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1. Introduction

In an earlier report [1], the dynamic characteristics of a coupled non-symmetric structure
consisting of a beam and a plate were investigated using a wave approach. In this previous
analysis, the propagating wavenumber of the coupled beam was calculated iteratively, and it
was assumed that the nearfield wave in the coupled beam had the same wavenumber as the
propagating wave. In this report, problems of convergence in the iteration method used for the
wavenumber estimation at some frequencies are addressed by using Mulier’s method. Also,
the nearfield wave is considered separately in the coupled beam and the corresponding plate
wave response is then calculated for this case. The resulting coupled nearfield wavenumber
displays differences from the travelling wavenumber originally determined.

As a step towards investigation of a framed structure such as four beams surrounding a
plate, the previous analysis is then developed and extended for a structure consisting of two
identical beams connected by a rectangular plate. By using symmetry, this structure can be
assembled from solutions of a plate attached to one beam for which the opposite edge of the
plate parallel to the beam is either pinned [1] or has a sliding condition. The synthesis
procedure is described and some numerical results are shown.

Compared with the previous report, some boundary conditions have been changed. It is
now assumed that the beam attached to the plate has infinite torsional stiffness. It seems
reasonable that the ends of the beams in a framed structure will have siiding conditions rather
than free conditions. Therefore, the sliding condition is considered in the present report. The
approximate representation of the plate by a locally reacting impedance is maintained.
Calculations are based on 400 frequency points covering the frequency band 10 Hz ~ 1 kHz,
chosen to be logarithmically spaced.

First of all, the relationship between the coupled beam wavenumber and the plate

wavenumber is presented. The relationship when the nearfield wave is considered in the beam
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is also shown for the present case. The numerical analysis is then presented for a sliding
boundary condition as well as a pinned condition for the non-symmetric structure consisting
of a single beam and a plate. This is based on the separate travelling and nearfield
wavenumbers of the beam and the numerical evaluation using Muller’s method. Then a
synthesis procedure is described for modelling a symmetric structure consisting of two beams
and a plate using the combined response of the antisymmetric and symmetric behaviour of the
non-symmetric structure, and numerical results are presented. Appendix A lists the
nomenclature. In appendix B the influence of the iteration method on the result shown in [1}

is reviewed. Muller’s method is explained in detail and improved results due to its application

are shown.

2. Infinite beam coupled to semi-infinite width plate
2.1 Travelling wavenumber of coupled beam

Figure 1 shows an infinite beam coupled on one side to a semi-infinite plate. In the
previous report [1], the relationship between the travelling wavenumber of the infinite
coupled beam and the plate wavenumber was derived and discussed. It was also previously

assurned that the nearfield wavenumber of the beam is the same as the travelling wavenumber.

Figure 1. A built-up structure consisting of an infinite beam attached to a semi-infinite plate.
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In this report, the nearfield wavenumber is considered separately and its relationship with
the plate wavenumber is presented. Before mentioning the nearfield wavenumber, it seems
appropriate to re-examine the relationship between the travelling wavenumber in an infinite
coupled beam and that in the plate.

Previously [1], it was assumed that the beam had zero torsional stiffness. In this report, it is
assumed instead that the beam is infinitely stiff to torsion along y = 0. This is because a beam
which is infinitely stiff to torsion seems to be more similar to the physical behaviour of real
structures consisting of several beams and plates, which will be considered in further studies.

Consider first the uncoupled free wave motion of the beam and plate. Harmonic motion at
frequency @ is assumed throughout with a time dependence of e™ . The relevant equation

of motion of the beam with no damping is [2]

d*w,
dx4

D, — "W, =0 (2.1)

where W, is the complex amplitude of the beam vibration, D, is the bending stiffness

given by KI with E being the Young’s modulus and / the second moment of area. m, is

the mass per unit length.

A propagating harmonic flexural wave in the infinite beam, uncoupled from the plate, is

given by

W, = de™* 2.2)

where A is the wave amplitude, x is the coordinate in the direction of propagation and k,

is the uncoupled beam wavenumber given by k, =(m;/D,)w’. Nearfield waves also exist

+hyx

with the form e



The equation of motion of the plate with no damping is [3]

+2 L+
ox* A

o'W oW, '
p( WP w wp ]___ m;wlﬁ;p =0 (23)

where W, is the complex amplitude of plate vibration, D, is the plate bending stiffness

EW . oo : .
given by D =—h, h is the plate thickness, v is Poisson’s ratio, and m), is the
"o12(1-v?) ?

mass per unit area of the plate. This leads to free wave solutions with wavenumber
4 _ _r 2
k,=m,m /Dp.
When the semi-infinite plate and the infinite beam are joined along the line y = 0 a force

per unit length F(x) acts between them. Thus equation (2.1) becomes

d*w,
a7x4

D, — @™, =—F(x) (2.4)

Suppose that the free wave motion of the coupled beam becomes
W, = de™™* (2.5)

for some wavenumber k_ . Then by trace wavenumber matching the motion of the plate 1s

given by
W, = (Be™” + Ce™ )™ (2.6)
where B is the amplitude of the wave propagating away from the junction, C is the

amplitude of the near field wave in the plate which is also generated at the junction, k, isthe

trace wavenumber for the propagating wave radiating into the plate normal to the beam and
k, is the trace wavenumber for the nearfield wave in the plate. In the above it is assumed that

k. is real, although as will be seen this is not quite the case.



To obtain the travelling wavenumber k,_ in terms of the beam and plate propertics,
consider the propagating wave solution in the plate w, = Be ™™ Substituting this into
equation (2.3) gives

(D, + 2k + k) —ml@*}Be ™ e " = 0. 2.7
As Be ™ e ™ £(), the propagating normal trace wavenumber in the plate is found to be

ke, =k, -k . (2.8,a)

Y

Similarly, let fvp = Ce *’¢™™* _then the normal near field wavenumber is

k,=Jk2+k, . (2.8,)

The boundary conditions when a semi-infinite plate is attached at its edge to the beam
are:

(1) Continuity equation; equal displacement
ﬁ}}; (x) = ﬁ}p (x,O) (29)

(ii) Sliding condition for the plate; the beam is assumed infinitely stiff to torsion along y=0

ow,

— =0
Iy (2.10)

y=0

(iii) Force equilibrium condition; the force on the plate is equal and opposite to the force on the

beam

a2 0w, 0w
< 5 7
”By{ 5 TS

] = F(x). @2.11)
¥=0
From the boundary condition (2.9),

(2.12)

-
I
L
+
(Y



From the boundary condition (2.10),

|:(—~iky Be™™ - k,Ce™ )e*”';'x] =0.

y=0

- k. .

C=—iss
ke

- k—ik -

A= g
%

Therefore, the amplitudes of the waves in the plate are given by

- k- -~ -k,
B=—"¢ 4 (=—1
k. —'lky k, —zky

& fid

A.

From the boundary condition (2.11),

D ik, { K +=vik} B~k {2 -~} C]= ().

Substituting for B and C intermsof A gives

ikk i+ A .
[ ¥ L{ ¥ L}}AD e—rkxsz(x)'

k,—ik, !
Therefore, the line impedance of the plate is

5 __F® _D, [ kykezki]

P iwde™ @ | k,—ik,

(2.13)

(2.14)

(2.15)

(2.16)

Q.17)

Finally, the general dispersion relationship for the built-up structure can be derived from

equations (2.4) and (2.17).

4t 2 - =’
Dk, =me" —iw Z,,.

(2.18)

There are two travelling wave solutions and two nearfield wave solutions to this equation.

Note that &, is not real, due to the damping-like term in Z’; .



2.2 Nearfield wavenumber of coupled beam
A relationship can similarly be developed when the nearfield wavenumber in the beam is

consideréd. Suppose that the nearfield wave motion of the beam is represented by
W, =A™ (2.19)

where k,, is the nearfield wavenumber in the coupled beam.

