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FIGURES

Figure 1. The partition of the entire number of measurement positions (or microphones) into

the reference and moving positions (or microphones).
Figure 2. A simulation model for computing the ranks of S, Sz, Sy, and S .

Figure 3. Effect of the number of reference microphones ((a) 3, (b) 4, (¢} 5) on variations of
rank of §,, (solid), rank of 8, (circle) and the normalised difference R,. There are 4

uncorrelated acoustic sources.

Figure 4. Principal auto-spectra (or singular values) of S,,, for the model (Figure 2) comprising

4 uncorrelated sources under the assumption of no output noise.

Figure 5. Virtual coherences of the 1st (black thick), the 2nd (grey thick), the 3rd (black thin),
and the 4th (grey thin) virtual acoustic pressure with respect to the physical acoustic pressure
sensed at the microphone 1 for the model in Figure 2 comprising 4 uncorrelated sources and

the assumption of no output noise.

Figure 6. A comparison of the directly calculated (solid) and estimated (dotted) Sy (a) auto-
spectra at the lst moving position, (b) auto-spectra at the 4th moving position, (c) (d)
magnitude and phase of cross-spectra between the lst and 4th moving positions, {(e)
normalised difference R;, (f) normalised difference matrix R, at kr,=1.65 (=600Hz,
r=0.15m). These results are for the model of Figure 2 comprising 4 uncorrelated sources and

the assumption of no output noise.

Figure 7. Geometry of a simply supported plate mounted in an infinite baffle used for the

computer simulation.

Figure 8. Principal auto-spectra (or singular values) of S,, for the simply supported plate
model (Figure 7) under the assumption of no output noise.

Figure 9. Virtual coherence of the virtual acoustic pressure with respect to the physical
acoustic pressure sensed at the microphone 1 for the simply supported plate model (Figure 7)
under the assumption of no output noise.

Figure 10. A comparison of the directly calculated (solid) and estimated (dotted) S, (a) auto-
spectra at the 1st moving position, (b) auto-spectra at the 4th moving position, {c) (d)
magnitude and phase of cross-spectra between the Ist and 4th moving positions, (e}
normalised difference R, (f) normalised difference matrix R, at kr,,=1.37 (=786Hz,
r=0.095m) which is the (2,3) resonant frequency. These results are for the simply supported
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plate model of Figure 7 under the assumption of no output noise.

Figure 11. Principal auto-spectra (or singular values) of S};}; for the model of Figure 2.

Figure 12. A comparison of the directly calculated (solid) and estimated (dotted) Sy, 1 (2)
auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position, (¢) (d)
magnitude and phase of cross-spectra between the Ist and 4th moving positions, (e)
normalised difference R;, (f) normalised difference matrix R, at kr,;=1.65 (=600Hz,
r.,=0.15m) for the model of Figure 2 with output noise. Four reference microphones are used.

Figure 13. A comparison of the directly calculated (solid) and estimated (dotted) Sj5, 1 (2)
auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position, (c) (d)
magnitude and phase of cross-spectra between the Ist and 4th moving positions, (e)
normalised difference R;, (f) normalised difference matrix R; at kr,=1.65 (=600Hz,
7,,=0.15m). These results are for the model of Figure 2 with output noise when 5 reference -

microphones are used.

Figure 14. Principal auto-spectra (or singular values) of Si?i—? for the model of Figure 7.

Figure 15. A comparison of the directly calculated (solid) and estimated (dotted) Sgz5 @ (@)
auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position, (c) (d)
magnitude and phase of cross-spectra between the 1st and 4th moving positions, (¢)
normalised difference R;, (f) normalised difference matrix R; at kr=1.37 (=786Hz,
7,=0.095m) which is the (2,3) resonant frequency for the simply supported plate model of

Figure 7 with output noise. One reference microphone is used.

Figure 16. A comparison of the directly calculated (solid) and estimated (dotted) Sgy4,: (2)
auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position, (c) (d)
magnitude and phase of cross-spectra between the 1st and 4th moving positions, (e)
normalised difference R;, (f) normalised difference matrix R, at krg=1.37 (=786Hz,
r=0.095m) which is the (2,3) resonant frequency. These results are for the simply supported
plate model of Figure 7 with output noise. Two reference microphones are used.

Figure 17. Experimental arrangement for the reconstruction of strengths of two volume

velocity sources.

Figure 18. Experimental arrangement for the reconstruction of volume velocities of a randomly

vibrating plate mounted in a finite baftle.

Figure 19. Six principal auto-spectra (or singular values) of Siﬂfv for the model (Figure 17}
consisting of the two volume velocity sources driven by one random noise generator and six

microphones.



Figure 20. Virtual coherences of the 1st to 6th virtual acoustic pressure with respect to the
physical acoustic pressure sensed at the microphone 1 in Figuire 20(b) consisting of the two

volume velocity sources driven by one random noise generator and six microphones.

Figure 21. A comparison of the directly measured (solid) and estimated (dotted) Sgy4r = ()
auto-spectra at the 1st moving position, (b) auto-spectra at the 2nd moving position, (c) (d)
magnitude and phase of cross-spectra between the Ist and 2nd moving positions, (e)
normalised difference R;, (f) normalised difference matrix R, at k2=0.1 (=400Hz, ¢=0.014m)
for the model of Figure 17 consisting of the two volume velocity sources driven by one

random noise generator and six microphones. One reference microphone is used.

Figure 22. Principal auto-spectra (or singular values) of Sﬁ:o for the model (Fig. 9.13)
consisting of the simply supported plate excited by one electromagnetic driver and four

microphones.

Figure 23. Virtual coherences of the 1st (black thick), the 2nd (grey thick}, the 3rd (black thin),
and the 4th virtual acoustic pressure (grey thin circle) with respect to the physical acoustic
pressure sensed at the microphone 1 in Figure 18 consisting of the simply supported plate

excited by one electromagnetic driver and four microphones.

Figure 24. A comparison of the directly measured (solid) and estimated (dotted) Sgrpr = (2)
auto-spectra at the 1st moving position, (b) auto-spectra at the 2nd moving position, (c) (d)
magnitude and phase of cross-spectra between the 1st and 2nd moving positions, (¢)
normalised difference R,, (f) normalised difference matrix Ry at ka=0.1 (=458Hz, 2=0.014m)
for the model of Figure 18 consisting of the simply supported plate excited by one

electromagnetic driver. One reference microphone is used.

Figure 25. A comparison of the directly measured (solid) and estimated (dotted) Sirir = (@
auto-spectra at the 1st moving position, (b) auto-spectra at the 2nd moving position, (¢) (d)
magnitude and phase of cross-spectra between the Ist and 2nd moving positions, (¢)
normalised difference R;, (f) normalised difference matrix R; at ka=0.1 (=458Hz, a=0.014m)
for the model of Figure 18 consisting of the simply supported plate excited by one

electromagnetic driver. Two reference microphones are used.



