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Abstract

The response of the basilar membrane in the cochlea displays a compressive nonlinearity,
which is conventionally described using an input-output level curve for sinusoidal excitation.
Several models of this nonlinear behaviour are considered, in particular an instantaneous
power-law nonlinearity, and two systems with level-dependent properties, one with an
automatic gain control and the other a dynamic system having amplitude-dependent damping.
It is shown that the parameters of each of these models can be chosen so that they give a level
curve with a slope of 1 dB/dB at low levels and a slope of %2 dB/dB at higher levels, as

observed in the response of the basilar membrane.

In order to try to distinguish between the responses of these rather different models their
distortion and transient responses are also considered, but these are found to be surprisingly
similar. The instantaneous input-output characteristics of these models are clearly different,
however. The instantaneous nonlinearity has a single-valued but nonlinear characteristic,
whereas the level-dependent systems have an almost linear characteristic, for a given

amplitude of excitation, whose slope varies with the excitation level.
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1. Introduction

There are several sources of nonlinearity within the ear. This report concentrates on a
nonlinearity within the cochlea associated with the compressive nonlinearity in the
response of the basilar membrane, which is caused by saturation of the active processes
which sharpens its frequency response at low levels (Pickles, 1988). There are several
ways of describing and characterising this nonlinearity, but one widely-used
representation is a graph of the log amplitude of the basilar membrane (BM) motion
against the log amplitude of the sinusoidal driving pressure: the input-output level
curve. If the excitation frequency is close to the frequency of maximum BM response
at low levels (the characteristic frequency or best frequency), then the BM level curves
directly measured in a healthy cochlea by a number of authors (Sellick et al., 1982;
Nuttall and Dolan, 1996;: Rhode and Recio, 2000) show some similar characteristics.
At sound pressure levels below about 30 dB the level of the BM response rises with
sound pressure level at a slope of about 1 dB/dB, indicating that the BM is responding
lincarly at these low levels. Above a sound pressure level of about 30 dB, the slope of
the level curve decreases, typically to about ¥2 dB/dB, which indicates a compressive
nonlinearity. This change in slope occurs over a range of about 10 dB to 20 dB in level.
At very high pressure levels there is some evidence for another increase in the slope of
the level curve, but in this report we will be less concerned with the cochlear response
at these high sound pressure levels, than in the transition from linear to nonlinear

response at about 30 dB.

As well as causing compression in the BM response, the active processes in the cochlea
are also believed to give rise to otoacoustic emissions of various types. The levels of
these otoacoustic emissions do not generally increase in direct proportion to the
excitation level. Norton and Neely (1987) present data for tonebursts which indicate
that the level of the otoacoustic emission rises at about 0.6 dB/dB compared with the
excitation level. The derived level curves for distortion product otoacoustic emissions
{Dorn et al., 2000) also show a slope of approximately ¥2 dB/dB at excitation levels
about 30 dB, with evidence at some frequencies for a slope closer to I dB/dB at lower
levels, as seen in the BM response. A similar linear region for otoacoustic emissions at

low levels was observed by Zwicker and Schloth (1985).
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The purpose of this report is to discuss various simple models for this cochlear
nonlinearity. In particular the characteristics and behaviour of an instantancously-

acting nonlinear function will be contrasted with those of two systems whose properties

are level-dependent.

Our emphasis is on models of the response at one position on the BM to sinusoidal
excitation at different amplitudes but only at the characteristic frequency. We have
been less concerned about the response of these models at different frequencies, since a
realistic frequency response can only come from a consideration of the coupled motion

of a whole region along the BM (de Boer, 1991).

Instantancous nonlinearities are discussed in Section 2 and have been used to model
cochlear response since the 1960's (Engebretson, 1968; Pfeiffer, 1970), when analogue
hardware models were used, with diodes to provide nonlinearities. Digital
implementations of instantaneous compressive nonlinearities have been used more
recently, for example by Goldstein (1995), and by Meddis et al. (2001) in their dual
resonance model. It is shown that systems with suitably selected instantaneocus
nonlinearities can exhibit a level curve that has a slope of 1 dB/dB up to a specified

input level and a slope of Y2 dB/dB above this level.

Models of the cochlear with an explicit level-dependent gain (i.e. an automatic gain
control or AGC) were investigated by Lyon (1990), and analogue implementations of
AGC circuits were used in the silicon hardware implementation of the electronic
cochlea of Lyon and Mead (1988). In the qﬁasilinear model of Kanis and de Boer
(1993) the value of an impedance varies with the level of the pressure, and so this too
constitutes a level-dependent model. Section 3 considers the steady-state and transient
response of such a level-dependent system. It is shown that if the gain depends in a
specific way on the output level, the AGC system also displays a level curve that has a

slope of 1 dB/dB up to a specified input level and a slope of ¥2 dB/dB above this level.

In Section 4 dynamic, mass-spring-damper, models of the BM response are considered,
in which the damping is a function of the amplitude of response. The gain of such a
system is implicitly level-dependent. These second-order models can be described by

Van der Pol's equation, which displays a wide variety of dynamic behaviour, including
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limit cycle oscillations, whose properties have striking similarities to those of
spontaneous otoacoustic emissions. Such models also display a Hopf bifurcation, from
a stable equilibrium to 2 limit cycle oscillation of increasing amplitude, as the damping
parameter is varied. There has recently been interest in using theoretical models of this
type to describe the cochlear function (Equiluz et al., 2000; Camalet et al., 2000). One
of the predictions of this model is that when the system is just stable, the amplitude of
the forced response of the system is proportional to the amplitude of the forcing to the
power ¥, which would result in a ¥ dB/dB level characteristic. It is shown in Section 4
how these equations can be modified to yield a 1 dB/dB level characteristic at low

levels and a 5 dB/dB slope at higher levels, consistent with that discussed above.

A variety of models can therefore be used to predict realistic input-output level curves.
One method of distinguishing between the responses of these models could be in terms
of their transient response, although it is shown that level-dependent AGC circuits can
respond almost as quickly as an instantaneous nonlinearity. Both systems can also
exhibit similar levels of harmonic distortion. The clearest difference between the
responses of these models of BM response may thus be to plot their instantaneous
input-output characteristics at a variety of input levels. For an instantaneous
nonlinearity all these characteristics should fall on the same line and trace out a clearly
nonlinear curve. For a level-dependent system, the instantaneous input-output
characteristic will be an almost straight line for a given input, but whose slope will
depend on the input level. The level-dependent systems thus have an instantaneous
output which is a multiple-valued function of their instantaneous input and so their

behaviour cannot be properly described by a Volterra or Wiener series.



