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ABSTRACT

Active vibration control with an electrodynamic moving coil type shaker at a single degree of
freedom (SDOF) system is investigated theoretically and experimentally. By feeding back the
integrated output signal of an accelerometer on top of the actuator direct velocity feedback is
implemented. Then positive proportional current feedback is investigated by feeding back the
voltage across an additional resistance in the electrical driving circuit of the shaker. Finally
a bridge circuit is used to feed back only the induced voltage assumed to be proportional to
the coil velocity. Velocity feedback measurements correspond well to simulations for small
feedback gains and vibration reduction of up to 27dB is found. Proportional current feedback
simulations show vibration reduction up to 8dB. Measurements and simulations correspond
well for measurable frequency response functions (FRF). Induced voltage feedback
simulations indicate that self-sensing may realize vibration reduction similar to velocity
feedback if the complex electrical impedance of the shaker is compensated for. In
experiments, however, only partly compensation could be realized due to the specific
electromagnetic actuator design leading to a reduction at the measurable FRF of about 16dB.
Moreover in order to check vibration reduction for proportional current and induced voltage
feedback experimentally, a separate primary source is needed.
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1. INTRODUCTION

Vibration contro! of mechanical structures or machines is important in many fields since
excessive vibrations may harm operators, machines and the environment. Legislation and
customers’ demand make vibration control a necessary feature of more and more applications.
In factories and plants noise and vibration impact of machinery on the environment has to be
minimized. Also, sensitive equipment has to be protected from ground vibration or other
sources of vibration in the plant. In transportation vehicles comfort is improved by reducing
vibration and noise disturbances on passengers. Furthermore in order to reduce their impact
on the environment noise emission from vehicles has to be reduced. Finally domestic
appliances may exhibit a large degree of noise and vibration that also has to be controlled.

There are three ways of improving noise and vibration insulation of structures and machines.
First by reducing the sources of noise and vibration, second by acting on the transmitting
paths with passive isolation or insulation treatments and third by modifying the receiver
system or the radiating elements. Active control means can be implemented in all three stages.
For example active bearings could be used to reduce excitations generated by unbalanced
high-speed rotors [1]. Active mounts might be used to enhance low frequency isolation of
machinery from the basement structure [2, 3]. Active vibration systems could be employed to
reduce the structure-borne path in truss structures [4]. Finally active structural acoustic
control systems such as smart panels with single input single output (SISO) [5] and multiple
input and multiple output (MIMO) [6] vibration control systems could be used to minimize
sound radiation of enclosures or partitions.

In general, as discussed for instance in [7], passive vibration control consists of mass and
stiffness treatments that do not dissipate vibration energy and damping treatment where
vibration energy is lost to the dynamic system through dissipation. Stiffness treatments are
effective at relatively low frequencies, however, they require modification of the vibrating
systemn, which is usually impossible without a costly redesign, and in most cases they lead to
increased weight due to additional stiffening elements. Additional masses are especially
efficient in the high frequency region when mechanical vibrations can be considered as
waves. Passive damping elements increase dissipation of vibration energy, but system weight
is increased.

Vibration isolators provide good reduction of vibration transmission from one system to
another. However, in order to be effective the mounting system must be very soft, and this
often is in contrast with the static constraints imposed by the operation of the mechanical part
to be isolated [2]. Moreover a new set of low frequency resonances of the mounted system are
introduced [8], which degrades low frequency vibration isolation. Increasing the damping
effect in the mount could reduce the amplitude of these resonances, but this automatically
enhances higher frequency vibration transmission [3].

Finally vibration absorbers or neutralizers could be used to reduce narrowband vibration
generation or transmission by tuning the anti-resonance of an additional mechanical system to
a resonance of the vibrating structure [9].

Active control systems are used in parallel to or as substitution of passive means, particularly
in order to improve low frequency structure-borne sound generation, (ransmission or



radiation. For instance active vibration systems using inertial actuators could be used to
influence vibration generation mechanisms or to reduce vibration of the receiving structure
[10]. Active isolators might also be added in parallel to passive mounting elements in order to
enhance isolation effects and reduce the amplitudes of the low frequency resonant modes of
the mounted system [11]. Finally smart beams or smart panels with integrated actuators and
sensors could be used to reduce structure-borne sound transmission of truss structures or noise

radiation of enclosures or partitions [12].

In general active control architectures can be divided into two families: feedforward and
feedback control systems [13]. Feedforward control schemes are particularly suited for the
control of tonal disturbances that are usually identified by a reference sensor. Feedback
control architectures do not use reference sensors and are especially advantageous at
broadband excitation.

Up to present only SISO feedback control systems have been developed in practice for the
solution of particular problems [14] as for example the control of low frequency noise
propagation in ventilation ducts [15] or low frequency noise insulation in headsets and
headrests [16]. Currently, commercially available active headsets use an analogue feedback
control system with a collocated error microphone and loudspeaker actuator for the low
frequency noise reduction that could not be controlled by the headset shells only. Also, Active
Noise Control (ANC) systems for the reduction of cabin noise in propeller aircrafts have been
developed [17]. In this case a MIMO feedforward control system is used where a tonal
reference signal is taken from the rotor of the propeller and a relatively large number of
control loudspeakers and error microphones are connected. Thus these systems are not suited
for controlling wide band excitation and moreover they are affected by a number of
drawbacks. Firstly they require a costly and delicate multi-channel controller. Secondly they
require a lot of wiring, actuators and sensors, which implies weight, reliability and installation
problems. Thirdly MIMO feedforward control systems are sensitive to failures of any single
sensor or actuator component so that the controller is constantly updated based on all sensor
signals in order to avoid instabilities. Finally due to their complexity multi-channel controllers
are usually implemented using digital signal processors (DSP), which limits the control
bandwidth because of the time needed for sampling and calculation [18].

As a result during the past ten years scientists have begun to develop Active Structural
Acoustic Control (ASAC) systems where structural sensors and structural actuators are
embedded on partitions in order to control sound transmission. Initially feedforward control
systems measuring a reference signal at the noise source were used to drive the structural
actuator to minimize sound radiation into the interior of an enclosure. Therefore systems were
still limited to the control of tonal disturbances. However in parallel researchers have also
developed fecdback control systems where the signals from structural sensors are fed back to
the structural actuators in such a way as to minimize the vibration component that contributes
to the sound radiation. This has led to the design of relatively complicated multichannel
feedback controllers using state space design [6, 19]. Two interesting alternative approaches
have been proposed more recently.

The first one uses distributed sensors and actuators that enable control of the principal low
frequency radiating components of the panel vibration [20]. In this case it is possible to
implement a SISO feedback control system using the classic feedback control design theory



(Nyquist criterion, root locus criterion and frequency domain design). The main problem
encountered with this type of system is the design of suitable sensor-actuator pairs for the
implementation of ASAC and also a stable feedback control system with a sufficient
bandwidth as highlighted in [5, 21].

The second type uses a large number of collocated sensor-actuator systems acting
independently from each other with localized feedback control loops [22]. Each control unit
implements direct velocity feedback control in such a way as to provide active damping of the
panel so that its vibration and sound radiation at resonance is reduced. This arrangement has
given very interesting initial simulation results especially for point force actuators that could
result in sound reductions of several dBs if the individual control unit is stable. In order for
the individual SISO velocity feedback control unit to be unconditionally stable the sensor
actuator transfer function must be positive real. This is theoretically guaranteed by collocated
and dual sensor-actuator pairs i.e. actuation and sensing must be connected to the same degree
of freedom (DOF) of the system to be controlled [23] in the same way [24]. For example even
a shaker velocity sensor pair does not give a truly collocated response function as at higher
frequencies sensor dynamics interfere. A possibility to obtain better collocation and duality
properties could be given by self-sensing actuation.

In self-sensing actuation self-sensing actuators or sensoriactuators sense and act on the same
mechanical DOF. Depending on reciprocity many transducers may be used either as sensor or
actuator as observed for instance by [25], whereas usually they are designed to be efficient for
one function only, the other being a disturbance usually minimized. Several different
transducer types based on the magnetostrictive or piezoelectric phenomena have been
investigated for their use as sensoriactuators for instance by [26, 27, 28]. Magnetic bearings
have also been investigated for instance by [29] to become self-sensing, thus eliminating a
special sensor for the rotor position. But also sensorless electric motors can be seen as
clectrodynamic sensoriactuators where the current is used to obtain information about the
motor rotational speed as for example in [30]. Loudspeakers are a popular example for linear,
electrodynamic actuators where self-sensing is used to increase damping. In general
additional potential advantages of self-sensing actuators for practical applications are the
reduced number of transducers, amplifiers and cables, reduced size and reduced risk of
failure.

A first widely studied example of sensoriactuators are piezoelectric patches that are used to
apply and sense a moment [13] on the structure. There are passive, semi-active and several
active ways to influence the structural vibration by piezoelectric sensoriactuators. It has been
shown [31] that by adding a passive electrical resistance across the connections of the
piezoelectric patch the stiffness of the attached structure is changed. Additionally when
manually tuning an electrical inductance in series to the resistance to an optimal value so that
it resonates with the natural frequency of the structure passive damping is added at this first
natural frequency of an attached cantilevered beam. Using active components to manually
tune the inductance this circuit has been applied to the damping of space structures [32]. For
the damping of multiple structural resonance frequencies a digital implementation of multiple
resonant inductors is more convenient [33]. Additionally a bridge circuit can be used to
measure the strain or strain rate using the piezoelectric patch as a true sensoriactuator [34, 35].
Then by feeding back the strain rate damping is added to the mechanical stucture. Due to the.
balancing problems mentioned in [35] and in order to reduce power requirements [36] semi-



active algorithms have been investigated that actively adapt electrical bridge parameters [37,
38, 39]. Obviously the adjustment of the bridge can be avoided by using separate closely
located patches used as actuator and sensor, but perfect collocation is not obtained [40]. An
active solution for the balancing problem is to use robust design techniques incorporating
parameter changes in the controller design [41]. Finally instead of using positive electrical
parameters a negative capacitance amplifier cancels the internal capacitance of the
piezoelectric patch [42, 43, 44] so that only the induced signal remains that can be fed back or
dissipated over an additional resistance. Once the negative capacitance amplifier cancels the
inherent, piezoelectric capacitance over a broad frequency band no electric parameter needs to
be tuned to a resonance frequency of the structure so that broadband control is realised.
Technically the negative capacitance circuits used are not much different from a bridge circuit
with feedback that is interpreted as a negative impedance amplifier [44] or analogue
electronics of the Riordan-type are used [43, 45].

As a second example for self-sensing actuators electrodynamic, linear self-sensing actuators
apply a point force on the structure and it has been found in [22] that force actuators give
better results for ASAC with a multitude of local sensor-actuator pairs than piezoelectric
patches. Additionally electrodynamic actuators are more suitable for the control of low
frequency vibration as piezo actuators tend to excite high structural modes more efficiently
[20]. Self-sensing, electrodynamic force actuators are particularly advantageous when the
induced voltage is proportional to the velocity of the mechanical system. Then feeding back
their output should be similar to direct velocity feedback resulting in active damping. Other
sources of instability such as non-ideal integrators for accelerometers or differentiators for
displacement sensors are thus avoided. Electrodynamic self-sensing has been studied for
active vibration damping at disk drives [46], high-speed elevators [47], for shunt damping
[48], viscosity measurements [49] and extensively at electrodynamic loudspeakers. At this
application a signal proportional to the coil velocity has been used to dampen the first
mechanical natural frequency. Thus mainly low frequency loudspeaker behaviour is
influenced only.

The estimation of the loudspeaker coil velocity by measuring the induced voltage was studied
first using a Wheatstone bridge [50]. When feedback of the induced voltage was used to
influence the mechanical low frequency behaviour of the loudspeaker the coil inductance
usually was neglected [51, 52]. Therefore the necessary balance of the Wheatstone bridge was
simple in theory [51], but it was usually restricted to the low frequency region. The upper
frequency loudspeaker behaviour was controlled using inductors and capacitors in the bridge
circuit [53, 54] in order to improve directly the pressure response rather than the intermediate
coil velocity response. But in some cases “in the actual application of the bridge [ improving
the bridge balance by adjusting of the accessible bridge elements ] cannot be applied [...]
because the amplifier’s internal resistance R; comes in parailel with the bridge, thus spoiling
the correction” [51 p.21].

The adjustment problem can be avoided by feeding back the voltage induced in an additional
coil mechanically linked to the primary coil as proposed by [55, 56] since then no
compensating bridge circuit is necessary. If the magnetic field of both coils is strongly
interacting the resulting transformer coupling also noted by [52] can then be compensated by
using an additional analogue circuitry [57]. Alternatively an additional sensor on top of the
loudspeaker is used for instance by [58, 59].



Another solution that even benefits from the apparent amplifier resistance R; is proposed by
[60, 61] where a negative output impedance amplifier [62, 63, 64] is used that cancels the
internal loudspeaker impedance so that only the induced motional voltage is used for
generation of the secondary force. A negative output impedance amplifier can be realised by
designing an additional bass compensation stage [73], by mounting the loudspeaker in a
bridge circuit {67, 91] or by adding a resistance and using positive feedback [66]. Studies
concentrated on reducing the effective loudspeaker resistance [65, 66, 67, 68, 69, 70] by direct
positive current feedback or using combined sensor self-sensing schemes [71, 72]. When not
also compensating for the coil inductance large vibration amplification at higher frequencies
has been noticed by [73]. But as with ‘the speaker performance rigidly controlled by the [
negative impedance ] amplifier, [...] enclosures have little effect on the cone motion and their
own resonances may become considerably exaggerated’ [73 p.243] further developments that
aimed to compensate for the acoustical surroundings have rather compensated only for the
coil resistance than also for the coil inductance [74, 75, 76]. However, for instance in order to
compensate for the reduction of the high-frequency response [77] or to minimize dissipation
in the amplifier output stage [78], inductance compensators nowadays are integrated in the
power amplifier leading to the necessity of a combined amplifier-loudspeaker design [79] or
may be added at the amplifier / loudspeaker interface [80] using a Zobel compensation.
Recently a rather complicated estimator based on positive current and negative voltage
feedback compensating for the coil inductance has been presented [81] for active vibration
control. It has been used at loudspeakers [82] and in contrast to [63] it uses operational
amplifiers. But both studies do not comment on the amplification at higher frequencies when
the inductance is not ideally compensated as has been mentioned by [73]. Velocity
amplification at higher frequencies might be acceptable for a loudspeaker whose pressure
response is dominated by the mechanoacoustic characteristics at these frequencies but for
active vibration control the velocity response has to be as small as possible over a wide
frequency range.

In this study a shaker, an electrodynamic system, that is frequently used for active vibration
isolation is considered. Physical limitations to its possible use as a self-sensing actuator in a
simple active vibration isolation system where the actuator reacts relative to a rigid ground are
investigated experimentally and theoretically. For this moving coil type actuator the sensor
function stems from the back-electromagnetic force (back-EMF) induced in the conductive
coil that is moved in a magnetic field whereas the actuator function is based on Lorentz force
generated by a current in the coil in a magnetic field. As the back-EMF is proportional to the
velocity of the conductor it should give an easy means to measure the vibration velocity of the
mechanical system, but already the theoretical model of the open loop gives hints about
necessary conditions for self-sensing. In a first step the velocity measured with an
accelerometer and conditioning electronics is fed back to the shaker input voltage. In a second
step proportional, positive coil current feedback to the shaker input is investigated. Finally the
back-EMF is estimated using a Wheatstone or Owens bridge and is also fed back to the shaker
input voltage. In order to prevent high-frequency bandwidth limitations only analogue
components are considered for the feedback circuitry.