Then the motion of the plate is given by
W, = (Be™ + ey (2.20)

where B’ is the amplitude of the travelling wave, C’ is the amplitude of the nearfield wave

in the plate, k; is the trace wavenumber for the travelling wave radiating into the plate
normal to the beam and %, is the trace wavenumber for the nearfield wave in the plate. The

dash is used to distinguish them from the case when the travelling beam wavenumber is

considered.

Now consider the travelling wave solution in the plate w, =Be™e™ to obtain the

nearfield wavenumber k, . Substituting this into equation (2.3) describing motion of the

plate results in the following wavenumber relationship

(D, (kyy —2KK% + K —m@? } Ble ™ e =0, (2.21)

vy

As Be™e™ 20, then ky 2k Ky, + k' =k} =0 . Therefore, the propagating normal

frace wavenumber in the plate is

K=k +kL . (2.22,2)



Similarly, letting W, = C'e™ ¢ ™™ then the nearfield wavenumber is
(2.22.,b)

They are found by solving the dispersion equation similar to equation (2.18) using %,

instead of k. These differ from the results &k, and k, found for a travelling wave &, in

the beam.
The procedure to obtain the impedance when the beam nearfield wavenumber is
considered is similar to the case when the travelling wavenumber is considered. All of the

equations are the same except equation (2.15) the force equilibrium condition, which is

D o [ik; K2 -@-vii B -k k2 + -k} C"} =F(x). (2.23)

P

As k, terms are eliminated, the impedance equation is of the same form as equation (2.17).

2.3 Approximation by locally reacting impedance and general solution for the coupled

structure

Note that if k,>k, and k, >k, ie. the plate wavenumber is much larger than the

wavenumber in the coupled beam, then the exact line impedance of the plate, equation (2.17)

can be written approximately as

y_ F® ",

" imde

Dk .
~— (+0)= (1+1). (2.24)

ik %
P

Equation (2.24) is valid if the plate wavenumber is sufficiently larger than the coupled beam
wavenumber, ie., k /k,<0.5 [1]. Then the impedance of the plate can be considered as the

input point impedance of an equivalent beam of infinite length and unit width driven by a

point force.



3. Infinite beam coupled to finite width infinitely long plate
3.1 Travelling coupled wave for general boundary conditions on plate edge

The impedance of a finite width plate with a general boundary condition at the edge

y=L,, as shown in Figure 2, can be obtained from a wave approach. This structure is the

same as that consisting of an infinite beam coupled to a finite width plate considered

previously [1] apart from the revised boundary condition preventing rotation at y =0.

Figure 2. A built-up structure consisting of an infinite beam attached to a finite plate.

Assuming initially that there is no damping in the plate, the response in the infinitely

long plate of width L, joined to an infinitely long beam can be written as

Wy = (Be™ +Ce™ + ﬂyi’ée”c-“y + D"y (3.1)

ik, 2L

where 3, =e ¥ represents a phase shift over length 2L , 7 is the complex reflection

coefficient at the edge of the plate y=1L and D is the amplitude of the nearfield wave
which is generated at the opposite edge of the plate. The response of the beam is assumed to
ik x

be w, = Ae™* as before.

The boundary conditions when a finite plate is attached at its edge to the beam are the

same as for the semi-infinite plate structure.



Therefore, from the first boundary condition (2.9),

A=B+C+ B FB+De™. (3.2)

From the second boundary condition (2.10),

[(—fkyée'ik-”y —k,Ce™ +ik, frBe™” +k,De"" _L-”))e"";e"] =0. (3.3)

¥=0

Because the beam is attached to the edge y = 0 of the plate, at sufficiently high frequency it
can be assumed that the influence of the nearfield from the opposite edge will be negligible,
which means De ™ =0. Therefore, the approximate amplitudes of the waves in the plate
are given by

—ik (1- BF) -~ k -
p— —A, B= ——= — 4. (3.4)
k(1+ 7y —ik,(1- BF) k,(1+ BF) - ik, (1 BF)

C=
From the force equilibrium boundary condition (2.11),

D, [iky [k +@-wk}a-pnB-k{k-2-E] é:| =F@. 35

Substituting for B and C intermsof A and climinating k, gives

ik k (1— B ks + K}
k,(1+ B 7) — ik, (1= B,F)

] AD e = F(x). (3.6)

from which the line impedance of the plate, which is the impedance per unit length along the

beam, is given by

s _ F® _D,

r

3.7

ik, x

z'a)/'ie : w

k. k(- B,F)2k;
k,(t+ BF)—ik (1- B,F)
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3.2 Nearfield coupled wave for general boundary conditions on plate edge

Now consider the nearfield wave in the coupled beam. In this case, equation (3.2) and

(3.3) are not changed apart from changing &, to k; and k, to k., but equation (3.5) will

be changed into
D ik { K2 -@-vki } (- BAF-E{ K2+ -k} C|=Fe). (38)

Once k,, has been eliminated from this equation, the equation for the impedance is the same

as equation (3.7). Note that even though the equation is not changed, a different value will be

calculated because the impedance includes k;, k! and the phase shift S, which is a

function of k_"_ _all of which differ from the values applying to a travelling wave &, .

3.3 Approximate impedance and inclusion of the plate damping

The relationship between the wavenumbers &,, k,, k,, &, and k, is the same as

for the semi-infinite plate structure of the previous section but should be found iteratively

from the dispersion equation similar to equation (2.18). If the plate wavenumber greatly

exceeds the beam wavenumber ie. k,>>k . then i;y = Ep, k,~k,, fEf +I€f = 2Ej , and the

line impedance of the plate equation (3.7) can be expressed in the simpler form

5 D,2k; 1-B,F 0
e |+ BR-iA-BF) | 3:9)

where 7 depends on the reflection boundary conditions at y=1,. For a pinned condition,

the reflection coefficient ¥ becomes —1 while for a sliding condition 7=+1. Z; in
equation (3.9) can be considered as like a locally reacting impedance as in section 2.3.
Although equation (3.9) no longer contains &, k, etc., explicitly, however, the factor ﬁ),

11



still retains a dependence on k. It is therefore not a completely locally reacting impedance.

Nevertheless, it can still be considered as a good approximation of the impedance of the plate.

If hysteretic damping is introduced into the plate, the plate stiffness is described as

D,=D,(1+in,) and the wavenumber of the damped plate becomes k&, =k, (1-i7, /4)

assuming 77, < 1. Now, equation (3.9) can be modified as follows to include damping terms.

(3.10)

5 __F® _D2%, 1-5/F
r . —ik,x 3~ . 7oy
imAe o | (1+8,7-i(l-5,F)

_';';Z_vz‘r’_v

where /_’;’_‘_ =e is the propagating wave attenuation coefficient of the plate, which

represents attenuation as well as phase shift over the distance 2L, i.e. twice the plate width.

3.4 Solution for coupled wavenumber
The general dispersion relationship for the infinite beam attached to the finite plate can

be derived from equations (2.4) and (3.10), and has the same form as equation (2.18).

D! =mje) —iw Z,. (3.11)

It Z; =0, which means the beam becomes uncoupled from the plate, then equation
(3.11) has four roots I;x (actually k). However, because the impedance term Z; which

o depends on Ex, the equation becomes more complicated and it might

includes B), =e
be possible that there are more than four roots. Nevertheless, concerning the present case
when the plate is flexible compared with the beam, there are only two propagating wave
solutions (k) and two nearfield wave solutions (%, ) to equation (3.11) that are close to k,,

the corresponding solutions for Z~; =0. Note that k, is not real, due to the impedance term

Z; Each case must be solved from the corresponding impedance and should be solved

12



iteratively as k, is contained in Z; At some specific frequencies, for example when k,
becomes large and accordingly k becomes small, k. does not converge using a simple
iteration method. In this case, k, can be calculated using Muller’s method (see Appendix B

for the use of Muller’s method for the estimation of coupled wavenumbers).

