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1. INTRODUCTION

The prediction of operational forces is of importance for the analysis of structure-
borne sound from installed machinery. Matrix-inversion can be used to reconstruct the
operational forces from a set of measured operational responses and corresponding
FRF’s. Matrix ill-conditioning can be overcome using methods such as pseudo-
inversion, singular value rejection, and Tikhonov regularization. In previous research
[1-3], it has been found that Tikhonov regularization is more effective than other
methods to reduce the errors in forces reconstructed. Tikhonov regularization
generally gives better results over the frequency range as a whole; however, pseudo-
inversion performs better than Tikhonov regularization at some frequencies (with low
condition number). Also, the estimate of the operational forces varies according to the
response locations used, irrespective of the force reconstruction method.

The need for regularization is greatest when the matrix is ill-conditioned. In [4, 5]
it is shown that the errors in operational responses are magnified to an extent that
depends on the matrix condition number. Also models were proposed to predict the
influence of various errors in statistical estimates of FRF’s and response spectra [4].
In this study, the error amplification between force errors and response errors is
investigated in order to establish a criterion for when Tikhonov regularization should
be used and when pseudo-inversion is preferable. Based on results of the error
amplification factor, some typical confidence levels are determined, and a threshold
called the cross-over condition number is proposed from various simulations of
different systern matrix size.

Another approach to improve the inverse force determination is the optimal

selection of sensor locations from many possible measurement positions. This



approach only focuses on the errors due to selecting sensor locations with no
consideration of the inversion method. The selection of sensor locations is based on
the average condition number over all frequencies. In this study, two methods are
used; one is based on the ‘amplification factor’ (or composite condition number) and
the other uses the genetic algorithms. The amplification factor is proposed by Thite
[1] in order to avoid an excessive amount of calculations in obtaining the average
condition numbers for all possible combinations of sensor locations. However, the
optimal set of sensor locations determined using the amplification factor does not
always correspond to the best set in terms of the average condition number.
Therefore, in this study, a refinement of this method is proposed to select an
appropriate small range of possible combinations on the basis of the amplification
factor and then to calculate the average condition numbers of the selected sets.
Genetic algorithms are search algorithms based on an analogy with natural
selection and are used in many applications [6-10]. Lieven [6] used genetic
algorithms in order to refine a finite element model with respect to the measurements.
Baek and Elliott [7] applied genetic algorithms to choose the optimal locations of the
secondary sources in active structural acoustic control systems and compared the
performance of different modification operations. Genetic algorithms are used in
many structural dynamics problems but have not been used for sensor location
selection to improve the inverse force determination. In this study, genetic algorithms
are used to search for the best set of response locations. Some simulations are carried
out to investigate the effects of changing the number of individuals in each generation
and the corresponding number of generations on the performance of the genetic
algorithms. Some modification algorithms such as the elitist model and the change of

the mutation probability are proposed. Validation of the use of genetic algorithms is



conducted by comparing the results obtained by the genetic algorithms with the

results of a random search with the same amount of calculation.



2. EVALUATION OF TIKHONOV REGULARIZATION USING ERROR
AMPLIFICATION FACTOR

2.1. Introduction to the error amplification factor

In previous research [1-3], Tikhonov regularization based on ordinary cross
validation has been used in the matrix inversion used to reconstruct the operational
forces. This was found to give better results than other methods, i.e., the pseudo-
inverse method, or singular value rejection. However, these evaluations are based on
comparing the average errors over the whole frequency range. In fact, Tikhonov
regularization does not give better results at all frequencies. At some frequencies, the
errors in the forces reconstructed by the pseudo-inverse method can be less than those
by Tikhonov regularization. In particular, it is found that for low condition numbers
Tikhonov regularization may degrade the result compared with pseudo-inversion.
Therefore it is necessary to investigate the errors in the forces reconstructed by
Tikhonov regularization at each frequency and for a large range of noise levels.

In order to compare the performance of Tikhonov regularization with that of the
pseudo-inverse method, an ‘error amplification factor’ is proposed and defined as the
difference between the errors in forces reconstructed and the errors in the operational

responses at each frequency. The error amplification factor is written as below

Ae=¢,-¢,, (1)
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where £ is the root mean square error between the forces reconstructed ffi and the

original forces F, in dB, &, is also the root mean square error in the measured
operational responses &, in dB, g, is the operational responses without noise, and m

and n are the numbers of responses and forces, respectively. This is a measure of how
much errors are amplified by the matrix inversion. Only errors in the amplitudes are
considered.

Various noise levels corresponding to a series of signal-to-noise ratios between —
40 dB and —-10dB with a step of 1 dB are used to make a large number of ‘measured’
operational responses and FRF’s. The procedure is described in more detail in
reference [2].

The analysis to reconstruct the forces is carried out under four conditions:

1) low noise level in FRF’s, variable noise levels in operational responses,

2) high noise level in FRF’s, variable noise levels in operational responses,

3) low noise level in operational responses, variable noise levels in FRF’s, and

4} high noise level in operational responses, variable noise levels in FRF’s,

where low noise level is 40 dB S/N ratio, and high noise level is -10 dB.

2.2. Simulations

The analysis object is an analytical model of a simply supported rectangular plate
with dimensions of 600 mm x 500 mm x 1.5 mm made of steel (Young’s modulus:
2.07x10'"" Nim?, Poisson’s ratio: 0.3, density: 7850 kg/m’, and damping loss factor:
0.03), and the locations of the forces and responses are shown in Table 1. The

methods used to reconstruct the forces are the pseudo-inverse method and Tikhonov



regularization with ordinary and generalized cross validation. The frequency range
considered 1s 10 to 500 Hz.

First, a set of 5 response and 4 force locations is used to estimate the error
amplification factor at each frequency. The FRF’s and operational responses are made
using the four noise conditions mentioned above. In all, 120 combinations of noise
levels in the FRF’s and the operational responses are used here, so that it takes a very
long time to compute the error amplification factors. Thus, to reduce the amount of
calculation, a smaller set of & typical combinations of noise levels are proposed
instead of the 120 combinations, and the results obtained by using these 8
combinations are éompared with those using all combinations. The 8 typical

combinations of the noise levels are as follows:

Table 1. Non-dimensional positions of forces and responses.

