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Abstract

Many structures present symmetry in one direction, which can be a periodicity in the
case of several identical cells or translation or rotation symmetry in case of a
waveguide. The purpose of this work is first to present a common analysis of these
two types of structures. Then from the dynamic siiffness matrix of a cell of the
structure obtained by a standard finite element package, we present an efficient
method for calculating the response of the complete structures to harmonic
- excitations, Thus a very general structure can be meshed with standard FE software
and the calculations are not limited to simple analytical examples. The method
consists in using a wave basis to describe the vibrations of the structure instead of the
traditional modal shapes. This wave basis is obtained from the eigenvectors of the
transfer matrix of the periodic cell. Then the classical dynamic stiffness matrix can be
built from these wave modes. The computational cost becomes independent of the
number of cells in the structures, which is a major improvement over the classical
finite element analysis for large structures. The main advantage of the approach over
alternative waveguide/FE approaches, often termed spectral elements, is that

conventional FE packages can be used to form the stiffness and mass matrices.
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1. Introduction

We often have to deal with structures presenting symmetry in one direction. This
symmetry, as shown in figure 1, can be a translation according to a privileged
direction (a), a rotational symmetry (b) or a periodicity (c). To solve a dynamic
problem with such structures, for instance the calculation of the frequency response
function between an excitation force and a reception point, classical finite element
software often offers no other choice than meshing the whole structure. Exceptions
are rotational and cyclic symmetries, which are solved by a decomposition of the
displacements in cosine and sine functions. A review of the current practises for these
structures can be found in Wang [1]. However, a better use of the symmetry could
* lead to a much more efficient computation.
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Figure 1: Different structures with symmetries along the y direction

Many previous works have considered such structures. They can be classified
into the classical analysis of periodic structures and more recently the analysis of
structures with constant cross-section by the waveguide finite elements, often called
the spectral finite element approach. The purpose of this paper is first to make a link
between these two approaches, then to show how the dynamic, finite element analysis
of periodic structures can be improved and finally present a method to get a
waveguide finite element model for general structures from standard finite element
software. If we compare to standard FE approaches, the cost of a calculation with the
model developed in this paper is greatly reduced because we only have to mesh one
cell instead of the whole structure. We get, although, a frequency domain model but
with a well-posed formulation, without numerical problem. The other advantage is
that standard FE packages can be used on the contrary of spectral FE, which need to
develop new elements for each application.



1.1 Periodic structures

The propagation of waves in periodic structures is an old subject; see for
instance the work of Brillouin [2] and the review paper of Mead [3] presenting the
research from Southampton in this field. The approach is based on the Floquet’s
principle or the transfer matrix. The basic idea is that the propagation of waves in a
periodic structure can be obtained from propagation constants A, which depend on
the frequency, or by the transfer matrix T, which relates the displacements q and the

forces fon both sides of the periodic element by the relation (L: left side, R: right

side)
e | |92 |_ 4149
{—fj—'r{f.aj!_ﬁ{fij (D

Mead presented a general theory for wave propagation in such periodic systems in [4-
6]. It was shown that the number of wave is twice the minimum number of degrees of
freedom at coupling interfaces and can be decomposed in an equal number of positive
and negative-going waves. The propagation constants A are the eigenvalues of a

transfer matrix T and can be written as A = ' where [ is the length of the periodic
cell and & a wavenumber. -

The purpose of most articles is to calculate the dispersion relations. These
relations describe the dependence of the wavenumbers k on frequency. They show
bands with real wavenumbers corresponding to propagating waves and bands with
complex wavenumbers leading to attenuating waves. Mead [4-6] also derived
relations between the upper and lower frequency limits of propagation bands and
natural frequencies of a single element. These works are mainly of a theoretical nature
and the applications deal with simple structures like beams or shells with stiffeners
and are solved by analytical means, see for instance Mead [7].

To numerically calculate the dispersion curves, a simple approach consists of
prescribing the propagation constant and looking for the frequencies by solving a
classical eigenvalue problem with modified stiffness matrices. Orris and Petyt [8]
proposed to calculate the propagation constants by the finite element method. They
applied their method to beams and skin-rib structures to calculate the
eigenfrequencies according to the propagation constants and they plotted the variation
of propagation constants with frequency. The use of the finite element method was
also explored on more general problems by Abdel-Rahman [9]. A less obvious
approach is to set the frequency of interest and to look for the complex propagation
constants associated with this frequency by solving the eigenvalue problem of the
transfer matrix. Abdel-Rahman [9] also gave examples of application of this reverse
problem. For instance, Thompson [10] used this theory of periodic structures for
calculating rail vibrations for high frequencies.



1.2 Waveguide structures

Structures with constant cross-sections and rotational or a translation symmetry
like (a) or (b) in figure 1 are better seen as waveguides. For instance, von Flotow [11]
and Beale [12] used this wave approach to study the disturbance propagation in
structural networks composed of beam elements and solved the problem by analytical
methods. They stated the propagation in each element and the relations at the junction
between elements or at boundary conditions. The efficiency is greatly improved
compared to FEM methods as a complete beam can be modelled with only one
element for any frequency.

For more general structures, the displacements in the cross-section can be
+ described by a finite element method while the variation along the symmetry axis is
expressed as an ordinary differential equation whose solution can be written in the

form e™U(x,z) if y is the direction of symmetry and x and z the coordinates in the

cross-section. For instance, Finnveden [13] developed the waveguide approach for
different structures and showed that the discrete FEM equation can be put in the form,

[ij(k)’K,. —an}U =0 (1.2)

im1

where M is the usual mass matrix. The stiffness matrix is developed for various
powers of the wavenumber £, describing the propagation in the direction of symmetry,
and different K, matrices. These are not standard matrices of the finite element

formulation and so they must be determined for each problem by methods like
Lagranges’s equations, Hamilton’s principle or the virtual work principle. So for each
type of element a complete analysis is needed, which starts by the development of
special elements allowing the calculation of the matrices K,. This makes the

connection with the standard use of the finite element method difficult and does not
allow the benefits of powerful existing finite element software to be exploited.