4. Finite beam coupled to finite rectangular plate
4.1 Beam response for the coupled system

To derive the dispersion relationships for a coupled beam and plate, an infinite beam and
a plate of finite width were used in the previous section. This general relationship can be
extended to the structure which is finite in length as shown in Figure 3, where it is assumed

that the beam has a sliding boundary at both ends.

Figure 3. A built-up structure consisting of a finite beam attached to a finite plate with a

pinned opposite edge.

It is thought that for a completely framed plate which might be considered later, the ends of
the beam at the corners will be very stiff points and mainly able to displace but not rotate.
This is due to the high (infinite) torsional stiffness applied by the perpendicular beams.

The general solution for the motion of the uncoupled finite beam at frequency @ is

13



W= Ae™ + Ae™ + A + 4, 4.1

-

where ;‘:] and Eg are the amplitudes of travelling waves, A, and ;l4 are the amplitudes of

the nearfield waves, Eb is the uncoupled travelling wavenumber of a damped beam. Now, if

the plate is coupled to this beam, then it can be assumed that the solution for the motion of the

finite beam possessing the coupled wavenumbers is
R I A S
W=Ade™ + A + Ae™ + A (4.2)

where A and A, are the amplitudes of travelling waves, A'Q and A, are the amplitudes of

the nearfield waves which have different values from those of equation (4.1), Ex and EW.

are the complex travelling wavenumber and nearfield wavenumber respectively, as

determined in the previous section.

If the beam has length L_ with a force F, applied at one end x = 0, and has sliding

boundary conditions at both ends, the boundary conditions are then given by

- dw
b, =, (4.32)
ax x=0
A |
D =F, 4.3b
b ax} . 0 ( )
~ oW
D,—| =0, (4.3c)
x x=L,
. P
D =0.
o 4.3d)

14



Equations (4.3) can also be written in a matrix form,

_lkx _knf i kx k’?f Al 0
+1.3 3 -1.3 3 - - ~
ik; —k,; —ik; ko A . / ,
. _il —En Lx ] ik I;n LI n = 4‘4
—ike ™ ke ik e ke || A, 0 @4
.13 ik I, 3yl o3 ik, 3 kL A
ikee —k,qe —ikle ke LA 0

Having solved this for the amplitudes /1,., the transfer mobility from the excitation point x =0

to the response at an arbitrary position x can be calculated from the relationship between the

force and velocity,

~  —kx ~ ik, ~ fox
e "+ 4+ A

ik A~k A - ik, 4,

Vi (%) = (4.5)

5

L
?\T:J
NS

4.2 Plate response for the coupled system

The response of the plate for a travelling wave in the beam is as given in equétion (3.1),
and by obtaining the coefficients in the equation, the response can be determined. The
coefficients will be calculated from equations (2.9) ~ (2.11) which describe the boundary

conditions. This process is carried out separately for each of the four waves in the beam.

Previously {1], the nearfield wavenumber in the coupled beam &, was assumed to be

the same as the travelling wavenumber. In the present report, both wave types are considered
and the plate response is calculated from consideration of each beam wave and the
corresponding plate impedance separately. By adding the four different responses of the plate
generated by the four different waves in the beam, which are a forward travelling wave (kx+),
backward wave ( kx —), forward nearfield wave (knf +) and backward nearfield wave (knf —),
the plate response can be obtained. Tt has been assumed in adopting this approach that
interaction between the beam and the plate can be treated separately for each wave in the

beam.

15



Even if the four different beam waves are considered, the displacement continuity
boundary condition (2.9) and the sliding boundary condition (2.10) can simply be applied
using the corresponding wavenumbers. The force equilibrium condition (2.11), describing the

force acting on the plate from the beam, is more complicated than the first two boundary

conditions mentioned. If the plate can be represented in terms of a line impedance Z; , the

force can be expressed in terms of the velocity and impedance

Fx)=Vn(Z, = BY, 0, (07, (4.6)

where F, is the force applied to the beam and Y,,..(x) is the transfer mobility of the
coupled beam, given by equation (4.5). Note that actually the approximation by the locally
reacting impedance is used in equation (4.6) instead of the line impedance.

Although the impedance Z; differs for a travelling or nearfield wave on the beam, the
impedance for the travelling wave has the same value regardless of its propagation direction.

The same is true for the nearfield wave. Therefore, equation (4.6) can be decomposed in terms

of the different wave types as follows.

B () =V (02, (4.7,2)
b )=V (0Z, (4.7.5)
oo () =V (2 4.7.)
By (=Y ()2 - (4.7,d)

Therefore, from the threec boundary conditions at the attachment edge and those at the ends of

the beam, the plate wave amplitude coefficients B,C,and D can be obtained. In the

16



calculation of impedance and the plate response, it is assumed that De™" =~ 0. Note that four

different responses of the plate corresponding to equations (4.7a ~ d) will be obtained.

4.3 Power balance investigation

The total power input to the coupled structure and the power transferred to the plate were
compared previously [1]. If the power dissipated in the beam and plate are determined, the
power balance in the coupled structure can be considered. By conservation of energy, the total
input power should be the same as the sum of the net power transferred to the plate and the
power dissipated in the beam. Also the net power transferred to the plate should be the same

as the power dissipated in the plate. These relationships are presented simply in Figure 4.

B’npur
B‘Jcam—e plate
Beam ™ Plate
‘Pbcam,di.\' P plate,dis

Figure 4. Power balance between subsystems of the coupled structure as in Figure 3.

The net power transferred from the beam to the plate can be simply expressed in terms of

the force and response as follows.
1 L}.’ it P~
Ijbeam—)pn'are = -2— -[0 Re {F Vbeam }be ’ (48)

where F is the force acting on the plate calculated from equation (4.6), v, is the

response of the coupled beam, L  is the length of the beam and * indicates complex

conjugate. This equation can be expanded as follows when the travelling and nearfield

17



wavenumber are separately considered.

waama plate = é_l‘:x Re {(ﬁfaeam,kxzj;,kx + I7beam,fﬂ?f Z;km' )ﬂ= (I;:'Jcam,kx + I7:!)::111’??,:’01_1" )}dx * (49)

Although the dissipated power in each subsystem can be obtained from either the kinetic
or potential energy, because the beam structure does not have many vibrational modes in the
frequency band of interest (less than 10 modes below 1 kHz in the present case), it is more
appropriate to use the potential energy (strain energy). Strain energy can be calculated from
the elasticity of the structure. Power is dissipated because structural damping is assumed by
using a complex value for Young’s modulus of elasticity. The maximum strain energy in a
cycle in the beam is

2
2~
d*w,

D, (L
E _—bj dx*

beam T

dx, (4.10)

- and the dissipated power in the beam can be written as [4]

Pbcam,dis = wﬂb Eheam . (4 1 ].)

The strain energy of a plate is given by [2]

2 2
0%, 0%, o*w, o'W, R
.f’n'a!c strain T J J‘ [ ] [ ay ] +2V axzp a 2 +2(l V)[ a; ] dyébc .

(4.12)

However, in the present report the approximate plate impedance is assumed, which means that
the plate can be thought of as many strips along the beam. Therefore, the dissipated energy in
the plate can be represented as the sum of dissipated energy of each strip. The maximum

strain energy of a strip in a cycle can therefore be expressed as

~ 12
E :ﬁ‘J‘L}' a w.?’
strip 2 0 ayg

(4.13)

18



Therefore, the strain energy for the whole area of the plate is

2

L D, i, pL,|0%W
—~ - — 2 Sl e P
Epfarc - J() E'.vzripdx - 3 jO IO ay2 dydx 3 (4 14)
and the dissipated power in the plate is
Pp.’arc,df.\' = a)anplam . (4 15)

4.4 Numerical analysis - plate in pinned condition
In this section some numerical results are given for the built-up structure shown in Figure 3,

the dimensions of which are given in Table 1. These dimensions are the same as those used in

the previous report 1] except L, which was previously 0.45 m. The second moment of area of

the beam is calculated, as before, by assuming that its neutral axis lies in the mid-plane of the

plate which is attached to the bottom of the beam.

