2.38)
A thorough investigation of longitudinal waves propagating in bar structures was
performed. Reflection r and ¢ transmission coefficients of the propagating waves
were found for various discontinuities and boundaries. These are attached in
Appendix A2.0. In addition, the energy flow in the longitudinal travelling waves was

found and attached in Appendix A3.0.
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3- TUNING AN UNDAMPED VIBRATION
NEUTRALISER ATTACHED TO A BEAM.

This chapter describes the effects on the reflection and transmission of waves in an
infinite Euler-Bernoulli beam by attaching an undamped passive vibration absorber.
The chapter comprises four sections. The first section introduces a brief background
while the second one derives the reflection and transmission coefficients of both
farfield and nearficld waves due to attaching an undamped vibration absorber to the
beam. The third section describes a simple relation between the tuning frequency and

the mass ratio. The final section includes a general discussion.

3.1 Control of Flexural Waves of a Thin Beam.

The use of tunable neutralisers to control the flexural waves on an infinite Euler-
Bernoulli beam have been the subject of many workers. More interest has been paid
to the adaptive-passive control in the past few years. This offers simplicity in the
design and a much lower cost than active control, for example references [1-3]. The
stiffness of the absorber is changed until its tuned frequency coincides with the
forcing frequency, hence the maximum impedance is applied at the frequency of
interest. Previous work by Brennan [5] on tunable neutralisers presented an improved
model of a tunable neutraliser. Expressions for the reflection and transmission
coefficients of the propagating waves were derived as well as for the tuned frequency,
in order to control the transmission of the propagating incident waves. Zero
transmission at a single frequency was seen for an undamped neutraliser. The
bandwidth according to Brennan [5] will be zero for an undamped absorber. However,
the bandwidth was defined as the range of frequencies over which the modulus of the
transmitted wave is within 3 dB of the minimum. It was found that the damping

controls the bandwidth and it was shown that the bandwidth of the neutraliser with a
small mass ratio is equal to the loss factor (1), and it equals 411/3 the loss factor for a

large mass ratio. It was found that, in order to increase the bandwidth while
maintaining the same attenuation of the flexural waves, then the mass of the

neutraliser has to be increased proportionately.

17



This report introduces a new definition for the bandwidth of the undamped
neutraliser, new independent tuning parameters, and reflection and transmission
coefficients of both propagating and evanescent waves in terms of wave amplitudes
which can be estimated experimentally using the wave decomposition approach.

Tt was demonstrated previously that a complete suppression of flexural waves could
be achieved theoretically with an undamped spring fitted between a rigid foundation
and a beam as given in Appendix A4.0. The amount of damping is inversely
proportional to the wave suppression as investigated by Brennan [5].

Consider the effect of an undamped passive-dynamic absorber as shown in Figure

(3.1) on the reflection and transmission of waves in a beam-like structure. Here m
and k, represents the mass and stiffness of the absorber. If waves are incident on the

discontinuity, then some of the waves will be transmitted and some will be reflected.
The reflection and transmission coefficients depend on the characteristics of the

passive absorber.

by
+ E +
NANANA a VAVAVAC I
N 2AVAVAV : > X
Ay

Figure 3.1 An infinite thin beam with an undamped dynamic absorber.

The beam displacements due to the flow of vibrational energy of the model

introduced in Figure (3.1) are given below by assuming time harmonic motion at
frequency @. Therefore all quantities will vary as e . Thus

w, (x,1)= b ) L pte™e ™ W, (x,2)= at e @) 4 g @) 4 g e et (3.1)
where w,_ and w_ are the displacements of the beam in the regions x =0 and x<0

respectively, and the amplitudes a and b may be complex. The flexural wavenumber

k is given previously in Eq.(2.8)
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The wavenumber is real and positive, unless damping is present where it will have a
negative (and usually small) imaginary part [11].