Force positions and rms amplitude Response positions

No xla vlib Force [N] No xla /b
1 041 043 19 1 0.55 0.40
2 0.51 0.63 10 2 0.90 0.80
3 0.62 0.41 27 3 0.60 0.50
4 0.31 0.72 6 4 0.70 0.71
5 0.33 0.25 35 5 0.61 0.31
6 0.71 0.89 16 6 0.20 0.30
7 0.11 0.26 23 7 0.30 0.70
-8 0.38 0.15 8 8 0.80 0.20
9 0.19 0.87 13 9 0.50 0.90
10 0.91 0.50 30 10 0.23 0.89
11 0.84 0.75 25 11 0.26 0.46
12 0.47 0.88 10 12 0.35 0.07
13 0.14 0.66 12 13 0.59 0.11
14 0.58 0.23 21 14 0.41 0.31
15 0.11 0.53




1) low noise level in FRF’s and low, medium and high noise levels in operational

responses (3 combinations),

2) medium noise level in FRF’s and low and high noise levels in operational

responses ( 2 combinations), and

3) high noise level in FRF’s and low, medium and high noise levels in

operational responses (3 combinations),
where low noise level is a S/N ratio of —40 dB, medium noise level is —25 dB and
high noise level is —10 dB.

For the case of 5 response and 4 force positions, the amplification factors obtained
by using the all noise levels in FRF’s and operational responses are shown in Figure
1, and the amplification factors obtained using the three noise levels are shown in
Figure 2. The plots in the left-hand column in these figures show the distributions of
the error amplification factors with respect to the matrix condition numbers. Each
point corresponds to one frequency and one combination of S/N ratios. In order to
simplify the presentation, the plots in the right-hand column in the these figures show
curves corresponding to the 5 %, 50 % and 95 % confidence limits. To achieve this,
the points are first grouped into ‘1/3 octave bands’ of condition number, i.e. all values
between 8.9 and 11.2 are grouped together, all values between 11.2 and 14.4, etc.
Then the error amplification factors in each band are sorted in ascending order with
no consideration of their corresponding condition numbers, and the error
amplification factors corresponding to the 5 %, 50 % and 95 % points in each band
are selected and plotted. From Figures 1 and 2, it can be seen that the distribution and
the fitted curves of the error amplification factors obtained by using the three noise
levels in FRF’s and operational responses show similar results to those found by using

all the noise levels, except in the high condition numbers. The differences at high



condition numbers are due to the small number of points in each band. However, this
is not important because the trend of the difference between the pseudo-inverse
method and Tikhonov regularization is unaffected. Consequently, the reduced set
based on the three noise levels can be used to estimate the error amplification factor in
other cases instead of the full set of noise levels.

These fitted curves of the error amplification factors are more useful than the raw
data because comparisons between the performance of the pseudo-inverse method and
Tikhonov regularization are made easier. As shown in Figure 2, it can be easily seen
that the error amplification factor obtained by the pseudo-inverse method increases as
the condition number increases, but the error amplification factor obtained by
Tikhonov regularization remains at a similar level without regard to the change of the
condition number. At high condition number Tikhonov regularization gives better
results, whereas at low condition numbers it can give worse results in some cases.

Therefore, by comparing the fitted curves of the error amplification factors
obtained by each method, a value of the condition number can be determined at which
the performance of Tikhonov regularization and that of the pseudo-inverse method are
equal. However, to obtain generalized results, more results using different matrix

dimensions are needed and these are considered first.
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The typical value of the condition number to be used to distinguish the Tikhonov
regularization from the pseudo-inverse method is proposed as the condition number
corresponding to the cross-over between the 95 % fitted curves obtained by using the
two methods. This is called the cross-over condition number in this study. Therefore
if a condition number is greater than or equal to this cross-over condition number, the
Tikhonov regularization gives better results than the pseudo-inverse method at the
95 % confidence level.

It can be expected that when the condition number is sufficiently large, Tikhonov
regularization gives better results than the pseudo-inverse method. However, there is
no standard means of determining when Tikhonov regularization performs better, in
terms of the condition number. This problem is related with the condition number and
this is also connected to the system matrix size. Consequently the selection of the
Tikhonov regularization based on the condition number has to be considered together
with the system matrix size.

Two groups of can be considered to investigate the error amplification factor and
the cross-over condition number. The first group is formed of nx(n — 1) systems,
where 1 responses and (n — 1) forces are used (here, # is from 3 to 15). This group is
used to find the relationship between the full matrix size and the cross-over condition
number. The second group is the mxn systems, where m is a fixed number of the
response locations (here, m is 10) and n is the number of the force locations from 2 to
(m~ 1) (here, n is from 2 to 9).

The cross-over condition number has thus been found for many combinations of
response and force locations as follows:

3x2, 4x3, 5x3 and 5x4 (already used), 6x5, 7x6, 8x5 and 8x7, 9x8, 10x2, 10x3,

10x4, 10x5, 10x6, 10x7, 10x8 and 10x9, 11x10, 12x11, 13x12, 14x13, and 15x14,

11



where the first number is the number of response positions, and the second is the
number of force positions.

Figures 3 to 23 show the distributions of the error amplification factors and their
fitted curves for the cases mentioned above. As shown in all figures, as expected, the
pseudo-inverse method gives larger error amplification factors than Tikhonov
regularization at high condition numbers. Conversely, Tikhonov regulanization gives
larger error amplification factors than the pseudo-inverse method at low condition
numbers.

For the case of the first gronp, nx(n — 1) (here nis 3 to 15, see Figures 2 -4, 6, 7,
9, 10, and 18 — 23), as the number of responses (and simultaneously forces) increases,
the maximum condition numbers increase and the distribution of the error
amplification factor with respect to the condition number obtained by the pseudo-
inverse method moves to the right (in the direction of increasing condition number).
The shape of the distribution from pseudo-inversion is maintained but that obtained
by Tikhonov regularization becomes more concentrated and its fitted curves become
smoother and the curves move upward at low condition numbers and downward at
high condition numbers.

For the case of only changing the number of the force locations with a fixed
number of response locations (here 10, see Figures 11 — 18), it can be seen especially
that the error amplification factors at low condition numbers become smaller as the
number of the force locations increases for all methods. Thus the fitted curves also
become smooth and flat as the number of force positions increases.

Next, the cross-over condition number is considered.