Table 1. Dimensions of the built-up structure shown in Figure 3.

Material Perspex Plate width, L, (m) 0.75

Young’s modulus, E (GNm'z) 4.4 Thickness,  (mm) 5.9
Poisson’s ratio, Vv 0.38 Height of the beam,  (mm) 68.0
Density, p (kgm™) 1152.0 | Loss factor of the beam, 7, 0.05
Beam length, L. (m) 2.0 Loss factor of the plate, 77, 0.05

The numerical analysis procedure is the same as before. Therefore, only some important results
are mentioned and most physical phenomena are the same as those observed previously. Results

are also compared with those obtained by a finite element analysis.
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The edge parallel to the beam is considered as a pinned condition, which will be compared

with the sliding condition in section 4.5 later.

4.4.1 Wavenumbers
Firstly, the various wavenumbers are compared for the damped plate in Figure 5 and

Figure 6. Figure 5 shows the travelling wavenumber %k  in the coupled beam and the

corresponding wavenumbers in the plate. Meanwhile, the nearfield wavenumber k. in the

coupled beam and its corresponding wavenumber in the plate are shown in Figure 6. The

uncoupled beam wavenumber, &, is shown for comparison. It can be seen that the curves of

k, and k, areexactly parallel as expected.

The coupled beam wavenumber k, shows peaks and dips because of the impedance of

the finite width plate attached to the beam. At the resonances of the plate the impedance Z;,

is small and the wavenumber &, is close to k,. At the anti-resonances k_ is increased

considerably (see Figure 9).

The asymptotic value of the coupled wavenumber %_ is higher than £k, . The reason can

be seen from the dispersion equation which includes the impedance term of the plate. Its
mass-like component increases k.. Note that the slope of the asymptotic value of k_ is

lower than that of %, . This is because the equivalent mass in the impedance is reduced with

increasing frequency.
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Figure 5. Comparison of the travelling wavenumber of the beam and the corresponding

wavenumbers of the plate of the built-up structure as in Figure 3 (real part only, 77, =0.05 in

the plate, 77, =0.05 in the beam).
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Figure 6. Comparison of the nearfield wavenumber of the beam and the corresponding
wavenumbers of the plate of the built-up structure as in Figure 3 (real part only, 77, =0.05 in

the plate, 77, =0.05 in the beam).

Comparing Figure 5 and 6, it can be seen how the plate wavenumbers are changed due to

the travelling and nearfield wavenumbers of the beam, as was explained from equations (2.8)
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and (2.22) in section 2. It can be seen that the travelling and nearfield waves of the plate can be
approximated by the free wavenumber of the plate in both cases.
In Figure 7, a comparison is given of the imaginary parts of the travelling wavenumber and

nearfield wavenumber in the coupled beam as well as the corresponding real parts.

10" ¢ T
F —k

-
[+)
@
T

Wavenurnber {-imag part)

Wavenumber (real parf)

L
1 10° 10
Frequency (Hz)

Figure 7. Comparison of the beam travelling and the nearfield wavenumber in the built-up

structure consisting of the finite beam and the finite plate as in Figure 3 (77, =0.05 in the

plate, 77, =0.05 in the beam).
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These wavenumbers are related to the plate impedance and, for example, at the peaks of &, the
plate exhibits an anti-resonance (see also Figure 9 below). In the same way the nearfield wave
number £, depends on the corresponding impedance of the plate which has peaks at different
frequencies. At the peaks of the imaginary part of k_ the plate has a considerable damping
effect on the beam.

The ratio of the imaginary part to the real part of the wavenumbers is shown in Figure 8,
from which an equivalent loss factor for the coupled structure can be approximately inferred
(17 =—4Im(k)/Re(k) ). The exact equivalent loss factor for the coupled beam is calculated from
k* and given by

_Im(k*)
Re(k)

(4.16)

For the present case, however, because Re(k*) and the corresponding loss factor are negative

at some frequencies, the approximate equivalent loss factor is shown for convenience. Note that
at the anti-resonances of the plate, this ratio can be close to 1 so that the small damping

approximation no longer holds.

10
g —

L
10! 10° 10°
Frequency {Hz}

Figure 8. Ratio of the imaginary part to the real part of the travelling and the nearfield

wavenumber in the coupled beam.
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4.4.2 Impedance and mobilities

In Figure 9, the approximate line impedances (see equation (3.10)) of the finite width

plate with damping are shown when ng and f%'nf are considered respectively.

Modulus of impedance/m (Nslmz)

10° — 3
10 10 10

Frequency {Hz)

Figure 9. Approximate line impedance of the finite width plate as in Figure 3 (77, = 0.05 in

the plate) for the travelling Ex and nearfield Enf wavenumbers in the beam,

As mentioned before, although the impedance equation (3.10) is unaltered, the figure shows
how the values of the impedances are changed when Ex or fc",?, is considered. The peaks in
the impedance correspond to the plate anti-resonances, and comparing Figures 8 and 9, it is
clear that the equivalent loss factor is maximum around these frequencies.

The point mobility of the built-up structure is shown in Figure 10 along with the
corresponding FE result. Also shown is the characteristic mobility of a coupled structure
consisting of a semi-infinite beam and a plate of semi-infinite length and width located in
x>0, y=0 (dotted line). Comparing the result from the wave analysis with that from FEM,
théy agree quite well at low frequencies. Above 100 Hz, the resonance frequencies show
differences which can be attributed to the assumption in the analytical approach that the
neutral axis of the beam lies in the centre of the plate (see [1]). Nevertheless the trend is

similar. The characteristic mobility passes through the centre of these results, as expected.
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Figure 10. Point mobility of the built-up structurc as in Figure 3 (77, =0.05 in the plate,

n, =0.05 in the beam, point force applied at x=0). Dotted line indicates characteristic

mobility of a structure consisting of a semi-infinite beam and plate of a semi-infinite length

and width.

Some small troughs in the analytical point mobility, for example at 18.6, 57.1, 117, 196 and

298 Hz coincide exactly with the anti-resonances of the finite width plate calculated on the

basis of the travelling wavenumber ng (Figure 9). Note that the anti-resonances of the plate
calculated using the nearfield wavenumber Ignf do not appear as troughs.
By using l;:; instead of I;_il- in the nearfield waves in equation (4.2), the influence on

the point mobility of approximating the nearfield wavenumber Igm,. is shown in Figure 11.

Although there are some differences in the level of the peaks and troughs, this approximation

seems to have only a small influence on the response of the structure. It can be assumed that

k

,rdoes not significantly affect the behaviour of the whole structure because the nearfield

wave is limited to the excited region or the ends of the beam.
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Figure 11. Point mobility of the built-up structure as in Figure 3 (77, =0.05 in the plate,

7, =0.05 in the beam, point force applied at x=0). Dashed line means the result when £,

is used instead of Igm, in equation (4.2) and solid line means the result when both I::x and

k,, are considered in the equation.

The point mobility of Figure 11 when IEX is used instead of f:'m,. in equation (4.2) is
shown again in Figure 12 together with that of FEM. In some regions, such as the first trough

near 18.6 Hz in the analysis, the result based on using lgx throughout in equation (4.2)

appears to give better agreement with that of FEM than the result in Figure 10 including ];”!f .

Nevertheless, comparing the results near the resonance frequencies, it can be seen that

generally the result of the case when I::nf is considered (Figure 10) agrees better with the

FEM result than that of the case when &, is used throughout.
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Figure 12. Point mobility of the built-up structure as in Figure 3 (77, =0.05 in the plate,

17, =0.05 in the beam, point force applied at x =0). The solid line indicates the result when

k_ is used instead of ignf in equation (4.2).