The five wave components represent respectively positive-going (a*) and negative-
going (a‘) propagating waves, a positive-going transmitted (propagating) wave (b*)

and the two nearfield components a, and b, which can be considered as negative-

and positive-going evanescent waves in the regions x <0 and x 20 respectively.
In the reminder of this section, the reflection and transmission coefficients for a

passive dynamic absorber attached to a thin beam will be derived.

3.2 Reflection & Transmission Coefficients.
If a propagating wave is incident upon some discontinuity in the beam’, it will give
rise to reflected (a”, ay) and transmitted (b*, by) waves whose amplitudes and

phases are given by reflection and transmission coefficients, where
a =ra", b =ta*, ay, =rya’, and by =t,a". (3.2)
Here ¢ and r are the transmission and reflection coefficients as described in chapter

two.
The reflection and transmission coefficients of the thin beam like structure with an
attached undamped absorber can be found by considering the continuity and

equilibrium equations of the system.

Continuity of displacement gives w, (0)=w_(0) and hence
b +by =a’ +a +ay. (3.3)
Continuity of rotation (dw, (0)/0x=0dw_(0)/dx) gives
~ib* =b}, =—ia” +ia" +ay. (3.4)

The shear forces and bending moments at cross sections of the beam at either side of

the absorber are shown in Figure (3.2)

#* The same model will be discussed later with an incident evanescent wave
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Figure 3.2 Shear forces and bending moments at either side of the absorber

L

Equilibrium of forces then implies @ —Q, =—F;, where F; = I?, (y—w) is the force
from the spring on the beam, y is the displacement of the absorber mass and w is the

displacement of the beam at the absorber location. Therefore

k!
Elk

ib* —by —ia" +ia” —ay =—+5(y-w). (3.5)

The equilibrium of moments gives M, =M, so that
b +b, =—a" —a +ay. - (3.6)

Finally, the equation of motion for the absorber mass follows from the free body

diagram of the mass shown in Figure (3.3) is given by

a9’ —
_F =m&L =k, (y-w), 3.7)

ot*
Ay

Figure (3.3) Free body diagram of the absorber mass

Therefore,
k,
= —_L— . 3.8
Y w[k —ma’ } (38)
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Substituting Eq.(3.8) into Eq.(3.5) gives

-
k
ib* b —ia" +ia" =y = | 3.9
" ¥ EIk‘{k,—ma)"‘ G2
Simplifying Eq.(3.9) gives
ib* —by, —ia" +ia” —ay =:—Z-2—w, (3.10)
where the dimensionless parameters
2
o= - T2 (3.11)
AEIK* 2pAA
and
4 2
szmg’ =%, (3.12)

1 a4

represent respectively, the ratio of the mass of the absorber to the mass of the beam in
a length of 24/zand the frequency ratio Q=w/®,, where @, = Jk, /m, is the

absorber frequency.

Equations (3.2), (3.3), (3.5) and (3.9) can be solved for the reflection and transmission

coefficients. These are given by

e i )
(@2 -1)-a(1+i)
2
- @ ~1)-o ; (3.13)
(@7 -1)-a(+)
&

rN_tN:(Qz—i)—a(i-l-i)’

The reflection coefficient of the propagating wave is the same as the reflection (and
transmission) coefficient of the nearfield wave apart from a factor of —i, which is
equal to a 270° phase shift.

These reflection and transmission coefficients were also formed using the dynamic

stiffness method as shown in Appendix A5.0.
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3.3 Tuning The Neutraliser.
The mass ratio o is frequency dependent; therefore another dimensionless

parameter (y) was derived, which is independent of the frequency ratio. This is

defined in terms of the wavelength A _ at the absorber frequency ®=®,. The bending

wavelength therefore

A=207"2, (3.14)
as shown in Appendix A6.0. By substituting the equation above in Eq.(3.11), the mass
ratio is found to be the product of two dimensionless factors as given by

o=, (3.15)

The new dimensionless parameter ¥ represents the mass ratio at the absorber
frequency and it relates the mass of the neutraliser to the mass of the beam in a length
of 24, /m. it is given by

am
= — 3.16
Y= 3pdT (3.16)

