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ABSTRACT

The dispersion properties of finite element models for acroacoustic propagation based on the convected scalar Helmholtz equation and
ont the Galbrun equation are examined. The current study focusses on the effect of the mean flow on the dispersion and amplitude errors
present in the the discrete numerical solutions. A general two-dimensional dispersion analysis is presented for the discrete problem on
a regular unbounded mesh, and results are presented for the particular case of one dimensional acoustic propagation in which the wave
direction is aligned with the mean flow. The magnitude and sign of the mean flow is shown to have & significant effect on the accuracy of
the numerical schemes. Quadratic Helmholtz elements in particular are shown to be much less effective for downstream—as opposed to
upsiream—propagation, even when the effect of wave shortening or elongation due to the mean flow is taken into account. These trends are
also observed in solutions obtained for simple test problems on finite meshes. A similar analysis of two-dimensional propagation is presented

in an accompanying report.

ifi






G. GABARD, R.J. ASTLEY 1

I. INTRODUCTION

This report is the second part of a study intended to analyze the
accuracy of two finite element methods for aeroacoustic propaga-
tion. The first numerical method considered here is based on the
full potential theory which describes the propagation of acoustic
waves on a potential mean flow by mean of the acoustic veloc-
ity potential. The second numerical method is based on Galbrun
equation which relies on the Lagrangian perturbation of the dis-
placement to describe acoustic wave on a general mean flow. Both
these methods are investigated for two-dimensional time-harmenic
problems.

The accuracy of these methods are assessed by comparing the
dispersion properties of the numerical models with those of the
physical model. To apply the dispersion analysis, we must restrict
to infinite, periodic meshes and to uniform mean flows which are
written

ve = Mepcos(a) ez + Mepsin (o) ey

where cp is the speed of sound, M the Mach number and o the
mean flow direction with respect to the mesh axes (see figure 1).
With a uniform mean flow the fuil potential theory reduces to the
convected Helmholiz equation. The solution u(z) of the problem
is sought as a plane wave

u(@®n) = ulexp (ik - 280 )

with
k = kcos (8) + ksin {0} ,

where mgfln denotes the nodes of the mesh, uf;’ ) is the wave ampli-
tudes and k is the real wavenumber with direction 8 and magnitude
k (see figure 1). The vector U = (ul’,u{®,...) and k are
solutions of an eigenvalue problem devised from the difference
equations of the numerical model (see Section 2 in the first report).

If a solution { %, ff) corresponds to a physical mode, we can define
the dispersion error Ey and the amplitude error E,

[fh — k| |7 -vl
Ba=g— o =t
where % is the node spacing. The dispersion error E, describes
the deviation of the numerical wavenumber form its exact value
while E, represents the error on the amplitude of the wave. A

solution (IE, ff) which does not correspond to any physical modes

is a spurious numerical modes. If such modes exist, the numerical
model is likely to be unstable.

A detailed account of the dispersion analysis and the finite ele-
ment methods as well as an overview of related works are given in
the first part of the report.

These errors are analyzed with respect to the parameters 6, M,
o and the number of points per wavelength. For one-dimensional
problems, the latter is simply 2/ (k). For two-dimensional prob-
lems, the definition of the mumber of points per wavelength is more
ambiguous since the typical node spacing in the direction of the
wave depends on the angle 8. However, if one takes this effect
into account, the interpretation of the results becomes much more
involved. So, following other contributors (such as Harari%o r De-
raemaeker et al.'), we define the number of points per wavelength
as 2/ (kh) irrespective of the wave direction.

The first part of the report was limited to one-dimensional propa-
gation, that is waves propagating along the mesh axes (8 = o = 0).
We discussed the effects of the mean flow speed and the number of
points per wavelength on the numerical accuracy. One of the main
findings of the first part is that the quadratic Helmholtz elements
exhibit very important increases of the dispersion and amplitude
errors for certain numbers of points per wavelength in the down-
stream case. This is produced by an ‘aliasing” error which is also
discussed in the present report (see section IV). For the Galbrun
elements, it was found that the stability is Mach number dependent

Figure1 Description of the mesh axes, the mean flow direction o and
the wave direction 4.

and that the quadratic element Q9-4¢ does not improve the accu-
racy compared to the linear element T4-3¢.