For instance, Nilsson [14] used the waveguide finite element to study structures
made of plates and shells. Shorter [15] developed waveguide finite elements for
viscoelastic laminates and set the discrete problem using Lagrange’s equations. He
solved for the wavenumber at a given frequency and hence found dispersion relations.
Gry [16] applied similar ideas to the calculation of wave propagation in rails with a
finite element mesh of a rail cross-section. He then calculated dispersion relations and
accelerances. This work was further extended in [17] to take into account the periodic
structure of the track by solving the problem in term of a transfer matrix approach.

1.3 Present paper

In this paper we present a method, based on the study of periodic structures, to
calculate structures like those of figure 1 using models coming from general FEM
package like Ansys. From the dynamic stiffness matrix of a cell of the structure
obtained by Ansys, we present an efficient method for calculating the wavenumbers
of free wave propagation and the response of the complete structure to harmonic



excitations. The objective is to use a wave basis to describe the structure instead of a
traditional modal basis. This approach is quite familiar to that used in analytical
models. However, we show how to solve some problems specific to the finite clement
method and conditioning problems. So structures with very general cross-sections can
be meshed with standard FEM software. '

With the usual finite element methods, as is well known, an increase in the
frequency of analysis needs a decrease in the mesh size and a common criterion for a
good mesh is to have between 5 and 10 nodes per wavelength. Of course this
requirement can lead to large meshes and very heavy calculations for medium and
high frequencies. On the contrary, in the proposed method the calculation time is
independent of the number of cells in the structures. This allows using a much larger
number of cells and leads to efficient high frequencies computations.

The paper is divided into three parts. First we present the finite element
analysis of periodic structures. Then we set the general methodology for the analysis
of wave propagation in periodic structures. Finally, this is applied to several examples
like rods, beams and plates.



2. Finite element analysis of periodic structures

2.1 Cell dynamics

We consider the structure presented in Figure 2. This structure is made of a
finite or an infinite number of cells numbered by n. The cells are meshed with an
equal number of nodes on their left and right sides.

a; qQr q; q; q; q; q

Figure 2: Forces and displacements on a cell.

The discrete dynamic equation of a cell obtained from the finite element model at a
frequency @ is given by

(K -ieC-o*M)q=F @

Where K, M, and C are respectively the stiffness, mass and damping matrices, F is
the loading vector and g the vector of the displacement degrees of freedom.
Introducing the dynamic stiffness matrix D=K-iwC-»’M and decomposing into
right (R) and left (L) boundaries and interior (I) degrees of freedom, one gets the
following partition of the matrix, in the case where there is no external force on the
interior nodes,

PH D, Dylaq, 0
D,, D, Dy,|a,|= f, (2.2)
D, Dg D fax £,

The interior degrees of freedom can be eliminated using the first relation in (2.2) and
this gives
q, =-Dy (DILqL + DIRqR) (2.3)

This leads to



w2 }[‘“} - [f"] 2.4)
wDy Dy Ar fr
which, in the following, will be written as

|:DLL DLR:|[qL:| _ |:f{,:| (2.5)
Dy Dy llar fr

The new dynamic stiffness matrix is thus obtained after elimination of the interior
degrees of freedom. By symmetry of the stiffness, damping and mass matrices, the

dynamic stiffness matrix is also symmetric, which leads to ‘D, =D, ‘D, =Dy
and ‘D,, =D,, , where t indicates the transpose. Relation (2.5) linking the forces and
displacements on the two sides of the cell boundary will be the starting point of the
further developments.

2.2 Structure with several cells

Let us consider now a structure with N identical cells like in figure 3. The
displacements at each boundary are denoted by q, for 1<i< N +1. We suppose that

there are only external loads at sections 1 and N+1 with the load vectors denoted by
f, and f,,,. We are looking for an efficient way of calculating the global dynamic

stiffness matrix connecting the displacements and forces at sections 1 and N+1.

q, q, ! P qy q w1

N-1 N fyu

Figure 3: Structure with N cells.

Let us consider the global dynamic stiffness matrix obtained from assembling the
elementary stiffness matrices from cells 1 to N. It is given by

D, e 0 - 0 0 0 -« 0 0 0]
Dy D, +Dg Dy v 0 0 0 - 0 0
Dr=| 0 0 0 - Dg Dy +Dpy Dy - O 0 0 | (2.6)
0 0 0 - 0 0 0 - Dy D;;+Dg Dy
0 0 - 0 0 0 - 0 Dy Dggl

and the relation between the displacements and forces is



i q, 1T f, ]
q. 0
D, q, |=| 0 2.7
qy 0
LA v _fN-v-lu

It follows that for 1 <i< N +1, one has the recurrence relation for the displacement

vectors
Dgq., + (DLL + DRR)qf +Dyq,, =0 (2.8)

Let us introduce now the left and right propagation matrices, P, and P, which are
defined by
Dy P’ +(D;, +Dy )P, +D,, =0

2.9
DRL+(DLL+DRR)Pr+DLRPr220 @

with the further constraint that these matrices have only eigenvalues of modulus less
than or equal to one. This constraint is added to assure that P/ and P, are bounded

matrices for any positive number n. We will see in the following how these matrices
can be built. Now the solution of equation (2.8) can be written in the form

q, =P 'u, + P, (2.10)

The vectors u, and u, can be calculated from the displacements at sections 1 and
N+1 by solving:
N
q, :uI:{_Pf u, (211)
Qya =P 0+,

which gives

u, = [I—P,.NP,‘NTl (‘:}1 - PINqN+l)
i 2.12)
u, =[1-PYP['(-P¥q, +ay.)

After some simple transformations, this leads to
q, =P PP fi-prp g + PR + PP fI-PY R g, (213)

It can be verified that the solution given by (2.10) satisfies relation (2.7) for the
sections 1<i<N+1 and, in fact, for any vectors u, and u,. To complete the

calculation, we also have two further relations for sections 1 and &+1 giving

fi=D.q, +D;q,

(2.14)
fon =Dydy + Dy,



If we write q, and q, in terms of u, and u, using (2.10) and, then, in terms of
q,and q,,,, using (2.12), we finally get the dynamic stiffness matrix for the whole
structure. After some simplification and rearrangement, this leads to

_ -
fl — DLL O + DLR 0 PIN : Pr P[N I q] (2 1 5)
fo. 0 Dyl [0 Dy P BT P Jau

Thus the dynamic stiffness matrix can be easily calculated when the propagation
matrices are known. In the following, efficient means of calculating P, , P, and their

- powers are found.