Substituting Eq.(3.15) into the expressions for the reflection and transmission
coefficients found in Eq.(3.13), gives alternative expressions for the coefficients,
given by
imlm -
(QUZ _1)_&1/2 (I“l‘i),
(QZ_I)_}S'ZIIZ
(@ -1)-2"2 (1+i)
}&-21.'2
(@ -1)-12" (1+i)

Hence €2 depends only on frequency while 7y is the mass ratio at the absorber

3.17)

fy =ty =

frequency. The purpose of the neutraliser introduced here is to control the
transmission of flexural waves on a beam. This has been discussed previously with
some differences by Clark [4] and Brennan [5]. In the ideal performance of the
undamped neutraliser, no waves manage to transmit to the downstream region. All the
incident energy is reflected back in the direction of the source of injection. Damping
in the neutraliser adversely affects its performance in controlling the transmission of

the incident waves *,

* This will be validated later on using two models, one includes a spring element with
hysteretic damping and the other model includes a damping element.
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Thus in order to achieve zero transmission, one finds that the tuned frequency is such

that 7 =0 in Eq.(3.17) and this satisfies

Q- —1=0, (3.18)
This will result in four roots for each mass ratio ¥. Only one of these roots is a real
positive number and is defined to be the tuning frequency ratio €2, at which there are

no transmitted waves. This will be explained in the next chapter.

3.4 General Discussion.
The reflection and transmission analysis presented in this report depends on two

unique independent parameters (£2 and %), and these can be used in simplifying the

control of the transmission of flexural waves on a beam.
Some limiting cases can be used for validating the reflection and transmission

coefficients. When the mass of the absorber is very large, then Eq.(3.17) reduces to

2
r=Q%Q; (3.19)

1-i
Iy =ty =—————( > )

These are the same values as those for a pinned joint discontinuity as expected.

If either the mass or stiffness of the absorber is insignificant, then the transmission
coefficient will have a value of 1, which indicates zero reflection hence there is no
suppression of flexural waves occurred. Again this is expected.

The undamped absorber will behave as an attached mass if the stiffness of the spring

is very large*, and this has been verified numerically. Eq.(3.17) reduce to

¥V —H————a 3
i-o(1-i)
;‘:M; (3.20)
i—o(1-i)
—i
y = [N =

i-a(l-i)’

Note that the dimensionless factor o used in Appendix A1.0 has a negative sign.

* The mass will behave as if it were rigidly attached to the beam.
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4- NUMERICAL EXAMPLES.

This chapter comprises three main sections, and these investigate the dynamic
behaviour of the undamped neutraliser. The first section concems the reflection and
transmission coefficients as function of the frequency and mass ratio parameters while
the second section investigates the energy behaviour around the discontinuity and
conservation of energy carried by the propagating waves along the thin beam. The

final section concerns the bandwidth.

4.1 Relation Between, r, t, Q and v.

The aim of this section is to investigate the dynamic behaviour of the undamped
absorber and beam, and to show how the flexural wave transmitted along the beam is
suppressed at a specified tuning frequency.

Consider an infinite beam with an undamped neutraliser fitted as shown in Figure
(3.1). The effects of neutraliser on the response of the reflection and transmission

coefficients for different mass ratios are shown in Figure (4.1 a, b).

06

i

04

02+
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Figure 4.1. Magnitude of the reflection and transmission coefficients as function of the
frequency ratio Q. (a) Reflection |r|; (b) Transmission |t| .

y=0.14; v=0.1675; ------ v=0.1975; ------- v=10.2250;
- == v=0.25250c00cc. v=0.2825.

