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ABSTRACT

The dispersion properties of finite element models for acroacoustic propagation based on the convected scalar Helmholtz equation and
on the Galbrun equation are examined. The current study focusses on the effect of the mean flow on the dispersion and amplitude errors
present in the the discrete numerical solutions. A general two-dimensional dispersion analysis is presented for the discrete problem on
a regular unbounded mesh, and results are presented for the particular case of one dimensional acoustic propagation in which the wave
direction is aligned with the mean flow. The magnitude and sign of the mean flow is shown to have a significant effect on the accuracy of
the numerical schemes. Quadratic Helmholtz elements in particular are shown to be much less effective for downstream—as opposed to
upstream—propagation, even when the effect of wave shortening or elongation due to the mean flow is taken into account, These trends are
also observed in solutions obtained for simple test problems on finite meshes. A similar analysis of two-dimensional propagation is presented

in an accomparnying report.
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1. INTRODUCTION

The behaviour of linear waves can be described by their disper-
sion properties™. As a consequence, the stability and accuracy of
numerical methods for wave propagation problems can be assessed
by comparing the dispersion properties of the waves described by
the numerical model with those of the physical model.

The Helmholtz equation, which describes acoustic waves in a
quiescent medium, has received particular attention and several
studies have been devoted to finite element methods. A central
issue in these studies is the pollution error which is known to be
the main numerical error in practical cases. The pollution error
is directly related to the dispersion error {see next section) and it
is not controlled by keeping the number of points per wavelength
constant.

Harari considered several finite element formulations for the
two-dimensional Helmholtz equation with square bi-linear ele-
ments®. The dispersion, anisotropy and spurious reflections at
a mesh discontinuity were analysed and it was shown that the
Galerkin least square method gives the best overal! results.

Deraemacker ¢ al. also analysed the dispersion error for the
standard Galerkin formulation with p-hierarchic square elements
and linear triangular elements’. The generalized-least-square,
quasi-stabilized and residual-free-bubble methods were also com-
pared.

The discontinuous Galerkin method was considered by Hu et
al. for the wave equation in two dimensions®. The dispersion
properties of this method proved to be mainly influenced by the
expression of the numerical flux.

Mulder reported a systematic analysis of the dispersion prop-
erties of various finite element models for the one-dimensional
Helmholtz equation®. He considered Lagrange, Gauss-Lobatto and
Chebyshev elements, with order ! to 5, and also without and with
mass lumping. He showed that, for higher-order elements, the am-
plitude error should alse be taken into account, This error can
increase significantly for certain numbers of points per wavelength.

The dispersion analysis has also been used to assess the accu-
racy of other finite element methods such as the mesh-less Galerkin
method!! and a residual-based method®,

The more general problem of acoustic wave propagation on
a mean flow is of growing interest for engineering applications,
However, very seldom work has been devoted to the dispersion
properties of finite element methods for aeroacoustics. Astley
et al. considered the one-dimensional linearized Euler equations
solved with quadratic Lagrange and cubic Hermite elements’. The
Galerkin method was shown to produce spurious numerical modes
and the least square method achieves only a poor accuracy.

The present report is intended to study the dispersion properties
of two finite element methods for solving aeroacoustic propagation
problems. These numerical methods are based on the full poten-
tial theory and the Galbrun equation, respectively. In the first part
of this report, we consider one-dimensional propagation along the
mesh axes. The next section describes the dispersion analysis for
finite element methods. In section III, the two numerical models
for aeroacoustic propagation are presented. The dispersion prop-
erties of these methods are detailed in section IV. Finally, these
results are compared with those of a simple test problem in section
V.

The second part presents results for the two-dimensional acous-
tic propagation and especialiy the anisotropy of the dispersion
properties of the numerical methods.

II. DISPERSION ANALYSIS

In this section, we describe the general framework to analyse
dispersion properties of two-dimensional finite element methods
for time-independent problems (e.g. steady or time-harmonic) with
uniform coefficients. This framework can be easily modified for
one- or three-dimensional problems.

Consider an infinite, two-dimensional, periodic mesh. Periodic
means that the mesh is composed of a single “pattern’ of elements
which is repeated in all directions to build the infinite mesh (two
examples of mesh patterns are given in figure 3).