So, the starting point of this approach is the dynamic stiffness matrix of a cell
of the periodic structure. The matrix can be obtained analytically for simple cases or,
more generally, from standard finite element software after meshing the cell and
solving a simple dynamic problem to create the mass and stiffness matrices. Then
after eliminating the interior degrees of freedom, a dynamic stiffness matrix linking
the forces and displacements at the left and right sides of the cell is obtained. For a
periodic structure, we introduced the right and left propagation matrices, which are
solutions of a recurrence equation. The global dynamic stiffness matrix of a structure
with N cells is then obtained from these propagation matrices. One must notice that
the calculation cost to get this global dynamic stiffness matrix does not depend on the
number of cells N.



3. Wave analysis

To obtain a deeper insight info the wave propagation phenomenon in the structure
and to find formulas for the propagation matrices, the structure will be analysed in
terms of waves.

3.1 Transfer matrix

Continuity of displacements and equilibrium of forces at the boundary between
cells n and n+1 yield, if there are no external forces applied to the structure,

K+l n
7 = 7

We introduce the transfer matrix T linking the displacements and forces in cross-
sections n and n+1. Using the preceding relations, this matrix is defined by

H H n+l
T qL — qR — qu (32)
) gl Ly
From the first row of relation (2.5), one gets
H+l -1 n n
q; :DLR(fL _DLL(IL) (3.3)
Introducing the preceding relation in the second row of (2.5) gives
(DRL “DRRDERDLL }1; +DRRDEeff = ——f;” (3.4

Relations (3.3) and (3.4) finally give the transfer matrix

—Dy, + DRRDI;QDLL _DRRDZTFE

This matrix only depends on the properties of the cell n. The propagation constants
and free waves are the eigenvalues and eigenvectors of this matrix defined by the

eigensolutions to
g9 | 4] 9 (3.6)
fL fL

The first row of (3.5) leads to
(DLL +AD M, =1, (3.7

Substituting this for the force in the second row of (3.5) gives,



(_DRL +DRRD£;EDLL}1L -Dg D, (DLL +AD . )qL :’?’(DEL +AD ;. (B8

After simplification, this leads to the relation
1
DLL+DRR+;{DLR+EDM q, =0 (3.9)

This relation can also be obtained from the dynamic stiffness matrix (2.5) with

ﬁj - [—Iﬂ}fﬂ (3.10)
ol Lap

1 I
[I —}:I}DLJ(IL =0 (3.11)

The force component of the eigenvector is given by (3.7). An interesting property can
be proved. From relation (3.9), it is clear that the eigenvalues are the roots of the
determinant

and

D, +D,, +iD, +%Dm, =0 (3.12)
Taking the transpose of the matrix one also has
1
D +Dpp +ADy, +EDLR =0 (3.13)

This leads to the fundamental property that if A is an eigenvalue, 1/A4 is also an
eigenvalue. This is true for any shape or property of the cell.

3.2 Wave basis

The wave modes are the eigenvectors of the transfer matrix. So the 2»
eigenvalues of (3.5) can be split into two sets of n eigenvalues and eigenvectors which

are denoted by (2,,®;) and (1/4,,®;) with the first set such that || <1. In the case
|/1,.|=I, the first set must contain the waves propagating in the positive direction,
which are such that Re{fa)qfr f L}> 0. The inverse eigenvalue 1/4,, in the second set,

is associated with the waves such that Re{ia;qf f, }< 0. The right eigenvector for the
eigenvalue A, is thus given by

10



_ q(%)
= [(D wFAD, )q( A, J (3.14)

It is proved in [6] that for symmetric elements and attenuating waves, the positive and
negative eigenvectors are equals, that is q(4,)=q(1/4,) if 4, and T are real. In the

general case there is no simple relation between these two vectors.

o, - &_)Z[q@-)}

(%)

It can also be shown that the left eigenvectors are

¥

¥, =¥(i,)= {’q(ii)(nm +4D,,) ‘q(ﬂ (3.15)

Orthogonality properties can be obtained from the following relations

T®, = /1.(I)J.
’ (3.16)
¥YT1T=1%,
which leads to
T,T(Dj=ijTiq)j=liTj(Dj 3.17

This quantity must equal zero if 2, = 4,. So, the left and right eigenvectors are such

that
Y@, =d0, (3.18)

A normalization of the eigenvectors could lead to d, =1, but it is better to keep the
relation in the form (3.18) and to normalize the vectors q(4,) and q(1/4,).

3.3 Wave decomposition

The free waves can be written as a linear combination of the eigenvectors. So, the left
state vector is given by the following sum of positive and negative waves with

respective amplitudes o and a;

i=n

oo |1 |- Sler sae) 6.19)
L i=l

In the same way, the right state vector is given by

i=n

]S
R

i=1

11



The relations between the incoming and outgoing waves in the cell are obtained from
x, =Tx, and after rearrangement this gives

b+ A 0 +
- 4 (3.21)
a” 0 A|b”
where the vectors a®, a”, b* and b contain the amplitudes of the waves and the

diagonal matrix A = diag(4,,...,4,) contains the eigenvalues of modulus less than or

equal to one.

From the relations (3.19) and (3.20), using the orthogonal properties (3.18), the modal
* amplitudes can be obtained from the left and right state vectors by the scalar products

4+t wpE gt
dia, =¥ x, d;b, =¥/ x4

- . (3.22)
dra; =¥, x; d; b, =Y, x,

where the d;° are the factors introduced in relation (3.18). So the relation (3.21) in the
case of N cells can be written as

wr v v
R N e (3.23)
voox, | |0 AY|¥ ox,

Introduce now the partition

v =['Q; Q] v =['Q: Q"] (3.24)
with
Q* =[q4) - a(4)]
-alay el (3.25)
Q —[q(&) q(ﬂn)}
and

fQ-:=IQ+DRR +A_IfQ+DLR :_!Q+DLL _A:Q+DRL

o g _ o At (3.26)
Q;=Q Dy +A1Q D,,=0Q DLL—AI QD

These matrices give the force components of the left eigenvectors. The relation (3.23)
can also be written as

lQ; IQ— qR — AN:Q; AN!Q_ ql. (3 27)
AN{Q: ANIQ+ _fR fQ: rQ+ fL '
or in the form
ANtQ- :Q— fL _ _ANJQ; rQ; :|{q£} 398
{ .'Q+ AN{Q+:||:fR:I |: _rQ: ANrQ: qR ( ' )