This part of the report is concerned with two-dimensional acous-
tic propagation. We focus on the influence of the two additional
parameters arising only in the two-dimensional case, namely the
mean flow direction & and the wave propagation direction . It
is well known that the use of meshes in any numerical methods
introduces preferential directions in space, and hence produces nu-
merical anisotropy. Furthermore, the physical problem of wave
propagating on amean flow is anisotropic since the dispersion
properties of the waves depend on the angle between the mean flow
and the wave directions. However, in the numerical model, this
physical anisotropy is also combined with the additional anisotropy
introduced by the numerical methods. The numerical anisotropy
with respect to & and « is the main concern of this report.

The rest of this report is divided in 4 parts. The effects of the
wave direction and the mean flow direction are discussed respec-
tively in section If and ITI. The occurence of the aliasing error is
presented in section IV. Section V summarizes the results of this
report.

1. EFFECT OF THE WAVE DIRECTION

First, consider the anisotropy of the finite element models with
respect to the wave direction 6. To illustrate more clearly this prop-
erty, the tmean flow direction is fixed (& = () and we present results
for four Mach numbers M = 0,0.25, 0.5 and 0.75. In all cases,
we have 10 points per wavelength, that is 27/(kh) = 10. The
dispersion and amplitude errors are given in figures 6 to 9.

First, consider the no flow case (figures 6 and 7). The dis-
persion errors with the Helmholtz elements (Q4, Q8 and Q9)
are maximumn for @ = 0,7 /2, x, 37/2 and minimum for & =
74,37 /4,57 f4, Tr /4. Thus, these elements are less accurate
when the wave propagates along the mesh directions and more
accurate when the wave propagates along the diagonals of the el-
ements. This property has already been noticed by Harari® and
Deraemaeker!. An important consequence is that, if the wave prop-
agation directions can be anticipated, the mesh should be aligned
so that the diagonals of the elements coincide with the wave direc-
tion in order to improve the accoracy. The dispersion error with
the quadratic elements is (almost exactly) one order of magnitude
smaller than with linear element. The Q8 and Q9 elements give
very similar dispersion errors, the Q9 element being very slightly
more accurate along the diagonals. However, the two quadratic el-
ements are very different with respect to the amplitude error. The
Q09 element is much more accurate and more isotropic than the Q8
element. So, the accuracy and efficiency can be improved by using
the 9 node element rather than the 8 node element. It is especially
true if one uses condensation to remove the central degree of free-
dom of the Q9 element. This finding is of particular importance
since the Q8 element is the most widespread element in commer-
cial codes for acoustics.
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The T4-3¢ Galbrun element gives quite different results depend-
ing on the mesh pattern. Logically, the mesh A is more anisotropic
with a maximum of error along the 45 direction of that mesh. With
the mesh B, the dispersion and amplitude errors are minimum for
4 = 0,7/2,7, 3n/2 and maximum § = x/4,3n/4, 5w /4, Tn/4
(this is the contrary of the Helmholtz elements). Globally, the re-
sults lie between the linear and quadratic Helmholtz elements. The
Q9-4c element gives a dispersion error similar to the Q4 clement
with a more pronounced anisotropy. The amplitude error 15 larger
than the T4-3c element. This obviously demonstrates that the Q9-
4¢ does not improve the efficiency of the Galbrun finite element
model compared to the T4-3c element.

The trends observed in the no flow case are also present with
mean flow but combined with other effects, see figures 6 to 9.

For the Helmholtz elements, an interesting propery is that the
dispersion error with mean flow can be obtained by multiplying the
dispersion error in the no flow case by a factor (1 — Mcos (o« — 8))
similar to the Doppler factor. So, when the Mach number is in-
creased, the dispersion is reduced in the downsiream direction and
increased in the upstream direction (this effect is also shown in
the next section). It is important to note that this effect is not a
consequence of the wavelength modification by the Doppler effect
since all the results are given with a prescribed number of points
per wavelength. '

The influence of the mean flow on the amplitude error is less
obvious: E, is increased both in the upstream and downstream di-
rections. However, the aliasing error is alse well observed with
M = 0.75: important increases are present in the downstream di-
rection for the dispersion and amplitude errors (see figures 8 to 9).
This is very clear with E, with a peak of three order of magnitude
in the range [—x/4;7/4]. The occurence of the aliasing error is
discussed with more details in section IV,

With the T4-3¢ element, the effect of the mean flow on the
anisotropy does not follow a simple trend. Especially with M =
0.25, where the dispersion error is very low (even better than the
Q8 and Q9 elemnents), this is due to the fact that £y is almost re-
duced to zero by the mean flow effect (see figures 14 and 18 in the
first part of this report). The amplitude error tends to increase in
the direction of the flow (6 = (, 7) and to decrease in the direction
normal to the flow (8 = £=/2). For the mesh A, with M = 0.5
and 0.75,th e anisotropy due to the mesh alignement is also clearly
present. It is worth noting that the results obtained with the mesh
B are always comparable to or better than the Q4 element.