In Figures 13 and 14, examples of the plate response are shown. These are obtained from
the sum of the results provided by the forward and backward tra\}elling and nearfield waves as
mentioned in section 4.2. Generally the level of the response agrees quite well with the FE
model and the positions of the troughs in the response agree well even in the high frequency

region for both figures. Nevertheless, as will be seen later by comparing the power balance for

the plate, the present analysis seems to have some limitations.

— Analysis E
— - FEM 3

[ Moty | frvsh)

Fraequency (Hz)

Figure 13. Transfer mobility for the plate (at x = 1.51 m and y = 0.5 m) in the built-up structure

as in Figure 3 (17, =0.05 in the plate, 77, =0.05 in the beam, point force applied at x=0).
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Figure 14. Transfer mobility for the plate (at x = 0.89 m and y = 0.45 m) in the built-up
structure as in Figure 3 (77, =0.05 in the plate, 77, =0.05 in the beam, point force applied at

x=0{).

4.4.3 Power balance

In Figure 15, the total input power and the net power transferred to the plate are

compared for the model in which the travelling wavenumber k. and the nearfield

wavenumber k, are considered separately. It is clear that the power is maximum at the

resonances of the built-up structure (see Figure 10). Comparing the two powers, at peaks just
above the anti-resonances of the plate, the plate receives most energy such as at the peaks at
20.9, 61.2, 120, and 201 Hz. Here the total input power and the net power transferred to the
plate have almost the same values. The magnitude of the beam motion becomes larger than
that of the plate at other peaks such as at 11.6, 25.4, 51.4, 83.6, and 117 Hz, and then the
difference between the two powers is larger. The ratio of the power transferred to the plate to
the total input power is shown in Figure 16. This has maxima close to 1 at the peaks of the

plate impedance (see Figure 9) i.e. the anti-resonances of the plate.
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Figure 15. Comparison of total input power inserted to the built-up structure shown in Figure

3 (n,=0.05 in the plate, 77, =0.05 in the beam, point force applied at x=0) and net

power transferred to the plate.

.
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Figure 16. Ratio of the power transferred to plate to the total input power shown in Figure 15.

When the frequency corresponds to an anti-resonance of the plate, most of the power
input is transferred to the plate. This is related to the high values of equivalent loss factor

mentioned above. Therefore, if the equivalent loss factor has a large value (and the plate is in
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anti-resonance) most of the energy is transferred from the beam to the plate and dissipated in
the plate, whereas the waves in the beam decay rapidly in amplitude.

Figure 17 shows the power balance for the beam. Two identical curves are shown,
indicating that the sum of the power transferred to the plate and the power dissipated by the

beam is equal to the total power input to the combined structure.

—— Total power input

— — Power  sptate T T OWO pam dissipated |

Power (Nm/s)

1077 E

:
10’ 10° 107

Frequency {Hz)
Figure 17. Comparison of power balance for beam of the built-up structure shown in Figure 3

(n,=0.05 inthe plate, 77, =0.05 in the beam, point force applied at x=0 of beam).

Figure 18 shows the power balance for the plate. Although the power transferred to the
plate is expected to be the same as the power dissipated by the plate, it can be seen that they
do not agree exactly. The dissipated power is obtained from the sum of the plate responses for
each of the different waves in the coupled beam and generally shows a lower level than the

net power transferred to the plate.
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Figure 18. Comparison of power balance for the plate in the built-up structure shown in Figure

3(n,=0.05 inthe plate, 77, =0.05 inthe beam, point force applied at x=0 of beam).

FEM can be a useful method for verification of the results shown in Figure 18. The
maximum strain energy of the plate of the FEM model is obtained by the sum of the strain
energies of all of the individual plate elements and the corresponding dissipated power in the
plate is calculated again by using equation (4.15). The analytical results shown in Figure 18
are compared with the dissipated power of the FE model in Figures 19 and 20 respectively.
Considering the troughs of the curves, especially in low frequency region, it seems that the
dissipated power in the analytical model is closer to the FEM results than the transferred
power. However, comparing the resonance peaks in the low frequency region and the average
levels at high frequencies, it seems that the analytical model transferred power is much closer

to the FE calculated dissipated power.
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Figure 19. Comparison of power balance for the plate in the built-up structure shown in Figure

3(n,=0.05 inthe plate, 77, =0.05 in the beam, point force applied at x=0 of beam).
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Figure 20. Comparison of the power dissipated in the plate in the built-up structure shown in

Figure 3 (17, = 0.05 inthe plate, 77, =0.05 in the beam, point force applied at x=0 of beam).

The relationship becomes clearer if the ratios between the transferred power, or the dissipated
power and the total input power are compared. These comparisons are shown in Figures 21
and 22. As seen in the figures, it seems clear that the agreement between the analytical
transferred power (Figure 21) and the FE result is much better than is the case for the
dissipated power (Figure 22). Therefore, it can be said that the analytical transferred power is

closer to the exact value,
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Figure 21. Comparison of power ratios (77, =0.05 in the plate, 77, = 0.05 in the beam, point

force applied at x=0 of beam).
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Figure 22. Comparison of power ratios (77, = 0.05 in the plate, 77, =0.05 in the beam, point
p nb p

force applied at x=0 of beam).

As explained before, the four waves in the beam have been considered separately and the
loading effect of the plate on the beam has been evaluated for each beam wave separately.
Therefore, it seems that the behaviour of the plate cannot be separately considered in terms of

the different waves of the beam, and a simple sum of the separate responses seems to be in error.
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It can be shown that, although the power transferred to the plate P, is different from

cam— plate

as in Figure 18, the transferred powers P, and

ko beam—» plate

that dissipated by the plate P,

late dis

P;;,.’bm_,},,m calculated separately for the coupled beam wavenumbers agree with the

corresponding values for the dissipated power Py .4 a0d Py .4 10 the plate, calculated
based on the corresponding coupled beam wavenumber. One example is shown in Figure 23,

and the dissipated power Fy, in the plate are

where the transferred power F, late.dis

beam— piate
compared. All of them are obtained when only the travelling wavenumber in the coupled beam
and corresponding plate wavenumber are considered. They show very good agreement. Small
differences in the figure seem to be due to the approximate impedance. Note that, therefore,

the strain energy is obtained approximately by using the sum of the strain energy of strips,

which means equation (4.14) is used instead of equation (4.12).
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Figure 23. Comparison of power balance for the plate in the built-up structure shown in Figure

3(n,=0.05 inthe plate, 7, =0.05 in the beam, point force applied at x=0 of beam).

Both results are calculated when only fc; is used in the power calculation. Hence it is found that
‘Pbeam--)plare # pr’a!e,dis (4 17)

but
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Thus if only one wave type is present in the beam, the power balance holds. It seems that the
calculation of the plate response based on the separation of the coupled wavenumber has

some limitation and further investigation is required. On the other hand, the good agreement

found in Figure 17 suggests that A, , .. could be used as an estimate of the power

dissipated in the plate.

4.5 Numerical analysis - plate in sliding condition

In the previous section, numerical calculations were given for the case when the opposite
edge of the plate parallel to the beam is pinned, giving a reflection coefficient 7=—1. In this
section, only the boundary condition shown in Figure 3 is changed from the pinned to the sliding
condition which means 7 =+1. Basically the characteristics of physical phenomena, for example
the relationship between the wavenumbers and the plate impedance and the damping effect of the
plate at its anti-resonances are the same as those in the previous section. Therefore, only the
values of, for example, the resonance frequencies and the anti-resonance frequencies in the
impedance will be changed due to the change of the reflection coefficient. Nevertheless, it is
important to include the responses of the structure for a sliding plate condition. This is because
this structural analysis can be used in the analysis of more complicated structures, for example the
structure consisting of two beams which will be discussed later in this report with its response
related to those of the present system. The numerical results are presented following the same

procedure as that in the previous section.