12



Replacing QF by the expressions (3.26) gives

o
Q' AV,
_ AN{Q—DLL +AN‘1!Q—DRL ’Q*DRR +A1Q_DLR :”:ql.} (3'29)
'Q'D,, +A1Q+DRL AN!Q*-DRR +AN_“Q+DLR 9z

[ T e i
1Q+ AN:‘Q-t- DRRC[R ArQ+ AN‘lrQ+ DLRqR
© Multiplying by the inverse of the matrix on the left side leads to
Niry- t - - N-lt t ey
fR DRRqR IQ+ AN!Q+ AfQ+ AN—ItQ+ DLRqR (3 30)
-_ 71 -_ -_ :
Z{DLLQL}JV[QN I :| {QN—I Q i||:DRLCIL:E
Dyed, I Qy QT Q. [ Dxax

and hence

il of|Pu O D, 0P P |P" I B q,
] (e 2 T T ] e

with Q} = (’Q")_IA“Q+ and Q] = ('Q')ﬁ}A”Q‘. Equation (3.31) gives the
dynamic stiffness matrix of the structure and is obtained from equation (3.30) by the
symmetry of the dynamic stiffness matrix and the following relations

P, = Q'A(Q’)_i (3.32)
P = Q'AlQf

It can be checked that these matrices are solutions of (2.9). We find again the formula
(2.15), but now the expressions for the propagation matrices are given in term of
waves and propagation constants. The matrix P, is in fact the matrix with the

r

eigenvalues A, and eigenvectors q(4,), while P, has eigenvalues A, and

eigenvectors gq(1/4,).

3.4 Numerical calculation of wave eigenproperties

To numerically calculate the eigenvalues and eigenvectors, one has to solve the
cigenvalue problem (3.6) or (3.9). For a small number of degrees of freedom, we
calculate the eigenvalues and eigenvectors of the transfer matrix. For a larger number
of degrees of freedom, a direct application of usual numerical solvers can lead to

13



difficulties because of the ill conditioning of the transfer matrix when the order of the
matrix becomes large. It is better, for instance, to define a problem in term of the
eigenvalue {1+1/A4) as proposed by Gry in [17] or with more mathematical details
by Zhong [18], which showed that the transfer matrix is symplectic and gave a
detailed analysis of its eigenvectors. This means that we look for the eigenvalues of

T+ T instead of the eigenvalues of T. This problem can be put in the form

o Dy, q; -D, O |q,
where , = Aq, . Another possibility is in the form
ol Ja)a e mee -
Dy +Dg Delq,| APy O |3,

Taking the sum of (3.33) and (3.34) and reorganizing leads to

|:DRL o :“i‘h}z 1 [" D +Dy) —(D,,—-Dy ):”:qLi| (3.35)
O Dm EiL ,1_,_1 (DI.R_DRL) _(DLL+DRR) Ef[,
A

This last system has only double eigenvalues. Denoting two independent eigenvectors

associated to the same eigenvalue as w, and w,, an eigenvector of system (3.33)
associated to the eigenvalue A can be decomposed as:

W= oW, Ha,w, (3.36)

Inserting this into (3.33) gives

-D — -D O D
o ~Dy — Dy aw +aw.)=1 K Naw, +a,w (3.37)
1771 272 1701 272

0 -D,, -D,, O

or
-D, -D,-D, —-1D
e L TR TR o w ha,w, ) =0 (3.38)
AD g, _DRL '
Taking for instance the scalar product by the complex conjugate *w , this leads to a
relation between ¢, and «, which gives the vector w up to a normalization factor.

Another possibility is to use the polyeig function of matlab, which solves the
polynomial eigenvalue problem. However this function does not provide clear
improvement over the preceding formulation.
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3.5 Case of a symmetrical cell

Often the cell is symmetric. This means that there exists a plane of symmetry as in
figure 4. Consider the implications of symmetry on the displacements and forces leads
io

q; =Sq,
9 =54, (3.39)
£ =Sf,
£ =Sf,

where S is a matrix describing the behaviour of each degree of freedom in the
symmetry operation and is such that 8% =1, the identity. For instance, the
components of the displacements parallel to the plane of symmetry do not change
during the symmetry while the orthogonal coordinates have their signs changed. The
same is true for the components of the forces. The § matrix is diagonal with only 1 or
—1 on the diagonal.

Plane of symmetry
Figure 4: Symmetrical cell

Using the relations (3.39) in (2.5) leads to

—DLL DLR ] q;.:| — I:fz:l (3 40)
1Dy Dpe gy £y
or
D, Dy, SCIR} :[SfR:I (3.41)
| Dy Dy | Sq; Sf,
which can be rearranged as
SD..S SD,S f
Calat ol RN (3.42)
SD,,S SD,Slq, f;

This relation must be the same as the original relation given by (2.5). So the
submatrices satisfy the following symmetry relations
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D, =SD,S$
D,, =SD,,S

(3.43)
D, =SD,S
D,.=Sb,S
Then the displacement components of an eigenvector are solution of
1
(DLL +D,, +AD, +EDRL]qL =0
(SDRRS+SDLLS+ASDRLS+%SDLRS]qL =0 (3.44)

(DRR +D,, + D, +%Dm]SqL =0

The last relation means that the eigenvector associated with 1/ is the symmetric
partner of the eigenvector associated with A, that is g(1/4)=S8q(4). The full left

eigenvector is

Y(4,)= IQ(%)(DRR"';%DLR) ‘q(/%)}

= :q(’lir)S(DRR +;'iDLR) ‘q(4, )S]
= :q(xl,. )(DLL +/1:'DRL) ‘q(4, )]S

= ""1(1(/1;)[])1&4'%])1_1?] lq(li) S

i

(3.45)

~¥(5

where the action of the operator S consists in multiplying the force and displacement
components by S8 and changing the sign of the force component. The same
transformation can be applied to the right eigenvectors ®(4,).