With mean flow, the Q9-4¢ element gives results ranging from
the Q9 element to the Q4 depending on 4. However, the amplitude
error is slightly changed by the mean flow speed, and, in almost ali
cases, remains higher than the other elements.

1. EFFECT OF THE MEAN FLOW DIRECTION

‘We now turn to the effect of the mean flow direction with respect
to the mesh axis on the dispersion properties. We consider the three
cases M = 0.25, 0.5 and 0.75. In ail cases, we have 10 points per
wavelength and the wave propagates along the mesh axis (§ = 0).
The dispersion and amplitude errors plotted against o are given in
figures 10 and 11.

For the Helmholtz elements, the dispersion error is found to be
exactly proportional to (1 — Mcos (o — &)), and, obviously, this
effect is not due to the anisotropy produced by the mesh. This
factor {1 — Mcos (@ — §)) similar to a Doppler facior has already
been reported in the previous section. The amplitude emors with
the Q8 and Q9 elements are maximum for § = 0 and are sig-
nificantly reduced for # = Zw/2. In fact, these effects can be
considered as unrelated to the anisotropy of the mesh and, hence,
are only due to the effect of the mean flow direction on the wave
propagation. It can be seen more clearly when Ey and E, are
plotted as function of 8 and o — & (sce figures 2 and 3). It is
clear, especially for the dispersion error, that the two errors are
the combinations of the anisotropy with respect to # and a Doppler
effect depending on & — . An important consequence is that the
anisotropy of these elements with respect to the mean flow direc-
tion is small compared to the anisotropy with respect to the wave
direction 8. And thus, for the Helmholtz elements, aligning the

2
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Figure 2 Dispersion error Ey (in %) as a functien of & and o — ¢
with for the Q9 element for M = 0.5 and 10 points per wavelength: 15
levels between 0.04% and 0.22%, dotted line: the lowest level.
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Figure 3 Amplitude error E, (in %) as 2 function of # and & — ¢
with for the Q9 element for M = 0.5 and 14 points per wavelength: 15
levels between 0.08% and 1.2%, dotted line: the lowest level.
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mesh on the mean flow direction will not itnprove the accuracy.
The aliasing error is also clearly visible with M = 0.75 both for
the dispersion and amplitude errors.

With the T4-3¢ and the Q9-dc Galbrun elements, the influence of
the mean flow direction on E4 and F; is more complex, and there
is clearly an important anisotropy of the numerical model with re-
spect to . It may be worth noting that both the dispersion and
amplitade errors are significantly reduced for 8 = £x /2 when the
Mach number is increased. Finally, the Q9-4c element gives worse
results than the T4-3c¢ element, especially at low Mach numbers.

IV. THE ALIASING ERRCR
It has been shown in the first part of this report that, when the
wave propagates along the mesh axis (§ = 0), quadratic elements
for the Helmholtz equation can be inaccurate for certain numbers
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Figure 4 Dispersion error E; (in %) as a function of @ and o with
the Q9 element for M = 0.75 and 10 points per wavelength: 15 levels
between 0.1% and 1.5%, dotted line: the lowest jevel.

0 0.2 04 08 0.8 1 12 1.4 18 1.8 2

Figure 5 Amplitude ermor E, (in %) as a function of § and o with
the Q9 element for M = 0.75 and 10 points per wavelength: 15 levels
between 12% and 186%, dotted line: the lowest level.

of points per wavelength. This is due to the fact that one physi-
cal mode is described by two distinct (but equivalent) modes and
this results in an ‘aliasing’ etror. Furthermore, the aliasing error
has also been noticed in the two previous sections where « or & are
varied while this other parameter is set to zero. So, it is important to
determine whether the aliasing error is specific te one-dimensional
problems or if it can also be observed in two- or three-dimensional
problems, Here, we discuss the conditions which produce the alias-
ing error in two-dimensions.

To that end, we consider the Q9 element with M = 0.75, and
the dispersion and amplitude errors are plotted against & and # for
10 points per wavelength (see figures 4 and 5).

On both these figures, the aliasing error is clearly identified by
peaks along the axis & =.8 In fact, the aliasing error occurs when
both the mean flow direction § and the wave direction « are close

to the mesh axes (0, 7/2, 7w and 3 /2). More precisely, o and
@ have to be in the range +n/10 from the mesh axis directions
which represents a fairly large angle. We have also checked that
these ‘spots’ of errors reduce and disappear when the number of
points per wavelength is increased.