For this kind of mesh, it is possible to identify a finite number
N of ‘types’ of nodes. All nodes of a given type share the same

number of degrees of freedom and are located at the same place in
the mesh pattern. Thus, all the nodes of given type form a regular

grid and the position of a node of type p can be denoted by mfr,’f?n
where (rn, 1) are the indices of the node on the grid ». The node
spacing is the same for all grids and is denoted éz and dy for the
two directions. But most important, the equations corresponding to
the degrees of freedom of a node of a given type are all identical,
Hengce, the global linear system is made up of V different sets of
equations. For each type of node g,th e set of equations associated
to the degrees of freedom is written:

N
Sy AR =0, am12 8. )

p=im,n

The vector u,(if)n represents the M, degrees of freedom of the node
(m, n) of type p. The M, x M, matrix A% describes the contri-
butions of the node (m,n} of type p to the equations for a node of
type q. These matrices obviously depend on the tumerical method
but also on all the problem parameters. The values of the indices
(mm,n) in the second sum depend on the node type g. It is also
worth noting that in {1}, the equations for a node of type ¢ may
involve degrees of freedom from other types of nodes.

From the sets of difference equations defined by (1) it is possible
to obtain the dispersion relation of the numerical method. To that
end, the general solution of the difference equations is written

u(z® ) = uPa™p" | p=1,2,....N, @

where o and 3 are complex numbers. Since we consider an infinite
mesh, we will consider only the complex numbers that have 2 unity
norm (Ja| = || = 1) so that the wave amplitude remains bounded.
Hence, we can define a real wavenumber

k = kze: + kyey = ke, cosf -+ ke, sind

where @ is the wave propagation angle such that o = exp(ik.dz)
and J = exp(ikyd, ). The expression (2) becomnes

u(@fh) =uf exp (ik-2n)  p=12....N. @)
This is equivalent to using a Fourier transform to recast the equa-
tions (3) in the wavenumber domain. It is aiso usefil to define
& = exp (ik), and, since we have 2 real wavenumber, & is lying on
the unity circle in the complex plane.

Each type of node has a different set of equations, so the degrees
of freedom of a node of a given type have to be considered as inde-
pendent of the degrees of freedom of other type of node. Thus, the
wave amplitudes uc(," } are different for each type of node.

Substituting the plane wave solution (3) in the sets of equations
(1) yields:

r=lmn
N
= > FPpu’=0. @
r=1

All the equations forg = 1,2, ..., N can be expressed as a linear
system for the wave amplitudes:

FOLL  pa2 . g uM
F@n pe2d . peN) ul® 0
FL pN2) FLN) ul ]

()

This system, which can simply be written RU = 0, is the numeri-
cal dispersion relation of the finite element model and represents an
eigenvalue problem for k and U, the other parameters being given.
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To find non trivial solutions to the dispersion relation (5), the
dispersion matrix R must be singular. Therefore, we have to solve
the characteristic equation

det(R) =0, (6)

for o and 3, or equivalently for x with a given value of §. For
each root &, we have £ = —iln(&) 4+ 2nm. So there is an infinite
number of wavenumber solutions. Obviously, we only consider the
case n = 0. Furthermore, each root & of equation (6} is associated
with an eigenvector U7 which is the right null vector of the matrix
R

Of particular importance when solving equation {6) is the num-
ber of real roots k. The determinant det( &) is a polynomial in &
whose order is defined by the functions FC? . The number of roots
k in C is the order of the polynomial but the number of real roots
depends on the parameters of the problem and cannot be known 2
priori.

Then, one has to match each solution (&, U) of the numerical
dispersion relation with an exact mode (k, U') of the physical prob-
lem. If this is not possible, this mode is a spurious, or parasite,
mode and the stability and convergence of the numerical method
cannot be guaranteed.

With this dispersiont analysis, the accuracy of the numerical
model can be evaluated by defining two kind of errors. First,
the well-known dispersion error is the deviation of the numerical
wavenumber k from its exact value k. In this report, we consider
the relative dispersion error

_kh—kh
T kh

where b is the finite element typical size. According to a result by
Thienburg and Babuska’, this emor varies like

eg r Ed=]3d| )

E;~ C(kR)”

where p is the order of the element and C is a constant independent
of k and h. -

The amplitude etror is the deviation of U from its theoretical
value U7 and is defined by

jo -1
Ee="my -

The numerical and exact eigenvectors are defined apart from a com-
plex constant. To calculate a meaningful error E,, it is necessary
to choose a reference component in the eigenvector. The numer-
ical and exact eigenvectors are normalized so that this reference
component is 1.

It is worth noting that the amplitude error E, is a local emor
whereas the dispersion error £ is non local since it tends to acou-
mulate as the wave propagates.

III. FINITE ELEMENT METHODS

In this section, we describe two finite element methods used
to describe acoustic wave propagation in mean flows. These two
methods are presented for time-harmonic problems, with a implicit
time dependence given by exp(—iwt).

As explained in the previous section, all the parameters of the
problem must be uniform in order to use the dispersion analysis.
So we consider an homogeneous fluid (with density po and spead
of sound ep} in uniform mean flow vo

vg = Meg cos{a)e- + Mcosin(a)ey ,
where M is the Mach number and « is the mean flow direction.