12
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Figure 20. Correspondence between the error amplification factor and the condition

nurnber for 12 responses and 11 forces with three noise levels. ——— 35 % confidence
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Figure 21. Correspondence between the error amplification factor and the condition

number for 13 responses and 12 forces with three noise levels. — — — 5 % confidence

level, — 50 %, - 95 %.
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Figure 22. Correspondence between the error amplification factor and the condition

number for 14 responses and 13 forces with three noise levels. — — -5 % confidence
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To obtain the cross-over condition number, the fitted curves of the error
amplification factor with respect to the condition number obtained by the pseudo-
inverse method are compared with those from the Tikhonov regularization based on
the ordinary and generalized cross validation. These results are shown in Figure 24 for
the series of response and force positions used previously. These figures are the
assemblies of the figures obtained by each method shown in Figures 3 to 23. Out of
the three (5, 50 and 95 %) fitted curves, the 95 % fitted curve is of most importance as
it is the larger error amplifications that must be avoided. Besides, as seen in Figure 24,
the cross-over for the 50 % confidence level is at a lower value of condition number
in each case than for the 95 % confidence level. This means that the forces
reconstructed by Tikhonov regularization around the cross-over condition number for
the 50 % confidence level are prone to involve larger errors than those above the
cross-over condition number for the 95 % level. Therefore, the cross-over condition
numbers are obtained by comparing the 95 % fitted curves obtained by the pseudo-
inverse method and those obtained by each cross validation method of Tikhonov
regularization.

Table 2 shows the values of the cross-over condition numbers for all systems.
Figure 25 (a) shows a plot of the cross-over condition numbers for 10xn systems, and
Figure 25 (b) for nx(n — 1) systems. It can be seen that the selection of Tikhonov
regularization is related not only with the condition number but also with the system
matrix size, because the cross-over condition number varies between systems. For this
rectangular plate, Tikhonov regularization should be selected if the condition number
of an FRF malrix at a particular frequency is greater than the corresponding cross-
over condition number. This threshold varies from 10 for a 10x2 matrix to around 200

for a 15x14 matrix. It increases as the matrix size increases and as the level of over-
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determination reduces. The thresholds for ordinary and generalized cross validation
are very similar in each case.

In conclusion, it is important to consider the condition number and the system
matrix size together when selecting the Tikhonov regularization to reconstruct the

operational forces.
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Table 2. Condition numbers corresponding to the cross-over between the 95 %
confidence levels of the error amplification factor with respect to the condition
number, obtained by the pseudo-inverse method and Tikhonov regularization. When a
condition number at a frequency of a system is greater than or equal to the
corresponding cross-over condition number, Tikhonov regularization generally gives

better results than the pseudo-inverse method.

Cross-over condition number between

the pseudo-inversion and
Numbers of responses P

and forces

the ordinary cross the generalized cross
validation validation
3x2 55.2 60.6
4x3 39.9 39.0
5x3 34.6 347
S5x4 41.5 31.7
6x5 37.0 36.9
7x6 52.2 49.8
8x5 26.7 22.6
8x7 49.9 49.2
98 70.9 66.1
10x2 10.1 10.1
10x3 136 13.4
10x4 12.4 13.0
10x5 20.8 18.9
10x6 29.8 30.0
10x7 49.5 49.8
10x8 62.1 61.1
10x9 68.4 67.6
11x10 90.4 80.0
12x11 103.9 87.6
13x12 142.9 116.5
14x13 201.0 154.4
15x14 180.5 149.6
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2.3. Summary

In this section, the error amplification has been used to distinguish the use of
Tikhonov regularization from the pseudo-inverse method. The error amplification
factor is defined as the difference between the force error and the operational response
error in dB. In other words, the error amplification factor is a value indicating how
much larger the force error is than the operational response error. When the error
amplification factor 1s large, this means that the performance of the method used to
reconstruct the operational forces is not so good.

The error amplification factors are estimated for various sets of response and force
positions, i.e., nx(n — 1) systems and 10xn systems. To investigate the relationship
between the errof amplification factor and the condition number, the 5 %, 50 % and
95 % confidence levels have been determined. As can be seen in the results, the error
amplification factor is related not only with the condition number but also with the
system matrix size. The cross-over condition numbers are determined from the 95 %
confidence levels obtained by the pseudo-inverse method and the ordinary cross
validation. These cross-over condition numbers are very useful to select the method to
reconstruct the operational forces. Tikhonov regularization should only be used where
the condition number is greater than the threshold (cross-over condition number). This
threshold varies from 10 for a 10x2 matrix to around 200 for a 15x14 matrix.
Consequently the fact that the selection of the Tikhonov regularization is related not
only to the condition number but also to the system matrix size is also seen to be of

importance.
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3. SENSOR LOCATION SELECTION BASED ON COMPOSITE
CONDITION NUMBER

3.1. Introduction

As seen in the previous section, the condition number can be used to estimate the
sensitivity of the solution to the matrix inversion. The sensor locations used can be
selected based on the conditioning of the measured frequency response function
matrix from force locations to selected sensor locations [1]. Thus to use this method it
is important to estimate the condition numbers at each frequency, and their average
across the frequency range of interest, in order to select a suitable set of sensor
locations. However, the estimation of these average condition numbers involves many
calculations at each frequency to cover the various combinations of locations. When
five locations are to be selected from 20 locations, for example, it is required to
estimate the condition numbers of 5xn matrices (where n is the number of force
locations) of FRF’s corresponding to 15504 combinations of sensor locations at each
frequency. To cope with this, an approximate method based on the composite
condition number (or so-called amplification factor) [1] is used in this study and the
relation between the condition number and the composite condition number is
investigated. Also, one-third octave band averaging is introduced when calculating the

average of the condition numbers and the results are compared with each other.

3.2. Composite condition number

The condition number of the mxn matrix is approximated based on the condition
numbers of 2xn FRF sub-matrices formed by using just two response locations from

those available and all n force locations. In other words, in order to estimate
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approximately the condition number of FRF matrices for a set (e.g. 5xn) of the

locations selected, the condition numbers for all the combinations of the pairs of the

locations selected are calculated and then combined together. By comparing these

guantities (called the composite condition number) for all possible sets, the set giving

the smallest value is chosen as the ‘best’ combination of locations. The detailed

procedure is as follows [1]:

b

2)

3)

4)

3)

6)

7)

Select m,y; response locations that are candidates for measuring the operational
response.

Construct 2xn matrix of FRF’s for one set of 2 response locations (7, j) at each
frequency and calculate the condition numbers of this matrix (where n is the
number of force positions).

Average the condition numbers over the frequency range interested and write

this as k; with i, j corresponding to the two response locations considered.