2. Instantaneous Nonlinearities

2.1

Power-law Nonlinearity

Systems which display instantancous nonlinearities are those for which the current

output signal, y(), is a function only of the current input signal, x(?), 1.e.
y(0) = fx(). @.1)
A simple power-law nonlinearity (Smoorenburg, 1972) of the form
»() = x" (¢) sign [x()], (2:2)

will provide a compressive effect provided the power, p, is less than unity. Consider

the response of such a system to the sinusoidal excitation
x(f) =2 X cos(@,1), 23)

where X is the rms input amplitude and ¢, the angular excitation frequency. The output

will be a periodic signal with a Fourier series of the form

y() =2 i Y, cos(nm,t), (2.4)

n=]

where Y, is the rms amplitude of the n-th harmonic. Substituting (2.3) into (2.2),

allows the output in this case to also be written as
y(£) = («/5 X )p cos” (@, ) sign [cos(w,?)], (2.5)

where only the term («[i X ) ! depends on the input amplitude. The remaining terms on

the right hand side are periodic and so have a Fourier series which can be written



cos”{w,t) signfcos{mw,t )] = i a, cos(naw,t), (2.6)

n=1
where a, is the n-th harmonic component, which is independent of the input amplitude.

Comparing equations {2.4), (2.5) and (2.6), we see that the amplitude of the nth
harmonic of the output is equal to

p-1

Y,=a,2? X”. 2.7)

"

In particular the fundamental component of the output is

Y,=aq, 27 X”. (2.8)

If the level curve for this nonlinearity is obtained, by plotting 20logio ¥, against
20 logip X , the slope will be p dB/dB. The ratio of the fundamental component of the
output to its sinusoidal input amplitude is called the "describing function”, which is
widely used in control engineering to analyse the behaviour of feedback systems which
contain nonlinear elements. Although the response of such a nonlinear element to a
sinusoidal excitation will, in general, not be sinusoidal, it is assumed that only the
fundamental component of the output is significant in determining the stability and
overall performance of the system. The describing function is, in general, the complex
ratio of the fundamental component of the nonlinear element's output to its input, and
will depend on the level of the input sinusoid in a way that can be readily calculated for
various idealised forms of nonlinearity (Ogata, 1970). Conventional frequency-domain
methods of analysing the behaviour of the complete feedback system can then be used,
except that the value of the describing function, and hence the behaviour of the system,

will vary with level.
Figure 2.1 shows the output waveforms of equation (2.1) for sinusoidal excitation when

p=0,% and 1. When p =0, the output signal is a square wave, but becomes more

rounded when p =% and is sinusoidal for p = 1. Figure 2.2 shows the variation with p
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2.2

of the slope of the level curve, the fundamental amplitude of equation (2.6), a,, and the

total harmonic distortion, in %, which is defined to be

N
Dl

THD(%) = | 22— | x100%. (2.9)

el

n=1

The total harmonic distortion is about 44% when p = 0, corresponding to the distortion
of a square wave, falling to about 17% when p =4, and to zero when p = 1, when the

output is undistorted.

Input Scheduled Power-law Nonlinearity
In order to obtain a level curve which has a dual slope, as discussed in the introduction,
it is necessary for the power law to change with the instantaneous value input signal, so

that it may be written as p(x), and the output signal is now
() = lax()) PP sign [x()], (2.10)

where zis a constant. As an example of this kind of nonlinearity we will assume that
the variation of the power with the instantaneous value of the input signal takes the

form

p(x) =0.75-0.25 tanh ([x| - &) 2.11)

where § is a threshold value for x, well below which p(x) =1 and well above which
p(x) = Y4, The variation of p(x) with the input, X, normalised by & is plotted in the lower
curve of Figure 2.3, in which the value of d has been taken to be 10" to ensure that the
level curve changed slope at appropriate input level (30 dB). The upper curve shows
the instantaneous input-output characteristic of this nonlinearity, where the constant &
in equation (2.10) has been set equal to 1/8to ensure a smooth curve, together with that

of a square-root nonlinearity. The harmonic distortion of this nonlinearity is zero at
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low amplitudes and rises to about 17% at high amplitudes, as predicted for a power-law
nonlinearity with p = 0.5.

Figure 2.4 shows the resulting level curve (fundamental output level against input level

for a sinusoidal excitation) which, as expected, has a 1 dB/dB slope at low levels and a
Y4 dB/dB slope at higher levels.

2 2
1 1 1
% 0 % 0 ¥ 0
-1 -1 -1
-2 -2 -2 .
0 1 2 Q 1 2 0 1 2
Time/period Time/period Time/pericd
p=0 p=0.5 p=1
2 2 v 2
1 1 1
g0 0 o
-1 -1 -1
) -2 - -2
0 1 2 0 1 2 #] 1 2
Time/pertod Time/period Time/period
Figure 2.1:

The sinusoidal input waveform, x(f), to the power-law nonlineartty (upper) and

the resulting output waveform, y(#), (lower), when the power law, p, is 0, 12
and 1.
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Figure 2.2: The variation with the power-law p of the slope of the level curve, the
fundamental amplitude and the percentage total harmonic distortion for
sinusoidal excitation of the power-law nonlinearity.
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Figure 2.3: The instantaneous input-output characteristic of a nonlinear function (upper
curve) in which the power law is scheduled on the instantancous value of the
input signal, as shown in the lower curve.
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3. Systems with Level-Dependent Gain

3.1

The Automatic Gain Control

One of the simplest forms of level-dependent system which displays nonlinearity is
often called an automatic gain control (AGC), and takes the form of a gain, whose value
varies with the level of either the input or the output of the system. In this section we
investigate the input-output characteristics of a system in which the gain depends on the
level of the output, measured using an output detector, as shown in Figure 3.1, excited
by a steady-state tonal input. An output-dependent gain has been considered to be a

more plausible model of cochlear nonlinearity than an input-dependent gain.
We will assume for now that the detector in Figure 3.1 perfectly measures the rms level

of the output signal, and postpone a detailed discussion of its operation until later. If

we assume that the sinusoidal input signal is of the form above:
x() =2 X cos(w,1), (3.1)

and that the gain g does not vary during the period of the signal, so that the output

signal is undistorted and of the form
y(t) =2 ¥ cos{w, 1), (3.2)
then the rms output amplitude, ¥, is given by
Y=g X. (3.3)
In general the gain law may be written as
g = function (Y), (3.4

where Y is the rms amplitude of the output. We will initially consider the specific case

in which the gain is dependent on the output level raised to a constant power.
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g=a¥’, (3.5
where a is a constant and p is the power. Thus
Y=gX=aY"X, (3.6)

so that

1
Y =(a X)l-!’- (37)

If, for example, p =—1, then 1/(1 — p)=4, the level curve of the AGC would have a

slope of ¥2 dB/dB and the system would act as a dynamic range compressor. If p =+,

however, then 1/ (1- P) =2, the slope of the level curve would be 2 dB/dB and the

system would act as a dynamic range expander.