For Q<Q, the reflection coefficient for all the mass ratios increases until a specific
frequency ratio =0, is reached where |r] =1 and the entire incident propagating
wave is reflected back. Moreover, for each mass ratio there is a specific tuned
frequency €, at which transmission of the incident propagating wave is fully

suppressed.
The reflection coefficient decreases with frequency ratio greater than the tuned

frequency. When the forcing frequency coincides with the natural frequency of the
absorber (Q=1), then the magnitude of the reflection coefficient has the same value
of 1/+/2 for any given mass ratio. In the same way the transmission coefficient

decreases as the mass ratio increases for frequencies less than the tuning frequency

Q. as shown in Figure (4.1b). This again shows that the transmission coefficient

decreases gradually as the frequency ratio increases until the mentioned tuning

frequency €, is reached at which none of the incident propagating waves is

transmitted.
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It was found that the neutraliser has a profound effect at one specific frequency on the
transmitted flexural wave, and this effect reduces gradually as the frequency ratio

moves away from the tuned frequency.

The reason that the neutraliser is ineffective at frequencies other than the tuned

frequency can be explained by considering the dynamic stiffness (qu) of the

neutraliser, which is given by [7]
—ma)2

k,=—". 4.1
eff 1_92 ( )

Hence the dynamic impedance (Z)was found below.

_ mi
1-Q*

This has to be infinite if the neutraliser is placed at the point of excitation, and this 1is
satisfied if the tuned frequency ratio £, =1.

Below the natural frequency (i.e. Q<1), the dynamic stiffness of the neutraliser is
mass-like. r and ¢ of mass discontinuity was found in appendix A7.0. Figure 7.1
shows that the neutraliser is ineffective at low frequencies. On the other hand, the
neutraliser behaves as a spring discontinuity at frequencies greater than the
neutraliser’s natural frequency (i.e. Q>1). At one specific tuned frequency, the
incident propagating wave is fully reflected and nothing is transmitted and this effect

reduces at higher frequencies as shown in Figure A4.0.

4.2 Conservation of Energy.

The reflection and transmission of power due to wave motion* in a beam like
structure with an undamped absorber have been investigated. Assuming no dissipation
of energy takes place, then the power through a discontinuity behaves in a way such

that.

o+ =1. (42)
This is the conservation of energy, where the energies in the reflection and
transmission waves equal that of the incident wave.

Thus if there is no discontinuity to suppress the flexural waves, then the reflection

coefficient in the equation above is zero and all the power is transmitted.

* Energy is directly proportional to the square of wave amplitude.
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This equation is satisfied both analytically and numerically by adding the square of
each magnitude value of the reflection and transmission coefficients in Eq.(3.13). The

powers in the reflected and transmitted waves are shown in Figures (4.2 a, b).

Figure 4.2. Powers reflected and transmitted versus the frequency ratio Q. (2) Reflected wave
(b) Transmitted wave.

—y=0.14; y=0.1675; —=--= y=0.1975; ===~ y=0.2250;
o = = Y= 0.2525; wovereen ¥=0.2825.
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Increasing the mass ratio ¥ has a major effect on the range of frequencies over which

less than half the incident power is transmitted. This will be discussed later.

Half the power is reflected when the neutraliser’s natural fréquency coincides with the
forcing frequency (i.e. Q=1) and all of the power is reflected back at the tuned
frequency for any given mass ratio.

The conservation of energy is validated and plotted in Figure (4.3). Thus it proves that

there is no dissipation of energy as expected.

081 -

I + |4

04 -1

Figure 4.3. Conservation of Energy for any given mass ratio

4.3 The Width Variation of the Transmission Stop-Band.
It was seen above that as the frequency ratio Q increases, the transmitted power [tlz

decreases from unity and it is 0.5 at Q=1, zero at Q=0,, and increases to unity

again as £ —>eo,

The bandwidth AQ here is defined as the range of frequencies in which less than half

the incident power is transmitted, i.e. where |t|2 €1/2, it is bounded by two half-

power points where It[2 =1/2. The lower half-power point £, for all given mass

ratios has the value of 1 as shown in Figure (4.2b).
The upper half-power point €, depends on the mass ratio Y. Increasing the mass of

the neutraliser increases the bandwidth AL,
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Taking the square of the modulus of Eq.(3.17b) and setting this equal to 0.5, one can

find the upper half-power point by solving the equation below

Q20" -1=0, (4.3)
for Q. Only one of the roots is a real positive number and represents the upper half-
power point £, , which depends on 7.
One can find the tuning frequency Q, for each value of 7y, by solving Eq.(3.18) as

mentioned in the previous section. Zero transmission is satisfied at that frequency.