From these k., construct the myXm,; matrix [x], the diagonal elements of

i
which being set to zero.

Decide the number of responses m to be used.

Determine all possible combinations of m responses taken from myy; 1.€.

my, /ml(m,, — m)! combinations, where ! is a factorial.

Select a combination, for example, 1, 2, ..., m, and find all possible pairs of
picking 2 unordered from m elements of this combination, e.g. {1,2}, {1,3},

{2,3}, etc. The sum of all x; corresponding these all pairs is called the

composite condition number X in relation of the combination selected. The
composite condition number used here is slightly different from the

amplification factor defined by Thite [1].
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X =Yk, 4)

8) Construct a vector of all composite condition numbers from step 7 for all
combinations identified in step 6.
9) The combination giving the minimum composite condition number is taken as

the optimal combination of locations.

3.3. Condition number averaged in one-third octave band

As described in the previous section (as in [1]), the average of the condition
numbers over the frequency range is the arithmetic mean of the condition numbers at
the frequencies of calculation, usually linearly spaced over some range. Also the

condition numbers k, used to estimate the composite condition number are the

arithmetic means of the condition numbers for FRF matrix corresponding to ith and
jth response locations. However, since the condition numbers at low frequencies (low
modal overlap) are found to be larger than at high frequencies, consideration is given
to the use of different averaging with unequal weighting over frequencies. Thus, the
one-third octave band conversion is considered in this study.

First, the average of the condition numbers is calculated in each one-third octave
band. And then the average over all one-third octave bands is formed.

To evaluate this average, obtained by using the one-third octave band conversion,
and to compare the composite condition number with this average value, some

simulations are carried out.



3.4. Simulation objects

An analytical model of a simply supported rectangular plate with dimensions of
600 mm x 500 mm x 1.5 mm is used in order to estimate the composite condition
number and the average of the condition numbers. Its material is steel, i.e. Young's
modulus of 2.07x10"" N/m?, Poisson’s ratio of 0.3 and density of 7850 kg/m’.

To introduce variations in the condition numbers, their averages and the
composite condition number, three distributions of force and response locations and
three values of the damping loss factor are used. The numbers of force and response
locations used are 4 and 20, respectively. The numbers of response locations to be
selected out of 20 locations are 4, 5 and 6. Therefore the numbers of possible
combinations are 0Cy; = 48435, 30Cs = 15504 and »Cg¢ = 38760, respectively.

The first distribution of force and response locations is selected at random in the
whole area of the plate, the second in the region covering the middle 80 % of the
length and width and the third in the central 30 % of the length and width, as shown in
Figure 26.

To investigate the effect of the damping loss factor on the relationship between
the composite condition number and the average condition number, three values of
the damping loss factor are used. The initial damping loss factor is 0.03, a smaller one

is 0.01 and a larger one is 0.10.

3.5. Comparison of the composite condition number and the average of the

condition numbers

To estimate the composite condition number and the average of the condition
numbers, two kinds of averaging method are used, as mentioned earlier, that is, the

first one is the arithmetic mean, and the second one is the average of all mean values
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in each one-third octave band. Thus, two types of composite condition number and
two types of average condition number are produced corresponding to the two
methods.

The numbers of the force and response locations selected for analysis are

1) four response and four force locations (4x4),

2) five response and four force locations (5x4), and

3) six response and four force locations (6x4).
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Figure 26. Force and response positions. x: force location, o: response location.
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The frequency ranges of analysis are

1) 10-500Hz, and

2) 10 - 3600 Hz.

The results obtained by using the condition numbers are

1) the average condition number using the arithmetic mean,

2) the average condition number using 1/3 octave band conversion,

3) the composite condition number using the arithmetic mean, and

4) the composite condition number using 1/3 octave band conversion.

And, the comparisons of these values are as follows:
1) the average condition number and the composite condition number over 10 —
3600 Hz,
2) the average condition number and the composite condition number over 10 —
500 Hz,

3) the average condition number and the composite condition number after 1/3

octave conversion over 10 — 3600 Hz, and

4) the average condition number and the composite condition number after 1/3

octave conversion over 10 — 500 Hz.

Figures 27 to 29 show the correspondences between the composite condition
number and the average condition number for the first distribution of the force and
response positions (see Figure 26 (a)). Figures 27, 28 and 29 are the results
corresponding to 4, 5 and 6 response locations, respectively. In each case figures (a)
and (b) are plotted using the arithmetic mean, and figures (¢} and (d) are obtained by

using the average after averaging in each 1/3 octave band. Figures (a) and (c) show
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the average over the frequency range of 10 — 3600 Hz, and figures (b) and (d) over 10
- 500 Hz.

As shown in these figures, the minimum of the composite condition numbers does
not always correspond to the minimum of the average condition numbers. However, it
can be seen that, in each case, as the composite condition number become larger, the
average condition number increases. Also, the point corresponding to the minimum of
the composite condition number is close the point corresponding to the minimum of
the average condition number and these two points are in the vertex close to the origin
but they are not exactly the same point. Therefore it is necessary to consider how
close the two minimum points are and how the average condition number varies as the
composite condition number increases. These are considered in the next section.

Comparing the averaging methods, the mean using 1/3 octave bands is more
appropriate than the arithmetic mean, because the mean using 1/3 octave bands can
allow for the fact that the results are more sensitive to the condition numbers at low
frequencies than those at high frequencies, as mentioned earlier. Moreover, in the
plots obtained using the mean after averaging in 1/3 octave bands it is easier to
compare the average condition number with the composite condition number because
the plots have a greater slope suggesting a better correspondence between composite
condition number and average condition number.

In the case of choosing the frequency range, the frequency range of 10 — 500 Hz is
more appropriate than that of 10 — 3600 Hz because the condition numbers are
dominant in the low frequency range. However, when using 1/3 octave band
averaging the results are less sensitive to the frequency range.

Comparing Figures 27, 28 and 29, i.e., using 4, 5 or 6 responses, as the number of

responses increases the areas become more rectangular and also are shifted to the
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right (in the direction of increasing the composite condition number) and downward
(in the direction of decreasing the average condition number). These results are
different from those using the amplification factor proposed by Thite [1]. As the over-
determination increases, the minimum of the average condition numbers reduces a
little and also the range of the average condition numbers becomes smaller. In the
case of the composite condition number, the increase in the level of over-
determination means an increase in the number of pairs of response locations and the
composite condition number also increases.