3.6 Perturbation analysis

The eigenvalues and eigenvectors are solutions of system (3.6). If we take the
derivative of this relation with frequency, we get

T'®, + T®, =i, @, + 1,0, (3.46)

Taking the product with the left eigenvector ¥, and simplifying leads to the
expression for the derivative of the eigenvalue (if ¥ @, =6,)

2 =¥ T®, (3.47)
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Recalling that 1 = e*, we find that the derivative of the wavenumber is given by

% _p-Lwre (3.48)
ow ilA,

Other formulas can be obtained for the derivatives of the eigenvectors. Taking the
products of (3.46) with the left eigenvector ¥, for j =/ leads to

¥ TO +¥TO, =1 V0 +1¥,0,
¥ TO +L¥,0, = L%, (3.49)
1

¥ 0, = ¥, T'D,

J

The last relation gives the projection of the vectors ®', along the eigenvectors ® ; for
J #i. As the normalization of the vector @, is arbitrary the component of @', along

@, can be arbitrarily chosen, for instance equal to zero. The matrix of the left

eigenvectors satisfies

YO =1 (3.50)
The derivative gives

Yo +-¥P'=0 (3.51)
So the matrix of the derivatives of the left eigenvectors is
Y=o’ (3.52)

The preceding calculations require the derivative of the transfer matrix. It is given by

T.:{ DD g D1iDy ~DikD'y -Di;D', Dk
— D'y +D' g D7Dy ~ DD 7D 1 D7pDyy +D e DD, =Dy Dy + D DD, D
(3.53)
L é 1 92 .
In practise, it might be neater to find 5—=———— when the dynamic stiffness
o) 20 dw

matrix depends only on @*, for instance in case of hysteretic damping or without
damping.

The transfer matrix, linking the displacements and forces on both sides of a cell,
was introduced in this section. Then, the propagation constants and the wave basis are
respectively the eigenvalues and eigenvectors of the transfer matrix. This basis allows
decomposing the state vector, made of the displacements and forces in a section, into
wave amplifudes. Thus, the behaviour of a structure with N cells can be written in a
simple way in terms of wave amplitudes and, after some transformations, the dynamic
stiffness matrix of the global structure is obtained. This also gives formulas to

17



calculate the propagation matrices introduced in the preceding section. Finally, some
special points related to the solution of the eigenvalue problem, to the case of a
symmetric structure or to the derivatives of the propagation constants and of the wave
basis vectors are also analysed.
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4, Results

4.1 Rod example
4.1.1 Transfer matrix

We consider first the very simple example presented in Figure 5 where a rod fixed on
the left side is submitted to a force / on the right side. For this example we will give
explicit calculations of all the matrices and vectors introduced in the theoretical part
of the paper.

element size

!
-

A 4

L=Nl

Figure 5: Rod structure

The rod is of length L and the mesh is divided into N elements of length /, such that
L=NI. Here N needs not be integral. The rod element with two degrees of freedom is
presented in figure 6. This is our basic cell introduced in the first part of the paper.

F, F,
—> —>
— —
u, ! U,
<

Figure 6: Rod element

The elementary stiffness and mass matrices for this element are given by (see for
instance Petyt [19])

KE=E—S[1 _1} Me=ﬁ{2 1 @4.1)
[ -1 1 6 |1 2

where E is the Young’s modulus, p the density of the material and S the cross-
sectional area. As an example we assume hysteretic damping leading to the damping
matrix C, =7K,, but the following is true for any damping model for which the

function E(w) giving the dependency of the complex Young’s modulus with the
frequency is known. The dynamic stiffness matrix of the element at the frequency @
is then D, =K, +C,-o’M,. It will be more convenient to work with non
dimensional quantities. Thus the displacements are written in units of / and the force
in units of ES, where E = (1 +i ry)E . This leads to the following dynamic stiffness
matrix
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. oo’ - o’ - (k1)* - (k)*
3E 6E 3 6
D — = 4.2
¢ _l_pfza)z l_plzajz _1_(kl)2 1_(k1)2 (42)
6E 3E 6 3
a)Z
where k =.,[2%— is the usual wavenumber with damping. After some simple
calculations, we get the transfer matrix
2
N RS
T=——— 4.3)
2 4 2
R P ) M )
6 12 3

Then the eigenvalues can be calculated and are given by

pr— > 1—(kl)ziikl1’1—ﬂ =1J_rsz—ﬂ+0((kl)3) (4.4)
LG 3 12 2
6

ikl

For small values of &/, the eigenvalues are equal to ¢™ to the second order in &/, with

the error being O((k/)’). Furthermore |ﬂi| :|/1"]:I if (k1)* <12 and there is no
damping.

4.1.2 Dispersion relations

Dispersion relations can be obtained by plotting the curves £* (@) = log(A*(@)). In
the case of no damping (7 = 0), the results are given in figures 7 and 8 as function of

ki and are also compared to the analytical solution. There is one coupling DOF and”
hence one pair of eigenvalues, which represent propagating waves below the cut-off

frequency for the FE model at &/ =412 . We can see that the FE predictions are
smooth and waves propagate freely if A/ <12 They are close to the analytical

relations for a rod for small frequencies, approximately until &/ ~1. For ki > V12,
the finite element model predicts a pair of attenuating waves.
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Figure 7: Dispersion relations for k™ (@) . Figure 8: Dispersion relations for £~ (@).

4.1.3 Fregquency response

Next, we calculate the frequency response function (FRF) for the excitation by the
force F at the right end of the rod. Following the method presented above, we need
first the right and left eigenvectors. The right eigenvectors of the transfer matrix T are

+
®F — «/Eikl\ﬁ -
1

V2

(K1)’
12 (4.5)

and the left eigenvectors are

|G L
v _{JFJE - \/5} (4.6)

The normalization of the right eigenvectors is arbitrary. The normalization of the left
eigenvectors is chosen to satisfy the orthogonality relations of equation (3.18) with
d, =1. One also sees that we have to choose &/ <+/12 =3.5 to avoid problems. In
term of wavelength this means /< 0.554. Otherwise the transfer matrix is not
necessarily diagonalisable and the eigenvectors cannot be properly defined. This is
not a real issue, as we know that for a correct mesh, the element size must be less than
a fraction of the wavelength, for instance / < A/5. Thus, in practise, the length of the

cell will be limited well below & =+/12 by the requirements on the accuracy of the
solution. It can also be noticed that the introduction of the damping leads to well-

defined eigenvectors. [ll-conditioning can be expected necar k/ =412 for small
damping.
Since there is just one coupling DOF, the matrices Q~ and Q" are scalars and are

given by

21



S S
Q' =Q LE} (4.7)

and the matrices P, and P, are scalars, are equal and equal the eigenvalue of modulus
less than or equal to one.