The report is organised in five parts:



= In Section 2 a theoretical model is formulated which explains the coupled electrical
and mechanical behaviour of the shaker. The mechanical part of the model consists
of the mass of the actuator coil mounted on springs whose velocity is to be
controlled and the accelerometer that is used to measure coil velocity in order to
realize velocity feedback. The electrical part includes the coil as an electrical
system and the electrical connections of the shaker. The mechanical and electrical
parts are coupled by the magnetic field in the actuator yoke that result in an
induced velocity of the coil mass per unit input voltage (actuation mechanism) and
an induced current in the coil per unit velocity of the coil mass (sensing
mechanism).

= Section 3 compares two measured and simulated frequency response functions
(FRFs): first coil velocity per input voltage and second coil current per input
voltage.

= In Section 4 the implementation of velocity feedback control for active vibration
damping is analysed using the Nyquist stability criterion. Furthermore the root
locus technique is considered to determine a theoretical maximum gain of the
closed loop.

= In Section 5 proportional current feedback is studied using the same methods as for
velocity feedback.

» Finally in Section 6 an induced voltage feedback circuit is investigated which uses
cither 2 Wheatstone bridge compensator for the coil resistance or an Owens bridge
that compensates for the coil resistance and inductance.

Simulation predictions and experimental measurements at the said commercial shaker are
contrasted in order to understand the physics of the two self-sensing methods.



2. FREQUENCY DOMAIN MODEL OF THE SELF -SENSING ACTUATOR
In this section the components of an electrodynamic, self-sensing actuator depicted in Figure

2.1a with an attached accelerometer are described and their dynamical behaviour is evaluated
numerically.

~80

Figure 2.1a: Photo;graph of shaker and aéééf;romezer.

As shown in Figure 2.1b the system studied consists of an electrodynamic shaker with an
accelerometer mounted on its armature. The shaker is in its main parts composed of a
permanent magnet (1) together with the ferromagnetic housing (2) serving as the stator or
yoke and a linearly moving coil assembly (3) that is suspended (4) on the stator. These parts
are protected by a rubber dust cover (5) that touches the moving coil assembly. The
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i dust cover (5)
suspension
{4)
\ prsrirds WSS ASS
coil assembly
(3) T~
:Io ol;
Q 0
S :
Permanent
yoke (2) Magnet (1)

/

Figure 2.1b: Schematic view of shaker and accelerometer.



accelerometer consists of a case (6) and three piezoclectric elements (7) arranged in a
triangular shape on which a seismic mass (8) is mounted. The accelerometer is fixed to the
top of the coil assembly by a thin layer of wax. This type of device could be used for instance
cither in parallel with a passive mount isolating the source and receiver systems or as an
inertial actuator attached to a flexible structure whose vibration is to be controlled. Due to its
relative small force and static stiffness this type of actuator is not adequate to be used in series
to a passive mount. When a voltage is applied to the coil the interaction between the coil
current and a magnetic field in the air gap generates a Lorentz force in vertical direction
between the coil assembly and the stator. The resulting coil displacement then depends on the
inertial force of the coil mass and on the elastic forces applied on the coil assembly. Inversely
when a force is input to the moving coil assembly it is forced to move at a certain velocity so
that a voltage is induced in the coil itself. Following Lenz’s Jaw the sign of the induced

voltage is opposite to the input voltage.

In order to model all these effects a fully coupled electromechanical system is considered in
Section 2.1 assuming the behaviour of all electric, magnetic and mechanical parts to be time
invariant and linear. Then in Section 2.2 for a better understanding of the dynamic response of
the system the analysis is focused on two subsystems.

First the mechanical subsystem of the actuator is modelled by lumped elements so that the
accelerometer case (6), the coil assembly (3), the suspension (4) and the dust cover (5) are
considered as a mass supported by a spring and dashpot element in parallel. The actuation is
represented by two opposite actuator forces acting on the ground and on the mass.

Second a lumped element model of the electrical circuit of the shaker that consists of a
resistance and an inductance is analysed. The electrical and mechanical parts are coupled via
the magnetic interaction of the coil assembly (3), the permanent magnet (1) and the yoke (2).
The interaction is symbolized by a coupling element that relates the current/voltage
parameters of the electrical circuit to the velocity/force parameters of the mechanical part.
The fully coupled electromechanical dynamics are analysed by joining the mechanical and
electrical models with the electromechanical coupling element.

The splitting up in subsystems enables a better understanding of the self-sensing actuator
dynamics which is crucial for the design of a self-sensing actuator that is used to implement
velocity, current and induced voltage feedback control as discussed in Sections 4, 5 and 6.
The results obtained with the finally coupled model are validated with experimental
measurements as presented in Section 3.

Tables 2.1 and 2.2 summarize the geometrical and physical properties of the device studied in
this report and shown in Figure 2.1a.



Table 2.1: Geometry and physical constants for the accelerometer type 4375 [83].

Parameter Value, Material, Type
Frequency range 5% tolerance 0.2 -12000 Hz
Frequency range 10% tolerance 0.1-16500 Hz
Capacitance 650 pF
Transverse resonance kHz 18
Piezoelectric material PZ 23
Magnetic sensitivity (5 Hz — 0.03T) 30ms /T
Ambient temperature range -74 t0 250°C
Sensitivity 0.458 mV/m/s*
Weight 2.4 grams
Mounting technique thin layer of wax
Power amplifier type B&K 2635
Output impedance <1Q

1 Hz - 10kHz

Frequency range

Table 2.2: Geometry and physical constants for the shaker VIO1/2 [84].

Parameter Value, Material, Type
Sine force, peak 8.9N
Armature resonance frequency 12000Hz
Effective mass of moving element 0.0065 kg
Suspension axial stiffness 3.15 N/mm
Impedance at 500 Hz 3 Ohm
Vibrator mass, base mounted 0.91kg
Height 89mm
Width 65mm
Length 65mm
2.1 Actuator model

When using the equilibrium of forces for the mechanical part, Kirchhoff’s laws for the
electrical part and considering coupling between both parts the fully coupled equations of the
actuator model in Figure 2.2 are

T o A B



where M, D and K are the mass, damping ratio and the stiffness of the mechanical part, L and
R are the inductance and the resistance of the electrical part and ¥ is the electromagnetic
transducer coefficient linking the two parts.

Tfp(t)
M
i) #2)
o] & 000
L T D |
() =
i —
. Y

Figure 2.2: Combined electrodynamic model in sensor and actuator direction

Both the theoretical and experimental analysis are carried out in the frequency domain in the
range between 1 Hz and 50kHz. Therefore, assuming a lightly damped system i.e.

D < QW [13], the external force f,(2), the driving voliage u(1), the coil current i(7) and thus
the electrical charges g(z) and the coil velocity x(t) are considered to be sinusoidal at
frequency « with time dependence of the form exp(jw#) such that x()=Re(X(w)exp(iwt),
i(N=Re(I(w)exp(jwt)), u(®)=Re(U(w)exp(jwt)) and fp(1)=Re(F, Hw)exp(wt)). Re(~) denotes real
part of ~, X(w), I{w), U(w) and Fy(w) are the phasors of the variables and j=~./—_1 is the
imaginary number. For simplicity exp(jw!) will be omitted in the mathematical formulation
that is derived in terms of the phasors of the variables. Equation (2.1) is therefore rearranged.

in the frequency domain as follows
F Z, —-¥PXx
pl_|%m X 2.2)
U vy Z,||I

Zn(w) = Mjo + D + Ki(jw) 2.3)

where

is the open circuit mechanical impedance defined as Z,, = F, / X ! o and
i=l
ZA{0)=R + Ljw (2.4)

is the blocked electrical impedance defined as Z, =U/! Ix.=0 .
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2.2 FRFs of the mechanical, electrical parts and the electromechanical coupling

Preliminary simulations have been carried out for the electrical and mechanical responses
without coupling using plausible parameter values i.e. the two responses have been evaluated
from equation (2.2) assuming ¥=0. Figure 2.3 shows the amplitude and phase plot of the FRF
X [Fp|i=¢=1/Z, that is characterized by the typical response of a second order SDPOF system
governed by the parameters that are compiled in Table 2.3. At the resonance frequency the
response is controlled by the damping term 1/D and the phase plot shows the typical 180
degree phase shift [13].
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Figure 2.3: Bode plot of the FRF velocity-force of the Figure 2.4: Nyquist Plot of the velocity-force FRF of the
mechanical part of figure 2.2 mechanical part of figure 2.2 with a resonance frequency
at 120.9 Hz

The Nyquist plot in Figure 2.4 depicts the imaginary part of the FRF Im( X (w) /Fy(w)) over

the real part of the FRF Re( X(w) /Fy(w)) with increasing excitation frequency f = w/2n. The
curve starts at the origin for w=0 at 90 degrees to the real axis and moves into the first
quadrant to the intersection point with the real axis in order to come back to the origin at
w—o0 via the fourth quadrant at —90 degrees to the real axis. The Nyquist plot magnifies the
area around the natural frequency where the FRF is real and thus damping controlled. The
locus intersects the real axis at @ = O and at the natural frequency w, where

Re( X{ w,, )/Fp(wn))=1/D.

Table 2.3: Parameters for simulations of the mechanical system

Parameter Value
Coil assembly and case mass M 0.0017 kg
Dust cover stiffness K 981 N/m
Damping coefficient D 0.28 Ns/m
Undamped natural frequency @, 120.90 Hz
Damped natural frequency @q 120.19 Hz
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The result-of the simulation of the blocked electrical FRF I/U| ; ~0=1/Z, using the parametefs

that are summarized in Table 2.4 is plotted in Figure 2.5 and shows a first order low-pass
filter behaviour with an electrical, characteristic frequency w.,=R/L and a maximum phase

shift of -90 degrees.
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Figure 2.5: Bode plot of the FRF current-voltage of the

electrical part in figure 2.2 the electrical part in figure 2.2

The characteristic frequency can also be found in the Nyquist diagram depicted in Figure 2.6
by determining the frequency at which the imaginary part is identical to the real part i.e. the
frequency at which the curve intersects with a straight line from the origin of an angle of -43
degrees with the real axis. In addition the crossing with the real axis gives the inverse of the
static gain that is the resistance of the electrical circuit. Note that the curve starts on the real
axis with w=0 and goes to the origin for w—o with an angle of -90 degrees to the real axis.

Table 2.4: Parameters for simulations of the electrical system

Parameter Value
Inductance L - 0.262 mH
Resistance R 3.05 Ohms
Characteristic frequency W, 1852.76 Hz

The coupled response of the electro-mechanical system has been derived from equation (2.2).
A motional impedance term as influence of the mechanical part appears in the FRF I/U. Tt can
be used for sensing the mechanical velocity by an electrical circuit. Inversely an electrical
impedance term as influence of the electrical part appears in the FRF X /F,. Further analysis
will show that this term adds damping to the mechanical FRF and may be used for vibration

control.
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Figure 2.6: Nyquist plot of the FRF current-voltage of
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The ERF of the mechanical system when the electrical connections are short-circuited

)| _ vz, 1 05
F,@) _, 1+¥/z.z2,) Z.+¥°/Z,

can be considered as being the open circuit mechanical FRF X IF lieo=1/Z (see Figure 2.3)
where the output X is fed back with a feedback FRF ¥2/Z,. In order to realize unconditionally
stable velocity feedback [18], ¥2/7, should be positive real where the inverse of the resistance
determines the feedback gain. However, in a real system in analogy to the motional
impedance in an electrical circuit a term related to the electrical system ¥/Z, = P/R+Ljw) is
added in the numerator of equation (2.5). As a result the mechanical impedance of the short-
circuited actuator has an additional term AD = /R if the inductance L is negligible. Since
this term is proportional to the velocity x damping is added to the mechanical impedance.
However, if the coil Tesistance R is negligible the mechanical impedance is increased by a
term AK/(fw) = ¥/(Ljw). Hence, additional stiffness results as this term is proportional to the
coil displacement x=%/ jo». As in general both electrical parameters are not negligible
stiffness and damping are added. Nevertheless the damping effect is particularly effective at
frequencies lower than the characteristic electrical frequency while the stiffness effect tends to
be particularly effective at higher frequencies greater than the characteristic electrical
frequency. From this simple analysis it is easy to see that for active vibration damping it is not
necessary to feed back the coil velocity using an external sensor since it is possible to add
damping to the actuator by enhancing the term ¥?/R. This can be achieved either by
increasing the coupling coefficient ¥ or by reducing the electrical resistance R and
compensating for the inductance L. As ¥is given by the shaker design Sections 5 and 6 deal
with implementing a negative impedance amplifier in order to reduce R. For instance the
amplitude of the FRF X IF, is reduced by more than 6 dB relative to the open circuit

mechanical FRF X /F,|.=o if the open loop FRF
[avz/(zezmj >>1e ¥ 52,7, | (2.6)

indicating that the coupling effect is large at the mechanical resonance frequency where [Z,,] is
small and for frequencies smaller than the electrical frequency w.=R/L where Z|<<1.
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Equation (2.6) implies that the value of the transducer coefficient is essential for sufficient
coupling. For the chosen shaker parameters Figure 2.7 shows the curve of the square root of
the modulus of the two terms ¥ and Z,,Z, as a function of frequency. The left plot indicates
that the coupling effect is important close to the mechanical frequency between about 70Hz
and 200Hz. Also, the shape of the FRF Z,,Z. suggests that by increasing the transducer gain
the coupling at lower frequencies is increased more than at frequencies greater than the

mechanical resonance frequency.
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Figure 2.8: Simulated Bode plot of the FRF between the Figure 2.9: Simulated Nyquist plot of the FRF from the

primary force and the velocity X of the complete coupled ~ primary force input to the velocity for the coupled
electromechanical model in figure 2.2 compared with the ~ electromechanical model in figure 2.2, zoomn at the origin

FRF of the mechanical part (dash dotted line)

In the same way the bode plots of the closed (X /Fply=0, solid line} and open circuit
mechanical FRF (X /Fp|iz0, dashed dotted line) depicted in Figure 2.8 show noticeable
differences only at the mechanical resonance frequency. The damping effect due to adding an
electrodynamic device with a resistor is visible around the resonance frequency where the
amplitude is reduced and the phase transition is flattened. In general gignificant damping is

only added to natural frequencies that lie below the characteristic electrical frequency and

thus below the roll-off depicted in Figure 2.5.