1IL.1. Convected wave equation

A widespread model for acoustic waves in flows is the full poten-
tial theory with which the acoustic waves are described by means
of the acoustic velocity potential. With this theory, the mean flow is

@ ® @© @ ©

Figure 1 The finite elements for the convected wave equation: (a) 2
nodes linear element L2, (b) 3 nodes quadratic element L3, (c) 4 nodes
bilinear element Q4, (d} 8 nodes serendipity element Q8 and (e) 9 nodes
bi-quadratic element Q9.

irrotational. In the case of a uniform mean flow, this model reduces
to the classical convected wave equation for the acoustic pressure:
ng 2
i qip=0, )]
where do/dt = —iw+wg- V is the material derivative in the mean
flow. This equation can be expressed as the following variational
statement for a domain 2 with boundary I'™:

2 7%} _ dop dop”
/QC‘J(VP VP~ 3 a4

_ d — v
+fp*(vo'n)—(;’f —chpn-Vpdl =0 , ¥p* , (8)
r

where p” is the pressure trial function and the overbar denotes the
complex comjugate. This model is solved with various finite ele-
ments, see figure 1, The one-dimensional elements are the 2 node
linear element (L.2) and the 3 node quadratic element (L3). The
two-dimensional elements comprise the 4 node bi-linear element
(Q4), the 8 node ‘serendipity’ element (Q8) and the 9 node bi-
quadratic element (Q9).

111.2. Galbrun equation

The other model considered here is the Galbrun equation which
is based on Lagrangian perturbation methods and is expressed for
w, the Lagrangian perturbation of the displacement®. This equa-
tion is valid for any type of mean flow and takes refraction effects
by mean flow shear into account.

For an uniform mean flow, this equation reads

d2
pod"—;" — Y (V- -w)=F .

In order to be solved with finite elements, the Galbrun equation is
expressed as a variational statement:

2 — dow dow*
/s;pgcu(v-'w)(v w) — po R T a0

+/po('vo-n)%-?—-?u?wpgcg(v-w)ﬁ-ndl"
r
=/F-fdn  Yw, (9)
Q

where ™ is the displacement trial function. With this variational
formulation, originally proposed by Peyret and Elias'® th e bound-
ary integral is the momentum flux through the boundary” and the
volume integral vields hermitian linear systems. This formulation
is solved with the standard linear trianguiar element, see figure 2.
However, this displacement formulation is known to be unsta-
ble because spurious numerical modes are present. To circumvent
this difficulty one can use a mixed formulation of Galbrun equa-
tion together with finite elements satisfying an inf-sup condition™.
This issue is investigated in section IV.3 by means of the dispersion
analysis. The Galbrun equation, expressed as a mixed formulation
with the pressure variable, is:
diw
pOF + Vp = f 3

P+pecsV-w=gq .
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Figure 2 The finite elements for Galbrun’s equation: {a) triangunlar
linear element without pressure degree of freedom, (b) triangular lin-
ear element, {c) triangular linear element with a bubble function for
the displacement and (d) square 9 nodes element with bilinear pres-
sure and bi-quadratic displacement. {0 pressure node, e displacement
node)
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Figure 3 The two meshes nsed with the T4-3¢ Galbrun element: the
mesh A (left) has one type of node, the mesh B (right) has two types of
nodes (s and o},

The corresponding variational statement is

W Vptw- Vi — poo . QW _ PP 40
/,; P Por~g  Ta# T el
+fpo(vo-n)d°—w-ﬁ—g37w-ndl"
- Fq *
=] wr-f—==d02 , v(w", , (10
#7522 (w*,") , (10)

where p* is the pressure trial function. This formulation is solved
with three different elements: the frianguiar linear element, the
triangular linear element T4-3¢ with a “bubble’ function for the dis-
placement and the 9 node square element Q9-4¢ with bi-quadratic
displacement and linear pressure (see figure 2). Two different mesh
patterns are considered for the T4-3c element, see figure 3.

IIL.3. Methodology

The two models which are considered here describe acoustic
waves in moving fluid. With a uniform mean flow, the plane wave
solations can be written:

p = Aexp (ik -z — iwt)
tAk

W= ———————exp (tk - @ — k) ,
po(w—k-vo)2 xp( )

where A is the pressure wave amplitude and the wavenumber is
given by

w 1

wl+Meos(@—a) an

k = kcosfer + ksinfey, , k=

In order to compare easily the efficiency of the various finite ele-
ments, the meshes used to compute the dispersion properties have
the same node spacing which are denoted Az and Ay. Thus, for a
problem with a given size, the number of degrees of freedom can
be considered as independent of the finite elements and their effi-
ciencies can be readily compared. In this report, we only consider
the case Ax = Ay.