The relation between the forces and the displacements for a structure with & elements
is, as given previously in (2.15),

£, D, 0 D, 0 P.'N_} P, PrN 1 B q; 4
AR A S )

The previous relation can also be written as

|:f[. i| _ {ELL ?LR :||:(}le (4.9)
£y Dy Dpe |4z

where the overbar means the dynamic stiffness matrix of the whole structure. As the
left end is fixed q, =0 and we finally get

-1
ax = (D) 1 (4.10)
The displacement at the right end, in usual units, is obtained after some calculations

LW e N
( )2 - (%) ,E%:%%JFO((HY) @.11)
- E2 Y+ () )

The analytical solution is given by

_F sin(kx)

_ {4.12)
ESE cos(kL)

u(x) =

Hence the FE/waveguide solution is accurate to order (kD)* and is hence accurate as
long as &I is small. Figures 9 to 11 show analytical and numerical solutions for rods
with 5, 25 and 100 elements. The normalized displacement g /! is plotted against /.
Hysteretic damping with 7 = 0.01 is used. The results show that the accuracy doesn’t
depend on the number of elements but only on the value of /. For results with good
accuracy, one should choose k/<0.5. The results are also compared with modal
summation obtained by Ansys. The waveguide results seem more accurate in the three
cases.
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Figure 9: FRF for 5 elements. Figure 10: FRF for 25 elements.

In figure 12 is presented the FRF obtained with mass and stiffness matrices obtained
from Ansys instead of using the analytical matrices of relation (4.1). In this example,

the cell is made of steel with E£=2.10"Pa, p=7800ke/m>, [=0.02m and

S=10"m?. There are 100 elements. The results still agree with the analytical
solution.

— analyboal
= - numedcel waveguile
. Ansys
10’
E €
c
£ =
€
5 3
2w £
@ o
a &
a -4
2 -
= &
‘E 9
@
e 2
2 Y =
a i [ =3
Q il L AS s ad o
2 i‘l.‘-lﬁﬂ,< ; 3
IR JAdi it 1) 8 =
o iR Heh [ B
19 il 1 Eel 14 ik \! 2
i HEE R R
P VT L
1o . . L . . . . . .
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frequency in Hz
Figure 11: FRF for 100 elements.
Figure 12: FRF with the matrices of Ansys.

4.2 Beam example
4.2,1 Transfer matrix

We consider now the example of the beam presented in Figure 13, which is fixed on
the left side and simply supported on the right side. A force F is applied at 2/(3L).
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element size

T I I

A

L=Ni

Figure 13: Beam structure

The beam is of length L and the mesh is divided into N elements of length /, such that
- L=NI. The beam of length L is divided into two regions of lengths L, and L, by the

force F. A section of length / is analysed. Then L, =N/, L, = N,/ and N, and N,

need not be integers. The beam element with four degrees of freedom is presented in
figure 14. This is our basic cell introduced in the first part of the paper.

M, fFI F M,

| S
oy m My

Figure 14: Beam element

The elementary stiffness and mass matrices for this element are given by (see for
instance Petyt [19])

12 6 =12 6l 156 221 54 131
6/ 4 -6 2I° 220 417 131 =31*

=2 M, =2 (4.13)
Pi-12 -6 12 -6l 4200 54 131 156 -22I
6 20° -6l 47 ~130 =31* =221 4*

where E is the Young’s modulus, p the density of the material, 7 the second moment

of area and S the cross-sectional area. The damping is the same as for the rod. It is
still more convenient to work with non dimensional quantities. So the displacements

are written in units of [, the force in units of EI/I* and the momentum in units of

EI/I. The dynamic stiffness matrix is now

%f( Iy 6—%20(1:1)2 12—~~~2--(~}-(kz)2 6+£(kl)2
6——(k 4——()P —6-——(K) 2+—(K)
PeT —12—4ﬁ(;)2 —6—£((k3) 12—@(;)) —6:2%((13)2 9
420 cézo 2 4§g 2 120 2
_ 6+E(Ia’)2 2+E(kl) —6+Eo(kl) 4—5(@!) |
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where k=

oS e’

B is a wavenumber. After some calculations, we get the transfer

matrix
302400 +13320(k)? + 26(k)*
. 50400(k0)* +120(kI)*

P z s, 1 s

—151200(ki)* - 570(k1)* - :11:(1‘:1)6

302400 + 3240(kD? + 2(kD)* 50400 + 180(kl)*
302400 +13320(k)* +10(k1)* 151200 + 780(kl)*

151200(k1)* + 570(kI)"* + %(id)6 302400 + 133200k + 26(ki)*
- 50400(k1)* — 78(kD)* — -6%(,%1)5 —302400 — 3240(kl)* - 2(k)*

— 151200 — 780(k1)*
— 302400 —3240(k0)*
— 50400(kl)* = 120(kD)*
302400 + 13320¢kl)* +10(kD)*
(4.15)

Then the eigenvalues can be calculated. Their expressions are complicated, and only
the first terms of the series are given here

A (k) =1+ K + ;kl+ (kIY"* +— (k) + O((K1)*"?)

A(kl)—IwJ_l+;

A (kD) = 1+iﬁ_%k[mg(kl)3fz

1
24

K ——(sz)sz ﬁ(kz)2 +O((klY'?)
(4.16)
(k)" + O((kIY'"?)

1
. ? )
A, (k) =1— ik —%kl+-;—(kl)m Ei—(kz)z + OKD*™)

2 2
In the above ki = JpS JIEI { =Kl with K—ﬂi C; , which is the wusual

wavenumber for a beam. So for small values of &/, the eigenvalues are the analytical

expressions ¢ and ¢** accurate to the fourth order in 7. Another possibility way

to calculate the eigenvalues is to write the reduced system as

(DLL + Dy +AD,, +%DM)qL =0 (4.17)

which in terms of coefficients is
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2432y 0 _12- 2R P s+ (u)
420 ) 420 420
0 s- S (P | | -6-L (P 2+—(u}
420 420 420
. " (4.18)
) —12“—5--“(,@!)2 —6———(ki)’
L1 14_17-)20 z;zo ~0
A 2 2
6 +—— (ki 2+——(K
¥ 20( ) +420( )
and the eigenvalues are also the solutions of
276, v 13 148, v 1 /1
49 - 2 (kY + —— (ki) +{ —96 - —(ki)" ~—=(H h
35 () g W) +[ 35 4 =155 )JCOS (#) w5

4, 0w 1 . )
48+ — — (K hi(u) =
+[ 8+35(kl) +6300( )}cos (1)=0

with 2cosh(g) =4 +i~.