Next the correspondences between the composite condition number and the
average condition number for the 2nd and the 31d distribution and other damping loss

factors are considered.
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Figure 27. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 4 responses

chosen from 20 responses of the first distribution and the initial damping loss factor.
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Figure 28. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 5 responses

chosen from 20 responses of the first distribution and the initial damping loss factor.
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Figure 29. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 6 responses

chosen from 20 responses of the first distribution and the initial damping loss factor.
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For the second distribution of force and response positions (see Figure 26 (b)), the
correspondence between the composite condition number and the average condition
number is shown in Figures 30 to 32. The pattern of the areas plotted in these figures
is similar to that in Figures 27 to 29. This is because the distribution of force and
response positions is also similar to the first distribution. These positions are selected
at random, except for the difference in the area within which the positions can be
generated. As mentioned earlier, the first distribution has a possibility for points to lie
anywhere on the whole area of the plate, but the second distribution is limited to a
range of 80 % of the length and 80 % of the width. Consequently, the effect of the
possible area on the condition number is small.

However, the other aspects of the results, the averaging method and the frequency

range of analysis, give similar results to the case of the first distribution.
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Figure 30. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 4 responses
chosen from 20 responses of the second distribution and the initial damping loss

factor.
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Figure 31. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 5 responses
chosen from 20 responses of the second distribution and the initial damping loss

factor.
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Figure 32. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 6 responses
chosen from 20 responses of the second distribution and the initial damping loss

factor.
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Figures 33 to 35 gives the results of the correspondences between the composite
condition number and the average condition number for the case of using the third
distribution of the force and response locations, as shown in Figure 26 (c). This
distribution is concentrated in the centre of the plate.

Comparing the results obtained from using this distribution with those using the
first distribution, the minimum of the average condition number increases except the
one obtained by using the arithmetic mean over the frequency range of 10 — 3600 Hz.
However, the difference between the minimum and the maximum of the average
condition numbers decreases so that the area also becomes smaller. These changes are
more conspicucus when using the frequency range of 10 — 500 Hz and using 1/3
octave band calculation. Since the force and response locations are close, there is less
difference between them.

Next, the effect of the damping loss factor is considered on the relationship

between the composite condition number and the average condition number.
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Figure 33. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 4 responses

chosen from 20 responses of the third distribution and the initial damping loss factor.
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Figure 34. Comrespondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 5 responses

chosen from 20 responses of the third distribution and the initial damping loss factor.
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Figure 35. Correspondence between the composite condition number (amplification
factor) and the condition number of the FR¥ matrix of 4 forces and 6 responses

chosen from 20 responses of the third distribution and the initial damping loss factor.
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Figures 36 to 38 show the results for the case of a smaller damping loss factor of
0.01 and Figures 39 to 41 gives the results for a larger damping loss factor of 0.1. The
initial damping loss factor is 0.03 and the corresponding results using this value are
plotted in Figures 27 to 29. In each case, the effect of over-determination, the
averaging method, and the frequency range of analysis are also investigated.

Comparing the results for the damping loss factors of 0.01, 0.03 and 0.1, the areas
made by the points, indicating the relationship between the composite condition
number and the average condition number, have very similar shapes. The difference
between the results is only that the areas are shifted relative to the origin. In other
words, as the damping loss factor increases the average condition number and the
composite condition number both decrease, but the shapes are unchanged in
logarithmic scale. Therefore, it can be said that the damping loss factor is not
important for choosing the optimal sensor locations in this dynamic problem.
However, if the test object is more complex, it would be necessary to investigate the
effect of the damping loss factor on the relationship between the composite condition

number and the average condition number.
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Figure 36. Correspondence between the composite condition number (amplification

factor) and the condition number of the FRF matrix of 4 forces and 4 responses

chosen from 20 responses of the first distribution and a smaller damping loss factor.
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Figure 37. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 5 responses

chosen from 20 responses of the first distribution and a smaller damping loss factor.
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Figure 38. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 6 responses

chosen from 20 responses of the first distribution and a smaller damping loss factor.
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Figure 39. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 4 responses

chosen from 20 responses of the first distribution and a larger damping loss factor.
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Figure 40. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 5 responses

chosen from 20 responses of the first distribution and a larger damping loss factor.
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Figure 41. Correspondence between the composite condition number (amplification
factor) and the condition number of the FRF matrix of 4 forces and 6 responses

chosen from 20 responses of the first distribution and a larger damping loss factor.
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3.6. Sensor location selection based on the composite condition number

As mentioned earlier, the composite condition number is proposed as the basis for
selecting the optimal set of sensor locations instead of the average condition numbers
in order to avoid an excessive amount of calculations. A set having the minimum
composite condition numbers of all possible sets of the sensor locations is selected as
the ‘optimal’ set of the sensor locations. However, this ‘optimal’ set is not always the
best set corresponding to the minimum of the average of the condition numbers. A
refinement of the method would involve selecting a small range of possible
combinations on the basis of the composite condition number and then calculating the
average condition number for all of these sets of locations. Therefore, it is necessary
to investigate how large the sets of combinations should be to ensure that the location
with the minimum average condition number would be correctly found. The sets of
locations are arranged in order according to their composite condition numbers.

Figures 42 to 46 show the minimum of the average condition number for a set
containing the first N % of points according to the composite condition number. The
horizontal axis is the percentage of combinations in ascending order of the composite
condition number over the total number of the composite condition number, not the
actual value of the composite condition number. The vertical axis is the ratio of the
‘local’ minimum of the average condition number corresponding to a particular value
of composite condition number to the global minimum of the average condition
number. Therefore, it can be seen from the figures that as the range of composite
condition number considered increases, the minimum average condition number
converges to the overall minimum.

Figure 42 shows the results for the case of the first distribution of the force and

response locations, Figure 43 for the second distribution and Figure 44 for the third
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distribution. The results for a smaller and a larger damping loss factor are plotted in
Figures 45 and 46, respectively. The frequency range used is 10 — 500 Hz, and
averaging method used is the one-third octave band averaging.

However, it is not easy to find a general trend from Figures 42 to 46. Therefore it
would be better to make a plot to summarize these results. To avoid confusion, the
results are selected for various specific percentages of the total number of the possible
combinations in the ascending order of the composite condition numbers, i.e. 0.1, 0.3,
1, 3 and 10 %. Figure 47 shows these results.