Figure 3.2 shows the instantaneous input-output characteristics of a compressive AGC,
with p =—1, for three different levels of input. Each characteristic is almost a straight
line, but the slope changes with the input amplitude, indicating that the gain reduces
with level. Since the output signal clearly does not have a single instantaneous value
for a given instantaneous value of input signal, such level-dependent nonlinear systems
cannot be adequately described by a Volterra or Wiener series. A simple NARMA

model of an automatic gain control is given in Appendix A.

3.2 AGC Level Curves
If the gain law of an output-leve! dependent AGC takes the form

(3.8)

j.e. the power, p, in the general expression of equation (3.5) is —1, then the gain will
tend to infinity as the output level tends to zero, which is physically unrealistic. To

avoid this singularity, the gain law can be modified to be of the form
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1
- , (3.9)
& Y+e

where £is a constant. Intuitively, if ¥ >> &, then the system will behave as in equation
(3.8) to give a compressive nonlinearity with a level curve of slope %2 dB/dB. If Y << ¢,
however, then the gain of the system is independent of input level and the slope of the

input-output level curve will be 1 dB/dB.

In quantitative terms, the relationship between the rms amplitudes of the input, X, and

output, Y, is given by substituting (3.9) into (3.3) to give

X

= , (3.10)
Y+e¢

Y

which may be multiplied out to give a quadratic equation for ¥ and X. The physically-

realistic solution to this quadratic equation takes the form

y=x+5 - £, 3.11)
4 2

so that ¥ =+/X when X » £, Y =~ X/e when X « & and Y = 0.62¢ when X = £ The

fevel curve corresponding to equation (3.11) with £= 10” and an addition gain of 10%is
plotted in Figure 3.3 and, as expected, has a slope of 1dB/dB at low levels and of
Y2 dB/dB at higher levels.

3.3 Detector Dynamics
We now consider in more detail the operation of the output detector in Figure 3.1. This
is assumed to consist of an instantaneous squaring device, a low pass filter, with

frequency response H{j@), and an instantaneous square-root device, as shown in

Figure 3.4.
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The differential equation describing the low pass filter is assumed to be first order and

to be of the form

u(t) = l{(r) +7, g-‘:;—t) , (3.12)

where u(f) and v(f) are the input and output signals of the low pass filter, and Ty is its

time constant. The frequency response of this system is given by

H(jw)=—-——wﬂ, , (3.13)
a)L + j

where @, =1/T, is the angular cut-off frequency of the filter, so that its cut-off

frequency in hertz, f;, is equal to

1
2T,

fi (3.14)

If all the alternating components of the low pass filter's input, u(r) = y(#), which is the
squared AGC output signal, are well above fi, then the filter will smooth out this
signal, to give a constant, d.c., value, which is then used to schedule the gain. In
particular if the output is a sinusoid, as above, with an angular frequency, @, which is
well above @y, then the output of the detector, d(z), will be the rms ountput amplitude, as

expected:
diry=7. (3.15)

If, however, the input frequency is not much larger than the cut-off frequency of the low
pass filter, then the output of the detector, d(z), will have an alternating as well as a
steady component. This will cause the gain of the AGC to vary during the course of a
cycle of the input signal, thus distorting it and generating harmonics in the output
signal.  Figure 3.5 shows the waveforms of the various signals in the AGC of
Figure 3.1, with a gain law given by equation (3.9), when the input is a sinusoid whose

frequency is equal to the cut-off frequency of the AGC's low pass filter. The output
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waveform, y(f), is distorted, but has a strong fundamental component, so that its
squared waveform, y(1), has a dominant compenent at twice the input frequency. This
component is reduced but not eliminated by the low pass filter, so that the detected
signal, d(), is still modulated at twice the input frequency. The low pass filter
effectively attenuates any higher harmonic components of yA(1), due to harmonic
distortion in the output signal, y(#). The variation in the detected signal is then reflected
in the variation of the gain with time, g(f). Finally, the multiplication of the input signal
with the time-varying gain gives rise to the third-harmonic distortion seen in the output

waveform.

The phase shift in the harmonic distortion also gives rise to loops in the instantancous
input-output characteristics, which can just be discerned in Figure 3.2. These loops get
larger as the input frequency approaches the low pass filter cut-off frequency. As the
loops get larger, the instantaneous input output characteristic gets even further from a

single-valued nonlinearity.

It is shown in Appendix B that the total harmonic distortion is a function of the ratio of
the input frequency, @,, to the cut-off frequency of the low pass filter, ;. If the

normalised input frequency @, /@, is denoted Q, then provided Q is not too small, the

total harmonic distortion is approximately equal to

!
THD(%) = —x100%, 3.16
(%) 50 o (3.16)

which is plotted in Figure 3.6, together with the results of a computer simulation of the
AGC with various input frequencies. The theoretical prediction for the total harmonic
distortion predicts the simulation results well for normalised excitation frequencies, 2,
above about 2, but cannot predict the more complicated behaviour seen in the
simulations for lower values of 2 because the assumptions made in the derivation are

no longer valid in this case.

The dynamic behaviour of the low pass filter in the AGC detector also gives rise to an

overall transient response of the AGC, which is illustrated in Figure 3.7. This figure
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shows the result of a sudden increase in the amplitude of the input signal, x(7), by 20%,
and a sudden return to its original value. The upper curve is the input amplitude and the
middle curve shows the variation in the gain of the compressive AGC with time. When
the input amplitude increases, the gain falls approximately exponentially, with a time
constant determined by the low pass filter in the detector, until it reaches a steady state
value determined by the gain law. When the input level falls, the gain exponentially
increases to its original value with approximately the same time constant in this case.
Since the gain cannot change instantaneously with the input amplitude, however, then
at the instant that the input amplitude rises by 20%, the gain is at its original value and
so the output amplitude also instantancously increases by 20%. This decays to an
increase of about 8% as the AGC gain falls to its steady state value. Similarly when the
input amplitude falls, the output amplitude instantaneously falls below its steady state

value and then exponentially recovers.