ABSTRACT

A method is presented for constructing, with the minimum number of physical measurements,
the full cross-spectral matrix of acoustic pressures associated with a number of measurement
positions. It is necessary to evaluate the elements of the matrix in question when using inverse
methods for the reconstruction of acoustic source strength spectra. The method presented uses
the concept of “reference microphones”. The relation between the rank of the cross-spectral
matrix of acoustic pressures and the number of uncorrelated acoustic sources is discussed and
used to determine the required number of reference microphones. A method is proposed for
selecting this number in the inverse problem in which information regarding acoustic sources is
unknown. The results of computer simulations are presented which explore the main features
of the technigue under various conditions. Experimental results are also presented which

validate the technique.
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1. INTRODUCTION

In order to reconstruct the cross-spectral matrix of acoustic source strengths by inverse
techniques, it is necessary to first measure the cross-spectral matrix of acoustic
pressures in the radiated sound field [1, 2]. This matrix can be constructed by
measuring directly all auto-spectra at the field points considered and the cross-spectra
between all pairs of field points. However, this often leads to a tedious and expensive
task, especially when the number of field points is large. For example, when we wish
to measure acoustic pressure auto- and cross-spectra at 100 field points by using dual
channel acquisition equipment, then the dimension of the matrix of acoustic pressure
auto- and cross-spectra becomes 100-by-100 and thus we need 5050 measurements
(=100x101/2, since this matrix is an Hermitian matrix). In this case, it is natural to
attempt to develop an alternative technique which constructs the full auto- and cross-
spectral matrix of acoustic pressures with a minimum number of measurements. This
report proposes such a technique using a small number of reference microphones.
Hald [3], in developing the application of Nearfield Acoustic Holography
(NAH), adopted the concept of the reference microphone, with a view to obtaining the
full cross-spectral matrix with a minimum number of measurements of acoustic
pressure cross-spectra on the “hologram plane”. We also employ the concept of the
reference microphone to construct the full cross-spectral matrix of acoustic pressures
with a minimum number of measurements on the “measurement plane”. Although our
work adopts the concept of the reference microphone as used by Hald, there are
important differences. First of all, here we divide “conceptually” the entire number of
measurement microphones (or number of measurement positions) into reference
microphones (or reference positions) and moving microphones (or moving positions)
on the measurement plane. However, Hald “actually” used reference microphones
which are located between acoustic sources and scanning microphones on the
hologram plane. In our work, the full cross-spectral matrix of acoustic pressures on
the measurement plane comprises constructions from both the reference and moving
positions (or microphones). On the contrary, in Hald's work, the full cross-spectral
matrix of acoustic pressures consists of only the auto- and cross-spectral matrix of

acoustic pressures measured on the hologram plane, not including that sensed by



reference microphones. Furthermore, our mathematical development differs from that
presented by Hald.

In this report, the theoretical development of this technique is presented by
employing the concept of the rank of a matrix. The heart of this technique is the proof
of the rank equality between the matrix of acoustic pressure cross-spectra measured at
the entire number of field points and a certain sub-matrix of acoustic pressure cross-
~ spectra. To verify the rank equality, it is first necessary to understand the relation
between the rank of the acoustic pressure cross-spectral matrix and the number of
uncorrelated acoustic sources, and this is therefore described. Also, some methods for
the estimation of the ranks of these matrices are discussed. They are eigenvalue
decomposition, singular value decomposition, principal component analysis and virtual
coherence. It is crucial, in securing the rank equality referred to above, to select
properly the number of reference microphones. Accordingly, a method is proposed for
selecting this number in an inverse problem in which information regarding acoustic
sources is unknown. In order to clarify the main features of the theory developed, the
results of computer simulations are presented for the problems in which acoustic
sources are either mutually uncorrelated or correlated and in which the effect of output
noise is also included. Finally this technique is validated from experiments which use
the acoustic pressures radiated from the two volume velocity sources and a simply

supported plate mounted in a finite baffle.

2. THEORETICAL DEVELOPMENT

2.1 USE OF REFERENCE MICROPHONES

When we assume that there is no measurement noise, the m-dimensional complex
vector p of desired acoustic pressures is related to the »-dimensional complex vector q
of acoustic source strength by using the m-by-n complex matrix H of transfer functions

and thus



_Pl (@) ]
p, (o)

| P () ]

[Hy (@) Hpy(w)
H, (w) Hy(w)

|, (@) H,p(@)

...... Hln (a)) 7
...... HZn (a))

...... Hmn ((D)_

_QI ()]
q,(®)

| g, (@)

(1

Now, as can be seen from Figure I, we conceptually partition the complex

vector p consisting of acoustic pressures sensed at the entire number of measurement

positions into a complex vector p. which contains acoustic pressures measured at u

reference positions and a complex vector p,, which consists of acoustic pressures

measured at v moving positions such that
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It is now assumed that the transfer function matrices Hy and Hy relate the acoustic

source strengths g to the acoustic pressures pr and py at the reference and moving

positions, respectively. Thus
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Accordingly, from equations (1), (4) and (5), we can express the relationship of P, P,

and p as
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where the entire number m of measurement positions is equal to sum of the number u«
of reference positions and the number v of moving positions, namely, m=u+v. With
the vector p partitioned as in equation (6), we can obtain the acoustic pressure auto-

and cross-spectral matrix S,, expressed as

PRPIL;I pRpﬂ :| ' %)

S,, = Ipp"'1= {
w
PuPr  PuPu
Now define the u-by-u matrix Sgg (reference position cross-spectral matrix), the u-by-

v matrix Spy (reference-moving position cross-spectral matrix) and the v-by-v matrix

Suu (moving position cross-spectral matrix) in the form

Srr =[pRp}RI] , (8)

Sem =[pRpi-lfI] ; %)
and

Suv =[Pubul . (10)

These matrices enable the m-by-m (or (u+v)-by-(u+v)) matrix Sp, given by equation

(7) to be expressed in the form

S.. S
S, = [ 0 RM} . (11)
SRM SMM



Note that the analysis resulting in equation (11) is for acoustic pressures that have a
deterministic time history. For acoustic pressures that have a time dependence which

can be regarded as random with stationary statistical properties, S, is given by

H H
PrPr PrPum ] ‘ (12)

H
S, =Epp"]= E{ " u
PuPr  PuPu

where the expectation operator £[e] is taken to mean the abbreviation of h_r)n %E[-].
T—d00

In this case, Sgg, Srw and S,y are expressed as

Sex = ElpePrl (13)

Sewc = Elpebul | (14)
and

Swne = Elpypul (15)

Using these matrices, we again have the same matrix Sp, as equation (11).

To construct all the components of S,, given by equation (11), we undertake the
following procedure: we first measure the reference position auto- and cross-spectral
matrix Sgr and the reference-moving position cross-spectral matrix Sgy, then calculate
the moving position auto- and cross-spectral matrix Sy from the measured Sgz and
Sru. Hence the measurement of only Sgr and Sgy is required in constructing the full

matrix of S,,. In the next section we describe how to calculate the matrix Sy

2.2 THE MOVING POSITION CROSS-SPECTRAL MATRIX Sy

Let the first # columns of Sy, be represented by m-by-u (or (u+v)-by-u) matrix S, and

the remaining columns m-by-v (or (u+v)-by-v) matrix S,, respectively. Thus,

SRR ]
S, = , (16)
‘ [S‘SM_
.
S, = { R (17)
SMM_




Therefore, the matrix S,, can be expressed as

Spp=1[81 S2] . (18)

To calculate the moving position auto- and cross-spectral matrix Sy from the
measured matrices Sgg and Sgy, we have to assume the rank equality of §; and S,,,
1.e.,

rank(S,,) =rank(S;) . (19)

If this is the case, since the matrix S, does not contribute to the rank of the matrix S,
the columns of S; in equation (18) can be expressed by linear combinations of the
columns of 8. Accordingly (see reference [4]), there exists a u-by-v matrix T enabling

S to be written as

Sz = SlT ! (20)

Using equations (16) and (17), equation (20) can also be expressed as

SRM =SRR T N (2’1)
Sum=Sh,T . (22)

Arranging equation (21) with respect to T and substituting this into equation (22), we

can find the moving position auto- and cross-spectral matrix Sypy. Thus

Sum = Shy Siz Sru - (23)

Note that equation (23) is valid only when Sgr is of full rank, otherwise the

generalised inverse has to be employed instead of the direct inverse. Thus

Consequently, in constructing the full matrix S,,, if we use this procedure rather than
direct measurement, then we can take advantage of a great reduction in the number of
required measurements. That is to say, while the number of required direct
measurements is (u+v)(ut+v+1)/2 (because the dimension of S, is (u+v)-by-(u+v) and
this is an Hermitian matrix), the technigue proposed here needs only u(u+1)/2