Increasing the mass ratio 7y will cause the zero transmission at higher tuning
frequencies as shown in Figure (4.4), which introduce a comparison between L, €2,,

and AQ versus the mass ratio .

35 T T 3 T

Figure 4.4. The effect of varying the mass ratio y on £,, £2,,
and AQ.

Increasing the mass ratio Y has increased the effectiveness of the neutraliser by

increasing the bandwidth AQ as a result of increasing the frequency ratio of the

upper-power point Q, . The relation between the bandwidth and the upper half-power

point is given by

AQ=Q, -1. (4.4)
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Therefore, increasing the mass ratio will increase the upper half power point and this
the bandwidth of attenuation,

One can find from Eq.(3.18) and Eq.(4.3), that the tuned frequency £2, and the upper
half-power point €, of the bandwidth approaches to 1 at a very low mass ratio 7.
Zero bandwidth AQ) is obtained at mass ratio y¥=10, where the upper half-power point
Q, has the same value as the lower half-power point Q, =1.

However, the tuned frequency €, at which no power is transmitted is approximately

located in the middle of the bandwidth AQ as shown in Figure (4.2b).
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5- CONCLUSIONS & DISCUSSION.

This chapter highlights some general remarks of the previous chapters and the

scheduled future work.

5.1 General Concluding Remarks.

Analytical and numerical investigations have been carried out into the use of
undamped tunable neutraliser to suppress incident propagating waves in thin beams.
The effect of propagating waves as they transmit energy through beam structure has
been shown briefly. In addition, evanescent waves may cause energy to flow via the
interaction of any two opposite decaying nearfields. The feature becomes of practical
significance in structures with discontinuities or constraints on which evanescent
waves of various directions are generated.

Numerical wave model of the undamped vibration neutraliser was found for optimal
isolation. Reflection and transmission of flexural waves were determined including
nearfield waves with respect to the incident propagating one. These have included
new independent parameters for design and control simplicity purposes.

The optimum characteristics of the neutraliser, which ensures zero transmission, have
been determined. The conservation of energy flowing through the beam has been
satisfied numerically. Although the bandwidth introduced by other workers are very
effective in measuring the performance of the damped neutraliser but it was necessary

to employ another definition for the ideal undamped neutraliser.

5.2 Future Work.

- Numerical wave model of the vibration neutraliser for optimal absorption will
be developed in the presence of nearfields.

- Experimental work will be carried out to investigate the validity of the
numerical and analytical model of the optimum absorption neutraliser.

- A control system will be implemented by adopting the gradient descent
algorithm for fine-tuning such as those described by Kuo and Morgan [16].

- The estimated flexural wave amplitudes will be used as a cost function in the

control system.
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APPENDICES

A1.0 Reflection & Transmission Coefficients of Flexural Waves due

to Boundary/Discontinuity in beam structures.

This appendix presents the result of a wide survey on reflection and transmission of
flexural waves in beam structures due to various discontinuities and boundary
conditions. Reflection and transmission of waves were tabulated below (Table A1.0)
of well-known models of beam structures for incident propagating nearfield (the
effect of a single decaying nearfield has been investigated for a translational spring
discontinuity). These were determined at x=0 by considering continuity and

equilibrium conditions.
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A2.0 Reflection & Transmission Coefficients of Longitudinal Waves

due to Boundaries/Discontinuities in bar structures.

The reflection and transmission coefficients of longitudinal waves in bar structures
have been investigated for various boundaries/discontinuities. These were determined
at x=0 by considering continuity and equilibrium conditions and tabulated below

(Table A2.0).
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A3.0 Energy Flow in the Longitudinal Travelling Waves in bar

structires.

This appendix introduces the power flowing in bar structures due to propagating
longitudinal waves (no nearfields in bar structures). Same methods used for the
flexural waves shown in chapter 2 are used here again.