4.5.1 Wavenumbers

Figure 24 and Figure 25 show the wavenumber in the coupled beam and the corresponding
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wavenumber in the plate. They show that the assumption of the approximate impedance is still

kx

valid for the sliding boundary condition, as <k, and |k, \<k,.
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Figure 24. Comparison of the travelling wavenumber of the beam and the corresponding

wavenumbers of the plate of the built-up structure as in Figure 3 but with a sliding condition on

the edge opposite to the beam (real part only, 7, =0.05 in the plate, 77, =0.05 in the beam).
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Figure 25. Comparison of the nearfield wavenumber of the beam and the corresponding
wavenumbers of the plate of the built-up structure as in Figure 3 but with a sliding condition on
the edge opposite to the beam (real part only, 77, =0.05 in the plate, 73, =0.05 in the beam).
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Figure 26 shows the complex travelling wavenumber and nearfield wavenumber of the
coupled beam. Although the frequencies of the peaks themselves are different from the case of
the pinned condition, the relationship between the wavenumber and the impedance is the
same as in the pinned condition (see also Figure 28). Also, the ratio of the imaginary part to the
real part of the wavenumber is shown in Figure 27 which comresponds to an equivalent loss factor

as before.
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Figure 26. Comparison of the beam travelling and the nearfield wavenumber of the built-up

structure as in Figure 3 but with a sliding condition on the edge opposite to the beam.
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Figure 27. Ratio of the imaginary part to the real part of the travelling and the neartield

wavenumber in the coupled beam.

4.5.2 Impedance and mobilities

In Figure 28 the approximate impedance of the finite plate with damping is shown when
the corresponding travelling and nearfield wavenumbers in the coupled beam are considered
separately. Anti-resonance frequencies of the impedance due to the travelling wavenumber
k_, for example at 35.1, 84.5, 154 and 245 Hz, coincide with the frequencies of the peaks in
Figure 26.

Modulus of Tmpedance/m (Ns/mg)

:
10’ 10° 10

Frequancy (Hz2)

Figure 28. Approximate impedance of the finite plate as in Figure 3 but with a sliding

condition on the edge opposite to the beam (77, = 0.05 in the plate)
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The point mobility of the built-up structure for this configuration is shown in Figure 29.
The peaks in the plate impedance result in small troughs in the overall point mobility. The
result from the analysis and that from FEM agree well at low frequencies and their levels at
high frequencies are similar on average, the difference in natural frequencies again being due

to the assumption about the position of the beam neutral axis.

— — FEM

I Mobily | mésh)

.
10 167 10°

Frequency {(Hz)

Figure 29. Point mobility of the built-up structure with the sliding condition (77, =0.05 in the

plate, 77, =0.05 in the beam, point force applied at x=0). FEM results are shown for

comparison.

Another analytical result is shown in Figure 30, which is the point mobility when the
travelling wavenumber fcvx is used instead of the nearfield wavenumber ]Enf in the beam
response (equation (4.2)). As in the pinned structure case, it seems that both analytical results
are similar, but comparing the resonance frequencies, the result when lgnf is considered

seems to be closer to that of the FEM model, whereas the troughs are represented more

reliably using only 121.

39



107 T .
3 -—— Analysis |
— — FEM ]
4 4
4
g\
\
k S
\‘ o)
1072k I\ 0oy i i J
i \ o 1 N
\ I Wo! »
= b N k RO l
= SRR A \ ' \ ' v AN
E [+ P W X FR. W af A [ i A
= ' \ ' \ (A R P Y
= R 1 [ AR Y ' AR \
= ! ! v i 1 [EERTS Y] AR
= i ) ! i\ '| 1w il
= 1 I \ 1 LT i koGt "
= ) 1) 1 . i i bl 1
= ' vy \ i ! § sl -
= ! ! \ y i WA LU
v Y Wy Y \ Mo 1 L
. ! | ¥ \ W u v |
[ 1 N .
i v
.
4 :
10
10' 10° 10°

Frequency {Hz)

Figure 30. Point mobility of the built-up structure with the sliding condition (77, =0.05 in the
plate, 7, =0.05 in the beam, point force applied at x=0). Solid line represents the result

when lgx is used instead of lg,?f in equation (4.2).

4.5.3 Power relationship
The relationship between the power input and the power transferred to the plate and their

ratio are shown in Figure 31 and Figure 32 respectively.

— Total power input |
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Figure 31. Comparison of input power and transferred power in the built-up structure for the

sliding edge condition (77, =0.05 in the plate, 7, =0.05 in the beam, point force applied at

x=0)
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As explained for the pinned structure case, at the anti-resonance frequencies of the plate, such
as 35.1, 84.5, 154 and 245 Hz, most power is transferred to the plate. These frequencies again
coincide with those of the peaks of the equivalent loss factor based on the travelling

wavenumber k_ shown in Figure 27.
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Figure 32. Ratio of the power transferred to plate to the total input power shown in Figure 31.

5. Two parallel beams coupled to finite plate in a symmetric configuration
5.1 Synthesis from non-symmetric structure

A symmetric structure consisting of two identical beams and single rectangular plate is
examined here. In principle, the analysis performed and the results found should give some
indication of the behaviour of a fully framed plate structure. Although the latter is a more
complicated configuration, for example at the joint where two beams and a plate meet, the
interaction between the plate and beams may be expressible using similar assumptions for the
framed structure.

Consider a framed structure consisting of four beams that are identical apart from their
lengths, attached along all four edges of a rectangular plate. If it can be assumed that all of the

beams have infinite torsional stiffness, then the ends of them experience sliding boundary
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conditions. If two opposite beams are removed and a point force is applied at one end of the

beam, then the structure will be as shown in Figure 33. All of the dimensions follow Table 1

and the width of the plate (2L,) is 1.5 m.

2L,

Figure 33. A built-up structure consisting of two finite beams attached to a rectangular plate.

As the torsional stiffness of the beams is infinite, the edges of the plate attached to the
beams also have a sliding boundary condition. Now, by symmetry, the wave motion in the

plate generated by the forced beam can be described by a combination of the waves reflected

by a pinned condition along the centre line of the plate, parallel to the beam (y =L ), and the

waves reflected by a sliding condition along the same line. Therefore, the analysis performed
for the structure consisting of one beam and one plate in the previous sections can be used in
this analysis. No constraints are required at the other two edges of the plate without beams,
because in the present case the plate is assumed to behave like independent strips.

Figure 34 shows how the response of the symmeitric structure, excited by a force on one

side, can be synthesized from a combination of the motion of the structure which is

antisymmetric and that which is symmetric about the middle line (y = L,) of the plate.
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Figure 34. Response of a symmetric structure given in Figure 33 calculated from

consideration of the antisymmetric and symmetric motion.

If the point force is applied at the end of the beam (beam 1) of the symmetric structure,

the response of the left side (0< y <L) of the structure can be assumed to be the sum of the

antisymmetric response of the structure with a pinned condition and the symmetric response

of the same structure with a sliding condition at y =L . Meanwhile, the response of the right

side (L, £y <2L,) can be obtained from the difference between the results.

5 _“M (for OSySLy)’
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The force acting on the plate from the beam can be calculated from the transfer mobility of
the beam and the approximate plate impedance for the corresponding boundary condition. For

example, the force acting on the plate from beam 1 of the synthesized structure can be

expressed in the form of

p.pin

I ﬁ ’ ?
F(x) = ?ﬂ (‘chaml,pr'n (x)x Z + Z‘:eaml,sﬁdmg (x) X Zp,.\'liding ) . (52)

The force acting on the right-hand beam of the structure (beam 2) can also be
calculated in the same way. No net external force acts on beam 2 as the forces in the two

component models cancel.
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While such an approach is commonly used, for example in FEM [3], it should be
realised that the coupled wavenumbers in the two component models differ, as they depend on
different linc impedances. The assembly from symmetric and antisymmetric models, therefore

represents an approximation in the present analysis.