4.2.2 Dispersion relations

Dispersion relations can be obtained by plotting the curves k(@) = log(4,(@))- The

results are given in figures 15 to 18 as function of Al = ’%S’I—lza), which is

proportional to the frequency . In this example, we do not consider damping in the

systent, SO E = E . The first two eigenvalues are real and the other two are imaginary.
The behaviour is the same as for the analytical expressions for the wavenumbers of a

beam, which are functions of Jw. To allow a better comparison, the analytical
wavenumbers, which are given by * JkI and + ikl are also shown. The difference

between the two curves is small. So the present calculation is a very good
approximation to the actual behaviour. '

4.

real and imaginary parts of k1{w)l
real and imaginary parts of k2(w)l
1 . , s
) [ . :

=05
a

Figure 15: Dispersion relations for &, (@) .
Figure 16: Dispersion relations for &, (®).
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Figure 17: Dispersion relations for k; (@) Figure 18: Dispersion relations for k,{(®).

4.2.3 Frequency response

As a next step, we calculate the frequency response function (FRF) for the excitation
by the force F at the position 2/3L. We do not give the complex expressions for the
right and left eigenvectors. The relation between the forces and the displacements for
a structure with & elements is, as given previously,

5 |
I:fL } - I:D LL 0 i| + |:D LR 0 :|[PIN l Pr i”inN I } {ql. :| (420)
fr 0 Dy 0 D || P P 1 P’ A

This relation is written for the parts of the beam respectively on the left and on the
right of the force.

(4.21)

with the following boundary conditions on the left and right sides and at the point
where the force is applied.

q; =0

1 2

q, =4;

1 2 —F _
ik, +f + =0 (4.22)
R L 0
Mi=0
v§=0

Assembling the matrices for the two parts of the beam and eliminating the fixed
degrees of freedom, we get the global dynamic stiffness matrix. The displacements
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and rotations can be obtained by the solution of the following system, where D, is
the total dynamic stiffness matrix of the beam

F vy
0|=D, Hf (4.23)
0 o2

The figures 19 to 22 give the analytical and numerical solutions for a beam with 3, 30,
3000 and 10000 elements. In this example, the cell is made of steel with
E=210"Pa, p=7800kg/m’, I1=833"m*, L=1m, §=10%m? and F =1N.
The displacement v; at the point where the force is applied is shown. A hysteretic
damping with 7 =0.01 is used. The results for 3 elements are clearly inaccurate
except for very low frequencies, showing that the element size is too large in this
case. The calculations for 30 and 3000 elements provide a very good comparison with
the analytical solution. Thus the waveguide element approach is accurate for elements
with very different scales and is essentially accurate if 4/ < 2. However, the case with
10000 elements shows the limits of the method when the element size becomes too
small. The solution is not more accurate for small frequencies. This is not a real
problem as the need for very small elements is for high frequencies in fact.
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Figure 19: FRF for 3 elements. Figure 20: FRF for 30 elements.
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Figure 21: FRF for 3000 elements.
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Figure 22: FRF for 10060 elements.
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Tt must be noted that the calculation time is independent of the number of elements,
which is a great advantage over classical finite element methods.

4.2.4 Change of scale of the mass and stiffness matrices

As the length of the cell / changes, so the elements of the mass and stiffness
matrices change. This can be exploited to extend the frequency range of analysis
without the need to remesh the structure. The mass matrix connects the displacements
and rotations to the forces and moments. In a change of length of the beam cell, the
displacements are proportional to the length and the rotation has no dimension. The
density is conserved and the mass is proportional to the cross-sectional area times the
length so is proportional to the length. As the acceleration is also proportional to the
length, the force is proportional to the square length. Moments are proportional to the
length to power three. This leads to the following table presenting the scale effect of a
change of length of the beam on the physical quantities occurring in the mass matrix.

Physical quantity Length effect Exponent «
u L 1
v L 1
g 1 0
F I? 2
M I 3

Table 1: Scale effect for the mass matrix

For the stiffness matrix the displacements and rotations have the same
behaviour with the length as for the mass matrix. The tangential and normal forces
and the moments are changed according to the scale effect presented in table 2.

Physical quantity Length effect Exponent «
] L 1

v : L 1

4 1 0

F {tangential) 1 0

F (normal} ? -2

M I -1

Table 2: Scale effect for the stiffness matrix

Consider now a matrix element connecting a force component #; to a
displacement component ¢; with the relation 7, =T7,q ;. If the exponent associated to
F, is «,and the exponent of ¢, is «,, the coefficient 7, will have the exponent

1)

@, — ;. This means that if the length of the element is changed from /, to [ -the

coefficient is changed by 7, :(ILJ T;. This relation allows new stiffness and

0
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mass matrices for the length / to be calculated if we know these matrices for the
length /,.

As an example, figure 23 presents the FRF with the mass and stiffness
matrices obtained from Ansys and scaled to have a beam with 30 clements. The
parameters of the beams are the same as before. The original Ansys element had the
length 0.02m and was rescaled. The figure proves the efficiency of the method.

In figure 24, the analytical solution is compared to an Ansys modal analysis
with 30 and 300 eclements. We used a modal damping with a constant factor equal to
0.005 for the Ansys calculation. Although this can explain a part of the difference
between the numerical and analytical calculations, it is clear that the beam with 300
elements gives a solution closer to the analytical result. So a standard modal analysis
needs a much larger number of elements to give the same accuracy as the waveguide
approach.

. ) ' i — Anatytieal i 10 . v T T T T T
= = Waweguide with Ansys matices = Arawical
= = Ansys 30 alamenls
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w'e
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Figure 23: FRF for 30 elements with the
Ansys matrices. Figure 24: FRF by Ansys modal analysis

with 30 and 300 elements.