Considering both positive and negative propagating waves exist in a bar element 6x,

the following have been determined.

a- Instantancous intensity I (x,t)= EAwk, (a* sin® (wf —kx)—a ™ sin® (of + kx))

using Eq.(2.16), where k, is the longitudinal wavenumber.

b- Time average intensity (i()) = EA?kf (a+2 —a* )

c- The kinetic energy per unit length was found to inciude three terms as shown

below:

E, = %pAof (a” sin’ (et — k,x)+2a"a” sin (@t — k,x)sin (@t-+ kx ) +a? sin” (@f +k,x)).

d- The potential energy. per unit length was found to have same terms as the
kinetic energy except that the cross power term has a negative sign as shown

below.

E

kin

- %pA(o2 (a*z sin® (@t —k,x)—2a*a” sin (0 — k.x)sin (0t + kx)+ a7 sin® (@ + & x)).

e- Thus the total energy per unit length was determined below and found to

include only two terms (no cross power).
E, =a"sin® (0 —kx)+a sin® (@r + kx).
f- The phase velocity (¢, ) was found to have same value as the group velocity
(c:):
®
C,=Cp= -k-

g- The characteristic wave impedance wave (Z) determined for the longitudinal

_ EA|du/ox]

= =pcyA.
L

propagating wave. Z
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A4.0 Effect of Undamped Spring Discontinuity on Flexural Waves.

The effect of undamped springs on flexural waves in beam structures has been
investigated numerically and analytically. Complete suppression of flexural waves
can be achieved on infinite beam at single frequency. Reflection and transmission of

flexural waves were determined below by considering the continuity and equilibrium

conditions.
_ i€
TTAe ()
e 4-¢ |
4—-g(1+i)
=1y = """"“E"'—
4—g (1 + :)
where
o E
EIk’

thus E, I, k and %, have their usual meanings.

Figure A4.0 below shows clearly the effect of the undamped spring on the flexural

wave

o

L
o &

o

B R

Reflection and Transmission Coefficients (dB)
i K]

.
=)

1/s

@ ——— [ b

Note that it is rarely possible to fix a spring to rigid foundation in practice, and thus it

has to react against an inertial mass.
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AS5.0 Using Dynamic Stiffness Method in Finding -, 7 of an

undamped absorber.

The following equations can be deduced from the free body diagram shown in Figure

AS.0.

Figure A5.0. Free body diagram of the undamped absorber.

Hence one can determine the displacement () neutraliser’s mass.
y= ¥ (AS.1)

That £, is the translational stiffness.

Substituting Eq.(A5.1) in force balance of the free body diagram above, then one can
find

That k,, = F /w is the effective dynamic stiffness of the neutraliser.

Dividing both sides by EIk’ to obtain the dimensionless factor o. Then the
dimensionless factor of the spring € (given in table A1.0) was replaced by the result.
Therefore, one can find that the reflection and transmission coefficients found to

match those of the neutraliser determined in Chapter 2.
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A6.0 Relation Between 2 and Q..

It is well known that the wavelength A is inversely proportional to square root of the
circular frequency. Therefore, from Eq.(3.13), one can find the following

7" — V(Dabs =Q_%,
xabx \/_(;)‘

where constants of proportionality cancel out. Hence,

A=2,07"

A7.0 Effect of Mass Discontinuity on Flexural Waves.

From the continuity and equilibrium equations explained in chapter three, one can
find the reflection and transmission coefficients by considering an inertial mass as a

discontinuity instead of an undamped neutraliser. This is also explained by Mead [6].

—ioL
JF=4+oa(l+i)
o 4ta

4+a(l+i)
—a

- =
" ara(r) "

where the dimensionless factor o =2mm/pAA relates the neutraliser’s mass to the

mass of one wavelength of the beam. Figure A7.0 shows that the maximum reduction

of an incident flexural wave using a mass discontinuity is only 3dB.

0 . — . . — .
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g T u
g P
g
8-k // -
& e
ki //
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Figure A7.0. Effect of mass discontinuity of flexural waves.
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