(because the dimension of Sgg is #-by-u and this is an Hermitian matrix) plus uy



(because the dimension of Szy is u-by-v). When u=5 and v=95, for example, the
number of required direct measurements is 5050, but this technique reduces that to
490. Of course, these numbers are computed under the condition in which we use data
acquisition equipment with dual channels, and therefore when we use multi-channel
equipment, the number of required measurements will be reduced. However, in
utilising equations (23) or (24), it should be emphasised that it is a prerequisite to

validate the assumed rank equality between S; and S,

3. A SIMPLE EXAMPLE

To help understand the technique using reference microphones, we consider a
simple example consisting of one acoustic source and three field points numbered 1, 2

and 3 such that

Py H
p=|p, |=|H, g=Hq . (25)
P3 H,

For this model, the matrix S, is written by

Sl] S12. S13
S, =S5 S S | (26)

pr
* *
SlS 823 S33

where superscript * denotes complex conjugate. Since there is only one source, it is
sufficient to use only one reference microphone (we will discuss in detail in section 6
how to choose the number of reference microphones when there are more sources). In
such a case, Sgp consists of (1,1) component of S,p, Sgy comprises (1,2) and (1,3)
components of S,,, and Syp consists of (2,2), (2,3), (3,2), and (3,3) components of §,,.

Now we wish to show how the submatrix Sy is calculated from the measured
submatrices Sgr and Sgpy. At first, we measure one auto-spectrum S;; at the field point
1 and two cross-spectra Si, and S5 at the field points 1, 2 and 1, 3. In this case, the

matrices S), §; are given by



St S5 Sia
S =S|, S, =18m Sy - (27, 28)
Si3 533 3

(Note that although here §; is not a matrix but a vector, we still use uppercase
representing a matrix, in order to match the notation given in section 2). For this
model, the rank of §; is unity because the dimension of S; is 3-by-1. Also, the rank of
S,p 1s determined by considering the relationship, HSquH=S,,p (see equations {6) and
(7)), between the cross-spectral matrix S,, of acoustic source spectra and the cross-
spectral matrix S, of acoustic pressures. In this model, the dimensions of H and S,
are respectively 3-by-1 and 1-by-1 (i.e., scalar) and thus their ranks are one.
Accordingly, the rank of §,, is one. Consequently, the assumption of rank equality
between S; and S, is validated by using only one reference microphone. Note that in
section 5 we will describe how we estimate the rank of S, from HS,H"=S,, for
matrices of larger dimensions.

The dimension of 8, is 3-by-2 and its rank must be equal to two (i.e., full rank)
or less than two (i.e., rank-deficient). However, for this model, the rank of submatrix
S» is unity, because the rank of the entire matrix S, is unity. Recall that the rank a
matrix is defined as the order of the largest non-singular square submatrix which can
be formed by selecting rows and columns of this matrix. According to equation (20),

S, can be expfessed as 8, and T and thus

Si2 S5 S
S, =8, S = sz T=§T . 29
S;:«; S13 Sl*3

The matrix T is calculated by using the generalised inverse of S, ie,, T=8/8§,.

Since (S]'S,) is not singular, 8 =(81'S,)™'S]' and therefore

T [SllSl?_ +81,8 + 81385 511515 + 51255 +S13SS3]_

= (30)
54 "‘IS12|2 +|Sl3|2




Finally the moving position auto- and cross-spectral matrix Sy 1s calculated by using
equation (23). Thus

. Spll Sy Sxn
Swum = :S}RIMSRIRSRM=|: ?}E‘"[Slz Sia]:[ . (3

13 -t Sz3 533

This calculated Sy coincides with the submatrix we wish to find consisting of (2,2),
(2,3), (3,2), and (3,3) components of the matrix S,,. The last equality of this equation
is explained in the Appendix for both cases of deterministic and stationary random

pressure fluctuations.
4. ESTIMATION OF THE RANK
4.1 INTRODUCTION

As described in section 2, the prerequisite for using the technique employing
reference microphones is to verify the assumption of rank equality of the two matrices
S; and Sj,,. So, in association with this, it is now worthwhile to describe methods that
can be used for rank estimation. When identifying the rank of a matrix, SVD is
considered as the most reliable tool regardless of whether this matrix is square or
rectangular (i.e., the rank of a rectangular or square matrix is equal to the number of
nonzero singular values). For a square matrix, its eigenvalue decomposition (EVD)
can also be utilised as a rank estimator (i.e., rank of a square matrix is equal to the
number of nonzero eigenvalues). Other estimators, principal component analysis
(PCA) and virtual coherence (VC) can also be adopted and thus in this section the

application of these concepts to the identification of the rank of S,, is described.
4.2 PRINCIPAL COMPONENT ANALYSIS

PCA was originated by Pearson [5] and developed by Hotelling [6] for the
particular purpose of analysing correlation structures. This is a statistical technique
falling under the general heading of factor analysis and consists of identifying an

orthogonal (or unitary) matrix which transforms the original (or physical) signals to a



new set of uncorrelated signals which are termed the principal components. These
uncorrelated signals are linked with the original signals via linear combinations. When
applying the PCA to set of spectra it is called principal spectral analysis (PSA).

Now we wish to determine the rank of the acoustic pressure auto- and cross-
spectral matrix S,, by the PSA. This is based on the EVD of §,, and it can be

expressed as [4]

Q'S,Q=A, (32)

where Q is a unitary matrix containing all eigenvectors of S, and A is the diagonal
matrix consisting of the eigenvalues of S,, arranged in descending order. In this
expression, S, is said to be unitarily similar to A and thus the rank of S, corresponds
to that of A. Recall that two “similar” matrices have the same ranks [4]. Furthermore,
because A is diagonal, its rank is equal to the number of nonzero diagonal elements.
Thus the rank of any Hermitian matrix is the total number of its nonzero eigenvalues,
including repetitions. Since in our problem S,, is a positive semi-definite Hermitian
matrix, its eigenvalues are real and non-negative and its rank obtained by the PSA is
the number of nonzero eigenvalues identified by its EVD. The matrix A is regarded as
the matrix of the principal auto-spectra of virtual acoustic pressures which are
mutually uncorrelated because off-diagonal terms of A are all zeros. Accordingly, the
rank of S,, is equal to the number of principal auto-spectra of virtual acoustic
pressures. The principal components of S,,, namely the principal auto-spectra of
virtual acoustic pressures can also be interpreted as the components of the total

energy.
4.3 VIRTUAL COHERENCE

Coherence functions such as ordinary, partial and multiple coherence are very
useful tools for the problem of vibration and noise source identification [7]. In
practice, however, the approaches using these functions have some limitations. For
example, the ordinary coherence function cannot be used in identifying sources for
systems with partially coherent sources. It is also difficult to apply the partial

coherence function to attributing energy from particular sources to the output when we

10



have no prior knowledge of the system such as the number of sources present in the
system. The multiple coherence function can be employed to attribute parts of
coherent output energy to particular sources only when sources are incoherent with
each other. For this reason, the VC was developed to describe a system in which all
inputs may be partially or fully coherent with each other and the nature of the signals
is not well known.