It is shown in Appendix C that for small but abrupt charges in input level, the variation
of AGC gain with time is exponential, with a time constant, 7, which is a half that of the

fow pass filter 7}, so that

T= } (3.17)

2w,

If the sinusoidal input signal has an angular excitation frequency of @,, then its period is

equal to

T =—. (3.18)

The time constant of the AGC, in petiods of the excitation frequency, is thus predicted

to be

T @ 1
—_— L :—Q 319
T, 4rw, 4r 19

13
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where Q is again the ratio of excitation frequency to the cut-off frequency of the low
pass filter. The measured time constants from a computer simulation of the AGC are
compared with this theoretical prediction in Figure 3.8. It is difficult to accurately
measure the time constant of a decaying sinusoid when the time constant is small
compared with the period, but the simulations are in reasonable agreement with the

theoretical predictions.

For a given excitation frequency, the choice of the cut-off frequency of the AGC’s low
pass filter is thus a compromise between distortion, Figure 3.6, and response time,
Figure 3.8. Selecting a cut-off frequency of one half the excitation frequency, so that
Q =2, appears to provide a reasonable compromise between these competing effects,
since it gives rise to a distortion of only about 6%, but a time constant which is only of

the order of one sixth of the period of the input waveform.
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detected level of the output signal.
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Figure 3.2:  Instantaneous input-output characteristics of the automatic gain control system

at three different input amplitudes.
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Figure 3.6:  Total harmonic distortion of the AGC for a sinusoidal input signal as a
function of the ratio of excitation frequency to the cut-off frequency of the low
pass filter, 2. The solid curve is the resuit of computer simulations and the
dashed curve is the theoretical prediction, that THD = 1/8Q.
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4. Dynamic Models with Amplitude-Dependent Damping

Individual parts of the basilar membrane are often modelled as dynamic, mass-spring-
damper systems. The model is linear and passive if the damping term is constant and
positive, but it is found that such passive models do not reproduce the sharp tuning
observed in the healthy cochlea. In order to reproduce realistic tuning curves, a
damping term which is negative over a certain frequency range must be used. The
dynamic system can then generate as well as dissipate energy, and it becomes active.
To reproduce the nonlinear properties of the cochlear response, however, the damping

must be amplitude-dependent.

4.1 Van der Pol's Equation
A second-order dynamic models with amplitude-dependent damping can be represented
in the form of a generalised Van der Pol equation {Guckenheimer and Holmes, 1983;

Hanggi and Riseborough, 1983), whose differential equation may be written as
miv+c(w)yw+kw = f 4.1)

where w is the waveform of the displacement response, w is the velocity and w the
acceleration, f is the waveform of the driving force, m and k are the constant mass and

stiffness terms and c(w) is the amplitude-dependent damping. The specific case
c(wy=c, +c,w’, (4.2)

with positive ¢,, describes the passive nonlinear model of Hall (1974) and Talmadge et
al. (1998).

If ¢, is negative in equation (4.2), the system is active and nonlinear, and can display a
wide range of dynamic behaviour, as described for example by Guckenheimer and
Holmes (1983), including limit cycle oscillation, complicated entrainment, or
synchronisation, behaviour when driven near its natural frequency and a variety of
bifurcations, including Hopf bifurcations. A bifurcation is an abrupt change in the

behaviour of a systemn caused by the variation of a control parameter. The limit cycle

STEAISE8 — 24 — 16 fine DO



4.2

behaviour of a Van der Pol oscillator, in particular, has been used to describe several
features of spontaneous otoacoustic emissions (SOAE), including phase locking and
synchronisation, suppression by external tones, the statistical fluctuations of the

amplitude and phase and relaxation dynamics (as noted, for example, by de Boer, 1991,

and Murphy et al., 1995).

Guckenheimer and Holmes (1983) describe a method of analysing the response of the
Van der Pol equation involving a transformation of variables and averaging of the
response. This reduces the second order nonlinear equation (4.1) to two coupled first
order nonlinear equations, which can then be expressed as a single first order nonlinear
equation in a complex variable. This method can be used to normalise and transform
equations (4.1) and (4.2) to give the model equation used by Equiluz et al. (2000,

described in the next section.

Level Characteristic of the Hopf Bifurcation Model

Equiluz et al. (2000) and Camalet et al. (2000) have used the tools of dynamic systems
theory to explain a number of the nonlinear features found in hearing. Specifically they
considered the compression of dynamic range, the sharper cochlear tuning for softer
sounds and the generation of combination tones, and demonstrate that all of these
features could be reproduced using a mathematical model of the type described above,
which can exhibit a Hopf bifurcation. There is no output signal from an undriven
system exhibiting a Hopf bifurcation if the control parameter is below a threshold
value. Above this value of the contro! parameter the output is that of a limit cycle

oscillation, whose amplitude rises as the control parameter is increased.
Equiluz et al. (2000) considered a generic equation describing a Hopf bifurcation as a

model for cochlear response. Their model equation when driven by a complex

excitation x{f) may be written as

x(t) = 30+ + 1y )y - o, ), @.3)
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where y(#) is now the complex response of the system, @, is its natural frequency and 77
is a damping parameter (which is equal to —x if 4 is Equiluz et al's "control

parameter™).

If the damping parameter 77 is positive, then the system is stable and y(f) = 0 if x(¢) = 0.

If 77 is negative, however, then even with no input the system spontaneously oscillates.
The oscillation amplitude is limited by the |y(1)]” y(f) term in equation (4.3), which

increases the damping as the response amplitude increases until the system displays a
limit cycle whose amplitude is approximately 7% It is the variation of the undriven
amplitude with the parameter 77 that characterises the system as having a Hopf

bifurcation.

When the system in equation (4.3) is driven by a complex periodic excitation of the

form x(f) =X e’*, and it is assumed that the output is locked onto the excitation

frequency, so that y(¢) =Y e’“*? | then the level curve for this system may be derived.