To simplify the equations and the analysis, the density pp and
the speed of sound ¢p are taken equal to 1 and the node spacing
h = Az is constant while the other parameters are changed.

The accuracy of the finite element methods are analysed as fime-
tions of the free parameters A, ¢, 8 and k. Since we choose the
node spacing as the reference length scale, the wavenumber k is
directly related to the number of points per wavelength. For given

values of the free parameters, the theoretical pulsation w is obtained

with equation (I1), the matrices A,(,‘ijf,} are computed, the roots &

of the eharacteristic equation {6) are obtained with a Gauss-Newton
iterative method (the £solve function in Matlab) and finally the
corresponding eigenvectors I are computed with a QR method
(the eig function in Matlab).

To compute the amplitude error for Galbrun elements, the first
pressure degree of freedom is used as the reference component.

IV. DISPERSION PROPERTIES

In this report, we study the accuracy of finite element methods
for one dimensional propagation. That is, we consider only plane
waves propagating along the e axis. Hence, o = 8 = 0 and we
have only two free parameters, namely the mean flow speed M and
the wavenumber &. This simplification leads to a clear explanation
of the important effects of the mean flow on the numerical accuracy.
The effects of the direction of the wave with respect to the grid axes
and to the mean flow direction will be discussed in a second report.

IV.1. Helmholtz linear elements

There is no spurious mode for the L2 and Q4 elements since
their characteristic equations are of order 2. These two modes are
the upstream and downstream acoustic waves.

The dispersion errors for the linear finite elements L2 and Q4 are
identical and are given in figure 7. There is no amplitude error for
these elements since their dispersion relation (5) is scalar, Clearly,
the downstream and upstream propagation cases are different.

For upstream propagation, the mean flow tends to slightly in-
crease Eg. The second-order convergence rate is well observed
even for short waves (5 points per wavelength). It has to be noted
that these effects are not produced by the wavelength shortening
due to the Doppler effect since we consider Fg as a function of the
number of points per wavelength.

For downstream propagation, the mean flow speed can signif-
icantly reduce the errors. For instance, with a 0.5 Mach number
the dispersion error is divided by 2. Furthermore, for high mean
flow speeds and short waves, F4 can be reduced to zero. This is
more easily understood on figure 8 where Ej is plotted as a func-
tion of the Mach number. It is seen that the mean flow effect can
balance the error of the numerical scheme and the error is then
identically zero for some values of M and k. Figure 8 also shows
that the wavenumber is generally underestimated so the physical
waves will lag behind the numerical ones. Finally, it is interesting
to note that the effect of the mean flow can be modelled as roughly
linear. In fact, the dispersion error on figure 8 is well approximated
by —C(1 — M) (kh)*.

IV.2. Helmholtz quadratic elements

Although it will not be detailled here, we have checked that, for
M € {-1;1) and with more than 4 points per wavelength (that
is for all cases of practical interest), the guadratic elements 1.3, Q8
and Q9 have no spurious mode, i.e. modes which do not correspond
to physical modes.

Figures 9 to 12 show the dispersion and amplitude errors for the
elements L3, Q8 and Q9. The errors of this three elements are
identical. This can be anticipated for the L3 and Q9 elements since
shape functions for the latter are separable in each directions to
obtain the L3 shape functions. But this is more surprising for the
(8 element.

For upstream propagation, the situation is similar to that of the
linear elements, the fourth order convergence rate of £y and E, is
well observed.

As for the linear elements, the mean flow effect is limited for the
dispersion error but more pronounced for the amplitude error. This
difference is much more evident for the downstream case. In that
case, there is a difference of 2 orders of magnimde in £, between
the no flow case and M = 0.9. Furthermore, for downstream prop-
agation and short waves, the errors can experience very important
increases (as high as one order of magnitude). In the no flow case,



4 G. GABARD, R.J. ASTLEY

Wave amplituda
o

Figure 4 The physical wave and its copy for L3 elements. Solid line:
a wave with wavenumber k; Dashed line: a wave with wavenumber
k -} m; o: nodal values for the mode with wavenumber & and eigenvec-
tor (1, 1); x: nodal values for the mode with wavenumber k + 7 and
eigenvector (1, —1).

this was noticed by Muider® who referred to it as the aliasing error.
For quadratic element, he considered it was not relevant to prac-
tical problems since it is found only for short waves (4 nodes per
wavelength). But with mean flow the aliasing error may be present
in practical sitations (3-10 nodes per wavelength).