V. CONCLUSION

We can conclude that the Helmhotltz elements are more accurate
when the wave propagates along the elements diagonal. If it is
possible to estimate the direction of waves prior to a simulation,
the mesh should be designed so that the diagonal of the elements
coincide with these directions.

With Helmholtz elements, the dispersion and amplitude errors
are very slightly influenced by the direction of the mean flow with
respect to the mesh. So, only a limited accuracy improvement is to
be expected by aligning the mesh with the mean flow direction.

Furthermore, in a two-dimensional problem, the aliasing error is
likely to appear when the mean flow, the wave direction and the
mesh are almost aligned. These requirements can partly explain
why this problem has not been clearly identified in previous works.
To avoid the aliasing error,o ne should align the finite elements di-
agonals with the wave directions or, if it is not possible, with the
mean flow. The former solution is preferable because it will aiso
improve the accuracy, but, in general, it is not possible to define
a simple wave direction. The latter solution is systematicaly ap-
plicable since the mean flow is always known prior to the acoustic
simulation.

Finally, the 9 node element should be prefered to the § node
element in order to reduce amplitude error compared.

For the T4-3¢c Galbrun element, the results obtained with the al-
ternating mesh are better than the mesh A. Thus, one should reduce
the anisotropy of the meshes in order to improve the efficiency of
these elements. Finally, the Q9-4¢ element is clearly outperformed
by the other elements (including the T4-3¢ element).

By combining the conclusions drawn in the first and second parts
of this stady, it is possible to get a global account of what can be ex-
pected from the finite element methods based on the full potential
theory and the Galbrun equation.

Furthermore, the results of this study suggest that there is a
need to devise other finite element methods to cope with the prob-
lems outlined by the dispersion analysis: the aliasing error for the
Helmbholtz elements and the stability problems for the Galbrun el-
ements.

REFERENCES
1 A. Deraernaeker, I, Babuska, and P. Bouillard. Dispersion and poliution ofthe fern
solution for the helmholtz equation in one, two and three dimensions. Infernational
Journal for Numerical Methods in Engineering, 46:471-4599, 1959.
2. Harari, Reducing spurious dispersion, anisotropy and refbction in finite ele-
ment analysis of time-harmonic acoustics. Computer Methods in Applied Mechanics
and Engineering, 140:39-58, 1997,



4 G. GABARD, R.J. ASTLEY

Disparsion aror {%)

10"

Disparslon emor (%)
-
n|

3,
3

1o~

Figure 6 Dispersion error Eg (in %) as a fanction of § with A/ = 0
{top) and M = 0.25 (bottom). Helmhoitz elements: Q4 {(—), Q8
{(——), Q9 (— -} and Galbrun elements: T4-3¢ with mesh A (—2-),
T4-3c with mesh B (—x¢—), Q9-4¢ (-5-).
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Figure 7 Amplitude error £, (in %) as a function of ¢ with M = 0
(top) and M = 0.25 (bottom). Helmholtz elements: Q8 (——), Q%
{— ) and Galbrun elements: T4-3c with mesh A (—o- ), T4-3¢ with
mesh B (—«), Q9%dc ().
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Figure 8 Dispersion error £ (in %) as a function of & with M = 0.5
(top) and A/ = 0.75 (bottom). Helmholtz elements: Q4 (—), Q8
{——) Q% (~— ) and Galbrun elements: T4-3c with mesh A (—=-),
T4-3c¢ with mesh B (—¢—), Q9-4¢ (-=-).
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Figure 9 Amplitude error E, (in %) as a function of @ with M = 0.5
(top) and M = 0.75 (bettom). Helmholtz elements: Q8 (——), Q9
(— -) and Galbrun elements: T4-3c with mesh A (—5- ), T4-3¢ with
mesh B (—¢), Q9-4¢ (—-E2-).
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Figure 10 Dispersion error £, (in %) as a function of o with M =
0.25 (top), M = 0.5 (center) and M = 0.75 (bottom). Helmholtz
elements: Q4 (—), Q8 {(— ), Q9 (— -) and Galbrun elements: T4-3¢
with mesh A (—&- ), T4-3¢ with mesh B (—x—), Q9-4c (==-).
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Figure 11 Amplitude error E,; (in %) as a function of a with M =
0.25 {top), M = 0.5 (center) and M = 0.75 (bottom). Helmholtz
elements: Q8 (— —), Q9 {(— -) and Galbrun elements: T4-3¢ with mesh
A (=&~ ), T4-3c with mesh B (—), Q9-dc (-=-).
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