The Nyquist plot of the closed circuit mechanical FRF (X /Fy|u=0) depicted in Figure 2.9
indicates that the resonance frequency of the mechanical system has shifted upwards to about
125.5 Hz relative to the case depicted in Figure 2.4. This is due to the increase of the dynamic
stiffness by the additional self-inductance L. Adding an additional capacitance that would
introduce an additional inertia effect could compensate for this phenomenon. The increase of
damping is highlighted by the reduction of the real part at the intersection point of the locus
with the real axis. Moreover as the superposition of the electrical FRF and the mechanical
FRF is greatest at the mechanical resonance frequency where the electrical FRF does not have
a phase shift the phase of the mechanical FRF is deformed towards a zero phase shift. Hence
the locus in the Nyquist plot in Figure 2.9 stays in the positive real plane even by adding the
self-sensing actuator. But following Equation (2.5) there would be an additional phase shift at
higher frequencies due to the electrical FRF if the transducer coefficient was great enough.
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The FRF between the input voltage and the coil current when there is no primary force

)
V) 1+2°22,)

(2.7)

consists of the blocked electrical FRF /U |5c=0 =1/Z, (see Figure 2.5) whose output 7 is fed

back with a feedback FRF ¥/Z,. By inverting equation (2.7) U = (Ze +@? / zZ, )I the
impedance between the voltage and the current in the electric circuit consists of the electrical
impedance Z, and a term containing the coupling coefficient and the mechanical impedance
¥2/7 . The latter one is the motional impedance as explained in more detail for instance by
[25). It indicates the influence of the mechanical system on the electrical one due to the
electrodynamic coupling with the motion of a mechanical system.
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Figure 2.10 ; Simulated Bode .plot of the FRF from the Figure 2.11; Simulated Nyquist plot of the FRF from the

source voltage to the current for the coupled electro- source voltage to the current for the coupled electro-
dynamic model in figure 2.2 (solid line) compared to dynamic model in figure 2.2 compared with the FRF of
the FRF of the electrical model(dash dotted line) the electrical model(dash dotted line)

Figure 2.10 shows the Bode plot of the coupled (/U] r _o) and blocked (Iju|,_, =VZ,.)
P~ *=

FRF between the source voltage and the current. Similarly to the analysis presented above the
influence of the mechanical part on the electrical part is found to be greatest at the mechanical
resonance - frequency. As indicated by equation (2.7) the amplitude of the coupled FRF is
reduced in the top plot of Figure 2.10. The phase tends to be deformed in direction of the
mechanical phase i.e. towards a minus 90 degrees phase shift for frequencies smatler than the
mechanical resonance frequency and towards a plus 90 degrees phase shift for frequencies
greater than the mechanical resonance frequency. The coupling can be neglected for
frequencies far away from the mechanical resonance frequency as the curve of the coupled
FRF then tends towards the curve of the uncoupled FRF in Figure 2.10.

The Nyquist plot of the coupled (solid line} and blocked FRF depicted in Figure 2.11 also
shows the effect of the motional impedance effect. Similarly to the case of the coupled
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mechanical FRF in equation (2.5) the coupled electrical FRF results from the combination of
the uncoupled electrical and the uncoupled mechanical FRF in the frequency range where
coupling is important. Here the locus of the uncoupled mechanical FRF depicted in Figure 24
is both rotated around the origin by 180" and scaled in such a way as to fit into the locus of
the uncoupled electrical FRF (dash dotted line) at frequencies close to the mechanical
resonance frequency. When the natural frequency is increased by adding stiffness to the
mechanical system the resulting motional impedance loop is shifted in direction of the
imaginary axis and its area decreases. Thus when the movement of the mechanical system is
restricted by a stiffness tending to infinity no motional impedance loop is observable as it is
close to the origin while its size tends to zero. The impedance curve then only shows the
characteristics of the electrical system whose locus is depicted in Figure 2.6. A similar effect
is found by increasing the damping factor of the mechanical system when the motional
impedance circle also becomes very small relative to the electrical impedance. Increasing the
mass moves the motional impedance circle to lower frequencies and also reduces its surface.
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3. COMPARISON OF MEASURED AND SIMULATED OPEN LOOP ELECTRICAL
AND MECHANICAL FREQUENCY RESPONSE FUNCTIONS

Figure 3.1 shows the circuit and the equipment used for identification measurements. Its
characteristic values are compiled in Tables 3.1 and 3.2.

Amplifier
SC110
Q /Q/] Signal generator
Kamp
~ ]
Accelerometer . Cha
OFF BscK 4375 |: ~&=|
y ;
‘\{ o . ‘ _ Chb2
ON . AN ) FFTSerVO
; Pgwer Shaker Charge Amplifier Analvyzer
- p— Resistance i+ LDS V101 B&K 2635 Ad yt t
o vantes
R9211C

Figure 3.1: Measurement circuit for identification of shaker parameters

The accelerometer outputs a signal proportional to the relative displacement
Xrea=Re(X,.(w)exp(jmr)) between its seismic mass M, and the moving coil and the charge
amplifier integrates the accelerometer output signal. The resulting integrated relative
displacement ,{t)= Re(X , (0kxp( ju)t)) measured on channel Chbl (switch OFF) is a good
estimation of the coil velocity X% for frequencies much smaller than the accelerometer
resonance frequency as is explained in Appendix A. For convenience the mechanical FRF is
taken with reference to the voltage input of the shaker u,(t)=Re(Ui(w)exp(jwr)) measured on
channel Cha. This disturbance voltage then generates a disturbance force f, on the shaker as
illustrated in the schematic overview in Figure 3.2.

.......................................................................................................
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Figure 3.2: Open loop FRFs
For identification measurements there is no secondary, feedback force fi(f)=Re(F(w)exp{jw?))

applied to the shaker mass but there arc an internal electrical damping force
f#)=Re(Ffw)exp(iws)) due to the electrodynamic coupling and an internal transmission force
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fi(H=Re(F(wjexp(jot)) between the accelerometer inertial mass and the shaker mass. Then
instead of identifying parameters in the FRF X . /F,, parameters in the FRF

¢ K
Xr —_ nga Sen (31)

Uy (Z‘ZejMaa)+ZeZ Zz +Y’22a)(jw+wfm)

m-a

are identified, where Z=K,/(jw)}+D, is an impedance defined by the relative velocity %,

between the coil assembly and the seismic mass of the accelerometer and the force transferred
from the coil assembly onto the seismic mass fi. Z;=joM,; + Da + K/(jw) is the accelerometer
mechanical impedance, K, is the stiffness of the piezoelectric material and D, its linearized
damping coefficient, K., a measurement equipment constant and @ the non-ideal integrator
cut-off frequency. Hence, the electrical frequency and the damped, mechanical natural
frequency can be identified simultaneously in only one FRF, but parameters of the electrical
FRFE /U, are also identified in order to distinguish between mechanical and electric damping
effects. For this purpose the shaker voltage 1, is again measured on channel Cha and the
voltage drop is measured at an additional power resistance Rer, proportional to the current i
through it, on channel Chb2 (switch ON).

The measurement gain of the charge amplifier K, is adapted manually for both sets of
measurements such as to observe a sufficient and linear signal output and the amplifier gain
Kump such as to limit the shaker current to lA. Additionally the equipment introduces
measurement gains compiled in Table 3.1 that are included in the model rather than used to
modify measurement data so that all measured signals have unit Volts. They are fixed by the
power resistance Rpg which converts the current through it to voltage with a gain Kpg = Rpg
and by the accelerometer and its internal circuit with the amplification K., that converts a
charge proportional to the relative displacement to voltage. As the supplier makes the low
freqzuency approximation described in Appendix A for the accelerometer the additional factor
WDna =Kaﬂlfla=10m rad/s® is included into K., in order to convert the sensitivity given by the
supplier in terms of voltage/acceleration K; into voitage/displacement.

Table 3.1: Chosen gains

Gain type Value
Amplifier gain Komp 16dB
Measurement gain K L nglf?‘\]ﬁv

Fixed Accelerometer gain K.n=KoKo/M.K; 458 10’ V/m

Power resistance gain Kpg 1,2,3Q

The internal signal generator of the frequency analyser is used to generate a white noise signal
with a 1V amplitude successively in the range from 0-10Hz, 0-100Hz, 0-1kHz, 0-10kHz and
0-100kHz at linearly -stepped frequencies, so that the 1-10Hz, 10-100Hz, 100-1kHz, 1k-
10kHz and 10k to 100kHz frequency ranges respectively are well excited. 32 successive
measurements are carried out in each range and the estimated FRF with a resolution of 800
lines in each frequency range, is automatically averaged by the servo analyser. For the

18



estimation the frequency analyser internally digitises the data, calculates the power spectral
density of the input signal in channel Cha S,(w) and the cross spectral density between
channel Cha and channel Chb S,,{w) so that an estimate of the FRF between channel Cha and

Chb is given by [85] as

S
Ha;,(co)=§‘-‘%‘:—j. (32)

The calculated frequency data is visualized and compared to simulations /U; and X, /Uy
Parameters are adapted to give a good -visual correspondence between simulations and

measurements of both FRFs. Due to the coupling between the FRFs this process is iterative as
having a good fit for one FRF does not necessarily also mean a good fit for the other one.

3.1 Measured and simulated mechanical frequency response function with short-
circuited electrical part

Comparing the bode plots of the FRF X /U4 estimated from measurements (solid line) to the
simulations with parameters in Table 3.2 (dashed line) in Figure 3.3 shows an excellent
correspondence for frequencies between the low-pass filter approximation of the integrator in
the charge amplifier and the natural frequency of the accelerometer. The damped resonance
peak of the coil assembly can be found with the 180 degrees phase shift as well as the
influence of the electrical system with another phase shift of 90 degrees. Although the same
mechanical resonance frequency as implied by supplier’s data has been identified mass and
stiffness values are found to be different in order to adequately model the relative damping
influence.

Table 3.2: Identified parameters

Parameter Yalue
Coil assembly mass M 0.0017 kg
Duct cover stiffness K 989 N/m
Damping coefficient D 0.28 Ns/m
Inductance L 0.262 mH
Resistance R 3.05 Ohms
Actuator constant ¥ 2.1 N/A or Vim/s
Stiffness of inertial mass support K, 6.7 x 10° N/m
Accelerometer Damping D, 4 Ns/m
Inertial mass of accelerometer M, 0.00067 kg

Furthermore the assumption of a non-ideal integrator does not seem to hold at least not its
modelling as a single low-pass filter. Characteristic curves given by the supplier also indicate
that a higher order filter is implemented in the charge amplifier.
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Figure 3.3: Bode plot of the measured (solid line) and simulated (dotted line) FRF
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Figure 3.4: Nyquist plot of the measured (solid line) and simulated {dotted line) FRF fram the source voltage Uy

to the integrated relative displacement X . and zoom at the origin

The Nyquist plot also exhibits reasonable correspondence between measurements and
simulations around the natural frequency of the coil assembly. In particular the resonance
frequency itself turns out to be about 101.5 Hz, which is close to the simulated 102.5 Hz.
Additionally not modelled resonance loops appear at about 1500Hz. Moreover the additional
loop due to the accelerometer dynamics is observable close to the origin though
measurements show a different loop form that indicates that the model overestimates the

20



importance of the accelerometer. The plot also shows the spill-over due to the electrical
system as the FRF from the disturbance voltage including the electrical model is considered.

3.2 Measured and simulated electrical frequency response function without primary
force excitation

As is the case for the FRF from the source voltage Uy to the integrated relative displacement
X, the correspondence between measurements and simulations of the FRF from Uy to the

coil current I is excellent for frequencies around the mechanical natural frequency as shown in
Figure 3.5. The influence of the mechanical system on the electrical system is visible in the
amplitude plot, where the back-EMF effect produces a trough at the mechanical resonance
frequency, and in the phase plot, where a phase shift of 180 degrees seems 10 be forced by the
mechanical system. But the coupling is not strong enough so that not a complete 180" phase
shift is visible. Note that the additional measurement gain Kpg is included so that the steady
- static value does not give the exact inverse of the resistance R and the unit of the plot is Volts

per Volts.
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Figure 3.5: Bode plot of the measured (solid line) and simulated ( dashed line) FRF from
the source voltage to the measured coil current when considering eddy current losses of
the core and an additional capacitance as in figure B.1, zoom between 0 and -20 dB

At frequencies greater than the electrical frequency the simulation shown in Figure 2.10 with
the model in Figure 2.2 may not pick up important physical characteristics of the actuator.
However, in Section 2 it has been noted that the natural frequencies of the mechanical system
to be damped lies below the electrical, characteristic frequency. Therefore a detailed model as
explained in Annex B is not necessary in order to evaluate damping, but still it is used for
simulations in Figure 3.5 and Figure 3.6. This model describes an additional capacitance
effect parallel to the shaker and eddy current effects modelled by a resistance R, paraliel to the
shaker inductance as proposed for instance in reference [80].
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Considering additional eddy currents and capacitance C as well as the accelerometer function
the FRF I/U,; becomes

1) Qo Bl - W) o ¥ 0] K 53
Us) 7, (C0) a2 - ol J+ 72 200] ~2a2,

where Z, = Lio+1/(Cjw), Za= joLi+R+1/(Cjw) and Zo= (Lr+L) jo + R. are additional
electrical impedances with line inductances L, and L, and Z, = -Z,Z,w*-Z,M 2 jw is an
enlarged motional impedance.

The Nyquist plot of this FRF depicted in Figure 3.6 shows a good fit between simulations
with additional parameters in Tables B.l and B.2 and measurements. The mechanical
resonance frequency can also be very well found to lie at about 101.5 Hz. Also in Figure 3.6 it
is noted that the locus starts at a real value of twice the inverse shaker resistance R due to the
measurement gain Kpg=2. Furthermore the typical characteristic of a lead part is added to the
plot at higher frequencies well above 1500 Hz. The fact that this loop is smaller than the loop
for lower frequencies indicates that additional damping is introduced so that the assumption
of an additional resistance due to for instance eddy currents is reasonable. Changing
parameters indicates that correspondence between measurements and simulations is either
satisfactory in the range from about 300 Hz to about 2000 Hz or in the range from 10 kHz to
40 kHz. Hence, there seems to be a trade-off between getting a good correspondence in either
of those frequency bands. Moreover the Nyquist plot shows that at the simulated mechanical
natural frequency the FRF does not change significantly in comparison to Figure 2.11 when
changing the electrical higher frequency characteristics due to the capacitance and also the
damping of the mechanical system due to Eddy currents modelled by the resistance R, can be

neglected.
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Figure 3.6: Nyquist plot of the measured {solid line) and simulated (dotted line) FRF
from the source voltage to the coil current when considering eddy current losses of the
* ferromagnetic core and an additional capacitance
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4. MEASURED VELOCITY FEEDBACK CONTROL

After theoretical analysis and experimental identification of the open loop frequency
responses of the shaker in the previous two sections in this section an adequate control
algorithm is investigated for the implementation of measured velocity feedback. As shown by
[23] direct velocity feedback with collocated actuators and sensors is unconditionally stable.
Additionally direct feedback of the absolute velocity leads to active damping at resonance
frequencies as shown by [3]. Therefore fixed gain feedback of the shaker coil absolute
velocity also called rate or direct feedback is investigated. Practical stability limits due to non-
ideal actuator and sensor behaviour are found using the Nyquist criterion and the root locus
plot. First simulations show the closed loop behaviour and second results of implementing
gain fecdback at a real shaker are presented.

4.1 Stability and simulation of the feedback control system

Considering the system depicted in Figure 3.2 when the feedback loop is closed by a fixed
gain -G as shown in Figure 4.1 a secondary force f; is generated by the shaker that cancels the
disturbance by the primary force f,. In this system the primary force f, is generated by a
disturbance voltage 1, and the secondary force f; results from a feedback voltage up.

.........................................................................................................
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Figure 4.1: Closed loop FRFs

Moreover, the open loop FRF from Uj to F, and from Ugg to F is identical. Therefore instead
of considering FRFs from F, or F; to X ., FRFs from Uy and Ugp to X , are investigated.