5.2 Power balance of the subsystems

The concept of power balance, discussed in section 4.3, can be extended to the structure
consisting of two beams as in Figure 33 and is shown in Figure 35. Because the external force

is applied only to beam 1, the power flows from beam 1 to beam 2 through the plate and the

power flowing between the subsystems such as B, ... represents the net transferred

power. Note that the dissipated power in the plate should be the difference between the power
transferred from beam 1 to the plate and the power transferred from the plate to beam 2. The

dissipated power in each subsystem is calculated in the same way as described in section 4.3.

Input

Pbeam] —plate F plate—heam
Beam 1 ™ Plate ™ Beam 2
Pbeaml,dr‘s P plate,dis Pbcamz,dix

Figure 35. Power balance between subsystems of the coupled structure as in Figure 33.
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5.3 Numerical analysis

The point mobility of the combined structure, calculated using equation (5.1a), is shown
in Figure 36. Comparing it with corresponding results from FEM, generally close agreement
is found. The mobility contains dynamic characteristics of both the pinned and sliding
systems; for example the peaks at 11.6, 25.4, and 51.4 Hz correspond to the resonance
frequencies of the pinned system (Figure 10) and those at 16.8, 40.4, and 68.7 Hz are the
resonance frequencies of the sliding system (Figure 29). The former modes correspond fo
anti-symmetric behaviour of the whole structure, and the latter to symmetric behaviour. Also,
it can be seen that the plate impedances corresponding to the travelling wave k_ (Figures 9
and 28) have an influence on the synthesized structure as well. At the anti-resonance
frequencies 57.1, 117 and 298 Hz of the pinned plate and 154 and 245 Hz of the sliding plate,
the point mobility of the combined system has small troughs. Some of the anti-resonances
seem to have no influence on the response of the structure, but this is because the response is
described by the sum of the two structures with different boundary conditions. For example,
the anti-resonance of the sliding structure at 84.5 Hz does not result in any trough because the

response is dominated by the resonance of the pinned structure at 83.6 Hz.

107"

=&
— - FEM

| Mohility | {m/sN)

0T . a
10 10 10

Freguancy (Hz)

Figure 36. Point mobility of the symmetric built-up structure as in Figure 33 (17, =0.05 in
the plate, 77, =0.05 in the beam, point force applied at x=0 of beam 1).
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Figure 37 shows the total input power and the power transferred between the subsystems.
Comparing the total power of the synthesized system with that of the non-symmetric systems
(Figures 15 and 31), it can be seen that the power includes the characteristics of both the pinned
and sliding conditions. The power transferred to the plate from beam 1 is mostly more than a
factor of 10 (10 dB) greater than the power transferred to beam 2 from the plate. The difference
between these two values can be considered to be the power dissipated in the plate, which will

be discussed later.

—— Total power input |
— = Powen omioapate |]

- POWer e _abeamz |1

Power (Nms)

Frequancy (Hz)

Figure 37. Comparison of total input power to the symmetric built-up structure as in Figure 33
and the net power transferred to the plate (ﬂp =0.05 in the plate, 7, =0.05 in the beam,

point force applied at x=0 of beam 1).

In Figure 38, the total power and the sum of the power transferred to the plate and the power
dissipated in beam 1 are compared. They show that the power input is completely accounted for

by the power transferred from beam 1 to the plate and the dissipated power of beam 1.
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Figure 38. Comparison of power balance for beam 1 (77, =0.05 in the plate, 73, =0.05 in

the beam, point force applied at x=0 of beam 1).

In the same way as for the power balance for beam 1, the power transferred into beam 2
should equal the power dissipated in this beam. Figure 39 shows these two quantities.
Although in most regions they agree well, it can be seen that there are small differences at
some low frequency minima such as at 30.9, 35.5 and 45.3 Hz.

The plate impedances are changed because Qf different boundary conditions along the
edge of the plate and, therefore, the coupled wavenumbers in the two component models
differ. Therefore, although the synthesis explained in section 5.1 is a common procedure, for
example in FEM [5], it seems that there is some limit in calculating the exact response of
beam 2 based on the coupled wavenumber of beam 1. That is, the coupled wavenumber of
beam 2 due to the plate coupling does not seem to be exactly the same as that of beam 1, and
therefore, this limits the accuracy of the response of beam 2 obtained using the symmetric and

antisymmetric responses.
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Figure 39. Comparison of power balance for beam 2 (17, =0.05 in the plate, 77, =0.05 in

the beam, point force applied at x=0 of beam 1).

Concerning power balance for the plate, although the dissipated power in the plate is

expected to be the same as the net power transferred to the plate, Figure 40 shows that the

power balance does not agree.
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Figure 40. Comparison of power balance for the plate (77, =0.05 in the plate, 77, =0.05 in
p P b

the beam, point force applied at x=0 of beam 1).
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The reason for this discrepancy was already explained in section 4.4. The difference seems
larger than before and is probably due to the combined effect of using the summation of both
the symmetric and antisymmetric response of the structure as well as having a different

impedance and wavenumber for the travelling and nearfield waves.

6. Conclusions

The procedure for the calculation of the coupled wavenumber mentioned in the previous
report [1] has been reviewed and the non-convergence of the wavenumber in the iteration
procedure at certain frequencies has been explained. As an alternative numerical approach, it
has been shown that Muller’s method can be applied to obtain the complex coupled
wavenumber based on the dispersion equation.

The general relationship between the coupled beam wavenumber and the plate
wavenumber has been derived when the nearfield wavenumber in the coupled beam is
considered, and the corresponding plate impedance has been explained. This shows that the
impedance equation is not changed regardless of wave types but the numerical values for the
impedance are changed.

Comparing the analytical results with those from FEM, it is seen that they agree closely
when the coupled waves are considered separately. Also, comparing the influence of the anti-
resonance of the plate due to the different wave types, it has been shown that the dynamic
characteristics of the coupled structure depend mainly upon the travelling wave. This can be
confirmed when the travelling wavenumber is substituted for the nearfield wavenumber,
instead of the latter being evaluated separately.

The power relationship reported previously [1] has been developed to consider the power
balance for the coupled structure consisting of a single beam and a plate. The power balance

for the beam is in good agreement, but for the plate there is some difference between the
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results for the power transferred to the plate and its dissipated power. When only one wave
type in the beam is considered separately they show good agreement. Therefore, it seems to
occur because the plate responses are calculated in terms of separate beam wave types, the
beam wavenumbers also being calculated independently. This problem requires further study.

Numerical results are also shown for the case when the plate edge of the non-symmetric
structure, consistihg of a single beam and a plate, has a sliding condition instead of the pinned
condition. Using a combination of these two non-symmetric models, an analysis of a
symmetric beam-plate-beam structure was synthesized when one of the beams is excited. The
response of the synthesized model shows features from both the symmetric and antisymmetric
response.

Good agreement is found between the point mobility of the symmetric beam-plate-beam
system obtained with the present method and that from FEM. Nevertheless, it seems that there
is some limit in obtaining accurate responses using this synthesis method. The power balance
for the undriven beam, the wavenumbers of which are calculated on the basis of the symmetric
and antisymmetric responses, shows some discrepancies while that for the plate shows quite
substantial differences.