The aliasing error can be explained as follows. The L3 element
dispersion relation possesses 4 real roots. Two correspond to the
physical downstream %% and upstream &~ acoustic modes with
eigenvectors equal to (1, 1). For the two other roots, the wavenum-
bersare k* = k* +x/hand k™ = k™ +n/hand the eigenvectors
are (1, —1). If we write the solution at the nodes for the mode &7 :

pgl)cxp (in.i:"'h) , withmeven ,

MTn) = .
(@) pPexp (ink+h) , withnodd ,

_ [ exp(inkTh+inm) =exp (inkTh) , withneven ,
| —exp(inkth +inx) = exp (ink¥h) , withnodd ,

it appears that the values at the node are the same as for the physical
mode (it is also itlustrated in figure 4). Thus, these two supplemen-
tary roots are not spurious modes since they also match the physical
modes. However, when, for instance, the downstream mode k7
and the copy of the upstream mode £~ have the same wavenum-
ber, the numerical model cannot describe properly these two modes
with the same wavenumber but different eigenvectors. This resuits
in an increase of the errors when k™h = k~h + 7. It is straight-
forward to see that it corresponds to

k*:%(I—M) )

With this simple equation it is possible to anticipate the peaks in
dispersion and amplitude errors. As the mean flow speed increases,
the aliasing error is presents for longer waves. However, the numer-
ical wavenurnbers corresponding to the peaks are underestimated
by this equation since we used the exact expression (11) for the
wavenumbers.

As for the linear elements, the dispersion error is found to vary
almost linearly with the Mach number except for high speed flows
where the aliasing error produces some kind of singularity in the
curves (see figure 10). The dispersion error is well approximated
by ~(1 — M)(kR)*. On figure 12, it is also clear that the mean
flow speed can have a very important effect on the amplitude error
in the downstream propagation case. The amplitude error does not
vary linearly with the Mach number.

9

o

%

9
90

9

9

©

Figure 5 Pressure field for one of the spurious modes of the mixed
formulation with the standard linear triangular finite element (M = G,
w = 7 /6). 10 contours from —~1 to 1, solid lines: positive values, dotted
lines: negative values.

IV.3, Galbrun elements

A well-known problem when solving Galbrun equation with fi-
nite elements in the frequency domain is the occurrence of spurious
numerical modes. This problem is also present without flow and,
hence, is similar to that of displacement based acoustic formula-
tions,

The problem is that the zero frequency rotational modes, which
are exact solution of the problem, are described by the numerical
model as non zero frequency modes. With standard finite elements,
these modes will spoil the sclution at any frequency.

Several authors have proposed specific numerical methods to
cope with this problem. In this report, we use mixed finite elements
satisfying the inf-sup condition proposed by Treysséde et al.”®. Itis
worth investigating this issne by means of the dispersion analysis
presented in this report.

First, we consider the displacement formulation defined by the
variational statement (9) solved with the standard triangular linear
clement. The dispersion analysis shows that, apart the hydrody-
namic mode and the two acoustic waves, this numerical model
supports two other modes. It has been checked that these modes are
purely rotational displacement fields and they are always present ir-
respective of the parameters w and M.

Secondly, we consider the mixed triangular finite element with-
out the bubble function (both p and w are linear). The dispersion
analysis shows that this finite element, which does not satisfy the
inf-sup condition, is not stable since there are 6 spurious modes. An
exarnple of the pressure field corresponding to one of these spuri-
ous modes is given in figure 5 and it is clearly a sawtooth pattern.
These spurious modes are also present for all values of the param-
eters. This is consistent with a thorough study of Galbrun finite
elements for duct acoustics'2, This study shows that the mixed fi-
nite elements represent an improvement of the displacement based
formulation. However, the stability of the mixed formulation with
standard finite elemnents is not satisfying.

Similar spurious modes have already been reported for the one-
dimensional linearized Euler equations solved with standard finite
elements!.

The occurrence of spurious modes with the Galbrun T4-3c ele- .
ment is found to depend on the Mach number. Spurious modes can
exist if the mean flow Mach number is above 0.6 or below —0.6.
The dispersion and amplitude errors for the T4-3¢ Galbrun finite el-
ement with the mesh A are given in figures 13 to 16. The behavionr
of this element is quite different from the Helmholiz element.

In all cases the second order convergence rate is well observed
both for F; and E,. The mean flow effect is more important for
the dispersion error and in the case of upstream propagation. For
instance, there is a difference of more than one order of magnitude
in E4 between the no flow case and M = 0.9. On the contrary,the
effect of the mean flow is very small for the amplitude error in the
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downstream case.

It can be seen in figures 14 and 16 that the no flow case corre-
sponds to a local maximum of the errors, However,E ¢ and E, are
significantly reduced when the Mach number increases and Eg4 is
zero when ¥ ~ —0.2 and 0.25. This explains the important de-
creases of the dispersion error which can be seen in figure 13. It is
also important to note that the errors can be quite large for upstream
propagation and high speed mean flows.