Closing the loop thus means modifying the disturbance voltage i by an additional feedback
voltage uy so that the resulting voltage input to the shaker is # = ug + up. Then the closed loop

FRF from U, to X, becomes

Xrl - Xr/Uvd — TMaKsen (41)
Udy 1, cXe lom,zz, +(@.2,+7?)2,] (jo+w,)+M,GK,,
d

By comparing the open loop equation (3.1) to the closed loop equation (4.1) the additional
M,K,.,G¥ term of zero order in jeo proportional to velocity indicates that damping is added to
the open loop FRF by negative feedback. Inversely positive feedback leads to negative
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damping. If the sensor and actuator transducers are not collocated velocity feedback may
destabilize the FRF for a certain gain determined for instance by the Nyquist criterion.
Considering a stable continuous open loop FRF G X, /U, the closed loop is conditionally
stable if the locus of the open loop in the Nyquist diagram does neither encircle nor pass
through the critical point (-1,0) as stated e.g. in [86]. If instead the sensor and actuator
transducers are collocated so that the real part of the open loop FRF is constrained to be
positive definite the closed loop is even unconditionally stable.

Applying this Nyquist criterion to the locus of the open loop FRF X /U4 1in Figure 3.4 shows
that the closed loop is conditionally stable. Multiplying with a feedback gain G might lead to
instability of the closed loop as the small loop at the accelerometer natural frequency or at the
non-modelled loop at about 1500Hz might increase and finally encircle the critical point. This
is illustrated in Figure 4.2 with a set of simulations using the identified model equation (3.1)
by varying the negative feedback gain G. Figure 4.2 illustrates the open loop FRF G X U,
for different values of the gain G where for G>2220 the locus encircles the critical point and
instability for the closed loop FRF is predicted.
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Figure 4.2: Open loop Nyquist plot of the FRF G X /Uy of the model in Figure 2.2 for different values of the
feedback gain G and zoom at the origin

Additionally the closed loop amplitude is predicted to decrease only at frequencies where the
open loop locus lays outside a unit circle around the critical potnt. For instance, when G=2220
for frequencies inside the unit circle from about 7075 Hz to ca. 17480 Hz the closed loop
amplitude is increased by 1/|1+G X, /U4 The oscillation frequency of the unstable closed
loop is found at the critical point to be 14400 Hz. Hence spillover in the negative real half
plane is critical for vibration reduction as the disturbance might increase. -

In contrast to the ideal open loop locus in Figure 2.9 that does not show spillover into the

negative real plane the open loop locus with non-ideal accelerometer, actuator and
measurement equipment in Figure 4.2 has spillover. Adding only the actuator leads to spill-
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over into the third quadrant that itself does not lead to instability, but as the locus crosses into
the unit circle around the critical point vibrations are amplified in this frequency range.
Additionally small random changes in the locus together with a sufficient feedback gain may
destabilize the closed loop as the locus is close to the critical point. Adding an accelerometer
adds an additional resonance loop and a phase shift of 180 degrees to the open loop. For
higher feedback gains the accelerometer thus destabilizes the closed loop. Although
measurements in Figure 3.4 do not show non-ideal behaviour of the integrator implemented in
the charge amplifier in the considered frequency range, non-ideal integration is a potential
source of instability as the locus might move into the second quadrant close to the critical
point at a sufficient gain. Then, when entering the unit circle around the critical point,
vibrations are amplified and small random changes in the locus may lead to instability of the
closed loop. Note that this would only be a risk at extremely high gains, G=2220 in Figure
4.2, so that for most practical applications stability is predicted.

Some of the effects discussed above are also found by closed loop simulations. Figure 4.3
shaws the Bode plot of the closed loop FRF X, /U, in equation (4.1) for different negative

values of the feedback gain G. At the first mechanical natural frequency at 101.5 Hz damping
is introduced that is visible in the amplitude plot by decreasing amplitude and in the phase
plot by a flattening phase transition when comparing for instance the open loop FRF at G=0 to
a closed loop FRF with G=10. But at higher frequencies where the open loop locus depicted
in Figure 4.3 enters the unit circle an increase in amplitude and a steeper phase transition
appears. Although effective for a closed loop FRF with G=10 this spillover effect is more
obvious for a closed loop FRF with G=1000. The closed loop FRF with the stability limit
feedback gain G=2220 intersects with the open loop FRF at 7075Hz that is the same
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Figure 4.3: Simulated Bode plot of the closed loop FRF from Uy to X, with the model in
figure 2.2 with feedback of b¢ r and different negative feedback gains G
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frequency at which the closed loop locus intersects the unit circle around the critical point in
the Nyquist plot in Figure 4.3. At the frequency of 14400Hz where the closed loop FRF goes
trough the critical point the Bode plot shows a sharp increase in gain and a steep phase
transition. When using a larger feedback gain the closed loop FRF becomes unstable.

The stability limits for negative feedback of X are also found in the rootlocus plot. The

rootlocus plot shows the pole position of the closed loop with increasing feedback gain G in
the real-imaginary plane. The locus starts at the open loop poles for G=0 and goes to the open
loop zeros for G—a or diverges. The closed loop poles are found by calculating the roots of
1+GH, where H is the open loop FRF.

Figure 4.4 shows the rootlocus plot for negative feedback of the FRF X, /Uy and a zoom at

the origin. The open loop pole indicated by x at -w,=-2rf=-10991 rad/s is the electrical,
characteristic frequency. The open loop poles due to the accelerometer natural frequency are
located at -4178.5+/-117910;j and the poles of the natural frequency of the coil assembly are
situated at -383+/-541j. An additional pole due to the integration model of the preamplifier is
‘found close to the origin at -@;,=-2%. By increasing the gain G the accelerometer poles move
towards the positive real half planc and at G=2220 they enter into the real half-plane. Poles in
the positive real half plane are unstable as the transformation of the FRF into the time domain
results into diverging positive exponential functions. Hence for gains G>2220 the closed loop
is unstable. The pole of the electrical frequency and one pole of the coil assembly approach
cach other and diverge then in the megative real half plane; the second pole of the coil
assembly moves to one of the two zeros at the origin for infinite feedback gain G. Hence, as
also the Bode plot indicates, only the additional poles at the natural frequency of the
accelerometer generate instability. Although the accelerometer could be considered as an
additional DOF of a mechanical system added to the coil assembly no additional zero between
the two natural frequencies is visible since the relative displacement x.=x-y is the
accelerometer output as indicated in Appendix A. Therefore no zero-pole flipping as for
instance mentioned by [4] is observable and the influence on a typical structure with several
poles and zeros close to the imaginary axis where this flipping is observable could only be
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Figure 4.4: Rootlocus plot of 1+G b ¢ /Uy for negative feedback of X r; crasses: open loop pole position; poinis:
pole position at the indicated gain; arrows: pole movement with increasing gain G
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investigated by adding another mechanical DOF. In order to generate unconditional stability
for the closed loop, a compensator in the region between the accelerometer poles and the
imaginary axis can add zeros. For instance a notch filter with two zeros located near the
accelerometer poles could be used. Possible lack in robustness of the notch filter is not
important as the accelerometer poles are not close to the imaginary axis.

4,2 Tmplementation of velocity feedback control

The velocity feedback is obtained in practice by closing the loop between the preamplifier
output that is proportional to the coil assembly velocity measured by the accelerometer and
the voltage input of the shaker as shown in Figure 4.5. Hence, in contrast to Figure 4.1 there is
no separate primary and secondary force applied on the shaker mass, but the shaker FRF ¥/Z,
is used to generate a force from the sum u=ustup of the disturbance voltage ug and the
feedback voltage up. The second power amplifier DC300 implements negative feedback. The
disturbance signal is generated by the signal generator of a FFT analyser that is also used to
measure the shaker velocity.

Summation + ¢ FFT Servo Analyzer
Amplificr Kamp2 box + ” Asqvan;e(s}t R9211C
DC 300 ignal Generator
Chil
Amplifier | K] Cha
Accelerometer DC 300 Chb
B&K 4375 Ka/Ma '\“{ Ch? “g
S— |: D_ (fo+n) ag
- Kampl
Shaker 3¢ Charge Amplifier
LDS viol B&K 2635
TRNES

Figure 4.5: Circuit for closed loop measurements

Figure 4.6 depicts the frequency response function (FRF) source voltage measured in channel
a to measured velocity measured in channel b for negative feedback and several values of the
feedback gain K.,y1 compared to the open loop case. The DC amplifier gain Kanp2 adds an
additional constant open loop gain so that the reduction in dB differs from the one depicted in
Figure 4.3. The graph shows for three values of the feedback gain Kuyp,1 that by increasing the
gain, damping can be increased in comparison to the open loop case that is also depicted.
Dashed lines indicate simulations. Measurements and simulations fit well for frequencies
between about 5 Hz and 1000 Hz. For higher feedback gains a peak appears at about 2500Hz.
This is not surprising as differences between measurements and simulations have also been
observed during the open loop identification in the zoom in Figure 3.4 between 1000 and
3000 Hz. Additionally a very low frequency displacement of the shaker is observed, but not
measured at G=20. A limit for active damping by measured velocity feedback is hence not
civen by the accelerometer natural frequency but by shaker dynamics well below this
frequency and by the integrator electronics at high gains and very low frequencies.
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Figure 4.6: Bode plot of the measured (solid) and simulated (dashed) FRF from U, to X , for the
open loop case G=0 and negative feedback gains 1.9, 5 and 20

The Nyquist plot in Figure 4.7 of the source voltage — velocity FRF with negative feedback
compared with the open loop case also shows that damping is increased as the size of the
resonance loop is decreased. Since very low frequency behaviour below 1Hz is not measured
hecause of low coherence, it also indicates that the critical point at -1,0 is not encircled
implying that higher gains could be implemented. As visual inspection clearly shows a low
frequency vibration higher gains have not been implemented. Moreover correspondence
between measurements and simulations is good around the first resonance frequency.
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Figure 4.7: Nyquist plot of the measured (solid) and simulated (dashed) FRF from Ugto X, in

the open loop case and for negative feedback gains 1.9, 5 and 20
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5. CURRENT FEEDBACK CONTROL

In contrast fo Section 4 where the shaker has been purely used as an actuator and limits due to
the measurement electronics have been found, in this section the shaker is considered as a
self-sensing actuator. As the open loop FRFs of the self-sensing actuator have already been
presented in Sections 2 and 3, the effects of current feedback on the closed loop are now
investigated. Proportional current feedback should be similar to absolute velocity feedback
since the back-EMF is proportional to the absolute velocity in this case where the base of the
shaker can be considered as rigid and not vibrating. Hence, current feedback should show the
damping effect of velocity feedback without needing an additional sensor. Also, collocation
and thus stable control for large feedback gains should be guaranteed. However, the
theoretical study presented in Subsection 5.1 shows practical limitations in this sense. In this
subsection first the equivalent velocity feedback path and stability of the closed loop with
current feedback are investigated using the Nyquist criterion. Second closed-loop simulations
show the effect of proportional current feedback on the mechanical system. These effects are
also explained by using the root locus plot. Finally in Subsection 5.2 proportional current
feedback is implemented at the shaker and measurements are compared to simulations.

5.1 Proportional current feedback theory

When proportional current feedback is implemented the open loop FRF depicted in Figure 3.2
is modified by a proportional current feedback gain G inside the open loop X, /Uy as depicted
in Figure 5.1. The feedback gain G then also incorporates the current measurement gain Kpr
due to an additional power resistance.

E;rAccelero- Charge
| imeter i Amplifier |

i Sensing

| Punction | X
| Zojo

Usy

Figure 5.1: Closed loop FRFs for current feedback

In the previous sections a disturbance voltage u has been used to generate a primary force f,.
Thus instead of using a force sensor to measure f; the disturbance voltage u, is measured. This
is reasonable as long as the FRF between Uy and F, stays constant for different feedback
gains. But Figure 5.1 shows that F, depends on the current feedback gain G. Thus by
implementing current feedback not only the total feedback force Fy+F, is modified by an
additional secondary force F; but also the primary force F, generated from a disturbance
voltage U, changes. Hence, in order to validate all FRFs of the direct current feedback theory
in an experiment a primary force has to be exerted on the mechanical structure by a
mechanism that is different from the force generation by this shaker. Since it is not practical
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to link two shakers directly without an intermediate structure the mechanical FRF from the
primary force F, to the measured velocity X, is only investigated by simulations for the

system in Figure 2.1 without additional force sensor. Nevertheless other measurable, coupled
FRFs are also verified by measurements

5.1.1 Limitations to proportional current feedback

Figure 5.1 indicates that the sum of the passive F,; and active F; feedback force

s S ~w?/L
Z, -G {(R-G)L+jo

F,+F, = (5.1)

is proportional to a low pass filtered velocity signal for proportional current feedback.
Therefore it cannot be assumed that proportional current feedback is direct velocity feedback
for the mechanical FRF X {F,. The first order low pass filter has a gain dependent cut-off
frequency at w.,~(R-G)/L. As G does only influence the denominator a trade-off between
velocity feedback amplitude and cut-off frequency of the feedback low-pass filter appears as
illustrated in Figure 5.2. For negative feedback gains the amplitude of the velocity feedback
FRF decreases. For positive feedback gains the impedance is reduced by subtracting the
feedback gain from the resistance value so that a negative output impedance amplifier is
implemented. Then the amplitude of the velocity feedback FRF increases, but the cut-off
frequency is also reduced. '
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Figure 5.2 : Force velocity feedback FRF for different direct current feedback gains
G=-4, 2.5, 3 compared to the open loop case G=0

When the current feedback gain G is greater than the resistance R the feedback FRF becomes
unstable as its pole is positive. Therefore current feedback for a shaker can only be used for
gains smaller than the electrical resistance R. As described in section 2 there is already a

30



2

passive damping force F,; = X for G=0 due to electromagnetic coupling. Feedback gains

€
smaller than O reduce this electrical damping and negative damping is introduced by using

negative current feedback gains. Therefore current feedback gains that lead to additional
positive damping lie in the range between 0 and +R.

In the limiting case G—+R equation (5.1) tends to negative displacement feedback as then the
feedback velocity X is integrated. This is equivalent to adding stiffness to the mechanical
system. In the same way a first order low-pass filter can be considered as an integrator above
its cut-off frequency. Figure 5.2 indicates that below the cut-off frequency @e, damping is
added whereas for greater frequencies displacement feedback leads to additional stiffness.

Proportional current feedback has the same effect on the open loop electrical FRF I/U|y in
equation (3.3) as a resistance since an additional voltage Urs=GI proportional to current is
added. In contrast to the passive choice of the resistance the resistance easily tuned with the
gain G can become negative and hence cancel the coil resistance so that the effective
resistance seen by the mechanical system becomes very small. The closed loop FRF

/
I U,

U, —al
16%](1

has a minus sign in front of the feedback gain due to the assumed positive feedback in Figure
5.1. Therefore negative feedback gains indicate an increased resistance whercas positive
feedback gains mean a reduced resistance. Additionally if R=G the denominator in equation
(5.2) becomes very small and the closed loop gain very high so that stability problems might
arise.
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In Figure 5.3 the Nyquist plot of the open loop FRF of equation (3.3) is depicted multiplied
by different open loop gains G. The open loop is multiplied by negative gains for positive
current feedback that is assumed in Figure 5.1, equation (5.1) and equation (5.2).
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Figure 5.3: Nyquist plot of the open loop FRF I/ multiplied by different gains G=-RG=-1,G=1andG=R
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For G>=0 (negative current feedback) the open loop is unconditionally stable as is highlighted
for instance for G=1 and G=R on the right side of Figure 5.3, but if G<0 (positive current
feedback) the locus flips into the negative real half plane as is shown for instance for G=-1
and G=-R on the left side of Figure 5.3. In the latter case the closed loop amplitude //Uy is
predicted to increase over the whole frequency range. For gains greater than R the locus starts
left of the critical point (-1,0) and the closed loop is predicted to become unstable. Additional
stability limits are not found by this method. In the next section closed loop simulations verify
the stability limit and show the influence of stabilizing gains on all closed loop FRFs.