Concerning further study, it is proposed to study the system of two beams coupled to a
plate using a Fourier transform technique [6]. This allows the behaviour to be constructed
from forced vibration at all wavenumbers rather than concentrating on the free wavenumbers.
Tt should also allow two dissimilar beams to be considered. The behaviour at a corner, where
two beams and a plate meet, is also a necessary consideration in further activities in order to

describe the response of a framed plate.
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Appendices
Appendix A. Nomenclature

A wave amplitude in a beam (m)

B wave amplitude in a plate (m)

C wave amplitude in a plate (m)

D beam stiffness (Nmz); plate stiffness (Nm)

E Young’s modulus of elasticity (N/m?); energy
f frequency (Hz)

F force per unit length (N/m)

h height of a beam

i J-1

k, uncoupled beam wavenumber

k, nearfield trace wavenumber in a plate

ks coupled nearfield trace wavenumber of a beam
k, uncoupled free wavenumber in a plate

k., coupled travelling trace wavenumber of a beam
k, travelling trace wavenumber in a plate

L, length of a beam (m)

L, width of a plate (m)

m,, mass per unit length of a beam (kg/m)

m:j mass per unit area of a plate (kg/mz)

P power

7 reflection coefficient (-)

t thickness (m); time

Vv velocity response (m/s)

w displacement (m)

x, v,z co-ordinates

52



XS o N

©

~

structural mobility (m/sN)

structural impedance per unit length (Ns/m?)
travelling wave attenuation coefficient (-)
structural loss factor (-)

Poisson’s ratio

density (kg/m3)

radian frequency (rad/s)
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Appendix B. Use of Muller’s method for the estimation of coupled wavenumbers

Previously {1], the coupled wavenumber k&  was calculated iteratively and erratic

fluctuations in the coupled wavenumber and corresponding plate impedance at some
frequencies were observed. In this appendix, the iteration procedure is explained briefly and a
numerical procedure is described to eliminate these fluctuations.

Consider the same structure consisting of a finite width plate and an infinite beam shown
in section 3.1 (see Figure 2). Corresponding dimensions are the same as those shown in Table
1. A pinned boundary condition along the opposite edge parallel to the beam is considered and

the beam is also assumed to be infinitely stiff in torsion.

The coupled travelling wavenumber k_ could be obtained iteratively using the

dispersion equation for the coupled beam which is given in section 3.
Dk} =mw’ ~iw Z),. (B.1)

where D, is the bending stiffness of the beam, m, is mass per unit length of the beam, @
is frequency and Z; is the approximate impedance of the plate. An initial value for &, can

be obtained if the semi-infinite width plate is assumed, and then the travelling trace

wavenumber k, of the finite plate can be obtained from the trace wavenumber relationship

k, =k k. (B.2)

where k_ is uncoupled wavenumber of the plate. Using the approximate plate impedance

corresponding to this value of k,  an improved estimate for the wavenumber k, is

calculated and this procedure is repeated. At most frequencies the wavenumbers converge
after a small number of iterations (for the present case a maximum of 19 iterations are used).

Nevertheless, it has been discovered that erratic behaviour occurs when the coupled
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wavenumber k,_ does not converge during the iteration procedure. Figure B.1 and Figure B.2
illustrate this effect for the case of a damped plate. Figure B.1 shows the result after 18
iterations and Figure B.2 shows that after 19 iterations. For further iterations these results are

repeated. Large differences can be seen around 18 Hz.

Wavenumber (-imag parf}

Wavenumber {Teal part)

L

xTXWW

10° 10°
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Figure B.1. Comparison of the wavenumber of the built-up structure consisting of an infinite

beam and a finite width plate (77, =0.05 in the plate). 18 iterations.

55



10 r T

Wavenumber {-imag part}

Wavenumber (real parf}

10°

1!
1
xomRFT

%

10’ 10° 10

Frequency (Hz})

Figure B.2. Comparison of the wavenumber of the built-up structure consisting of the infinite

beam and the finite width plate (77, =0.05 in the plate). 19 iterations.

In the figures above, kp represents the free wavenumber of the plate, k), the travetling

wavenumber perpendicular to the beam, &, the nearfield wavenumber of the plate in this

direction and k. the coupled wavenumber of the beam. It can be seen that at the first peak

near 18.6 Hz the results do not converge during the iteration. This corresponds to the first

anti-resonance of the plate. In this region it can be seen that k, becomes smaller and both
the real and imaginary parts of &, become larger (Figure B.2). Because the wavenumbers
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k. and k, are related through equation (B.2), the region in which the wavenumbers do not

converge occurs when k},, the wavenumber across the plate, becomes small and k_, the

corresponding travelling wavenumber along the beam becomes large. Therefore, it seems
that the iterative method used is not appropriate for some frequency regions, normally near
the peaks in the dispersion curves.

The solution to this problem can start from the dispersion equation (B.1). Because the

attached plate impedance Z; is a function of the wavenumber k_ the equation can be

rewritten as'
f(kx):D,,lEf—m;afHa) Z,=0. (B.3)

As explained in section 3.3, it can be assumed that there are four roots close to the
uncoupled beam wavenumber i:t,, and normally two of them fepresent propagating waves

and two nearfield waves. From the complex domain plot, these four roots can be identified.

One example for this is shown in Figure B.3. Contours in the figure represent equal values of

the function { f (!Ex)

given in equation (B.3) and the three circles in the figure represent roots
where l I (Ex )’ =0. Comparing this figure with Figure B.2, it can be said that the root near
Re(fcux) =3.4 is the correct value of the travelling wavenumber for the present case. A fourth

root occurs near Re(fgx) ==34,
Now, based on these complex domain contours and an appropriate numerical method,
the wavenumber %, which does not converge can be obtained by calculating the root of

this equation. Specifically to obtain such a complex root, Muller’s method [7] can be a good
approach. This method uses a quadratic equation which fits through three points in the

vicinity of a root and the proper zero of the equation is used as the estimate of the root. This
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process is repeated using the set of three points nearest the root being evaluated.

Imix)

Figure B.3. Complex domain contours (right quadrants) and the roots at 90.6 Hz.

The first three initial values are selected at the. complex domain contours such as Figure B.4,
basically by trial and error. From the contours the root can be inferred approximately. For
example, at 55.8 Hz near the second plate anti-resonance in Figure B.2, the root is expected

to exist at the centre of the circles in the contours of Figure B.4. From Figure B.2, it can be

inferred that the real part of ng is larger than 3 for this case and the root in the lower

quadrant is expected to be the centre of circle near Re(]::x)=3.6 in Figure B.4. Another

pole in the upper quadrant can be another wavenumber which is not appropriate for this case.

Therefore, the three initial values are selected by trial and error near this circle. The arrows
in Figore B.S show the procedure converging to find the root near Re(lgx) =~ 3.6 from initial

values.
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Figure B.4. Complex domain contours (right quadrants) and the roots at 55.8 Hz.

Figure B.5. Root-tracing calculated by Muller’s method in the complex domain (55.8Hz).

As can be seen from Figures B.1 and B.2, during the iteration the frequency at which the
wavenumber does not converge can be identified. If the calculated real part of the
wavenumber shows more than 0.1 % difference between the results of the 18™ and 19"
iterations, then that wavenumber is regarded as a wavenumber which does not converge. The
criterion 0.1 % was chosen by trial and error. For example, if 1 % is chosen then the number

of calculations required using Muller’s method can be reduced but results are not as good.
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Conversely, if 0.01% is chosen then more calculation is necessary but the results show little
improvement. On the basis of the 0.1 % criterion, 11 individual frequencies which do not

converge are found and Muller’s method is applied to obtain the exact root for the system.
Newly calculated wavenumbers ng and the corresponding plate wavenumbers are shown
in Figure B.6, from which it can be seen that the erratic behaviour has been eliminated. The
approximate plate impedance, which depends on i::)E , does not show any erratic fluctuation

either, as seen in Figure B.7.
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Figure B.6. Comparison of the travelling wavenumber k_ of the built-up structure as in Figure 2
(n,=0.05 in the plate) with the platc wavenumbers k,, &, ,and k, after using Muller’s method.
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Figure B.7. Approximate impedance of the finite plate (77, =0.05 in the plate) after using
Muller’s method.
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