From Figure 47, it can be seen that

1) when using 10 % of combinations of the response locations corresponding to

the lower 10 % of the composite condition numbers, the best set that can be
obtained corresponds to between 0 and 3 % larger than the global minimum of
the average of the condition number,

2) when using 3 % of combinations, the best set corresponds to 0 -~ 5 % larger,

3) when using 1 % of combinations, the best set corresponds to 0 — 16 % larger,

4) when using 0.3 % of combinations, the best set corresponds to 0 — 22 % larger,

and

5) when using 0.1 % of combinations, the best set corresponds to 0 - 38 % larger.

These may be compared with average condition numbers which may be more than
a factor of 10 greater in the worst case than the best case. Therefore, by using these
results, the number of the combinations to be investigated in detail can be decided in
order to obtain an acceptable level of the minimum average condition numbers.
However, it must not be forgotten that these results are specific to the dynamic
problem considered of a flat rectangular plate, although it may be expected that

similar results should be obtained for other systems.
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Figure 42. Variation of the local minimum of the average condition number with
respect to the ascending order of the composite condition number for the first
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respect to the size of subset based on the composite condition number for all cases.

3.7. Summary

The composite condition number and the average of the condition number are
investigated. The composite condition number is used to reduce the amount of
calculation involved in finding the condition number at each frequency and for all
possible combinations. Two methods of averaging the condition numbers are also
discussed, that is, the method of averaging first in each 1/3 octave band and the more
straightforward method of using the arithmetic mean. From the correspondence
between the composite condition number and the average of the condition number,
the result obtained using the method of averaging the intermediate average in each 1/3
octave band shows the better correspondence and is less sensitive to the frequency
range considered.

However the optimal set determined from the minimum of the composite

condition number is not always the best set in terms of the minimum average
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condition number. It is proposed to select a small number of combinations using the
composite condition number and then to find the actual condition number for these
cases.

The size of set considered determines how close to the overall minimum condition
number it is possible to achieve using this method. For example using only 0.1 % of
combinations, the best set found was at worst 38 % larger than the true minimum
condition number, whereas the range of condition numbers in the whole set includes

values more than 10 times the minimum value.
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4. SENSOR LOCATION SELECTION USING GENETIC ALGORITHMS

4.1. Introduction to genetic algorithms

As shown in [1], the selection of the sensor locations can have a large influence on
the estimates of the operational- forces, but the work of finding the optimal sensor
locations is a difficult and time-consuming process. In the previous section, the
method based on the composite condition number (or amplification factor) [1] is used
to search for the optimal locations. However, this method does not always give the
best rtesult because the set corresponding to the minimum composite condition
number does not coincide with the set corresponding to the minimum of the average
condition number. Moreover, since this problem of sensor location selection does not
have a continuous objective function but a discrete one, which also does not have any
derivatives, the conventional optimisation techniques cannot be applied. Therefore,
genetic algorithms (GAs) are very suitable for these problems of the sensor location
selection.

Genetic algorithms have the facility to search for a global optimum solution
without requiring the objective function to be differentiable and so can be applied to
discrete as well as continuous functions as mentioned above [6].

In general, genetic algorithms are stochastic global search methods based on an
analogy with natural evolution. In natural evolution, members of a population
compete with each other to survive and reproduce successfully. If a member of a
population has superior genes to an other member, this member has more possibility
to breed successfully. Over many generations, natural populations are believed to
evolve according to the principles of natural selection and “survival of the fittest”, as

first clearly stated by Charles Darwin in The Origin of Species. Like the pattern of
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these evolution processes, genetic algorithms make the solutions grow the optimal

solutions having the “fittest” objective function.

4.2. Fundamentals of genetic algorithms

To use the genetic algorithms, the parameters called chromosomes have to be
defined first. Each chromosome includes a series of input variables and its fitmess
value given by the objective function. The commonly used representations of
chromosome in the genetic algorithms are binary, integer, real-valued, etc. [8]. Next,
using some chromosomes a number of potential solutions, called a population, are
made.

To estimate the fitness of members of a population, a new function, called the
fitness function, is normally used and this function is obtained by transforming the
objective function value into a measure of relative fitness that is a non-negative value.
A commonly used transformation from the objective function to the fitness function is
that of proportional fitness assignment. It is explained in detail in the following
section.

There are three genetic operators, which are used to generate a new population of
chromosomes from an old population: selection (or reproduction), crossover and
mutation.

The selection operator assigns each chromosome a relative probability for
reproduction according to the fitness of the chromosomes. Based on each relative
probability, the number of times for each chromosome to be reproduced is determined.
Many employed selection techniques are based on the so-called roulette wheel

selection methods: the stochastic sampling with replacement, the stochastic sampling
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with_partial replacement, the remainder stochastic sampling with replacement, the
remainder stochastic sampling without replacement, etc. [9].

The crossover operator is the basic operator for producing new chromosomes.
Like its counterpart in nature, the chromosomes are randomly paired together and a
part of each chromosome is exchanged with each other so that new chromosomes are
produced. The commonly used crossover operators are single-point crossover, multi-
point crossover, uniform crossover, shuffle, reduced surrogate, etc. The crossover
operator is applied to each pair of chromosomes with a probability typically in the
range 0.6 and 1.0 [9].

The mutation operator is a random process where some genes in a chromosome
are replaced by another gene to produce a new chromosome. In other words, the
mutation operator has the potential to re-introduce genetic information that has been
lost from the population. Contrary to the crossover operator, the mutation operator is
randomly applied with low probability, typically in the range 0.001 and 0.01, and
modifies genes in the chromosomes.

To terminate the genetic algorithms, it is necessary to specify convergence criteria,
but it is difficult to define formally the termination criteria because the genetic
algorithms are stochastic search methods. Commonly used termination methods are a
method of terminating the genetic algorithms after a pre-specified number of
generations or a method of checking the convergence of the best individual of the

population.

4.3, Application of GAs to the sensor location selection problem

The analysis object is the same as the one used in the previous section, i.e. an

analytical model of a rectangular plate with 4 force locations. The total number of

79



sensor locations is 20 and the number of selected sensor locations is 5. Therefore the
number of all possible combinations is 20Cs = 15504. The chromosome used in GAs is
defined as 5 integers using an integer-string representation, like (3,8,1,18,13), but the
order is not important. The 5 integers must all be different.