5.1.2 Closed loop simulations

Figure 5.4 shows the Bode plot of the closed loop FRF in equation (5.2) for different negative
feedback gains G. As predicted in section 5.1.1 the equivalent resistance is increased by
increasing |G so that at higher gains the FRF tends to a pure real behaviour dominated by the
equivalent electrical resistance. Moreover the influence of the mechanical system on the
electrical FRF due to coupling is reduced for increasing |G|. Both the phase plot and the gain
plot show that for high frequencies the response tends towards a purely resistive behaviour so
that neither eddy currents nor capacitance effects are important for high negative feedback
gains. Negative current feedback is not advantageous for sensing the behaviour of the
mechanical part because the coupling effect becomes negligible. Additionally it is also not
advantageous for the actuation because the amplitude of the closed loop FRF decreases i.e. a
higher voltage has to be applied in order to obtain a set current.
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Figure 5.4: Predicted Bode plot of the FRF disturbance voltage Uy to shaker current
I with negative feedback gains G= 8, 64, 512 compared to the open loop case G=0

Figure 5.5 depicts the Bode plot of the same FRF for different positive feedback gains G. As
the FRF becomes unstable for G>R only values of G < 3.05 are considered. The Bode plot
shows an additional resonance peak appearing at about 437 Hz that becomes stecper for
increasing gains. The resonance is also visible in the phase plot where a -180° phase shift
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appears whose phase transition becomes steeper by increasing gains indicating that damping
is reduced. This resonance is due to the interaction between the electrical characteristic
frequency and the mechanical natural frequency as will be described in section 5.1.3. The
trough at the mechanical resonance frequency then behaves as a zero with a positive 180°
phase shift. The integrative behaviour at lower frequencies only appears at gains very close to
the stability limit. High frequency behaviour is not changed significantly except for the
increased gain due to the bigger resistance also predicted in section 5.1.1. A node appears at
higher frequencies in the phase plot where no change in phase shift is possible.
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Figure 5.5: Predicted Bode plot of the FRF disturbance voltage U, to shaker current 1
for positive feedback gains G=2,3 compared to the open loop FRF with G=0

Once a stability limit has been found it is interesting to see how much additional vibration
reduction is possible. Figure 5.6 shows the Bode plot of the FRF from the primary force Fj, to
the measured vibration velocity X, for different positive gains G in the stable region. As in
the FRF I/U; it also shows an additional resonance appearing at 437 Hz. However, the
mechanical resonance at about 100 Hz is reduced by positive current feedback. This is due to
additional damping as indicated by the decreasing steepness of the first —180° phase shift in
the phase plot. Thus an optimum value for the controller gain appears where the increased
amplitude at the additional resonance is equal to the reduced amplitude at the mechanical
resonance frequency. Vibration reduction up to 8 dB at G=2 is simulated. Moreover positive
current feedback has negligible influence on the high frequency behaviour beyond the
characteristic electrical frequency. An influence on frequencies below the mechanical, natural
frequency is only visible for gains close to the stability limit as has also been found at the FRF

U,

Negative current feedback leads to reduced damping at the FRF X, /F,. Moreover there is no
significant influence at low and high frequencies and the FRF tends to the open loop
mechanical FRF X, /F,}i—o without influence of the shaker i.e. without back-EMF effect. This
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is explained by the very high gains that lead to a very high equivalent electrical resistance s0
that it dominates over the back-EMF effect in the electrical circuit as illustrated in Figure 5.4.
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Figure 5.6: Bode plot of the FRF from the primary force to the measured velacity for
positive current feedback gains G=1,2,3 compared to the open loop FRF with G=0

The presented FRF cannot be measured at the chosen shaker as no additional force sensor for
the primary excitation f, is available. Additionally as discussed in Section 4 the primary force
is obtained by using an additional voltage input to the shaker. Thus the primary force is not
independent of the positive current feedback gain. The FRF that can be measured is from the
disturbance voltage Uy to the measured velocity X, depicted in Figure 5.7 for different

values of the positive current feedback gain G. Like in the two FRFs before an additional
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Figure 5.7: Bode plot of FRF disturbance voltage to measured velocity with positive
current feedback and feedback gains G=1,2,3 compared to the open loop FRF with
G=0
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resonance appears at 437 Hz with increasing positive current feedback gain. But in contrast to
the FRF X, /F, » there is no reduction visible at the mechanical, natural frequency. On the

contrary the amplitude is slightly increased. There is no influence visible at higher frequencies
beyond the characteristic, electrical frequency. But there is a remarkable influence at lower
frequencies, especially at gains close to the stability limit. The phase change is similar to the

phase change of the FRF X, /F, with the exception of an additional -90 phase shift due to
the low pass filter behaviour of the electrical part.

As also indicated by the FRF I/Uj at negative current feedback gains no additional damping
can be added. Instead damping is reduced and the FRF tends to the open loop case 1770

without back-EMF effect for increasing gains. Due to the increased equivalent resistance the
amplitude decreases in the whole frequency range.

In the next section an explanation for vibration reduction is given with reference to the root
locus plot.

5.1.3 Explanation by the root locus

Figure 5.8 shows the roots of the denominator of the closed loop FRF X, /Uy near the origin

for increasing values of the positive current feedback gain G. As at least one pole stays in the
positive real half plane for higher gains, i.e. the system does not become stable again for even
higher feedback gains, gains only until G=2000 are plotted. Open loop poles are indicated by

‘x’. As the output variable X, of the considered FRF is not the feedback variable [ it is not

possible to determine closed loop pole positions from open loop zeros of the FRF X, /Us

This indicates that implementing_current feedback changes plant parameters rather than just
controlling the output. The complex conjugate pole pair associated to the natural frequency of
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¥igure 5.8: Root locus plot of the FRF disturbance voltage Uy to measured velocity X , for positive
current feedback gains G = 1 to 2000; x open loop poles; zoom at origin
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the accelerometer and not shown in the figure does not change very much from the open loop
pole position. It moves on an elliptic locus in direction of the imaginary axis. As the angle of
a line from the origin to the pole position to the real axis is not decreased between the
beginning and the final position no additional damping is added to this pole by implementing
positive current feedback. Nevertheless the pole does not become unstable since it does not
move into the positive real half plane.

Figure 5.8 also shows that with increasing positive feedback gain the open loop pole
associated to the electrical part at about (~10991,0) moves towards the imaginary axis. The
two mechanical shaker poles are also moved from their open loop position at (-382, +/-542j)
in such a way that the angle between a line from the mechanical poles to the origin and the
real axis is decreased. Thus damping of the mechanical resonance is increased. When the
poles have reached the real axis the system is critically damped and the two mechanical poles
move further on the real axis in opposite direction. At further increasing feedback gain the
mechanical pole further away from the imaginary axis interacts with the electrical pole in
such a way that the mechanical and the electrical pole move away from the real axis on a
circular trajectory in direction of the imaginary axis. This new pole pair crosses the imaginary
axis when G becomes equal to the electrical resistance R. Thus the same stability limit G=R is
found as before. The distance of the two poles when they cross the imaginary axis is equal to
the additional resonance frequency that appears in the Bode plots simulated in Section 5.1.2.
Because of the interaction and coupling between the poles it is not possible to say whether the
new resonance is a mechanical or an electrical one. The region of stability is limited by the
value of the resistance and the region of additional damping is even smaller and for the
measured resistance relatively close to the stability limit. For robustness reasons it is
advantageous to choose a higher passive resistance so that a small absolute change in
resistance does not-mean a large change in pole location. But Figure 5.4 implies that a high
passive resistance leads to a relative low sensing effect. Hence, control robustness and sensing
have to be traded off in an actuator design.

When comparing the pole positions of Figure 5.8 to the pole configuration of the controller

H(jo)=2 22— 0+ YT (5.3)

a jo+1/(al)
on page 79 in [4] both controller configurations become identical when assuming that the zero
in [4] has moved to the origin i.e. a7=L/R, T>>1 and g/a:—&”z. Thus the shaker can be
considered as an analog lead compensator whose parameters can be adapted by adequately
choosing its magnetic, geometric and electrical properties and thus the electrical parameters R
and L. The zero cannot be moved as it is due to the derivation because of velocity feedback.
Moreover the investigated shaker does not have a zero distribution of a typical mechanical
structure with several mechanical natural frequencies so that the system configuration is
different to the one given in [4]. For a study of the influence on the mechanical system these
zeros should be considered. This can be carried out for instance by adding a plate or beam.
Additionally as an electrical system is used for feedback a large varicty of different
controllers can be easily implemented electronically in order to change mechanical pole
positions.
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For negative current feedback the electrical pole stays stable as it moves far away from the
mechanical poles for increasing gains. Thus it is easier to influence mechanical pole positions
by positive current feedback than by negative current feedback. Additionally there is very
small damping added to the accelerometer resonance frequency so that the influence of
negative current feedback on the accelerometer pole position can be neglected. Moreover the
damping of the shaker mechanical resonance frequency is reduced with increasing negative
current feedback gains so that negative current feedback cannot be used for vibration
reduction. In the next section some important, simulated results are verified by measurements

at the identified shaker.
5.2 Implementation of direct current feedback control

For practical implementation of current feedback in contrast to identification measurements
DC amplifiers are used in order to avoid the high pass filter characteristics of audio
amplifiers. Additionally in order to prevent damage to the shaker a fuse and an ammeter are
used that introduce an additional, minor resistance in the electrical circuit. Therefore the
motional impedance influence of the open loop FRF is reduced and the FRFs are shifted by a
gain relative to the identified FRFs in section 3. A self-made, passive resistance bridge in
Figure 5.9 replaces the summation box in Figure 4.5. Figure 5.9 shows that the voltage drop at
the power resistance of 3 Q proportional to the current is amplified and is directly fed back
and summed up to the disturbance voltage. In addition either the velocity of the coil assembly
is measured via the accelerometer and its amplifier in order to estimate the possible vibration
reduction or the voltage drop at the power resistance is measured in order to measure the FRE
/U, Mecasurements and signal generation are once again carried out with the FFT Servo

Analyzer.
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Figure 5.9: Circuit for closed loop current feedback measurements

Figure 5.10 shows the bode plot of the FRF from the disturbance voltage to the measured
velocity for different positive current feedback gains compared to the open loop case for
simulations and measurements in the frequency range from 1 to 1000 Hz. Both measurements
and simulations show the characteristic additional resonance both in the amplitude plot and in
the phase plot. The peak can be simulated well if the inductance is changed to 1=0.4847mH
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and the coil resistance to R=6£2 due to the additional measurement power resistance.
Moreover at very low frequencies measurements and simulations are very different due 1o a
lack in coherence as it has also been observed in identification measurements. For higher
gains the coherence between the excitation voltage and measured velocity is reduced, which is

visible by the noisy curve for G=5.7.
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Figure 5.10: Simulated and Measured FRF from the voltage disturbance Uy to the
measured velocity X . Jor different positive current feedback gains G= 4 and G=
5.7 compared to the open loop FRF with G=0

Similar observations are true for the bode plot of the FRF from the disturbance voltage to the
current depicted in Figure 5.11 where measurements and simulations agree reasonably well
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Figure 5.11: Simulated and Measured FRF from the voltage disturbance Uy to the
current 1 for different positive current feedback gains G = 4 and G = 5.7 compared
to the open loop FRF with G =0

38



for frequencies below the mechanical natural frequency but are slightly different for higher
gains and frequencies. At the mechanical resonance frequency the coherence of the input and
output signal is reduced due to the steep peaks in the curve and thus measurements are not
reliable at the mechanical resonance frequency. High frequency behaviour has not been
checked because, as simulations have shown, the high frequency area is not interesting for
vibration reduction by proportional, positive current feedback.
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6. INDUCED VOLTAGE FEEDBACK CONTROL

Instead of feeding back a voltage proportional to the whole current that also contains
components not related to the coil velocity, in this section a way to feed back only the voltage
proportional to the coil velocity ( induced voltage ) is investigated using an electrical bridge
circuit depicted in Figure 6.1. Section 6.1 reviews the characteristics of such a bridge circuit
and compares proportional current feedback to induced voltage feedback. In section 6.1.1
simulated changes of bridge parameters indicate that both control schemes implement the
same feedback force if no compensator for the coil inductance is implemented in a so-called
Wheatstone bridge. A bridge with an ideally balanced resistance and inductance, a so-called
Owens bridge, does only differ from ideal velocity feedback by the shaker actuation
characteristic. Section 6.1.2 describes the only benefit of using a Wheatstone bridge to
generate the feedback signal in comparison to proportional current feedback i.e. that the first
one is unconditionally stable. Using an Owens bridge induced voltage feedback becomes
conditionally stable again, but section 6.1.3, presenting closed loop simulations, shows that
far higher vibration reduction, comparable to the velocity feedback case, becomes possible.
Section 6.1.4 gives an explanation by means of the root locus plot and stresses the importance
and practical difficulties of compensating for the coil inductance. Moreover it indicates that
proportional current and induced voltage feedback with inductance compensation become
identical when also in the proportional current feedback scheme the inductance is removed by .
using a megative inductance amplifier. Section 6.2 compares measurements and simulations
for the non-compensated and compensated induced voltage feedback control. It indicates the
importance of a well-tuned bridge circuit.

6.1 Induced voltage feedback theory

Before being able to feed it back, the voltage proportional to velocity has to be estimated from
the measured voltage. For this purpose a complex bridge including a compensation for the
coil inductance by a complex impedance is added to the circuit in Figure 5.1. As depicted in
Figure 6.1 a general bridge circuit consists of four electrical impedances Zi, Z,, Z3 and Z,.

| , | , 4?

Z YA
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Z3 o 2y

- =3

Figure 6.1: General bridge circuit for the measurement of an impedance Zy by using known
impedances Z;, Z, and Zy to bring the output voltage Uy, to zero at a given input voltage Uy,

Two pairs of impedances, the left pair Z;, Z; and the right pair Z;, Zy, are connected in parallel
relative to an input voltage Uj,. The output voltage U, is in parallel to the upper pair Z, £,
~ and the lower pair Zs, Zy. Such a circuit is usually used to determine the value of the unknown

impedance Z;. When there is an input voltage to the bridge, the output voltage
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Ui =1Zo/(Zo+Z4)-Z1(Z1+Z3)} Uss is zero if the term in brackets is zero. This is achieved if the
bridge is balanced by varying Zi, Z» and Z3. In this case the value of Zy is given by Z4=Z37,/7,
when the value of the other bridge impedances is known. In the used circuit Zy is replaced by
the shaker so that Z;=Z, and a term due to the induced voltage U; = ¥X appears in the FRF
between the input voltage and the output voltage U= 2o/ (ZAZ)-Zil(Za+23)] Ui +
Zof(Zp+Z,) U,. If now the term in brackets is zero, i.e. the bridge is balanced, the output
voltage will be related to the induced voltage and thus to the coil velocity that is to be used for
feedback. Figure 6.2 shows the closed loop FRFs when feeding back the output voltage of the
bridge with shaker to its input with a feedback gain G. The additional bridge serves as an
observer in such a way that the output signal of the bridge gives the induced voltage if the

bridge is perfectly balanced.
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Figure 6.2: Closed loop FRF’s for induced voltage Jfeedback

In theory the bridge is ideally balanced if Z=Z,=7+=Z,. For this case Figure 6.3 shows the
secondary force Fy including passive velocity feedback as function of the shaker velocity X .
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Figure 6.3: FRF between the secondary force and the coil velocity for different
feedback gains G and a perfectly balanced complex bridge circuit
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In this case an increased bridge voltage feedback gain G leads to increased velocity feedback
amplitude. Moreover the cut-off frequency due to the shaker inductance does not move to
lower frequencies as has been the case for pure current feedback. Thus there is no amplitude-
bandwidth trade-off for the ideal case and induced voltage feedback is identical to velocity
feedback until the characteristic electrical shaker frequency for a perfectly balanced bridge

circuit.