The ordinary coherence function is utilised in order to apportion the measured
output power to the inputs that are assumed to be totally independent. Most signals,
however, are not independent in practice. Accordingly, after transforming these
signals into mutually uncorrelated signals (these are virtual signals) by PSA, then we
can employ the concept of the ordinary coherence function. VC is defined as the
ordinary coherence function between the virtual signal and original (or physical)

signal as follows. Equation (32) can be rewritten as

S, =QAQ " . (33)

Any square matrix can be expressed by the EVD and also the SVD, and since S, is a
square positive semi-definite Hermitian matrix, its eigenvalues are equal to its

singular values. So equation (33) can also be expressed as

S, =QzQ" | (34)

where X is the matrix consisting of the singular values of S,, on its diagonal and as
stated before, these values are tantamount to the principal auto-spectra of virtual
acoustic pressures. We now denote v as the column vector comprising virtual acoustic
pressures. Thus

v (@)
v, (W)

= (35)
Vy (@)

where v{@) denotes the ith virtual acoustic pressure at a particular frequency @ and

subscript y is the total number of virtual acoustic pressures. The virtual and physical

11



acoustic pressure vectors, v and p, can be interpreted as the input and the output
respectively. In this case if we use a unitary matrix Q as the transfer function relating
these, it follows that
p=Qv , (36)

and

Spp=Q8nQ" . (37)
where S, is the auto- and cross-spectral matrix of the “physical” acoustic pressures
and S,, is the auto-spectral matrix of the “virtual” acoustic pressures. Comparing
equations (33), (34) and (37), it is appreciated that §,,=A=Z. Also, the cross-spectral
matrix S,, between the virtual and physical acoustic pressures is related to the matrix
Sw by

S,y =8 Q" . (38)

Therefore the virtual coherence, defined as yf_p_(a)) , between the virtual acoustic
(L)

pressure vi{@) and the physical acoustic pressure p;(@) can be expressed as

2
S, (@)
SV;'V.' (CO) SP;‘P; (CO)

iy, (@) = (39

where S, , (@) corresponds to the iith component of the singular value matrix X or the

eigenvalue matrix A of S,,. In other words, ’y%rp_(a)) indicates the degree to which
. )

S i, (o) results from the virtual acoustic pressure v(@). Note that }/\2,_[,} () has the

value between 0 and 1, and the summation of the contributions of all virtual signals to

1'd
the jth physical signal is 1, that is, Zyﬁ_p_ () = 1. Note also that if the sum of parts
=1

(say, K) of V virtual coherences with respect to a physical signal approaches unity it

indicates that there are K dominant uncorrelated signals.
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5. RELATION BETWEEN THE RANK OF ACOUSTIC PRESSURE CROSS-
SPECTRAIL MATRIX AND THE NUMBER OF
UNCORRELATED ACOUSTIC SOURCES

It has been seen from the considerations presented above that the rank of a
cross- spectral matrix indicates the number of uncorrelated signals. As described
before, in a system with n acoustic source strengths g which may be mutually
uncorrelated or correlated and m acoustic pressures p, the relationship between the
cross-spectral matrices of g and p is expressed as S,,=HS, H". In this equation, the
rank of 8,, indicates the number of uncorrelated acoustic source strengths and the rank
of 8, is determined by the nature of the matrix H. In other words, if H is of full rank,
then the rank of S,, is equal to that of S, Note that premultiplication or
postmultiplication of any matrix by any non-singular (i.e., full rank) matrix does not
alter its rank [8]. Thus, if m microphones are geometrically arranged for H to be of

full rank, the rank of S,, will correspond to the number of uncorrelated acoustic
source strengths. Meanwhile, comparing SPP-—-HS%.HH and Spl,,=QAQH (equation (33)),
there is an obvious similarity between these. In association with Spp=QAQH, it was

stated that the rank of S,, was equal to the rank of A, without any constraint, because

of the fact that Q is a unitary matrix and so is of full rank. In the relationship

S,,=HS H", the matrix H is used in a similar fashion to the matrix Q used in the
relationship S,,=QAQ . Therefore, based on the similar reasoning, it can be

understood again that the rank of S,, corresponds to the rank of S, if and only if H is

of full rank.

6. RANK EQUALITY AND THE CHOICE OF THE NUMBER OF
REFERENCE MICROPHONES

This section is devoted to a discussion of which submatrix of Spr and Sgy

determines the rank of S;. Also, a method is proposed for the selection of the optimal

number of reference positions (or microphones) which ensures the rank equality
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between the matrices S,, and S; and thus enables the construction of the full acoustic
pressure cross-spectral matrix Sp, with minimum measurement effort.

Let us first consider the definition of S; given by equation (16). The dimension
of §; is m-by-u with u<m (recall that m and u represent the entire number of
microphones and the number of reference microphones, respectively) and thus

rank(S;)<u. In addition, 8, consists of two submatrices, Sgx (¢-by-1) and 83, (v-by-u)
{equation (16)). Therefore when u<v, rank(Sge)<u, rank(Sy, )<w, when wu>v,
rank (Sgr)<u, rank(Sy,, )<v, and when u=v, rank(Sgp)<ut, rank(S ¢, )<u. (Recall that if a

matrix A is of m-by-n, rank{A)<min(m,n)).
Now we wish to check which of two submatrices, Sgr and Sgy, determines the

rank of §;. Note that the rank of 8%, corresponds to that of Sy, because an

elementary operation such as conjugate transpose does not alter the rank of a matrix.
Firstly, it should be pointed out that the case of #>v is unusual. In such a case the
number of reference microphones is larger than that of the moving microphones and is
of little practical relevance, although we have considered this case here for the sake of
completeness. Denoting the number of uncorrelated sources as w, we can consider five
possible combinations of u, v and w: w>u>v, u>v>w, u>w>v, w=u>v, u>v=w. For
these, ranks of the matrices of Sgr, Sem, S1, and S, are given by cases 1 to 5 of Table
1. In computing these ranks, we have to recall two things. One is that rank of the
cross-spectral matrix is the same as the number of the uncorrelated sources. The other
is that in such a case as u>v, rank(Sge)<u and rank(Sgy)<v. Secondly, for the case of
u<v (this is the usual case), rank(Sgz)<u and rank(Sgw)< u. In this case, there are also
five possible combinations of #, v and w: u<v<w, w<u<y, u<w<v, w=u<v, and u<yv=w.
The ranks of the matrices of Sgr, Szu. 81, and S, are given by cases 6 to 10 of Table 1.
Finally, for the case of u=v, we can consider three possible combinations of u, v and
w: u=v=w, u=v<w, and u=v>w. The ranks of the matrices Sgr, Szu. 81, and §,, are
given by cases 11 to 13 of Table 1. According to Table 1, it is evident that rank(S;) is

always the same as rank(Sgg).

Table 1. Ranks of Sgg, Sk, Spp, and Sy, where », v and w are the number of reference

microphones, moving microphones, and uncorrelated acoustic sources, respectively.
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No. of microphones Ranks of matrices

Case No. u v Ser Sem Sop S|

1 w>n w>y u v w I

2 w<u w<y w w w W

w>v 3 w<u WV w % w w
4 w=u w>y w v w w

5 w<u w=y w w w w

6 w>u WSV i U w U

7 w<u w<y W w w w

U<y 8 w>u w<y I i w U
9 w=it wy w ] w w

10 w>u w=y 7] i w M

11 w=u w=u w w w w

U=y 12 WL w>u I i w i
13 W< W< w w w w

An example of the determinination of the ranks of Sz, Srw. 81, and Sy, with different
number of reference and moving microphones (i.e., # and v) is shown in Table 2.
These results have been obtained from numerical simulations using the model of
Figure 2. In this model it is assumed that there are four mutually uncorrelated acoustic
point monopoles radiating sound in a free field. For the cases 2, 3, 5, 7, 8, 9, we use
this model with sixteen microphones. For the cases 1, 4, 6, 10, five microphones
(numbered 1 to 5) are used. Also, we use this model with eight microphones
(numbered 1 to 8), six microphones (numbered 1 to 6), and ten microphones
(numbered I to 10) for the cases 11, 12, 13, respectively. In this model, the four

sources are made “mutually uncorrelated” (i.e., w=4) by assigning four different

normally distributed random signals having variances 0'12=1, o3=4, 0‘% =9, and

o3 =16 as four acoustic source strengths. It also is assumed in this model that there is

no output noise. As an example, consider the case of =5 and v=11 (case 7). In this
case the ranks of Sgz and Sgy will be less than or equal to 5. However, since the

number of uncorrelated acoustic source strengths is 4, the ranks of these two matrices
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can not exceed 4. Also, since the rank of the cross-spectral matrix equals the number
of uncorrelated sources, the ranks of these two matrices both become 4. The other

cases can be explained similarly.