The generai trends observed with the mesh A are also obtained
with the mesh B except for the occurrence of peaks for the am-
plitude error (see figures 17 to 20). These peaks are similar to
those observed with the quadratic Helmholtz elements. This can
be explained by noting that the mesh B has two different types of
nodes (mesh A has only one type of node). Thus, if we have a
root with wavenumber & and eigenvector (p, we, Wy, P, Wz, Wy ),
we have another root with wavenumber k& + 7 /h and eigenvec-
tor (p, We, Wy, —P, —Wz, —Wy ). Furthermore, another difference
with the mesh A is that the amplitude error is large for high speed
mean flow both for upstream and downstream propagation.

These results show that the T43c¢ Galbrun elements can give re-
liable results as long as the Mach number is not too high (less than
0.6). And, depending on the mesh pattern, the results may be al-
tered by the aliasing error.

The errors for the 9 node Galbrun element with linear pressure
are given in figures 21 to 24. Surprisingly, the convergence rate
of the dispersion error is fourth order while for the amplitude it
is only second order. This can be explained by the fact that the
polynomial basis is niot of the same order for the pressure and the
dispacement. Furthermore, the effect of the mean flow is important
for the dispersion error and the downstream propagation. In figures
22 and 24, it can be scen that the mean fiow tends to reduce the
dispersion and the amplitude errors. However, it is clear that the
amplitude error remains very high {around 10%) compared to the
triangular element T4-3c.

V. ATEST PROBLEM

It is important to evaluate to what extent the dispersion and am-
plitude errors influence the global numerical error for a practical
problem. To that end, the results presented above are compared
with the analysis of a simple test problem.

‘We consider the time-harmonic convected wave egnation (7) on
[0, 2nAz} with time dependence exp{—iwt}. Atz = O the pres-
sure is set to 1 for the convected wave equation. For the Galbrun
equation, at z = 0, the displacement is set so that the pressure is 1,
Atz = 2nlz the impedance condition p/dz = tkp is used with
the theoretical value of the wavenumber given by (11). The exact
solution to this problem is simply pe- = exp (tkz). The domain
is discretized by 2 linear elements or » quadratic elements so that
the node spacing is always 1 and the number of degrees of freedom
remains unchanged (see figure 6). For iwo-dimensional elements,
the mesh is made of 4 (or 2) rows of linear (or quadratic) elements.
In all cases, weusen = 25and Az = 1.

This simple problem is solved for various values of M and %,
and for each case two numerical errors are defined:

Bi= =] 5 [P~ Pes]
|Pex| |Pex}

These errors are computed at each node and we consider the mean
values given in %. The first error is based on the pressure amplitude
and is not influenced by the error on the phase. On the contrary, the
second error takes into account the phase error. Thus, by compar-
ing these two errors 1t is possible to identify the dispersion error
from the other sources of etror.

V.1. Helmholtz elements

Figures 25 and 26 give the numerical errors for the L2 element.
The results for the Q4 element are strictly the same. The general
behaviour of E: error is similar to the dispersion error (see figure
7): the mean flow only slightly increases the numerical error in the
upstream propagation case and for the downstream case, the mean
flow tends to reduce the error (especially for short wavelength).
However for long waves it is unclear whether the mean flow is re-
ducing or increasing the error because of oscillations. The F; error

[ |
L2 » A B
{ o
L3 o | Je o
Q4
7 f
Q9
|

7 7

Figure 6 The one dimensional test problem with several kind of ele-
ments.

is very different: the convergence rate is only first order but the
values are much smaller than Fs (especially for short waves). The
mean flow reduces (increases) Ez in the upstream (downstream)
case which is the contrary of the dispersion error for this element.

The numerical errors obtained with the L2 and Q9 elements are
given in figures 27 and 28. Of particular importance is the fact
that the peaks observed on F; and E; coincide with those of the
dispersion and amplitude errors (see figures 9 and 11). This shows
that the aliasing error can drive the numerical error even in practical
cases {8-10 points per wavelength). Furthermore, the qualitative
behaviour of E; and 2 resemble the dispersion and amplitnde
errors. By comparing F; and E, one can notice that the mean flow
effect is more pronounced for E;. This is logical since E; does not
take into account the phase error and hence is mainly influenced by
the amplitude error (which varies significantly with the mean flow
speed).

The fact that Fian d Eqare very different with the linear el-
ements and quite similar with the quadratic elements can be ex-
plained by the fact that the linear elements have no amplitude error.
For the quadratic elements, F; is influenced by the dispersion and
the amplitude errors whereas Fi is only influenced by the am-
plitude error. With linear elements, E1is not influenced by the
amplitude error (these elements have no amplitade error) nor by
the dispersion error (by definition of E1), so it is likely that an-
other source of error is observed with E1 (probably the boundary
conditions).