By considering the modulus squared amplitude of the response, its amplitude, ¥, can be

shown to be related to the forcing amplitude X by the equation
X2=Y"+277Y“+[772+(a)~a)”)2]Y"‘. 4.4)

When the system is driven at its natural frequency, @ =@, , and the system is set at

exactly its bifurcation point, i.e. 77 =0, then the response amplitude is given (Equiluz et

al., 2000) by
Y=X" (4.5)

The input-output level curve for this system under these conditions thus has a constant

slope of 3 dB/dB.

We now consider a slightly modified form of equation (4.3), in which the damping

increases in proportion to [y(t)| y(t) instead of l y(t)|2 y(#), so that
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() = 3(6) + (n +|y@)) y© - j @, Y. (4.6)

Tn this case the locked response to a complex sinusoidal forcing of amplitude X has an

amplitude ¥ given by
X =v*+277" +(p? +{w-o, P ¥, @.7)

When the system is at its bifurcation point, 77=0, and is driven at its natural frequency,

so that @= @, then the response amplitude in this case is equal to
Y=X", (4.8)

and the level curve for the modified system has a slope of ¥ dB/dB. Moreover if we
assume that the system is set slightly away from bifurcation point, so that 77 is small, but
is still driven at its natural frequency, then equation (4.7) can be written as

X*=yy*+2¥n+n?), (4.9)
so that

X=Y{Y+mn). 4.10)

If the system is below the bifurcation point, so that 7> 0, and the forcing level is very
small, then the response is also small. Provided Y << 7, then equation (4.9) predicts

that

Y =~— _ (4.11)

i.e. the response is linear with a 1 dB/dB level curve. As the driving level is increased,

the response will increase until ¥ > 7, in which case Y is approximately proportional to
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X" again, and the slope of the level curve decreases to 15 dB/dB. Figure 4.1 shows the
tevel curve for the locked solution to equation (4.6) when it is set slightly below the
bifurcation point, 77> 0, as discussed above, at the bifurcation point, 7= 0, in which

case equation (4.8) applies, and slightly above the bifurcation point, 77<0.

When the system is above the bifurcation point, 77 < 0, the system has a locked response
with a ¥ dB/dB slope for larger inputs, but for small inputs the output does not fall off
with input level, but maintains a constant output level even if the input is removed.
This corresponds to a limit cycle oscillation, which is reminiscent of the spontancous
otoacoustic emission. If 77 is negative then equation (4.10) is satisfied even if the
system is undriven, X = 0, in which case the response level is given by ¥ =—n, which is
a positive number. This simple model of the cochlear response is thus attractive
because it can reproduce many of the features of real otoacoustic emissions, including
spontaneous emissions at frequencies corresponding to certain positions on the cochlear

where the effective low-amplitude damping is negative.

When the system is below the bifurcation point, 77> 0, the level curve has exactly the
same form as the AGC discussed in Section 3. In particular when the AGC has the
modified gain law given by equation (3.9), the relationship beiween the forcing
amplitude and the response amplitude is given by equation (3.10), which is of exactly

the saﬁle form as equation (4.10) if 77> 0.

Thus if the variation of damping with instantaneous response in the original Van der
Pol's equation is selected correctly, we can obtain an identical level curve to that of the
model where the gain depends on the average output level. It would be difficult to
distingnish between these models in terms of their sinusoidal input output

characteristics.
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5. Summary and Conclusions

Several different models of BM response have been considered. Of particular concern
has been the response of these models to tonal excitation at a variety of input
amplitudes. The level of the fundamental component of the output response plotted
against the level of the input signal gives the level curve of the system, which is widely

used to characterise the compressive nonlinearity of the BM response.

The first model of BM response considered is an instantaneous power-law nonlinearity.
It is shown that a fixed power law gives a level curve with a single slope. By defining
an instantaneous nonlinearity with a power law that varies with the instantaneous input
amplitude, however, a level curve can be produced that has the required slope of

1 dB/dB at low levels and Y2 dB/dB at higher levels.

The second model considered is an automatic gain control, whose gain is dependent on
the output amplitude (a feedback AGC). With a suitable choice of gain law, a level
curve can again be produced with a slope of 1 dB/dB at low levels and 12 dB/dB at
higher levels. The distortion properties and transient properties of such an AGC are
also analysed, and it is shown that it is possible to design such an AGC that responds
within a cycle of the input waveform, and yet has a lower harmonic distortion than the

instantaneous nonlinearity that produces an equivalent level curve.

One possible mechanism whereby the gain of a system could be varied by the output
amplitude is for the system to have a nonlinear characteristic, whose bias position

depends on the output level, as discussed in Appendix D.

A Van der Pol equation model for BM response is then discussed, which leads to the
Hopf bifurcation model of Equiluz et al. (2000). In this model the damping depends in
a nonlinear way on the instantaneous value of the output waveform. This is shown to
have a steady-state gain that depends on the level of the output signal, and thus behaves
in a similar way to a level-dependent nonlinear system. It is also shown how, with
suitable modification of the parameters, the model can give a level curve with a slope of

| dB/dB at low levels and % dB/dB at higher levels. Another example of a dynamic
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nonlinear model for BM response that generates a similar form of level curve is the

nonlinear feedback model of Yates (1990), which is discussed in Appendix E.

The Hopf bifurcation model is interesting because it clearly shows how a damping-like
control parameter can be varied to produce either a stable system with the level
characteristic described above, or a system which also has a ¥2 dB/dB slope in its level
curve at higher amplitudes, but for low level excitation can produce limit cycle

oscillations that are very reminiscent of spontaneous otoacoustic emissions.

Figure 5.1 shows the level curves computed from the final versions of the instantaneous
nonlinearity in Section 2, and the level-dependent system in Section 3. These are
asymptotically very similar and it may be difficult to choose between these two

competing models on the basis of these steady-state level curves.

Figure 5.2 shows the transient response, to a suddenly applied tone, of this
instantaneous nenlinearity and the level-dependent system consisting of a feedback
AGC with a detector cut-off frequency which is half the input frequency. Although the
level-dependent system takes some time to respond to the input, this time is much less
than a cycle of the input waveform for such a well-adjusted AGC. It may thus be
difficult to distinguish between these two types of nonlinear system in terms of their
transient response, because the response time of the level-dependent system can be
made so short that it Iooks almost instantaneous. Both systems also exhibit harmonic

distortion in the steady state.