Table 2. Ranks of Sgg, Sgm, Spp, and S; obtained using the models of Figure 2, where

the number of uncorrelated source strengths is 4 (i.e., w=4).

No. of microphones Ranks of matrices
Case No. u v Six Sru Sy S,
1 3 2 3 2 4 3
2 11 5 4 4 4 4
w>y 3 13 3 4 3 4 4
4 4 1 4 1 4 4
5 12 4 4 4 4 4
6 2 3 2 2 4 2
7 5 11 4 4 4 4
u<y 8 3 13 3 3 4 3
9 4 12 4 4 4 4
10 1 4 1 1 4 1
11 4 4 4 4 4 4
U=y 12 3 3 3 3 4 3
13 5 5 4 4 4 4

Therefore, it is clear that the rank of 8, is determined by the rank of Szz. Thus in
order to prove the rank equality of S, and S,,, it is necessary to choose the number of
reference microphones appropriately. As a consequence, since the rank of S, is equal
to the number of uncorrelated sources, w, the number u of reference microphones
must be equal to or more than w. This can be checked from the cases 2,3, 4, 5,7, 9,
11, and 13 of Tables 1 and 2. In other words, since the rank of S,, equals the number
of significant singular values, we have to choose the number of reference microphones
to be equal to or greater than the number of the significant singular values of S,,,..

It should now be noted that the application of this conclusion regarding the
number of required reference microphones is not difficult in a “forward problem” in

which we have prior knowledge of the number of uncorrelated acoustic sources.

16



However it is in general problematic in an “inverse problem” because the number of
uncorrelated sources is unknown. Accordingly, in order to properly select the number
of reference microphones in an inverse problem, we propose the following approach.
At first, select P reference microphones and then calculate the rank of Sy obtained
from measurements. For convenience denote this rank as Kp. After that, decrease the
number of reference microphones by 1, i.e., P-1 and calculate again the rank of Sgx
and denote this rank as Kp.;. Then check whether Kp and Kp.) correspond to each

other or not:

1) If Kp and Kp.; are equal, repeat the further decrease of the number of
reference microphones and calculation of rank of Sgp until Kp; and
Kpi1 become different. If this occurs, then Kp; is the number of
significant singular values of S,, and thus is the required number of
reference microphones which provides the rank equality of S, and S,
and at the same time the minimum number of measurements of
acoustic pressure cross-spectra;

2) If Kp and Kp.; differ, increase P by 1, and calculate again the rank of
Skr, Which is denoted by Kp, . Check whether Kp and Kp,; are the
same. If so, Kp is the number of significant singular values of §,, and is
thus equal to the required number of reference microphones. If this is
not so, repeat the further increase of the number of reference
microphones and calculation of rank of Sgp until Kpy and Kpyy
become equal. If this happens, then Kp,; is the number of significant
singular values of S,, and therefore the optimal number of reference

microphones which we wish to find.

Consider a simple example using the model of Figure 2. Assume that there are
four uncorrelated acoustic sources and thus four significant singular values of S,;. In
addition, no output noise is assumed. As a first trial, we select 7 reference
microphones and find the rank of Sgz, which is denoted by K5. Then decrease the
number of reference microphones by 1, i.e., 6, and find again the rank of Sgr, which is

denoted by K. In this case, Ky=K¢=4. So, repeat the further decrease of the number of
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reference microphones and identification of the rank of Sgg. Finally, we can find Ky
(=4) 2 K3 (=3) and therefore we can realise that the required number of reference
microphones is 4. Now let us consider the case in which we use 2 reference
microphones, instead of 7 reference microphones, as a first trial. Calculate the rank of
Szr, which is denoted by K. Then reduce the number of reference microphones by 1,
i.e., to 1, and calculate the rank of Sgg, which is denoted by K;. Comparing K> and X,
reveals K, (=2) # K| (=1). Accordingly, increase the initial number of reference
microphones by 1, i.e., to 3, and calculate the rank of Sge, which is denoted by Kj.
Check whether K, and K3 are the same. In this case, K;=2 and K3=3 and so they are
different. Repeat the further increase of the number of reference microphones and
calculation of rank of Sge. In the final analysis, we can identify Ks=Ks=4 and therefore

we can recognise that the required number of reference microphones is 4.
7. SIMULATION RESULTS I : NO MEASUREMENT NOISE
7.1 UNCORRELATED ACOUSTIC SOURCE STRENGTHS

To clarify some features of the theory developed above, we conduct a set of
computer simulations. The first simulation is carried out using the model illustrated in
Figure 2. Recall that in this model four acoustic sources are made “mutually

uncorrelated” by assigning four different normally distributed random signals having

variances, 0'12 =1, O‘% =4, G% =9 and Gf; =16 as the four acoustic source strengths. It is

also assumed in this model that there is no measurement noise. Before we calculate
the matrix Sy from the measured mairices Sgg and Sgy, we first have to check the
rank equality of §; and S, given by equation (19). As already mentioned, the rank of
S, is determined by the rank of Sz, and the number of necessary reference
microphones has to be at least equal to the number of uncorrelated acoustic sources or
the number of significant singular values of Sp, (here it is 4). Comparison of the ranks
of S, and 8 plotted in the left hand part of Figure 3 supports this statement.

The effect of the number of reference microphones on the accuracy of the

calculation of Sy is now investigated. As a measure of accuracy of calculation, we
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use the normalised difference R; between the directly measured and calculated Sy
defined as
R = H(S?\f‘[r\d)rmm i (SMM)cai”e (40)

1 P

”(SMM)mea”e

where subscripts e, and ¢ denote “measured” and “calculated” and Il [l, denotes the
Euclidean norm of the matrix. Note that, strictly speaking, in the simulation results the
terms “measured” and “calculated” mean “directly calculated” and “estimated”,
respectively. The results of the right hand part of Figure 3 reveal that the accurate
calculation of Sy can be achieved only when the rank equality between S,, and 8, 1s
satisfied. That is, when using 3 reference microphones, the normalised difference R is
over 107, whilst for the cases of using 4 or 5 reference microphones it is below 107",
On the other hand, the fact that the rank of §,, is 4 also indicates that there exist 4
principal auto-spectra of virtual acoustic pressures. The result of Figure 4 emphasises
this point. The rank of S, can also be identified from the VC. The results of Figure 5
illustrate the VC for the 1st, 2nd, 3rd and 4th virtual acoustic pressure with respect to
the 1st physical acoustic pressure. Their sum is unity and this signifies that there are
no other virtual acoustic pressures. It is therefore concluded that the rank of this model
is 4.