6.1.1 Limitations to induced voltage feedback

In practice, however, there are at least two ways to balance the bridge. The first one uses an
Owens bridge with Zi=1/jwCs, Z:=R;, Zy=Rs+1/jwCs. If the bridge is balanced a shaker
impedance Zs=R1Cy/CotjowCoR3R, that is of the form of the coil impedance Z, can be
compensated. By varying Ry, when C,=Cs, the resistive part of the shaker impedance is
determined whereas by varying Rj the inductive part of the shaker impedance is compensated.
Considering an ideal resistance and inductance behaviour of the shaker coil the output voltage
of the balanced Owens bridge is proportional to the induced voltage and hence the coil
velocity. The second scheme uses a Wheatstone bridge where resistors R; and R, replace all
outside complex impedances i.e. Z1=Z,=R; Zs=R.;. Then only the resistive part of the shaker
impedance can be determined by varying Z; in such a way that the bridge is balanced for DC
inputs. However, at AC inputs and higher frequencies a proportion of the input voltage is still
fed through to the output so that no ideal induced voltage feedback can be realized.

In the first case, although Zy=Rs+1/jwCs and Z;=1/jwC, are tuned in such a way that
CoR3Ri=L and R C3/Ca=R, Z»=R; might be more or less well tuned to the static electrical
impedance of the shaker. Figure 6.4 depicts the FRF from the coil velocity to the secondary
force in this case for different feedback gains when R; changes by +/- 33 %.

Velocity FB with Zl=1£fCOC2; Z=Ry; Z3=R3+ 1[]COC3

20 T Y
T‘_‘ 10,
g
z 0
E
a -0
éw-zo 3
Ll
—40 L L
10 10'
120
s | —— Ri=R
%: o ——em R1=R+33%
§ | | === R1=R-33%
ash
0 1. i 1 " 1
10° 10* 10 10" 10

Frequancy (Hz}

Figure 6.4: FRF between the secondary force and the coil velocity for Sfeedback
gains G=1, 5 and 9 where R, varies by +/- 33%
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As the roll-off becomes steeper, using just a resistance instead of a complex impedance for R,
seems to be advantageous. But the cut-off frequency changes slightly to lower frequencies for
increasing gains so that an amplitude-bandwidth trade-off appears that nevertheless is smaller
than in the pure current feedback case. Moreover variations in R; have only a small influence
on the feedback force. Variation of R; is relatively less important for higher gains for
frequencies lower than the cut-off frequency.

In the second case also Z; and Zz might just be more or less well-tuned resistances R; and Rep
instead of complex impedances so that a pure resistive Wheatstone bridge is realized. Figures
6.5 and 6.6 show the influence of a mistuned Zs=R., Zi=R; and Z,=R; at the example of
feedback gains G=1 and G=5.

Velocity FB with Z\=Z,=Ry; Zs=R,=R+/-33% at G=1
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Figure 6.5: FRF between the secondary force and the coil velocity for a feedback
gain G=1 and variations in Z,, Z, and Z3 by +/-33%

For the small feedback gain G=1 parameter changes of either K, or R.; only play a minor role.
Moreover only a negligible bandwidth reduction is visible in Figure 6.5. At higher gains, e.g.
G=3, however, changes in Ry still have a negligible influence on the force feedback, but a
reduction of the resistor R, leads to a clearly visible increase in bandwidth and reduction in
feedback amplitude. The inverse is true for an increasing resistance value as depicted in
Figure 6.6. It hence plays a similar role as the feedback gain for proportional current
feedback.

Figure 6.3 and 6.4 are clearly different from the force velocity feedback FRFs simulated for
direct current feedback depicted in Figure 5.2. They indicate that induced voltage feedback is
advantageous compared to proportional current feedback, both for _an ideally balanced
complex bridee and for an Owens bridge with balanced inductance, as no bandwidth-

amplitude trade-off appears.
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Velocity FB with Z;=Zy=R, Zy=R=R+/-33% at G=3
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Figure 6.6: FRF between the secondary force and the coil velocity for a feedback
gain G=5 and R, and R,, varying by +/- 33%

Figures 6.7 and 6.8 compare the FRF from the coil velocity to the secondary force without
passive damping effect of the induced voltage feedback to the case with proportional current
feedback. Two different feedback gains are chosen and both R; and R, of an unbalanced
Wheatstone bridge are varied. Figure 6.7 indicates that for a feedback gain G=4 a varying Ry
may lead to changes in the cut-off frequency of the induced voltage feedback, but that these
changes are small in comparison to changes due to variations in R,p. Moreover the curve for

Velocity FB with Zy=Z,=R1, Zy=Rp=R+/-33% at G=4
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Figure 6.7: FRF between the secondary force without passive damping and the coil
velacity for a feedback gain G=4 and variations in Ry and Ry, by +/- 33% compared
to the proportional current feedback case
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proportional current feedback corresponds to the curve for a balanced Wheatstone bridge
without balanced inductance i.e. R.,=R. The FRF of an unbalanced bridge with variations in
R.; and R; is shown in Figure 6.8 for a higher feedback gain G=3. Since the proportional
current feedback curve corresponds exactly to an induced voltage feedback curve when the
bridge does not compensate for the shaker inductance and is not balanced i.e. R;=R+33% and
R.,=R proportional current feedback is a special case of induced voltage feedback when
feedback gains stabilize the feedback loop. By comparing Figures 6.7 and 6.8 it can be seen
that changing R, has the same effect as changing the feedback gain G since changes in R
lead to similar curve shapes as changes in G.

Velocity FB with Z\=Z)=Ry; Z3=R,=R+/-33% at G=5
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Figure 6.8: FRF between the secondary force without passive damping and the coil
velocity for a feedback gain G=5 and variations in R; and Re by +/-33% compared
to the proportional current feedback case

When varying Ry on the estimation side of the bridge i.e. in the term 1/(Z3+Z) once more a
gain bandwidth trade-off appears that is similar to changing the resistance R, in the same
term. But in contrast to direct current feedback at higher gains even rather large variations of
R; do not lead to instability. In the following section stability is investigated for the case of
the Owens bridge and the Wheatstone bridge.

6.1.2 Stability

For the ideally balanced Owens bridge the solid line in Figure 6.9 depicts the FRF between
the bridge input Uj, and the bridge output voltage U,. as Bode plot and in the Nyquist
diagram. The bode plot looks comparable to the one of the measured velocity in Figure 3.3
except for the different behaviour at the accelerometer resonance frequency. In the case of the
accelerometer the relative displacement between structure and accelerometer seismic mass is
used do approximate the coil acceleration. Here the output voltage directly gives the FRF to
the coil velocity so that no additional 180 degree phase shift appears in Figure 6.9. The
Nyquist plot cannot be distinguished from the simulated plot in Figure 3.4 around the shaker
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mechanical natural frequency. For an ideally balanced Owens bridge the output voltage thus
is proportional to the coil velocity. In consequence the closed loop is only conditionally
stable. Additionally for simplicity simulations in this section have been carried out neglecting
eddy current effects that might add damping at the second natural frequency. This
phenomenon due to a special actuator design will be discussed in Section 6.2 when comparing
simulations to measurements. Figure 6.9 also indicates what happens if the value of the
resistance of R; changes assuming that R3 is varied so that the compensating inductance
L.=C,R3R, stays at the ideal value of the coil inductance where C>=C; and hence R;
determines the compensating resistance. The FRF (dashed dotted line in Figure 6.9) for small
values of R, resembles a first order low pass filter due to the electrical resistance-inductance
behaviour and the influence of the mechanical on the electrical system becomes negligible.
For higher resistance values the locus (dashed line in Figure 6.9) flips into the negative real
half plane leading to conditional stability.
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Figure 6.9: Bode(left) and Nyquist (right) right plots of the FRF between the output voltage and the input
voltage of the Owens bridge for Ri=0.2R (dashed dotted line), Ri=R (solid line), Ry=2R (dashed line)

The inverse is observable when Z,=R; and Z=1/jwC, vary even though CoR:R\=L and
R,C3/Co=R. Figure 6.10 depicting the same FRF as before for varying R, indicates that for
low values of R; the locus approaches the instability point whereas high values (dashed line in
Figure 6.10) do not destabilize the closed loop. Moreover a motional feedback trough instead
of a peak may appear at the mechanical natural frequency for small resistance values in the
Bode plot (dashed dotted line in Figure 6.10). The Nyquist plot shows that in the case of a
balanced Owens bridge only very high gains similar to the velocity feedback case might

destabilize the closed loop.
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Figure 6.10: Bode (left) and Nyquist (right) plot of the FRF between the output voltage and the input voltage of
the Owens bridge for R,=0.2R (dashed dotted line), R\=R (solid line), Ri=2R (dashed line)
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If instead of an Owens bridge a pure resistive Wheatstone bridge is used unconditional
stability results if only the bridge resistance is balanced with the internal coil resistance.
Figure 6.11, showing the Bode plot and the Nyquist diagram of the FRF between the bridge
input voltage and the bridge output voltage, highlights that the locus stays in the right half
plane far away from the critical point -1,0 (solid line). Even for high feedback gains no
stability problem is anticipated. But the Bode plot also shows that the accelerometer
resonance may no longer be influenced, as no motional peak is visible in the Bode plot. Seilf-
sensing damping hence is limited in bandwidth to the anti-resonance frequency also found as
a resonance frequency in the proportional current feedback case. Figure 6.11 also shows the
influence of a varying resistance R.,. High resistance values (dashed line) still lead to
conditional stability whereas small resistance (dashed dotted line) values do not influence
stability. As in the case with balanced inductance L, small resistance values for Ry may lead to
instability and a high R, just shifts the Nyquist plot further into the right real half plane.
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Figure 6.11: Bodefleft) and Nyquist (right) plot of the FRF between the output voltage and the input voltage of
the Wheatstone Bridge; R;=0.2R (dashed dotted line); Ru=R ( solid line) and R.,=2R (dashed line} compared to
the measured FRF (solid line)

In conclusion in contrast to proportional direct current feedback induced voltage feedback for
a balanced purely resistive Wheatstone bridge is unconditionally stable, but the equivalent
force feedback FRF shows the same amplitude bandwidth trade-off for both feedback
schemes. Compensating for the coil inductance using a balanced QOwens bridge then
introduces conditional stability. Section 6.1.3 then compares the closed loop performance of
the feedback schemes.

6.1.3 Closed loop simulations

Figure 6.12 shows the Bode plot of the FRF between the primary force input and the
measured coil velocity for the open loop case and for different output voltage feedback gains
when the Owens bridge is ideally balanced. This FRF is relevant for the assessment of
vibration reduction when the structure is excited by a primary force. The plot also indicates
that very high gains and very high damping is possible. Additionally the low frequency
behaviour is only influenced at very high gains. Before this lower limit is important the high
frequency amplification has to be considered as will be explained in section 6.1.4.
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Figure 6.12: FRF from the primary force to the coil velocity for output voltage feedback gains G=10, 100 {left)
and 110, 210 (right) compared to the open loop G=0 when the coil inductance and resistance are compensated

using an Owens bridge

Figure 6.13 depicts the Bode plot of the FRF between the input voltage U, and the measured
coil velocity X, in the open loop case and for different output voltage feedback gains when
an ideally balanced Owens bridge is used compensating for the coil inductance. The plot
indicates that very high gains leading to a high amount of damping can be realized without
causing instability. Vibration reduction by 30 dB similar to the velocity feecdback case seem to

be possible. Nevertheless at very high gains vibration amplification appears at high
frequencies and the accelerometer resonance is not damped. Section 6.1.4 gives an

explanation for these findings using the root locus plot.
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Figure 6.13: FRF from the input voltage to the coil velocity for current feedback gains G=10, 100 {left} and
110, 210 (right) compared to the open loop G=0 when the coil inductance and resistance are compensated using
an Owens bridge

These very good results for an ideally balanced Owens bridge are to be modified if
considering a pure resistive Wheatstone bridge that ideally compensates for only the coil
resistance. In this case Figure 6.14 depicts the Bode plot of the FRF between the primary
force and the measured velocity for different output voltage feedback gains compared to the
open loop case when the résistive Wheatstone bridge is ideally balanced. As in Figure 6.13 an
additional resonance peak appears that in contrast to the proportional current feedback case
depicted_in Figure 5.6 does not destabilize the closed loop, but it allows only rather small
feedback gains and active damping values for vibration reduction up to about 15dB.
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Figure 6.14: FRF from the primary force to the coil velocity for output voltage
feedback gains G=10 and G=100 compared to the open loop G=0 if the coil
resistance is compensated using a Wheatstone bridge

Figure 6.15 depicts the Bode plot of the FRF from the input voltage to the measured coil
velocity for different induced voltage feedback gains compared to the open loop- case. Asin
the proportional current feedback case an additional resonance peak at a characteristic
frequency between the characteristic electrical and the mechanical resonance frequency
appears. A phase transition of 180 degrees is observable at this characteristic frequency that
corresponds to the frequency of the anti-resonance in Figure 6.11. Despite its resonant
appearance it does not destabilize the closed loop as has been indicated by Figure 6.11.