The objective function used here is the average of the condition number over the
range of frequencies. The fitness value of ith combination x; is defined as the

reciprocal of the objective function,
fx)=x7", (5)
and the corresponding fitness function is defined as the proportion of each fitness

value to the total sum of all fitness values,
Ning
F(x)y=f(x)/) D, f(x), (6)
i=l

where N, is the number of individuals in the population in a given generation. Based
on the fitness function, in this study, the roulette wheel selection method (the
stochastic sampling with replacement) is used to determine the number of times each
individual is used for reproduction. First, a real-valued interval, Sum, is determined as
the sum of the raw fitness values over all the individuals in the current population.
Then individuals are mapped one-to-one into contiguous intervals in the range [0,
Sum]. The size of each individual interval corresponds to the fitness value of the
associated individual. To select an individual, a random number is generated in the
interval [0, Sum] and the individual whose segment spans the random number is
selected, This process is repeated until the desired number of individuals have been
selected.

The crossover operator used in this study is somewhat different from other

crossover operators. Because the genes of each chromosome in this study may not be
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duplicated, the subset crossover operator proposed by Lucasius and Kateman [10] is
used here. Offspring subsets are first produced from parents, preserving their
intersection. The remaining elements are then shuffled and exchanged to produce two
offspring (see Figure 48). This is because iﬁ this problem no offspring may have two
identical genes (here, integers). For example, if the parents in Figure 48 with two
identical genes (i.e., 9 and 15) produce their offspring by the general single-point
operator, setting a crossover point between second and third genes, then new offspring
would be (9,2,4,3,9) and (10,15,7,15,12). In this case, the first offspring has a
duplicate gene of 9 and second has a duplicate gene of 15 so that these offspring are
invalid. Therefore, as mentioned earlier, the common elements of the parent strings
are 1solated and then the remaining elements of each parent are shuffled and
exchanged to produce two new strings which are used to be added to the isolated

common elements and to produce two offspring.

—
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Figure 48. Subset crossover. (a) Parent. (b) Retain common parts.

(c) Cross. (d) Re-arrange in original order.
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Figure 49. Subset mutation.

Also the mutation operator used here simply replaces terms in individuals with
another term from the complementary subset, as shown in Figure 49, in order to avoid
duplicate terms.

To improve the performance of the GAs, the “elitist model” is used t?]. In this, the
best individual in the current generation automatically survives by replacing the worst
one in the next generation. If the elitist model is not used, it is possible that, since the
selection is a stochastic sampling, the best individual in the current generation is not
selected at all so that the best individual in the next generation is worse than the
current best individual.

A further method to improve the performance of GAs is applied to this sensor
location selection problem: the variable probability of mutation [11]. According to the
repetition of the best individual in every generation, the population becomes
dominated by the best individual and its relatives. Consequently it becomes difficult
to search for new individuals that are different from the current individuals. To avoid
this problem, the probability of mutation is increased in proportion to how often the
same best individual has been retained. The increase of the probability of mutation

forces new individuals to be sought in the complementary solution area.
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4.4. Simulations

Using the GAs, the optimal sensor locations are sought. The numbers of forces
and responses are 4 and 5 respectively, and the total number of response positions
available is 20 as in the previous section. The frequency range is 10 to 500 Hz. The
objective function is taken as the average (simple mean) of the condition number over
frequencies. The best combination corresponds to an average condition number of
13.0497.

The probability of crossover p. used in this study is 0.8, which corresponds to the
center of the typical range 0.6 to 1.0 mentioned earlier. In the case of the mutation
probability, its typical range is from 0.001 to 0.01 and when using larger mutation
probability than 0.01, the search area becomes more complicated and diverse and the
searching is prone to converge to local optima. Conversely when using smaller
mutation probability, the searching is prone to converge to local optima near to the
start points. Therefore the initial probability of mutation p, used is 0.01, and the
increase of the probability of mutation Jp,, used each time the same best individual is
retained is also 0.01.

The size of the population Ny, is important in d'etermining the speed of searching.
The number of generations N, is related with the size of the population.

Since the GAs are stochastic search methods, the best sensor locations will not
always be found. Therefore, a number of simulations have been carried out repeatedly
to assess the effectiveness of the method.

First, the effect of the population size on the performance of GAs is investigated
'by considering various cases of the population size (10, 20, 30, 40, 50) and
corresponding numbers of generations (100, 50, 35, 25, 20). At this stage no elitist

model and no increase of the probability of mutation are used. The number of
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generations is determined to maintain a roughly constant maximum number of
evaluations of the average condition number. This is set to 1000, that is about 7 % of
the total combinations. Twenty different calculations of each case are made and the
average of the results is calculated. The average of the condition number of the
selected optimal set is shown in Table 3. These may be compared with the overall best
value of 13.0497. The last column in the table indicates the average and standard
deviation of rankings of the selected optimal sets out of all possible sets. These are
expressed as percentages of the total set of 15504 combinations, where the best
combination corresponds to 0.007 %. From Table 3, it can be seen that, as the
population size increases, the average of the best objective functions decreases. In
other words, as the number of individuals in a generation increases, a better set is
selected. However the results in Table 3 are not vet acceptable because of the large
solution domain.

Since the elitist model is not used, the best set in each generation cannot be
guaranteed to survive in the next generation. For the same reason, the last best set
may not be the best of all sets considered during the GA process. To overcome this,
the elitist model is used next.

Table 4 shows the results for the case of using the elitist model with constant
probability of mutation.

Comparing the results of Tables 3 and 4, it can be seen that the elitist model is
very effective in improving the search for the best set of sensor locations. If the
population consists of 30 or more individuals, then it is certain that the GAs choose an

individual within the 0.5 % best ones with 84 % confidence.
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Table 3. The average of the objective functions of the optimal sets selected by using
GAs according to varying the population size and the generation number with no

elitist model and no increase of the mutation probability (Nimg X Ngen = 1000).

L Number of Average of best % of total
Population size . o . o
generations objective functions combinations
10 100 17.28 5.60 = 5.86
20 50 15.85 2232306
30 35 15.60 1.34+1.22
40 25 15.07 0.97 = 1.61
50 20 14.78 (.62 +0.89

Table 4. The average of the objective functions of the optimal sets selected by using
GAs according to varying the population size and the generation number with the

elitist model and no increase of the mutation probability (Ning X Ngen = 1000).