From the results of Figure 3, we select four microphones as reference
microphones (or reference positions) for the model of Figure 2. In this case, the
dimensions of the matrices Sgg, Syw and Sp, are 4-by-4, 12-by-12 and 16-by-16,
respectively. Based on the rank equality of S, and S;, we can now estimate Sy, using
equation (23). The results of Figure 6 illustrate that acoustic pressure auto- and cross-
spectra estimated at the 5th and 8th positions which correspond respectively the 1st
and 4th moving positions are in good agreement with those calculated directly. The
normalised difference R; reveals that there is a successful prediction for all moving

positions. Also, Figure 6 shows the normalised difference matrix R, defined by

R. = ](SMM)meu - (SMM)call (41)
’ [(Syomea! ’
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where | | denotes the absolute value. The values presented in Figure 6 are for kr,=1.65
(=600Hz, r=0.15m). According to the above results, it is obvious that the technique
using reference microphones to construct the full auto- and cross-spectral matrix of
S, is reliable in accuracy. For the simulation model of Figure 2, while direct
measurements of acoustic pressure auto- and cross-spectra are required 136
(=16x17/2) times, when we use this technique the number of required measurements
is only 58 (=4x5/4 + 4x12). So this technique is seen to be a fast and economic tool

for obtaining the full auto- and cross-spectral matrix S, of acoustic pressures.
7.2 CORRELATED ACOUSTIC SOURCE STRENGTHS

Now consider the case of a model having correlated sources. As an example, we
use a simply supported plate mounted in an infinite baffle as shown in Figure 7. The
plate is excited at a point by a normally distributed random force. As a result, the
surface velocities of the plate generate the acoustic field. The plate is discretised into
16 contiguous small rectangular elements each of which is regarded as a point
monopole source. It is also assumed that there is no output noise.

Since a single force excites this plate, it is anticipated that there may exist only
one uncorrelated acoustic source among 16 discretised acoustic sources. So we use
only one microphone_ numbered by 1 in Figure 7 as the reference microphone. Thus,
the rank of S, is equal to that of S, and they are of rank 1. It means that there will be
one principal auto-spectra of S, and this is ensured from Figure 8. Thus, there exists
only 1 virtual acoustic pressure. Figure 9 illustrates the virtual coherence of the virtual
acoustic pressure with respect to the physical acoustic pressure sensed at the
microphone numbered by 1 in Figure 7. Only 1 virtual acoustic pressure has unity as
the value of virtual coherence. Note that the virtual coherence with respect to the
physical acoustic pressures sensed at the other microphones showed the same results,
although they are not presented here. With the achievement of rank equality, the

estimated magnitudes and phases of the components of S,,, exhibit an excellent

agreement with the directly calculated values, as plotted in Figure 10. Note also that

auto- and cross-spectra of Figure 10 were obtained from the acoustic pressures
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normalised by unit force and so the shape is smooth despite the excitation by a
normally distributed random force.

From the results presented up to now, it is clear that the technique using
reference microphones is applicable regardless of the nature of sources (ie.,
uncorrelated or correlated). In addition, this technique will be more advantageous for
models having highly correlated sources rather than that having fully uncorrelated
sources, because the former requires fewer reference microphones, compared with the

latter.
8. SIMULATION RESULTS II: WITH OUTPUT NOISE

We now investigate the performance of the technique using reference
microphones for a more realistic model where output noise contaminates the acoustic
pressures. In measuring the cross-spectral matrices, we make an assumption that the
output noise is independent, identically distributed for all sensors, and additive. This
implies that the noise will be equally distributed over all the components of §,,.
Accordingly, the matrix §,, and its submatrices Sgr, Sem. Swm. Si. and 8, are

transformed into S.., S S S

50 Sgaa s Si’ and S;, respectively (where * signifies

RV Mbma?

data contaminated by the output noise). From these measured matrices S, and Sy, .

the moving position auto- and cross-spectral matrix Sy, is obtained by following the

M
procedure used in reaching equation (23) or (24). Thus when the matrix S;. is of full
rank

H -
Sua = St Sar Sent (42)

or when the matrix Sﬁﬁ is rank-deficient

Sqsr = Shir Siz Saan (43)
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8.1 UNCORRELATED ACOUSTIC SOURCE STRENGTHS

In order to observe the effect of output noise corrupting the acoustic pressures
on the accuracy of calculation of the moving position auto- and cross-spectral matrix,
the model shown in Figure 2 is again used. Output noise is added into all components
of acoustic pressure auto- and cross-spectra S,,. Like the previous case which was not
concerned with the effect of noise, we select 4 reference microphones as a first trial.
(Recall that in the absence of output noise, the use of 4 reference microphones

provided a good estimation of S, , as illustrated in Figure 6). In this case, the rank of

S .. is 5 (note that the rank of S,, was 4) whilst the rank of Si still is kept unchanged

op
4 because 4 reference microphones are used. The change of rank of the matrix § P is

of course the consequence of the addition of output noise auto-spectra. In other words,

the number of significant singular values (Figure 11) of the matrix S pp increases to 5

from the value of 4 associated with the matrix S,, (Figure 4) because of the addition

of output noise. The failure to verify the assumption of rank equality between S, and

S.. by using only 4 reference microphones makes the estimated magnitudes and

b
phases of the components of Sy deviate from the directly calculated values, as
iltustrated in Figure 12. Also, the measure of deviation of all components of S . with

frequency can be observed from the normalised difference R;. The quantity of R, (i.e.,
102-1) plotted in Figure 12 is much larger than that of R, (i.e., 101-10"""y shown in

Figure 6 in which the rank equality between 8. and 8, was verified. Figure 12 also

shows the normalised difference R, (~10") is much larger than that (~101%) of Figure

6.

Since these unsatisfactory results come from the discrepancy of two ranks of S,
and § 5> WE have to alter the number of reference microphones and now 5 reference
microphones are selected instead of 4. As pointed out earlier, since rank of Si is the

same as that of S,

ax » the use of 5 reference microphones yields a submatrix S. of rank

5. Therefore ranks of S. and S, become equal. Subsequently, the estimated
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magnitades and phases of components of S, . are now in very good agreement with

those directly calculated values (Figure 13).
8.2 CORRELATED ACOUSTIC SOURCE STRENGTHS

Finally, we consider the simply supported plate model depicted in Figure 7
which has correlated sources. For this model, measurement noise is also added. When
the number of reference microphones is chosen to be 1 as before, a discrepancy

appears in the ranks of §; and S;;. That is, the addition of output noise forces the
rank of 8., to increase to 2. The reason for this can easily be understood from
viewing the singular values of S 5 shown in Figure 14. Hence, the estimation of the

magnitudes and phases are inaccurate, as illustrated in Figure 15. Accordingly, in

order to make two ranks of Sj and S . equal, 2 reference microphones are used. As a
result, the rank equality is achieved and a satisfactory estimation of S, is made as

illustrated in Figure 16.

Consequently, it is apparent from the above results that the proper choice of the
number of reference microphones is at the heart of this technique. If this is achieved,
the construction of full auto- and cross-spectral matrix of acoustic pressures can be

made faster whilst maintaining accuracy.

9. EXPERIMENTAL VERIFICATION

We now wish to verify the technique using reference microphones through the
experiments, describing some practical considerations. We will use two experimental
systems which were explained in details in references [9, 10]. One is the system used
for the reconstruction of the strengths of two volume velocity sources (Figure 17) and
the other for the reconstruction of the volume velocities of the randomly vibrating
simply supported plate mounted in a finite baffle (Figure 18).

Before conducting the experimental verification, we here consider carefully the

estimate of the rank of matrix 8., which consists of experimental data. As pointed
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out earlier, the reliable rank estimator of a matrix is the SVD. That is, the rank of a
matrix is the number of singular values larger than a threshold level. Accordingly,
since this threshold level plays a role of distinguishing the significant singular values
from the negligible singular values, the determination of this level is important in rank
estimation. In general, in the rank calculation using the data in connection with the
numerical simulations, the threshold level is chosen based on the machine epsilon of
the computer used (refer to [11]).