Figure 5.3 shows the instantaneous value of the output waveform plotted against the
instantaneous value of the input waveform, for a tonal excitation at three different
amplitudes, in the case of the two principal types of nonlinear system considered above.
These three input-output characteristics overlay one another for the instantaneous
nonlinearity, and thus form a single-valued nonlinear input-output characteristic. The
instantaneous input-output characteristics of the AGC, however, are straight lines when
the input frequency is well above the cut-off frequency of the output level detector,
although the slope of these lines, reflecting the gain of the AGC, change with the

amplitude of the input signal.

SHEAISRSE -31 - i4 dane N3



Of the three measures of response shown in Figures 5.1, 5.2 and 5.3, it would thus
appear that the instantaneous input-output characteristic may be the clearest method of
distinguishing between whether the cochlear nonlinearity is better modelled as an

instantaneous or a level-dependent nonlinear system.

It has been shown that each of the models of cochlear response considered here can
produce level curves that are consistent with the measured BM response data. The
instantaneous nonlinear model has an input-output characteristic which is single-valued,
however, whereas the level-dependent nonlinear model has an instantaneous input-
output characteristic that is multiple-valued. As well as providing a possible method of
distinguishing between the response of the two models, this observation has the
important theoretical implication that a level-dependent system cannot be characterised
by a Volterra series. The Wiener series and higher-order frequency responses thus also
do not provide a complete description of such systems, despite their prevalence as

theoretical models in hearing research.
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APPENDIX A
NARMA Description of a Feedback AGC System

Assume that the feedback automatic gain control (AGC) is defined by the block diagrams of

Figures 3.1 and 3.4, but that it is implemented in discrete time so that its input-output

relationship is defined by

y(n) = g(n)x(n). (A.1)
The gain law is assumed to be
g
= A2
8n) dmy+e (A-2)

in which g, and £ are constants, and d(n) is the output of the detector

d@) = w(m)?, (A.3)

where v(#) is the output of the low pass filter averaging the squared output of the AGC, given

by
v(ny=(1-&vn-1)+6 y*(n-1), (A4)
in which §is a constant related to the averaging time of the low pass filter. Note that the low

pass filter has an input of y’(n—1) instead of y(n) to ensure that the AGC loop can be causally
implemented. Equations (A.1), (A.2) and (A.3) may together be written as

y(n) = [(v(n))% + 5]_l g, x(n). (A.5)

Also, assuming y(0) = 0 and v(0) = 0 as initial conditions, the output of the low pass filter can

be expressed as
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n

)=y (-8 3y (n-i). (A.6)

Substituting (A.6) into (A.5) gives an explicit, but nonlinear difference equation for the

output of the AGC in terms of its current input and previous outputs:

| -1
y(n) = [(i (1—8)! §y2(n—i)J2 +6} g, x(n). (A7)
i-1



APPENDIX B
Harmonic Distortion of the Feedback AGC

An estimate of the total harmonic distortion of the feedback AGC can be obtained by
iteratively solving the equations describing the detector for a sinusoidal input. Initially, we

assume that the output signal is undistorted so that

y(#) =2 ¥ cos(w,1), (B.1)

where for the compressive AGC with a gain law given by equation (3.8), ¥ =X . The

output of the squaring device in Figure 3.4 is then
Yy () =Y*[1+cos Qew,t)], (B.2)
which is also the input to the low pass filter, u(t). The low pass filter will pass the d.c.
component of ¥'(¢) with a gain of unity, but the second-harmonic component will be affected
by the complex gain
H(j2w,)=M . (B.3)
The output of the low pass filter is thus
v(£) = Y1+ M cosQa,t + ). (B.4)
The overall output of the detector, which determines the- gain, is thus

d@) =Y[l+ M cosQu,t +0)F, (B.5)

and the time varying gain of the AGC, assuming a simple compressive gain law, is

- 38 - 16 Juse 03




g(r)=E%5=Y‘1[1+Mcos(2w0t+9)]‘5. (B.6)

Assuming the second harmonic component of the low pass filter output is not too large, so

that M < 1, then

gty = Y”{l-%l-cos Qw,t +9)}. ®B.7)

The output waveform can be written as

y(t) = g(0) x(2), (B.8)

and since x(f) = V2 x cos(wot) and using (B.7) then

y(£) =2 X ¥ cos (wor)[l - A—;—cos e, t + 9)} . (B.9)

Assuming Y = VX , then the output waveform is
y(6) =2X [cos (w,1)- yz— [cos (w, £ )cos2w, ¢ + 9)]:| : (B.10)
which can be written as
y() =2X [cos (a)at)—ﬂ—j- lcos (@, + 6)+ cos B, t + 9)]} . (B.11)

Assuming that M/4 << 1, then the fundamental component of the output has an rms

amplitude Y :«/.—X'_ . as assumed above, but the output also now has a third harmonic

component of rms amplitude N5'd % The total harmonic distortion of the AGC is thus

approximately



THD(%)z%—XlOO%. (B.12)

For the first order low pass filter described in Section 3 above, then

@
M =|H(j20,)]=|—"— (B.13)
w, +jlo,
and further assuming that 2@, >> @, then
2, 20

where Q is the ratio of the excitation frequency to the cut-off frequency of the low pass filter.

A simple approximation for the total harmonic distortion in such an AGC is thus

THD(%) =~ ——x 100% (B.15)
8Q
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APPENDIX C
Time Constant of a Feedback AGC

The nonstationary tonal input to a feedback automatic gain control (AGC) system can be

written
x(1) =2 X (t)cos{w 1), (C.1)

where X(2) is an envelope function. We assume that X(¢) has a value of X, until 7= 0 and then

abruptly changes to X,

X, fort>0

. C.2
X, forte=20 €2

X(t)={

It is also assumed that the input change is not too large, so that X, — X, << X,. The output of

the AGC is also assumed to be tonal but nonstationary and can be written in the form
¥(1) =2 ¥ (1) cos(w,1), (C3)
where Y(z) is the envelope of the output, which is itself equal to
Y)=g®) X(), (C4)
where g(#) is the instantaneous gain of the AGC.

The AGC is assumed to be compressive with the steady-state gain law g =1/Y so that

Y =+/X and so the steady state gain can also be written as

1
= — C.5
ST Tx ()



Let

! (C.6)

812\/?1"

which is the gain of the system for # < 0, and

(C.7)

gz:\/X_z

which is the steady state gain as ¢ — 0.