T
G=0
g
Z sof .
[
2]
b G=10 G=100
= 1001 E
3
_150 1 L r L
10° 10" 10 10° 10° 10°

Frequency(Hz)

Figure 6.15: FRF from the input voltage to the coil velocity for output voltage
feedback gains G=10 and G=100 compared to the open loop G=0 when the coll
resistance is compensated using a Wheatstone bridge

49



After having presented the extreme cases ideal coil inductance compensation and no coil
inductance compensation the investigation of the closed loop root locus plot in Section 6.1.4
gives an explanation for these and the intermediate cases with partially compensated coil

inductance.
6.1.4 Explanation by the root locus

Figure 6.16 depicts the roots of the closed loop FRF between the Owens bridge input voltage
and its output voltage for different induced voltage feedback gains when the Owens bridge is
ideally balanced. Open loop poles are indicated by a ‘x’, open loop zeros are marked with an
‘0’. Arrows indicate closed loop pole movement with increasing feedback gain. In
comparison to the proportional current feedback root locus plot depicted in Figure 5.8 there is
an additional electrical pole due to the compensating inductance of the Owens bridge and an
additional zero between the poles of the natural frequency of the coil assembly and the poles
of the natural frequency of the accelerometer due to the Owens bridge circuitry. The
additional electrical pole moves to —oo on the real axis for increasing feedback gains and is of
no further interest. But instead of returning to the real axis, as in the case of proportional
current feedback, the two coil assembly poles tend towards the open loop zero for increasing
gain after having interacted with the electrical pole and after having crossed into the positive
real half plane. Hence stability considerations change significantly relative to the proportional
current feedback case as higher feedback gains can be realized before instability occurs and
the additional resonance lies at higher frequencies. The accelerometer pole still diverges into
the real half plane for increasing feedback gains after having shortly interacted with the coil
assembly poles so that the closed loop FRF does not become stable again for higher gains.
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Figure 6.16: Locus of the denominator roots of the closed loop FRF U,./Us, 0 open
loop zeros, x open loop poles for L, identical to the coil inductance

Figure 6.17 shows the same plot if a purely resistive Wheatstone bridge is used not

compensating for the coil inductance. In comparison to Figure 5.8 it is only the negative real
half plane to which two zeros due to the Wheatstone bridge circuit are added close to the
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imaginary axis and these zeros are responsible for the anti-resonance in Figure 6.11. As all
poles are in the negative real half plane no stability limit is predicted. Moreover only one
electrical pole due to the coil inductance is visible. The coil assembly poles move towards the
additional zeros for increasing gains. As these zeros are very close to the imaginary axis the
poles moving towards their position are lightly damped and a steep peak appears in the Bode
plot in Figure 6.15 close to the frequency of the anti-resonance in Figure 6.11. For increasing
oains this peak tends to become very low damped, but it is not predicted to become unstable.
In comparison to Figure 6.16 the additional resonance frequency is also at much lower values.
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Figure 6.17: Locus of the denominator roots of the closed loop FRF Uy/Uss, 0 0pen
loop zeros, x open loop poles for a Wheatstone bridge

For increasing values of L.=C2R3R, i.e. R; if Cy is constant and the coil resistance is balanced
by R\, the position of the open loop zeros changes in a characteristic way between the position
for 1,=0 and . identical to the coil inductance or even larger and there is a value of L, for
which the closed loop changes from being unconditionally stable to becoming merely
conditionally stable. This change of the zero position is not linear to the compensating
inductance and Figure 6.18 shows the imaginary part of the zero i.e. its frequency position as
function of the balancing inductance. The figure shows a large change in the zero frequency if
the compensating inductance is very close to the coil inductance. Therefore balancing the
inductance part of the Owens bridge is predicted to be difficult.

These simulations are only approximations to the real behaviour as the identification step in
Section 3 has already shown that the model is very approximate at frequencies greater than
1kHz. They indicate that there is a practical limit to a perfect balance of the Owens bridge and
realising induced voltage feedback that is comparable to velocity feedback. Similar root locus
plots could be obtained by pole placement using an appropriate current feedback transfer

function.
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6.2 Implementation of induced voltage feedback control

Induced voltage feedback is implemented at the shaker using a Wheatstone and an Owens
bridge respectively.
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Figure 6.19: Circuit for closed loop induced voltage feedback measurements using a Wheatstone bridge

Figure 6.19 shows the used Wheatstone bridge implementation including the amplifiers, the
shaker and the signal generator and analyser from Sections 4 and 5. An additional differential
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amplifier with gain Kgmp! is used to implement the feedback gain G. 3 £ power resistors with
a tolerance of 10% are used for the resistance R;. The balancing resistance R, is chosen to be
a 3.9 Q power resistor in parallel to a variable 50 £ potentiometer so that the resistance value
can be changed between 0 and 3.62 Q. Since the 10% tolerance is large trials with different
resistors have been carried out in order to obtain a well-balanced combination. Using
potentiometers in parallel to Ry has not given satisfactory results. For balancing purposes the
potentiometer is varied in order to adjust R to the internal coil resistance. The faint and solid
line in Figure 6.11 is the result of an open loop measurement of the 10 times averaged FRF
between the disturbance voltage U, and the output voltage U, with a balanced resistor that is
found by visually maximizing the steepness of the anti-resonance of the FRF given by the
servo analyser. After having determined this balanced state the feedback loop is closed by
connecting the differential amplifier output to the feedback resistor of 5k¢2 and the FRF
between the disturbance voltage U, and the measured velocity X, is measured. Figure 6.20
depicts this FRF measured and simulated for a balanced Wheatstone bridge and different
induced voltage feedback gains compared to the open loop. Measurements and simulations
agree well“in the interesting frequency range if model parameters are adjusted in order to
account for non-ideal resistors (coil resistance: 3.664, left side R;=2.71£2). In order to find the
same frequency of the additional resonance the modelled coil inductance is adjusted to
1=0.4847mH. Although measurement coherence is reduced due to the non-ideal differential
amplifier, it is still sufficient to show the main characteristics in the considered frequency
range. As in the proportional current feedback case an additional resonance peak at the open
loop anti-resonance frequency between the characteristic electrical and the mechanical

resonance frequency appears.
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Figure 6.20: Simulated (-- dashed line) and measured (- solid line) FRF between the
disturbance voltage U, and the measured coil velocity X ; Jor different output voltage
feedback gains compared to the open loop, tuned resistance, L,=0
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Figure 6.21: Circuit for closed loop induced voltage feedback measurements using an Owens bridge

The implementation scheme of the Owens bridge is shown in Figure 6.21 using twice two
100nF capacitors in parallel and a variable 1k resistor. First the resistor R; is tuned in the
open loop in order to balance the coil resistance by R=R,C»/C; using the same method as for
the Wheatstone bridge. Then the resistor Rs is adjusted in order to change the apparent
inductance L,=RR;Cs at one side of the bridge and to compensate for the coil inductance.
Figure 6.22 shows the FRF from the disturbance voltage Uy to the output voltage Uy When
R, is tuned to maximize the steepness of the anti-resonance. Remark that the frequency of the
notch is slightly different from the one determined in Figure 6.11. due to parameter
variability. Then Rj is changed from its minimum value of 370 to 37082 and 47522 so that the
notch is tuned to 400Hz, 600Hz and 800 Hz respectively. As the notch gets blurred and the
coherence reduced for increasing notch frequency 800 Hz is about the highest frequency to
which the notch can be clearly tuned manually. For higher values of R3 the FRF approaches a
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Figure 6.22;: Bode plot of the measured ( solid line - ) and simulated ( dashed line -- )
FRF between the bridge input voltage Uy, and the bridge output voltage U,y for three
different values of Ry and Cs capacitance changes within tolerance +/-10%) when Ry is
tuned to give a maximally steep anti-resonance at 400 Hz
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misbalanced state similar to the one depicted as a dashed line in Figure 6.11. By assurning
capacitor tolerance given by the manufacturer to 10% simulations can be fitted to
measurements as shown in Figure 6.22. As a shaker with a different coil assembly has been
used corresponding parameter values are compiled in Table 6.1. Especially the eddy current
behaviour has changed drastically probably because a different sheet metal has been used
within the magnetic circuit. It is remarkable that even small parameter differences within
manufacturing tolerances between C; and Cj as compiled in Table 6.2 prevent a perfect bridge
balance. Simulations show that these differences are responsible for the additional amplitude
and phase changes at the zero frequency indicating increased damping of the notch when
changed to higher frequencies.

Table 6.1: Identified parameters of the shaker with different coil assembly

Parameter Value
Coil assembly mass M 0.0014 kg
Duct cover stiffness K 980 N/m
Damping coefficient D 0.31 Ns/m
Inductance L 0.375 mH
Resistance R 3.48 Ohms
Actuator constant - 4 2.1 N/A or V/m/s
Resistance due to eddy currents R, 40 Ohms
Line inductance L, 2.6210°H
Capacitance C 2.5 10%Fa
Line inductance Ly 1.179 10° H

The difference between measurements and simulations at even higher frequencies is likely
due to the not in detail modelled influence of the magnetic core as explained for instance in
[89]. Hence eddy currents, self-capacitance and residual looses of the core are to be
compensated if the bandwidth is to be increased to even higher frequencies. For instance due
to the current in the coil a high frequency magnetic field is generated that induces eddy
currents opposing the primary current in other coil windings. The additional, apparent coil
resistance for higher frequencies is modelled by a simple resistance R. as explained in
Appendix B although more sophisticated models as for instance presented in [90] might be
necessary to improve the already satisfactory fit. The low frequency fit between
measurements and simulations could be improved by considering power amplifier dynamics
and especially an additional capacitance in parallel. '

Table 6.2: Identified capacitor values

Parameter Value
Capacitor Cs 1.85107 Fa
Capacitor (notch tuned to 400 Hz) C3 1.8 107 Fa
Capacitor (notch tuned to 600 Hz) Cs 1.84 107 Fa
Capacitor (notch tuned to 800 Hz) C3 1.89 107 Fa
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Figure 6.23 depicts the Nyquist plot of the open loop FRF between the disturbance voltage Uy
and the bridge output voltage U, for the notch tuned to 400 Hz and 800 Hz. As predicted in
Section 6.1 the closed loop FRF tums from unconditionally stable to conditionally stable
when the zero is moved to higher frequencies. This is obvious in Figure 6.23 where the locus
of the open loop FRF moves into the left half plane also for higher frequencies when the
compensating inductance value is changed to a higher value. Measurements already cross
slightly into the left half plane for lower frequencies (first, left notch in Figure 6.22) at both
inductance values because of power amplifier dynamics.
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Figure 6.23: Nyquist plot of the measured (solid line -) and simulated (dashed line --)
FRF between the bridge input voltage U, and the bridge output voltage U for two
different values of Ry and Cs capacitance changes within tolerance (+/-10%) when Ry is
tuned to give a maximally steep anti-resonance at 400 Hz

Figures 6.24 — 6.26 depict closed loop measurements and simulations of the FRF between the
disturbance voltage U, and the measured coil velocity X, for different values of the

frequency of the open loop notch. Measurements and simulations agree well between about
20Hz and the notch frequency between 400Hz and 800 Hz. Vibration reductions between
12dB (400Hz notch frequency), 14dB (600Hz) and 16dB (800Hz) can be achieved over the
frequency range until the notch frequency. At this anti-resonance frequency of the open loop a
resonance peak appears in the closed loop that is only visible greatly damped as only gains
close to the optimal one are depicted in Figures 6.24 to 6.26.

However, lower frequencies are dominated by influence of the power amplifier that is not
modelled and that leads to an additional phase shift at low frequencies. Luckily the amplitude
is small enough at the first, left-hand notch so that no instability occurs. Higher frequency
measurements show a different dynamic relative to simulations due to unmodelled
electromagnetic interaction, a different accelerometer behaviour and unmodelled shaker
dynamics as for instance an additional, though in measurements not visible, resonance
frequency is given by the supplier [84] at 12 kHz. In simulations in Section 6.1 an additional
source of instability of the closed loop lies at the accelerometer natural frequency whereas in
measurements a high amplitude peak potentially leading to instability appears at a frequency
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Iji‘.igure 6.24: Bode plot of the closed loop measured ( solid line - ) and simulated { dashed
line -- ) FRF between the disturbance voltage Uy and the measured coil velocity X ; with

different feedback gains G=2, 12 compared to the open loop case for R3=37 and the open
loop anti-resonance at 400 Hz when Ry is tuned to give a maximally steep anti-resonance

at 400 Hz
between the frequency of the open loop anti-resonance that depends on the inductance tuning
and higher electromagnetic or mechanical dynamics. In order to increase the bandwidth of
self-sensing control hence these high order dynamics are to be compensated for. Alternatively
a low-pass filter with a cut-off frequency beyond the open loop notch frequency could be tried
in order to achieve a minor increase in bandwidth. Finally further investigations could be
based on a system where electromagnetic interaction and higher mechanical dynamics are

minimized.

Fraquency(Hz)

Figure 6.25: Bode plot of the closed loop measured ( solid line - ) and simulated { dashed
line -- ) FRF between the disturbance voltage Uy and the measured coil velocity X, with

different feedback gains G=2, 13 compared to the open loop case for Ry=37 and the open
loop anti-resonance at 600 Hz when R, is tuned to give a maximally steep anti-resonance

at 400 Hz
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7. CONCLUDING REMARKS

In order to investigate the limits of use of an electrodynamic actuator as a self-sensing
vibration reduction device a conventional shaker has been modelled, identified and direct
velocity, proportional current feedback and induced voltage feedback have been simulated
and implemented experimentally.

Modelling of the mechanical, electrical, coupling and accelerometer system by LTT models
has shown that the electromagnetic transducer coefficient has to be as big as possible for a
self-sensing actuator. Additional passive damping is added to the mechanical system by the
back-EMF and Lorentz force coupling with the electrical system already leading to “vibration
reduction” of about 22dB for force excitation. Vibration reduction increases with decreasing
electrical impedance. The effect of the mechanical system on the electrical system is also
clearly visible by an additional motional impedance.

Identification by comparing the model to a FRF estimated from the power spectrum densities
of input and output signals at the shaker and adjusting parameters leads to a good
correspondence between measurements and simulations below and at the first mechanical
frequency of the shaker. The electrical FRF shows good correspondence also at higher
frequencies if an Eddy current and a capacitance model are added which however have little
effects on the measurement of the mechanical FRE.

Using the rootlocus method and the Nyquist criterion, measured velocity feedback is found to
become unstable only for very high gains in theory due to additional accelerometer dynamics.
Simulations predict additional damping at the shaker mechanical natural frequency and a
vibration reduction of up to 35 dB for negative velocity feedback. Positive velocity feedback
reduces damping and becomes unstable already for small gains. Implementation of negative
velocity feedback at the shaker shows a maximum reduction of only about 27 dB as for high
gains unmodelled shaker dynamics lead to a peak at about 2500 Hz and a very low-frequency
vibration probably due to integrator electronics is perceived.

Theoretical investigations show that current feedback is proportional to velocity feedback
below an internal actuator cut-off frequency. Additionally the feedback gain has to be traded
off for the control bandwidth. Applying the Nyquist criterion reveals that proportional current
feedback is stable for positive gains smaller than the electrical resistance. Closed loop
simulations indicate that additional vibration reduction of up to 8 dB is possible by adding
damping at the first mechanical natural frequency for positive current feedback, but that
negative proportional current feedback does not lead to vibration reduction. The root locus
plot of the closed loop FRF explains the additional damping by an interaction of the
mechanical poles with the electrical pole of the shaker. It highlights that the shaker acts as an
analogue lead compensator. Morecover, for the choice of the value of the electrical shaker
resistance, closed loop simulations and the root locus plot indicate that control robustness and
self-sensing effectiveness have to be traded off. For a preliminary experimental investigation,
an external primary force is not applied so that the vibration reduction cannot be found. But
comparing . other simulated FRFs to measurements shows good correspondence for
frequencies smaller than 1000Hz. :
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Simulations of induced voltage feedback show that vibration reduction up to 30 dB at force
excitation is possible if the coil resistance and inductance are completely compensated by an
external Owens bridge. However, if ideal compensation is not possible, a stability limit
appears at a frequency depending on the amount of compensation. If only the coil resistance i8
compensated simulations show that induced voltage feedback is unconditionally stable, but
vibration reduction only up to 8 dB comparable to the proportional current feedback case is
possible. This reduction is also found in experiments for feedback at a Wheatstone bridge
when measuring the FRF from the disturbance voltage to the coil velocity. At the practical
implementation of the Owens bridge a tuning problem is observed as the coil inductance
could not be compensated completely. When partly compensating for the inductance vibration
reduction up to 16 dB is observed and control bandwidth is increased up to about §00Hz. At
greater frequencies the simulations match the measurements only qualitatively.