However, as far as measured data are concerned, such a threshold level is not
suitable, because, for example, the quantisation error related to the analogue-to-digital
converter used in the data acquisition process is, in general, larger than this machine
epsilon (see reference [12], for example). Accordingly, it is reasonable to choose the
threshold level, considering this kind of uncontrollable error from the practical point

of view. Otherwise, we may make a mistake in determining the rank of S.. from

examining its singular value distribution. Another parameter that makes difficult the

determination of the rank of matrix S.. by viewing its singular values is the signal

processing technique usually used to obtain the acoustic pressure auto- and cross-
spectra. As is well known, when auto- and cross-spectra are estimated by the segment
averaging method, a large number of data segments are necessary to reduce the
random error. Also a long data segment is required to reduce the bias error. Thus, we
cannot help but identify incorrectly the significant singular values from the cross-

spectral matrix S.. having random error and bias error. Kompella er al [12} studied

the effect of the number of data segments and segment length on the singular values,
in connection with the determination of the number of incoherent sources contributing
to the response of a system. They reached similar conclusions regarding the number of
data segments and the segment length. In addition, attention has to be paid to
acquiring acoustic pressures with good signal-to-noise ratio. Otherwise, as described
earlier, it becomes problematic to identify correctly the number of significant singular
values due purely to the uncorrelated acoustic sources since background noise also

modifies the magnitudes of the singular values of S .

However, our purpose is the identification of the required number of reference

microphones necessary to secure the rank equality between the matrices S; and S,
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by inspecting the significant singular values of the matrix S, . Accordingly, even if

there exist spurious significant singular values which result from imperfect
measurement, we have to choose the reference microphones to be equal to or greater
than the number of (true and spurious) significant singular values. This is borne out by
the computer simulations presented previously.

With these considerations in mind, let us consider the first experimental system
shown in Figure 17. Six microphones are placed to sense the acoustic pressures
radiated by two volume velocity sources which are driven by one random noise
generator. Since we use only one random noise generator, it is expected that this
model has one significant singular value (or one significant principal auto-spectrum of

virtual acoustic pressure). This is ensured from the singular value distributions of 8 b

shown in Figure 19. Also observing the virtual coherence (Figure 20) of the virtual
acoustic pressure with respect to the physical pressure measured at a microphone
(Figure 17) reveals that there exists only one uncorrelated acoustic source. That is the
1st of six virtual coherences is very close to unity. Accordingly, we use one reference

microphone (so the ranks of S.. and S. are one) and estimate the moving

microphone auto- and cross-spectra S... As can be seen from Figure 21, the

estimated magnitudes and phases of some components of S, shows good agreement

M
with the directly measured values.

Now consider the experimental model of the randomly vibrating simply
supported plate mounted in a finite baffle shown in Figure 18. (see reference [9] for
details). We use four microphones to measure the acoustic pressures radiated by the

plate excited by one electromagnetic driver. Thus we can think that this system has

one uncorrelated acoustic source and thus the rank of matrix Sﬁ‘6 will be one.

However, whereas the number of uncorrelated acoustic sources is obviously one,
judging the rank of this matrix from its singular value distributions (Figure 22) is not

straightforward. Among four singular values of S 5> Whilst the 3rd and 4th singular

values are relatively small, the 2nd singular value seems to be significant at some
frequencies, for example, at about 310-350Hz and 420-480Hz. Although the 1st

singular value is associated with one uncorrelated acoustic source, the 2nd singular
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value is not. The latter is possibly due to “measurement noise” caused by acoustic
reflections. This can be readily understood by viewing the geometrical placement of
the microphones shown in Figure 18 which are 0.166m away from the plate.
Accordingly, a spurious significant singular value is produced. The fact that there are
two significant singular values (true and spurious) at those frequencies is also
.observed from the virtual coherences shown in Figure 23. The sum of the 1st and 2nd
virtual coherences with respect to the acoustic pressure sensed at microphone 1
(Figure 18) results in nearly unity at those frequencies (the virtual coherences with
respect to other acoustic pressure showed the similar results). This indicates that the

rank of 8. is two at those frequencies. At the other frequencies, the value of the 1st
virtual coherence approaches unity, suggesting that the rank of S . is unity.
The effect of the use of one reference microphone on the estimation of S . is

now investigated. The results of Figure 24 reveal that the estimated values of acoustic
pressure auto-spectra at the 1st and 2nd moving microphones (corresponding to the
microphone 2 and 3 in Figure 18) and magnitudes and phases of acoustic pressure
cross-spectra between the 1st and 2nd moving microphones follow well the directly
measured values at most frequencies. However, a discrepancy is observed at
frequencies about 310-350Hz and 420-480Hz, because at those frequencies we cannot

meet the requirement of the rank equality between two matrices S, and S, by only

one reference microphone. That is to say, as could be seen from the singular value

distributions (Figure 22) and the virtual coherences (Figure 23), the rank of S 5 18 two

at those frequencies. When the number of reference microphones is increased to two,
the estimated auto- and cross-spectra become closer to the directly measured values at
those frequencies by the virtue of the rank equality. This point can also be observed
clearly by comparing the normalised differences Ry and R of Figure 25 with those of

Figure 24.
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10. CONCLUSIONS

For a rapid construction of the full matrix of acoustic pressure cross-spectra, we have
suggested a technique using the concept of reference microphones (or positions). This
has been seen as a useful tool, because this technique enables the construction of this
matrix with good precision, saving measurement effort. The use of u reference
microphones and v moving microphones reduces the total number of measurements to
(u(u+1)/2)+uy from (u+v)(u+v+1)/2 (which is the number required for direct
measurement, when dual channel experimental equipment is employed). This method
has constructed satisfactorily the full matrix regardless of the nature of acoustic
sources (correlated or uncorrelated) and also when acoustic pressure data are
corrupted by noise. The prerequisite of using this technique is to validate the

assumption of the rank equality between the full matrix S;, (or S ;) and its submatrix
S; (or Si)' To do this, it is necessary to select properly the number of reference

microphones. This is determined by knowing how many significant singular values of

the matrix Sp, (or Sﬁﬁ) are present. That is to say, the number of reference

microphones should be at least equal to the number of significant singular values of

the matrix Sp, (or S;;). However, since we do not have information regarding the

acoustic sources in the inverse problem, we have proposed a method of choosing the
number of reference microphones. Regarding the choice of reference microphones,
attention should be drawn to the case in which the output noise corrupts acoustic
pressures. Since the output noise increases the number of significant singular values of

the matrix 8 Iy compared with that of S,,, in this case the number of reference

microphones has to be chosen by examining carefully the singular value distribution

of the matrix 8., of reference position auto- and cross-spectra.
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APPENDIX: Proof of equation (31)

The last equality of equation (31) is proved. For the acoustic pressures that have

a deterministic time history, we can use

S; =pp; - (AD

Note that cross-spectra S are very often defined as P ; instead of p; p; . However,

we have used p, pjf up to now (see equation (7), for example) and to keep the

consistency of notation, we also use this here. As an example, the (1,1} component of

Sum of equation (31) can be developed by using equation (Al)

SiSy, _ PLPaPiP: .
12412 — 12 i 2 =p2p2 =S, - (Az)
S11 LY

Other components of Sy, can be found by the same manner.
For the acoustic pressures that have a time dependence which can be regarded as

stationary random, the above method is not applicable because

Si2Si2 _ Elpi 1 Elpyp;] |, Elpi] Elp, 1 Elp ] Elpy]

: : (A3)
Sy Elp p, ] Elp ) Elp ]

Note that E[prpz] and E[pip;} cannot be expressed as E[pf]E[pz] and

Elp, ]E[p;} because p; and p; result from the same source and thus they are not
independent . This separation can be allowed only if two random signals are
independent [13]. Accordingly, we adopt an alternative method as follows. Using

equation (25), the (1,1) component of Sy can be developed as

SioSi _ Elpi 1 Elpipy] _ ELH g Hyq) ELH gH,q ']

> - (Ad)
S1y Elpp ] E{H,q] E[H q ]

This equation can be arranged by
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E[H[q H,q) ElH\qH;q"1 _ H{ H,S, H\H,S

T 2 “ = H,H,S
E[H,q)E[H,q"] H\H[S,,

qq?

where Sqqu[qq*]. The last equation is manipulated as
H,H,S,, = E[H,qH,q 1= Elp,p;1= Sy, .