We now make the working assumption that the instantaneous gain changes exponentially
from g, to g,at=0,i.e.
g(t)zgz'f'e_r/r(gl_gz) (C.8)

where 7 is the overall time constant of the AGC. The assumed form of the instantaneous

gain, equation (C.8), can also be written as

g) =g, {l+4e™), (C.9)
where A is the fractional change in gain

A:,gl_gZ
82

(C.10)

which is assumed to be much less than unity since the change in the input level is small.

The envelope of the output is thus

Yt)=gt)X, fori>0 (C.11)



so that, using equation (C.9),
Y() =g, X, {1+ 4e7). (C.12)
The output signal is squared in the feedback loop of the AGC to give

Y (1) =27%(t) cos*(w,2), (C.13)

which is equal to

y2(0) =Y 2 ()1 + cos(2m,t )], (C.14)

and it is assumed that the alternating component is smoothed out by the low pass filter, but
that the squared envelope function still excites its dynamics. Assuming the low pass filter is
a first order system, with input u(f) and output v(z), its dynamics are defined, as in Section 3,

by the differential equation

w(t) =v(e) +7, X (C.15)
@t

where 7, is the time constant of the low pass filter. Within the AGC, the low pass filter input
is the squared output signal, y(#), whose dynamics on the timescales of interest here are

determined by its envelope function, so that
@) =Y () =g,° X, [+ 24¢7) (C.16)
where equation (C.12) and the fact that A << 1 have been used to obtain the final expression.

The output of the low pass filter is square-rooted and used to define the gain of the AGC, so

that

g)= (C.17)

—
™~
S’
.

¢



Thus
vty =(g())” , (C.18)

and using the assumed form of g(¢) in equation (C.9), then the input to the low pass filter can

be written as
v =(g,[1+2e7])7, (C.19)

and again assuming that A is small, then

vty =——[1- 2467, (C.20)

2

82

The right hand side of equation (C.15) may thus be written

W6+, d‘;i’) =ﬁ{1+2(T—;—1)Ae"ﬁ}. 21
2

Using equation (C.7) we note that

g, X, =—, (C.22)

so that equation (C.16), which is the left hand side of equation (C.15), is equal to equation
(C.21), which is the right hand side of equation (C.15), provided

LIy (C.23)
T

The assumptions we have made about the form of the gain variation with time, equation

(C.8), is thus consistent with all the equations for the AGC provided equation (C.23) is
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satisfied. The time constant of the gain change, 7, is thus given by the solution to equation

(C.23), which is

TL
r="L C.24
5 (C.24)

where T, is the time constant of the low pass filter.




APPENDIX D

The Generation of a Level-Dependent Gain by Biasing a Nonlinear Function

Figure D.1 shows one possible mechanism by which a level-dependent gain with the
characteristics discussed in Section 3 may be produced without explicit gain-scheduling. In
this arrangement the rms level of the alternating component of the output is used to bias a
nonlinear function. The a.c. gain of the nonlinear function is dependent on its slope, which
changes with the bias point. Such a mechanism would be consistent with the otherwise

puzzling observation, noted by de Boer (1991), that the d.c. displacement of the BM change

with the amplitude of an alternating excitation.

In Figure D.1 the input to the nonlinear function, #(¢), is the sum of the alternating input

signal;
x(t) =2X cos(wt), (D.1)

and a d.c. bias term, which is assumed to be dependent on the rms level of the fundamental

component of the output signal, z(z) =Y;, with an offset &, so that
u(®)y=Y, +e+x(2). B.2)

The output waveform will also have a d.c. bias, ¥, and harmonic components ¥, and may be

written as
yt)=%Y, +«/§Yl cos (w1)+ -JEYz cos 2(wr )+, etc.. (D.3)
It is further assumed that the nonlinear function is logarithmic, so that
(&) =1n {u(®)) (D.4)

where In denotes a natural logarithm. Substituting equation (D.2) into equation (D.4) gives



y(6) = In(¥, + £ + x(1)) (D.5)

30 that

x(t)
H=In;+&}+1n| 1+ . .6
y®)=In( +¢) ( YIH,J (D-6)
Assuming that ]x(t)l / (Y1 + €)< 1, the final term in equation (D.5) can be expanded as a series

to give

() x (1)

+.ee D.7
Yi+& 20, +¢e)f (b7

y(@) =In(Y, + &)+

If x(r) is sinusoidal, as in equation (D.l), then substituting this into equation (D.7) and

comparing each term in equation (D.3), we can see that

Y, =1In(Y, +¢), (D.8)
y =X (D.9)
Y +¢
and
X12 le
~— ol =L (D.10)
24, +ef 4

The term Y, is the d.c. bias on the output, which is proportional to the log of the output
amplitude plus a bias term. The fundamental component of the output has exactly the same
form as equation (3.10), and so the comesponding level curve has a slope of 1dB/dB for
values of Y, less than about ¢, and a slope of %4dB/dB for values above & The main source of
output distortion is predicted to be the second harmonic in this case, and the total harmonic

distortion is approximately
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THD(%):%—XIOO%=%XIOO% , (D.11)

1

which rises linearly with output amplitude.

Offset Static nonlinear
Input £ function Output
flw)
ulr)
>
1) ¥
U
z(t)

Detector — Banld—pass !
filter

Figure D.I: A possible mechanism for a level-dependent gain using a nonlinear function
whose bias point is set by the output amplitude.
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APPENDIX E
A Nonlinear Positive Feedback System

Figure E.1 shows the system with a nonlinear feedback path proposed by Yates (1990) as a
model for the basilar membrane input-output function, following similar systems described

by Zwicker (1979). In this figure G is a gain, @ is a nonlinear network, pfis a frequency-
selective network that provides a gain, also denoted by £, at the fundamental frequency of the

input signal, which is assumed to be tonal, but attenuates its harmonics.

The nonlinear network denoted @ in Figure E.1 is assumed by Yates (1990) to have an

instantaneous input/out characteristic

Ay
v(t) e (E.D

where y(#) is the input waveform to ®, v(z) is its output waveform and A is a threshold

amplitude. The instantaneous gain characteristic can thus be expressed as

v A
=0 A0 (E2)

The nonlinear network behaves linearly at low input amplitudes, i.e.

P =1, sothat v(r) = y(1) if |y(@)<A (E.3)
and saturates at high amplitudes, i.e.