V.2. Galbrun elements

To use the T4-3¢ Galbrun element for the test problem, we use
an altemating mesh similar to the mesh B given in figure 3. The
results for the numerical errors B; and E2 are given in figures 29
and 30.

The occurrence of spurious modes for high Mach number is
clearly indicated by the peaks obtained for M > 0.7 and M =
—0.9. For the other values of the Mach number,th € rate of conver-
gence is not corresponding to the dispersion and amplitude error,
so there is probably another source of error. Globally, it is found
that the mean flow speed has an important effect on the numerical
SITOrS.

VI. CONCLUSIONS

For all the considered elements, the rates of convergence of the
dispersion and amplitude errors are 2p regardless of the Mach num-
ber.

For the Helmholtz elements, we can conclude that:

(i) For the upstream propagation, the mean flow increases
slightly the errors whereas, for the downstream propagation, the
asymptotic errors can be significantly reduced by the mean flow.

(if) For short waves and downstream propagation, the aliasing
error can produce very important increases of the dispersion and
amplitude errors.
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(iii) The effect of the mean flow on the dispersion error is almost
linear (except with the aliasing error).

(iv) The 8 and 9 nede elements have the same dispersion prop-
erties.

Conceming the Galbrun elements:

(i) The effect of the mean flow is more important for upstream
than for downstream propagation.

(i) The stability is Mach number dependent: spurious modes
may appear for M > 0.6 or M < —0.6.

(iti) The Q9-4c¢ element is less efficient than the T4-3¢. It can be
explained by the fact that the pressure field is less precise with this
element.

Al these conclusions are also well observed with 2 simple test
problem.

Mathematical analysis of finite eclement methods for the
Helmholtz equation’ provide asymptotic limits of the dispersion
and numerical errors which are important to guarantee the robust-
ness of these mumerical methods. However, these results are not
sufficient to describe the accuracy of finite element methods in the
usual range of 8 to 15 points per wavelength. The results obtained
with the quadratic Helmholtz elements (and especially the alias-
ing error) demonstrate that it is mandatory to assess finite element
methods by means of the dispersion analysis in order to devise re-
liable rules for using these numerical models rather than relying on
asymptotic error estimates.
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Figure 7 Dispersion error E4 (in %) for upstream (top) and down-
stream (bottom) propagation with the L2 and Q4 elements. Thick solid
line: no flow case (M = 0); Solid lines: M = 0.1 to £0.9 by an
increment of 0.1. Dotted line: the second order slope.
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Figure 8 Dispersion error eg4 (in %) as a function of the Mach number
with the L2 ard Q4 elements. Solid line: 8 points per wavelength;
Dashed line: 10 points per wavelength; Dash-doited line: 20 points per
wavelength; Dotted lines: values obtained with —(1 — M){kh)2.
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Figure ¢ Dispersion error E; (in %) for upstream (top) and down-
stream (bottom) propagation with the L3, Q8 and Q9 elements. Thick
solid line: no flow case (M = 0); Solid lines: Af = £0.1to £0.9byan
increment of 0.1. Dotted line: the fourth order slope.
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Figure 10 Dispersion errer e; (in %) as a function of the Mach
number with the L3, Q8 and Q9 elements. Solid line: § points
per wavelength; Dashed Line: 10 points per wavelength; Dash-dotted
line: 20 peints per wavelength; Dotted lines: values obtained with
—(1 — M)Y(kR)4.
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Figure 11 Amplitude exror £, (in %) for upstrezm (top) and down-
stream (bottom) propagation with the L3, Q8 and Q9 elements. Thick

solid line: ne flow case (M = (); Solid Bnes: M = £0.1 to +0.9 by an
increment of 0.1. Dotted line: the fourth order slope.

Amplituda eror {3%)

Figurel2  Amplitude error B, (in %) as a function of the Mach
number with the L3, Q8 and Q9 elements. Solid line: 8 points per
wavelength; Dashed line: 10 points per wavelengths; Dash-dotted line:
20 points per wavelength.
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Figure 13 Dispersion error E; (in %) for upstream (top) and down-