L Number of Average of best % of total
Population size . o . L
generations objective functions combinations

10 100 15.61 1.77+293
20 50 14.76 0.52 £0.67
30 35 14.18 0.18 £0.20
40 25 14.13 0.16 +0.18
50 20 13.71 0.07+0.11

To improve the performance of the GAs, the method of increasing the probability
of mutation is next used. The results obtained using this method are shown in Table 5.
The optimal sets selected by the GA are within 0.6 % of the best set for all
population sizes with 84 % confidence. Comparing the results of Tables 3 to 5, the
elitist model and the increase of the probability of mutation according to the re-
generation of the best sets give very effective improvement to the sensor location

selection.
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Table 5. The average of the objective functions of the optimal sets selected by using
GAs according to varying the population size and the generation number with the

elitist model! and an increase of the mutation probability (Nig X Ngen = 1000).

. . Number of Average of best % of total
Population size . o : .
generations objective functions combinations
10 100 14.34 0.23+0.32
20 50 14.00 0.11+0.14
30 35 14.26 0.20+0.27
40 25 14.05 0.17+0.30
50 20 13.72 0.07x0.10

The maximum numbers of individuals considered during the GA procedure in the
above is about 1000, which is about 7 % of the total number of possible combinations.
To investigate the effect of reducing the maximum numbers of individuals considered
on the performance of GAs, the sensor location selection is evaluated using the GAs
for both half and a guarter of the number of generations previously used. The results
are shown in Tables 6 and 7. Even though half of the numbers of generations are used,
the selected sets are in the range of 0.5 % or smaller of the best set except for the case
of using only 10 individuals. Therefore, using about 500 combinations of response
locations shows good results and is useful. However, when using a quarter of the
numbers of generations, the selected sets are in the range of 0.6 % or smatiler of the
best set for the case of using 30 or more individuals. Consequently, as the number of
all combinations used in the evolutionary process decreases, it would be better that the

number of individuals in each generation should increase.
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Table 6. The average of the objective functions of the optimal sets selected by using
GAs according to varying the population size and the generation number with the

elitist model and an increase of the mutation probability (Mg X N = 500).

o Number of Average of best % of total
Population size : o . .
generations objective functions combinations
10 50 14.65 0.51+0.74
20 25 14.21 0.15x0.11
30 17 14.39 022 +0.22
40 13 14.06 0.15+0.22
50 10 13.99 0.12+0.13

Table 7. The average of the objective functions of the optimal sets selected by using
GAs according to varying the population size and the generation number with the

elitist model and an increase of the mutation probability (Nig X Ngen = 250).

p . , Number of Average of best % of total
opulation size . i . o
generations objective functions combinations

10 25 15.46 1.35+1.74
20 13 14.96 0.89 +1.45
30 9 14.46 0.27 £0.30
40 7 14.58 0.31 +0.30
50 5 14.55 0.27+0.18

4.5. Evaluation of the performance of genetic algorithms

To evaluate the performance of the genetic algorithms, the results obtained by the
genetic algorithms are compared with those obtained by random selection. The
method of random selection selects 1000 (and 500, 250) sets of possible response
location combinations at random and then the minimum of the objective functions is

obtained. Repeating this process 20 times, the average and the standard deviation are
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calculated from the 20 minima of the objective functions. The average of the 20
minima and the average and standard deviation of the % orders are as follows:

from 1000 random sets: average = 14.09, 0.11 £ 0.07 %,

from 500 random sets:  average = 14.36, 0.19£0.18 %,

from 250 random sets:  average = 14.54, 031027 %.

The GA method gives better results than random selection when the population is
at least 40 and the elitist model and increase of mutation probability are included.

Otherwise GAs actually give worse results than random selection.

4.6. Summary

In this section, the genetic algorithms have been used to search for the best set of
response locations. From some simulations, it can be concluded that the genetic
algorithms perform better to select the optimal sensor locations. The GAs with
consideration of the elitist model and the variable probability of mutation also give
better results than the simple GAs. Selection by using 20 or more individuals in each
generation in this rectangular flat plate problem gives the optimal sets within at least
0.5 % of the best sets with 84 % confidence.

However, random selection of an equal number of individuals can provide
location selection that is just as good unless at least 40 individuals are considered per

generation.
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5. CONCLUSION

In this study, the use of Tikhonov regularization was investigated in terms of the
amplification of the errors in reconstructed forces due to the response errors. The error
amplification factors were estimated for various sets of response and force positions
for Tikhonov regularization and the pseudo-inverse method. To investigate the
relationship between the error amplification factor and the condition number, the 5, 50
and 95 % confidence levels have been determined. From the 95 % confidence levels
obtained by the pseudo-inversion and Tikhonov regularization the threshold, called
the cross-over condition numbers, are determined. Tikhonov regularization should
only be used where the condition number is greater than this threshold; below the
threshold pseudo-inversion gives better results. This threshold varies from 10 for a
10x2 matrix to around 200 for a 15x14 matrix. Consequently it is found that the
criterion for the use of Tikhonov regularization is related not only to the condition
number but also to the system matrix size.

In this study the optimal selection of the sensor locations has also been
considered. Methods based on the ‘amplification factor’ (composite condition
number) and using the genetic algorithms are used to select the best set from all
possible combinations of response locations. In order to obtain the composite
condition number and the average condition number, the method of averaging first in
each 1/3 octave band has been introduced. Different frequency ranges have also been
considered. From some simulations, however, the optimal set for the minimum of the
composite condition numbers is not always the best set in terms of the minimum
average condition number. Therefore it is proposed to select a small number of

combinations using the composite condition number and then to find the actual
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condition number for these cases. It has been seen that the size of set considered
determines how close to the overall minimum condition number it is possible to
achieve using this method. Nevertheless using only 0.1 % of combinations, the best
set found had an average condition number at worst 38 % larger than the true
minimum, whereas the range of average condition numbers in the whole set includes
values more than 10 times the minimum value.

The use of genetic algorithms to select the optimal set of sensor locationshas also
been considered. The subset crossover operator is used to avoid the duplicated
elements in an individual. The genetic algorithm using the elitist model and a variable
mutation possibility gives better results than a simple genetic algorithm. When twenty
or more individuals are used in each generation, and enough generations are used to
ensure about 7 % of all combinations are considered the selection of the optimal set
was found to lie within at least 0.5 % of the best sets with 84 % confidence. However,
comparing the performance of genetic algorithms with a simple random selection, it is
found that the random selection of an equal number of individuals can provide
location selection that is just as good unless at least 40 individuals are considered per

generation.
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