Further work could first focus on optimising the actuator for self-sensing. Especially the
found trade-offs amplitude-bandwidth and robustness-sensing have to be chosen adequately
for the application. A second requirement is to reduce eddy currents at higher frequencies and
to respect weight constraints despite a large transducer coefficient.

Second in order to balance the bridge parameters an adaptive mechanism, similar to the one
used by [37] for piezoelectric sensoriactuators, could be used that also has to prevent that
these parameters surpass a certain value that leads to instability. The compensation side of the
bridge could also be realized with electronics in a similar way, but less complicated than
carried out by [81] (analogue circuit) and [48] (digital-analogue).

Third in order to investigate the influence of a self-sensing actuator on a flexible mechanical
system a beam or plate should be added to the shaker and several mechanical FRFs should be
measured and compared to simulations. Especially the question of how far collocation of a
self-sensing actuator holds for a flexible system should be investigated. Finally the use of a
self-sensing actuator as an inertial actuator could be examined at the same system.
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Appendix A: Accelerometer response

In order to be able to implement collocated velocity feedback and to monitor its vibration an
accelerometer is attached to the shaker. An accelerometer consists of a seismic mass on a
piezoelectric material that generates an electric charge when strained. First its mechanical
behaviour is modelled by a SDOF similar to the model described in Section 2. A resonant and a
passive effect of the accelerometer sensor on the self-sensing actuator are described. Second the
sensing function of the accelerometer is modelled by introducing a relative displacement between
the two DOFs, by neglecting the electromechanical coupling due to the piezoelectric material and
by approximating the signal processing of the charge amplifier. Then thirdly it is shown that a
separate accelerometer sensor function can be determined. Finally the electrical FRF of the
complete model is investigated indicating a minor influence of the accelerometer on the electrical

circuit.
A.1 Resonant and passive effect of the accelerometer on the electrodynamic system

The coupled electrodynamic model is expanded by adding a SDOF accelerometer model to the

model in Figure 2.2, as shown in Figure A.1.
M,
o Pk

M

i(H
] OO0 ; 0

u(t) ' Wa @ \:Jg

_K

Figure A.1: Fully coupled electrodynamic model with accelerometer

1)

The associated model equations become

M, -M, O0][} [D, 0 0 |{z] [K, O O}z 0
0 M O§ii+|D, D -¥{it+ K, K O0Rxi=1f, (A.1)
0 0 L||i 0 ¥ R ||i 0 0 O0Ollg u '

when introducing a relative displacement z = y — x between the displacement of the seismic mass
of the accelerometer y and the coil displacement x. The coupled mechanical FRF from the
external primary force input to the velocity of the coil assembly then is
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X (w) —_ 1/(271! + ZI) ZaZE (A.z)

F(CU)— yr? Z? 1 ) 2 72
P 1+( Ag‘ /Za]m (Ze(zm‘*‘ze)*‘yj )Za Z;Z,

where the feedback component now consists of a term due to the electrodynamic coupling (7,
explained in section 2 and a term from the mechanical coupling (Z)/Z, with the accelerometer
where Z,=joM+Kljo+D, is the mechanical impedance of the accelerometer. The mechanical
coil impedance Z, is increased by the impedance Z=K,ljcw+D, defined by the transferred force F;
on the accelerometer and the relative velocity between the accelerometer and the coil Z.

The appearance of an additional resonance frequency in the Bode plots of the coupled and
uncoupled FRE X /F, depicted in Figures A.2 is the resonant effect of an additional SDOF
system added to a mechanical system. This effect could be used for vibration reduction at the
anti-resonance frequency by appropriately choosing the natural frequency of the additional DOF.

JjwXF | dB rel. (ms™")
o
=]
7

10 10°
Frequency (Hz)

Figure A.2 : Simulated Bode plot of the FRF from the external force to the
velocity for the coupled electromechanical model with accelerometer in
figure A.1{solid line) compared to the FRF of the mechanical model with
accelerometer (dash dotted line) and w/o coupling

Moreover the electromagnetic coupling is not able to greatly influence the second mechanical

frequency that lies beyond the electrical frequency in simulations of equation (A.2) with

additional parameters compiled in Table A.1. Also when changing parameters, so that the first

mechanical resonance frequency lies beyond the electrical frequency, using the electrodynamic

actuator does not add visible damping to the mechanical system at this mechanical, resonance -
frequency. Likewise, when reducing the second mechanical resonance frequency to lie below the

electrical frequency the electrodynamic coupling is efficient by adding damping at this frequency.

Hence, the mechanical frequency of the SDOF system or an attached DOF has to lie below the

electrical frequency if the self-sensing actuator is ta provide sufficient damping.
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Table A.1: Parameters for accelerometer simulations

Parameter Value
Stiffness of inertial mass support K, 6.7 10° N/m
Damping of accelerometer D, 4 Ns/m
Inertial mass of accelerometer M, 0.00067 kg
Undamped resonance frequency @ 1591545 Hz
Damped resonance frequency Wy 15908 Hz

The Nyquist plot in Figure A3 of the same FRFs gives information about the value of the
mechanical frequencies. Compared to the mechanical system without accelerometer the natural
mechanical frequency is reduced from ca. 125.5 Hz to about 105.2 Hz with the electrodynamic
coupling effect and from ca. 120.9 to about 102.4 Hz without the electrodynamic coupling effect.
That is the passive effect of increasing the whole system mass and thus reducing the mechanical
resonance frequency when adding an additional spring mass system to the mechanical system.
Additionally the Jocus does not show spill over into the negative real half plane since the natural
frequency of the accelerometer leads to a loop into the positive real half plane. This loop is
virtually identical for both FRFs also indicating that the electrodynamic coupling effect is

negligible for these frequencies.
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Figure A.3 : Simulated Nyquist plot of the FRF from the force input to the velocity for the coupled electromechanical
model with accelerometer in figure A.1 (solid line) compared to the FRF of the mechanical model with accelerometer

{dash dotted line) and w/o coupling and zoom at the origin
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A.2 Relative displacement as measured system output

Although the expression ‘accelerometer’ indicates that an accelerometer measures the
acceleration of the body to which it is attached X in reality the accelerometer output charge is
proportional to the relative displacement between both sides of the piezoelectric element z = x-y.
In the real system a charge amplifier amplifies the signal coming from the accelerometer that is
proportional to the relative displacement z and integrates it by an analogue circuit. The first effect
is modelled by multiplying the relative displacement z by a gain K given by the accelerometer
sensitivity. The second effect is included in the model by adding a non-ideal integrator ie. alow
pass filter with @, = 1 Hz = 2x rad/s cut-off frequency. Hence, when assuming harmonic

behaviour of the form %,(f)=Re( X ()kxp(jor)) the output becomes the integrated relative
displacement
K K

X, =it Z=—"—5 (X-7) (A3)
jot+w Jw + @y,

int

Then the FRF of equation (A.2) from the primary input F), to the integrated relative displacement
X, is

r

X, @) _ MK [@Zy)  (a4)

) (1o vz 01,2,/ @.2.) Jiorow)

As before two feedback terms for the electrodynamic coupling ¥ 7./(M,Z.,) and the mechanical
coupling Zjw appear. The Bode plot of this FRF shows a similar behaviour as a FRF from a force
input at one DOF to the absolute velocity of a second, non-collocated DOF i.e. no anti-resonance
is observed and in contrast to Figure A.2 there is a 180 degree phase shift associated to each
mechanical, natural frequency. As in the case of the FRF to the absolute velocity x depicted in
Figure A.2 the electrodynamic coupling is only sufficiently efficient at frequencies inferior to the
electrical frequency as the resonance frequency associated to the accelerometer is not visibly
damped. In the Nyquist plot of the same FRF spill over in form of an additional smaller loop
associated to the second mechanical frequency appears in the negative real half plane that is not
visibly reduced by adding the self-sensing actuator. Additionally spill over appears at low
frequencies due to the non-ideal integrator. This observation will become important when
considering the control scheme in section 4 as a high gain might destabilize an integrated relative
displacement feedback.

By comparing Figures A.2 to 2.8 and A.3 to 2.9 it is evident that for frequencies much lower than
the resonance frequency of the accelerometer the integrated relative displacement_is a very good
approximation for the velocity of the mechanical system x. That is a common result to be found
for example in [87]. But it is also important to note that this approximation neglects a possible
source of instability at the resonance frequency of the accelerometer, so that this approximation is
not made during this study.
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A.3 Accelerometer measurement function

Furthermore using an integrated relative displacement %, is equivalent to considering the
velocity of the coil assembly including the accelerometer case x, if using an appropriate
frequency dependent measurement function for the accelerometer. Rewriting the first row of
equation (A.1) for the DOF z and considering time harmonic solutions of the form
zZ(H=Re{Z(w)exp(jot}} it follows

Z=- L X (A.5)

2 - 2
-0’ +258, 0,0+0,,

where @, =K, /M, denotes the natural frequency of the accelerometer without damping and

¢ =D A2K,M, ). Equation (A.5) indicates that there is a 2" order relation between the

relative displacement z and the acceleration of the coil assembly that, as mentioned also by [87],
can be approximated for frequencies much lower than the natural frequency of the accelerometer

@ << Wy by
¥=-027 ' (A.6)

When using equation (A.5) with equation (A.3) the exact accelerometer measurement function of
the coil assembly velocity is found to be

% e Ko ! %, (A7)

¥

jo+w,, —0* +2jE,0, 0+o

@ T Na

where Kse,:=Ksco2,m. Thus the coil assembly acceleration ¥ as solution to the electromechanical
system in equation (A.l) is the output of the electromechanical plant to be controlled and
equation (A.7) describes the additional transducer FRF associated to the accelerometer and

charge amplifier used in the following sections for the description of the accelerometer. X . 18
then referred to as the measured velocity.

A .4 Electrical FRY with accelerometer

The FRF from the source voltage to the coil current when adding an accelerometer to the coupled
electromechanical system as depicted in Figure A.1 is '

I(CU) = ZmZa _— ZIJMaw N (Ag)
Uw) z(z,2,+Z iM0) +¥°Z,

Comparing the bode plots in Figure A.4 of this FRF and the case without accelerometer depicted
in Figure 2.10 indicates that in_contrast to the influence of the first natural frequency the

influence of the second natural frequency is so small that it is not visible in Figure A4
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Figure A.4 : Simulated Bode plot of the FRF from the source voltage to the
current for the coupled electromechanical model with accelerometer in figure
A.I (solid line) compared with the FRF of the electrical model with
accelerometer{dash dotted line) and w/o coupling

Nevertheless the effect of the additional accelerometer mass is visible in the Nyquist plot in
Figure A.5 as the resonance frequency decreases to about 102.5 Hz from the 120.9 Hz of the FRF
depicted in Figure 2.10. But as in the Bode plot the expected second natural frequency is not
visible because it lies at frequencies much greater than the electrical frequency where the self-
inductance effect of the coil leads to a low-pass filter behaviour.
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Figure A.5 : Simulated Nvquist plot of the FRF between the source voltage
and the current for the coupled electromechanical model with accelerometer
in figure A.1 (solid line) compared to the FRF of the electrical model with
accelerometer({dash dotted line} wio coupling '
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Appendix B: Higher frequency effects at identified electrical FRF

In Appendix A it has been noted that the natural frequencies of the mechanical system to be
damped have to lie below the electrical, characteristic frequency if no compensation is used.
Therefore a detailed model for higher frequencies is necessary if compensation is aimed. One
explanation for the high frequency behaviour could be eddy currents induced in the
ferromagnetic core that can be modelled following for instance [88] by adding a resistance R,
and a very small inductance L parallel to the coil inductance L and resistance R. However, L
is chosen so small that it does not show any influence on the simulations in the considered
frequency range and is only needed to allow convenient simulations with Matlab™ state
space models.

The resulting model with equations

St +
L -L |} 0 v R {

K, -K, 0 O}fy 0 @1

N K, K+K, 0 O}f}«x _ fp

0 0 0 Oilg Uy

0 0 0 0]l9: 0

is shown in Figure B.1. Resulting simulations using
I(w) _ z.,(2,2,0" 2, jM}0) ®2)

Uy() (ZeZez+L2a)2X-Zma)ZZa—Z,Mj) _y20?Z,,7Z,

where Z.,= (Ly+L)io + R. is an additional equivalent electric impedance with parameters in
Table B.1 are shown in Figures B.2 and B.3.
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Figure B.1: Fully coupled electrodynamic model with accelerometer and
additional resistance modelling eddy currents in the ferro-magnetic core
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By considering eddy current losses in the magnetic core of the shaker with an additional
resistance the correspondence between measurements and simulations can be enhanced at
frequencies superior to the characteristic, electrical frequency, but the additional phase and
amplitude increment at even higher frequencies shown in Figure B.2 cannot be explained.
Still another additional zero seems to be necessary in order to model this behaviour.
Furthermore even by changing parameters in a wide range the slope of the measured curve

cannot be exactly reached.
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Figure B.2: Bode plot of the measured (solid line) and simulated (dotted linej) FRF
between the source voltage and the coil current when considering eddy current losses in
the core of the shaker, zoom between 0 and 20 dB

The Nyquist plot in Figure B.3 of the same FRF also underlines that the simulated amplitude
at frequencies between 500 and 1000 Hz should be lower than simulated and an additional
capacitive part seems to be missing in order to simulate an additional 90 degrees phase shift.
Nevertheless the inwards spiral of the measured locus can be simulated much better.

Table B.1: Additional electrical parameters when modelling eddy currents

Parameter Value
Resistance due to eddy current losses 6.6 Q
in the ferromagnetic core R, ’
Line inductance L 26210°H
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Figure B.3: Nyquist plot of the measured (solid line) and simulated (dotted line) FRF
between the source voltage and the coil current when considering eddy current losses
of the ferromagnetic core’

An additional explanation for the additional lead effect at higher frequencies could be an
additional capacitance associated to the measurement system. In [88] it is stated on page 205 :
“This capacitance arises from the unavoidable self-capacitance of the coil winding and from
the capacitance of the cable which connects the transducer to the indicator or to the electronic
equipment, usually an amplifier.” When actually adding a shunted capacitance C and a second
inductance L; to the model in Figure B.1 an additional electrical resonance frequency appears
at higher frequencies in simulations. Model equations for the model in Figure B.4 are

v [¥] [»] o
X X X fp
M| |+Dli |[+K| g |=]| 0 : (B.3)
I i qr | |Ha
_‘:z_ 7 | g, (0]
where
M, 0 0 0 0 |
0O M 0 O 0
M= 0 0 L 0 —L |isthegeneralized mass matrix,
0 0 0 L 0
0 0 -L 0 L,+L]
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D, -D, 0 0 O
-D, D+D, =¥ 0 O
D={ 0 ¥ 0 0 0| isthe generalized damping matrix and
0 0 0 R O
0 0 0 0 R,
K, -K, 0 0 0]
-K, K+K, O 0 0
1 1
K=| © 0 c C 01 is the generalized stiffness matrix.
0 T 0
c C
i 0 0 0 0]

This model is used to derive equation (3.3) and the simulations in Figures 3.5 and 3.6 using
additional parameters compiled in Table B.2.

Table B.2: Electrical parameters when adding a capacitance

Parameter Value
Capacitance C 2.5 10°Fa
Line inductance L 1.179 10° H
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Figure B.4: Fully coupled electromechanical model with accelerometer and capacitance and
additional resistance modelling eddy currents
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