stream (bottom) propagation with the T4-3¢ Galbrun element with

mesh A. Thick solid line: no flow case (A = 0); Solid lines: M = +0.1

to £0.9 by an increment of 0.1. Dotted line: the second order slope.
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Figure 14 Dispersion error e, (in %) as a function of the Mach num-
ber with the T4-3c Galbrun element with mesh A, Solid line: 8 points
per wavelength; Dashed line: 10 points per wavelength; Dash-dotted
line: 20 points per wavelength.
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Figure 15 Amplitude error E; {in %) for upstream (fop) and down-
stream (bottom) propagation with the T4-3¢ Galbrun element with
mesh A. Thick solid line: no flow case (M = 0); Solid lines: M = £0.1
te £0.9 by an increment of 0.1. Dotted line: the second order slope.
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Figure 16 Amplitude error E, (in %) as a function of the Mach num-
ber with the T4-3¢ Galbrun element with mesh A. Solid line: 8 points
per wavelength; Dashed line: 10 points per wavelength; Dash-dotted
line: 24} points per wavelength.
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Figure 17 Dispersion error E; (in %) for upstream (top) and down-
stream (bottom) propagation with the T4-3¢ Galbrun element with
mesh B. Thick solid line: no fiow case (M = 0); Solid lines: M = +0.1
to 0.9 by an increment of 0.1. Dotted line: the second order slope.

Disparsion error (%)

Figure 13 Dispersion error ¢4 (in %) as a function of the Mach num-
ber with the T4-3¢ Galbrun element with mesh B. Solid ILine: 8 points
per wavelength; Dashed line: 10 points per wavelength; Dash-dotted
line: 20 points per wavelength.
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Figure 19 Amplitude error E; (in %) for upstream (top) and down-
stream (bottom) propagatien with the T4-3¢ Galbrun element with
mesh B. Thick solid line: no flow case (A = 0); Solid lines: A = $0.1
to £0.9 by an increment of 0.1, Dotted line: the secand order slope.
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Figure 20 Amplitade error E; (in %) as a function of the Mach num-
ber with the T4-3¢ Galbrun element with mesh B. Solid line: 8 points
per wavelength; Dashed line: 10 points per wavelengtih; Dash-dotted
Hine: 20 poeints per wavelength.
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Figure 21 Dispersion error E, (in %) for upstream (top) and down-
stream (bottom) propagation with the Q9-4c Galbrun element. Thick
solid line: no flow case (M = §); Solid lines: M = £0.1 to 0.9 by an
increment of 0.1. Dotted lire: the second order slope.
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Figure 22 Dispersion error ey (in %) as a function of the Mach
number with the Q9-4c Galbrun element, Solid line: 8 points per wave-
length; Dashed line: 10 points per wavelength; Dash-dotted line: 20
points per wavelength.
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Figure 23 Amplitude error E; (in %) for upstream (top) and down-
stream {bottom) propagation with the Q9-d¢c Galbrun element. Thick

solid line: no flow case (M = 0); Solid lines: A = +0.1 to £0.9 by an
increment of 0.1. Dotted line: the second order slope.

Figure24  Amplitude error E; (in %) as a furction of the Mach
number with the Q9-4c Gaibrun element. Solid line: 8 points per wave-
length; Dashed line: 10 points per wavelength; Dash-dotted line: 20
points per wavelength.
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Figure 25 Averaged numerical error E; (in %) for upstream (top)
and downsiream (bottom) propagation with the L2 and Q4 elements.
Thick solid line: no flow case (M = 0); Solid lines: M = 30.1 to £0.9
by an increment of 0.1, Dotted line: the third order slope.
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Figure 26 Averaged numerical error E2 (in %) for upstream (top)

and downstream (bottom) propagation with the L2 and Q4 elements.

Thick solid line: ne flow case (M = 0); Solid lines: M = 4-0.1 to 0.9

by an increment of 0.1. Dotted line: the third order slope.
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Figure 27 Averaged numerical error & (in %) for upstream (top)
and downstream (bottom} propagation with the L3 and Q9 elements.
Thick solid line: no flow case (Af = 0); Solid lines: M = +0.1to +0.9
by an increment of 0.1. Dotted line: the fifth order slope,
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Figure 28 Averaged numerical error E3 (in %) for upstream (top)
and downstream (bottom) propagation with the L3 and Q9 elements,
Thick solid line: no flow case (A = 0); Solid lines: M = 3-0.1 to £0.9
by an increment of 0.1, Dotted line: the fifth order slope.
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Figure 29 Averaged numericalerror E; (in %) for upstream (top) and

downstrezm (bottom) propagation with the Galbrun T4-3c element for

the mesh B. Thick solid line: no flow case (M = 0); Solid lines: M =

+0.1 to 0.9 by an increment of 0.1. Dotted line: the second order

slope.
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Figure 30 Averaged numerical error Fz (in %) for upstream (top) and
downstream (bottom) propagation with the Galbrun T4-3c clement for
the mesh B. Thick solid line: no flow case (M = 0); Solid lines: M =
40.1 to £0.9 by an increment of 0.1. Dotted line: the second order
slope.
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