O~ sothatv(i)=A if (@) > A. (E4)
y@)

The instantaneouns input-output characteristics of this nonlinear network and its gain

characteristic are plotted in Figure E.2 for A = 10°, which is the value typically used by Yates



(1990). Only the upper right quadrant of the characteristic is plotted, since a logarithmic

amplitude scale is used, but the characteristic is the same for negative values of v and y since

it is symumetric. The gain of @ is unity at very low values of input and progressively drops as

the input value rises.

The ratio of the complex output, Y, of the overall nonlinear feedback system shown in

Figure E.1 at the driving frequency to the complex input, X, is taken by Yates (1990), to be

Y G
=Gy = (E.5
X N 1-pec )

where G and f are real constants, and & is taken to be a real number that depends on the

amplitude of the output signal.

For the configuration shown in Figure E.1, however, the nonlinear system, @, is assumed to
act instantaneously and y(7) in equation (E.1) is a time-varying waveform. The gain of ®,
given in equation (E.2) will thus vary above and below unity during one cycle of a sinusoidal
variation of ¥, and the output waveform from ® will be distorted. The network £ is then
assumed to select only the fundamental component of v(f). The entire feedback network
could thus be characterised by a describing function, whose form can be computed using the

methods described, for example, by Ogata (1970). Alternatively, equation (E.2), with

y(f) = ¥, could itself be taken to define the describing function of the feedback network, as is

implicitly assumed by Yates (1990) in deriving equation (E.5).

In this case the gain of the complete feedback path at the excitation frequency can be written

as
po=LA E6)

Since there is no phase shift through G or through the feedback path, all of the potentially
complex signals, X, ¥ and V can be taken to be real in this case, and the overall transfer

function at the driving frequency, equation (E.5), has no phase shift.
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It should be noted that Figure E.1 is a positive feedback system and is only stable if the loop
gain, fP G, is less than unity. Yates (1990) assumes that G is always unity and that 5 is
typically 0.999. For very low level signals, such that @ is linear and has a gain of one, §® G
is very close to unity (0.999) and the system is thus very close to instability. The closed loop
gain in equation (E.5) is large under these conditions, 10°, but is also extremely sensitive to
small changes in gain around the feedback loop. Such a change would be caused by an
increase in the output signal, so that the gain of ® drops below unity. If, for example, the
value of Y in equation (E.6) is just 1% of A, then the magnitude of ® becomes about 0.99,

and the closed loop gain drops from 10’ to about 10°, i.e. by about 20dB.

If the gain of the overall feedback path in Figure E.1 is denoted by H, then equation (E.6)
indicates that for tonal excitation, the magnitude of H is effectively being scheduled on the
amplitude of the feedback loop's output, ¥, as shown in Figure E.3(a). The system shown in
Figure E.3 is a level-dependent nonlinear system. The use of the describing function has
allowed the instantaneous nonlinearity to be replaced by a level-dependent nonlinearity only
for the particular case of a steady-state tonal excitation at the centre frequency of the network
B The dynamics of the output detector in Figure E.3(a) do not affect its steady state
response, but would affect its transient behaviour. Thus Figure E.3(a) cannot be taken to be a
representation of the behaviour of the system in Figure E.1 for any other excitation signal

than a steady state tone.

Since G and H are entirely real in Figure E.3(a), the response of the whole feedback loop can

be replaced by a real number representing its closed loop gain, g, where

g=—2_, E7)

which is implicitly scheduled on the output amplitude because of the dependence of H on this
amplitude in Figure E.3(a). The resulting block diagram, Figure E.3(b), is exactly the same
as that of the automatic gain control (AGC) considered above. In this case, however, the gain

law is slightly different to that considered previously.
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Assuming, as in Yates (1990), that G=1 and that H is given by equation (E.6), then the

dependence of the gain on the amplitude of the output amplitude may be written as:

1 A+Y
_ _ _ 8
§71-80 (-PA+Y ES)

If we assume that A >> ¥, but that (1-f) is correspondingly small, so that (1-/)A is not too

large and can be written as &, then the gain law is equal to

1
- , .0
§ Y+e (E9)

exactly as in Section 3 above. In general, however, equation (E.8) can be written as

Y+A
g= , (E.10)
Y+e&

where £ = (1~ i) A again and (1-f) < 1sothatA > &

The behaviour of the system described by equation (E.10) can be split into the three distinct
regions described by Yates (1990), but using the formulation above, analytic approximations

can now be derived for the characteristics in each region. First, for very low levels:

ifY<<Aand ¥<< & , thengzé, (E.11)
£

s0 that the system behaves lincarly, with a level curve having a slope of 1dB/dB, and a gain

of A/e> 1. Second, for moderate levels:
. A
if Y<A but Y>¢g, then g=—-;, (E.12)

so that the system behaves in a compressive way, as described in Section 3 above, with a

level curve slope of ¥2dB/dB. Finzﬂly, for very high input levels:
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ifY>Aand Y>¢ then g =1, (E.13)

so that the system again behaves linearly, with a level curve slope of 1dB/dB, but with a

significantly lower gain than at very low levels. Figure E.4 illustrates the level curve for an

AGC with the gain low given by equation (E.10) for £= 10’ and A = 10°,

1t should be noted that the frequency-selective network and nonlinear network do not have to
be in the feedback path, as shown in Figure E.1 to produce an output-dependent level curve.
If, for example, these elements were positioned in the feedforward path and the feedback path

was assumed to have a unity gain, then the closed loop gain becomes

__bD _ bA
g_l—ﬂCD_Y+£ E.14)

where equation (E.6) has been used for #& and ¢ is again equal to (1-£) A. The gain law in
equation (E.14) does not revert to a linear one at high amplitudes and so is consistent with

those derived in the sections above.

Finally, it is interesting to note that if fis chosen to be slightly greater than unity, instead of
slightly less than unity and the frequency selective network is a resonant system, then the
system will produce limit cycle oscillations for very low input, exactly like the Van der Pol

oscillator.



Feedforward gain

.{,.
—» G > y(t
x(1) . 2 ¥
z(f)
i) <+ P <t
v(1)
Frequency-selective Nonlinear
network network

Block diagram of a system with nonlinear feedback path.

Figure E.I:
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Figure E.2:
for the nonlinear network @.
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Figure E.3:  Alternative interpretation of the equations describing a system with nonlinear
feedback and frequency selectivity; as a feedback system whose feedback gain
is scheduled on output lever (a), and the equipment automatic gain control if

g =G/(l-GH) ().
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