Therefore it is proved that

The same manner can be used to obtain the other components of Sy
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Reference microphones

Moving microphones

Acoustic source

Figure 1. The partition of the entire number of measurement positions (or

microphones) into the reference and moving positions (or microphones).
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Figure 2. A simulation model for computing the ranks of Sgg, Srm, 81, and Sy
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Figure 3. Effect of the number of reference microphones ((a) 3, (b) 4, (c) 5) on
variations of rank of S;, (solid), rank of S (circle) and the normalised difference R,.

There are 4 uncorrelated acoustic sources.
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Figure 4. Principal auto-spectra (or singular values) of S,, for the modet (Figure 2)

comprising 4 uncorrelated sources under the assumption of no output noise.
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Figure 5. Virtual coherences of the Ist (black thick), the Znd (grey thick), the 3rd
(black thin), and the 4th (grey thin) virtual acoustic pressure with respect to the
physical acoustic pressure sensed at the microphone 1 for the model in Figure 2

comprising 4 uncorrelated sources and the assumption of no output noise.
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Figure 6. A comparison of the directly calculated (solid) and estimated {dotted) Sym:
() auto-spectra at the Ist moving position, (b} auto-spectra at the 4th moving position,
{(¢) (d) magnitude and phase of cross-spectra between the Ist and 4th moving
positions, {¢) normalised difference R, (f) normalised difference matrix R, at
kro=1.65 (=600Hz, r=0.15m). These results are for the model of Figure 2 comprising

4 uncorrelated sources and the assumption of no output noise.



Simply supported plate
(thickness h=0.0025m)

Infinite baffle

Figure 7. Geometry of a simply supported plate mounted in an infinite baffle used for

the computer simulation.



Magnitude
=

0] 200 400 600 800 1000
Frequency, Hz

Figure 8. Principal auto-spectra (or singular values) of §,,, for the simply supported

plate model (Figure 7) under the assumption of no output noise.
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Figure 9. Virtual coherence of the virtual acoustic pressure with respect to the
physical acoustic pressure sensed at the microphone 1 for the simply supported plate

model (Figure 7) under the assumption of no output noise.
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Figure 10. A comparison of the directly caiculated (solid) and estimated (dotted) Spm:

(a) auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position,

(c) (d) magnitude and phase of cross-spectra between the Ist and 4th moving

positions, {¢) normalised difference Ry, (f) normalised difference matrix R, at

kr.=1.37 (=786Hz, r=0.095m) which is the (2,3} resonant frequency. These results

are for the simply supported plate model of Figure 7 under the assumption of no

output noise.
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Figure 11. Principal auto-spectra (or singular values) of §; for the model of Figure 2.
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Figure 12. A comparison of the directly calculated (solid) and estimated (dotted) S, :

(a) auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position,

(¢) (d) magnitude and phase of cross-spectra between the Ist and 4th moving

positions, (é)“normaiised difference R;, (f) normalised difference matrix R, at

kro=1.65 (=600Hz, r,=0.15m) for the model of Figure 2 with output noise. Four

reference microphones are used.
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Figure 13. A comparison of the directly calculated (solid) and estimated (dotted)
S..: (a)auto-spectra at the Ist moving position, (b) auto-spectra at the 4th moving
position, (¢} (d) magnitude and phase of cross-spectra between the 1st and 4th moving
positions, (e) normalised difference Ri, (f) normalised difference matrix R, at
krg=1.65 (=600Hz, r,=0.15m). These results are for the model of Figure 2 with output

noise when 5 reference microphones are used.
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Figure 14. Principal auto-spectra (or singular values) of S P for the model of Figure 7.
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Figure 15. A comparison of the directly calculated (solid) and estimated (dotted) S,

(a) auto-spectra at the 1st moving position, (b) auto-spectra at the 4th moving position,
(¢) (d) magnitude and phase of cross-spectra between the Ist and 4th moving
positions, (e) normalised difference R;, (f) normalised difference matrix R, at
kr,=1.37 (=786Hz, r,=0.095m) which is the (2,3) resonant frequency for the simply

supported plate model of Figure 7 with output noise. One reference microphone is

used.
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Figure 16. A comparison of the directly calculated (solid) and estimated {dotted) Sy
(a) auto-spectra at the st moving position, (b) auto-spectra at the 4th moving position,
(c) (d) magnitude and phase of cross-spectra between the Ist and 4th moving
positions, (€) normalised difference R,, () normalised difference matrix Rzl at
kro=1.37 (=786Hz, r,=0.095m) which is the (2,3) resonant. frequency. These results

are for the simply supported plate model of Figure 7 with output noise. Two reference

microphones are used.



Figure 17. Experimental arrangement for the reconstruction of strengths of two

volume velocity sources.



Figure 18. Experimental arrangement for the reconstruction of volume velocities of a

randomly vibrating plate mounted in a finite baffle.
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Figure 19. Six principal auto-spectra (or singular values) of ;. for the model (Figure

hp
17 consisting of the two volume velocity sources driven by one random noise

generator and six microphones.
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Figure 20. Virtual coherences of the 1st to 6th virtual acoustic pressure with respect to
the physical acoustic pressure sensed at the microphone 1 in Figuire 20(b) consisting

of the two volume velocity sources driven by one random noise generator and six

microphones.
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Figure 21. A comparison of the directly measured (solid) and estimated (dotted) S, -

(a) auto-spectra at the Ist moving position, (b) auto-spectra at the 2nd moving

position, (¢) (d) magnitude and phase of cross-spectra between the st and 2nd moving

positions, (¢) normalised difference Ry, (f) normalised difference matrix R; at ka=0.1

(=400Hz, a=0.014m) for the model of Figure 17 consisting of the two volume velocity

sources driven by one random noise generator and six microphones. One reference

microphone is used.
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Figure 22. Principal auto-spectra (or singular values) of S, for the model (Fig. 9.13)
g P P o g

consisting of the simply supported plate excited by one electromagnetic driver and

four microphones.
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Figure 23. Virtual coherences of the 1st (black thick), the 2nd (grey thick), the 3rd
(black thin}, and the 4th virtual acoustic pressure {grey thin circle} with respect to the
physical acoustic pressure sensed at the microphone 1 in Figure 18 consisting of the

simply supported plate excited by one electromagnetic driver and four microphones.
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Figure 24. A comparison of the directly measured (solid) and estimated (dotted) S, :

(a) auto-spectra at the Ist moving position, (b) auto-spectra at the 2nd moving
position, (c) (d) magnitude and phase of cross-spectra between the 1st and 2nd moving
positions, (e) normalised difference R, (f) normalised difference matrix Ry at ka=0.1
(=458Hz, ¢=0.014m) for the model of Figure 18 consisting of the simply supported

plate excited by one electromagnetic driver. One reference microphone is used.
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Figure 25. A comparison of the directly measured (solid) and estimated (dotted) S, :
(a) auto-spectra at the st moving position, (b} auto-spectra at the 2nd moving
position, (c) (d) magnitude and phase of cross-spectra between the Ist and 2nd moving
positions, (e) normalised difference Ry, (f) normalised difference matrix R; at ka=0.1
(=458Hz, a=0.014m) for the model of Figure 18 consisting of the simply supported

plate excited by one electromagnetic driver. Two reference microphones are used.



	tr281cover.doc
	E COPYRIGHT NOTICE.doc
	tr281.pdf