4.3 Plate example

We consider now the example of the simply supported plate presented in figure
25 and under the action of a force F.

7\

L iF

A Ja A A

Figure 25: Simply supported plate

The equation describing the motion of the plate is
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4 4 4 2
Da‘:’+2 32w2+a‘;” +,oh6§"=F (4.24)
ot axtey: oy ar

3
with D = -12(1Lh33 the bending stiffness, p the density, E the Young’s modulus, v
-v
the Poisson’s ratio and 4 the thickness of the plate.

4.3.1 Dispersion relations

The analytical dispersion relations for the simply supported plate of width L is

(see Fahy [20])
K=o /Eﬁ _ (ﬂ] (4.25)
D \L

The numerical results are obtained from Ansys stiffness and mass matrices for the
mesh presented in figure 26.

ELEMENTS 1’\]\'

AUG 28 2003
09:147; 30

arcicle

Figure 26: Ansys mesh with a layer of 50 shell elements.

Numerical dispersion relations can be obtained - by plotting the curves

k() *—*.lllog(i,. (@)) where [ is the width of the layer equal here to 0.0/m. The
i

results are given in figures 27 to 30. The example is a steel plate with a thickness
h=0.001m and a width L=Im. It can be observed that the propagating waves are
correctly estimated as the real parts of the wavenumbers are close to the analytical
solutions. The agreement on the number of propagating waves is also very good as
can be seen in figure 30. A difference can be seen for the near-field waves mainly in
figure 29. In fact, the numerical wavenumber number 5 was estimated by taking the
fifth closest propagation constant to one. As the imaginary part of the wavenumber
increases, mainly for low frequencies, the propagation constant becomes very small.
The fifth analytical propagation constant becomes mixed with a large number of small
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eigenvalues of the transfer matrix and it is difficult to separate the true propagation
constants from the other eigenvalues.
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Figure 27: Dispersion relations for £, (). Figure 28: Dispersion relations for &, (w).
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Figure 29: Dispersion relations for ki (w).
Figure 30: Number of propagating waves.

4.3.2 Frequency response

Next, we calculate the frequency response function (FRF) for the excitation by the
force F at the middle of the plate. The relation between the forces and the
displacements for a structure with &V elements is, as given previously,

_ -1
f,| _({Pu O N D, 0[P P |P¥ I q, 4.26)
f, 0 D, 0 Dy P P 1 PY Ap |

This relation is written for the parts of the plate respectively on the left and on the

right of the force.
fl 1
fr qr
- 2
fz dz

with the following boundary conditions on the left and right sides and at the point
where the foree is applied.
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q) simply supported

1 _ .2
l R qR qL (4.28)
fo+f, +F=0

q> simply supported

Assembling the matrices for the two parts of the plate and eliminating the fixed
degrees of freedom, we get the global dynamic stiffness matrix. The process is the
same as for the beam example. The displacements and rotations can be obtained by
the solution of the following system, where D_, is the total dynamic stiffness matrix

of the beam

E_=D,q (4.29)
Figure 31 presents a comparison of the waveguide calculations and the analytical
solution. The two results agree very well. Figure 32 compares the analytical solution
with Ansys standard modal analysis for 10x10 and 100x100 elements. Clearly a mesh
with 10510 elements is not enough to get an accurate solution. The solution with
160x100 elements is accurate but at the price of a huge calculation in terms of time
and memory reaching the limits of what can be done on a personal computer. Thus,
the waveguide approach gives a much better solution with less computational
resource,

" Aratyrcal
~ = Ansys 100 alments
Ansya 10000 clamenis

medulus of the displacemsntin m
madulus of the displacemant in m

7| 3 L L 3 : L L 2 2 L L L . . L . L
o 20 ) & 80 108 120 140 180 180 200 q 20 40 5Q a4 w00 120 140 150 12 204

frequency in Hz frequency in Hz
Figure 31: Comparison of analytical and Figure 32: Comparison of analytical and
waveguide results. Ansys modal analysis.

So, different examples were presented, some simple like the rod and the beam,
and a larger one with the plate. The link with Ansys to get the stiffness and mass
matrices allows dealing with more complex examples than these one. The dispersion
relations were found and the accuracy of the propagating waves was found very good.
For attenuating waves the wavenumbers need not be too small to be determined
accurately. The force responses are also found in close agreement with the analytical
solutions and are much betfer than those obtained by the standard modal analysis with
Ansys.
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5. Conclusions

In this report a numerical method for calculating the vibrations of periodic and
waveguides structures was presented. The starting point of this approach is the
dynamic stiffness matrix of a cell of the periodic structure, which is obtained from
standard finite element software after meshing the cell and solving a simple dynamic
problem to create the mass and stiffness matrices. For a periodic structure, we
introduced the right and left propagation matrices, which are solutions of a recurrence
equation. The global dynamic stiffness matrix of a structure with N cells is then
obtained from these propagation matrices. One must notice that the calculation cost to
get this global dynamic stiffness matrix does not depend on the number of cells N.

To analysis the structure in terms of waves, we introduced the transfer matrix
linking the displacements and forces on both sides of a cell. Then, the propagation
constants and the wave basis are respectively the eigenvalues and eigenvectors of the
transfer matrix. This basis allows decomposing the state vector, made of the
displacements and forces in a section, into wave amplitudes. Thus, the behaviour of a
structure with N cells can be written in a simple way in terms of wave amplitudes and,
after some transformations, the dynamic stiffness matrix of the global structure is
obtained. This also gives formulas to calculate the propagation matrices.

The examples of a rod, a beam and a plate show that, at least for low
frequencies, the numerical dispersion relations are very close to the analytical
relations. This means that the accuracy of the present approach is good when the size
of the cell is small compared to the wavelength. The point force response shows a
similar agreement with the analytical calculations and seems better than pure finite
element results obtained by the standard modal analysis for the same number of
elements. If we compare to standard FE approaches, the cost of a calculation with the
model developed in this paper is greatly reduced because we only have to mesh one
cell instead of the whole structure. The other advantage is that standard FE packages
can be used on the contrary of spectral FE, which need to develop new elements for
each application. The model is also the same for any sort of damping, what could be
used to introduce more accurate forms of damping than hysteretic or modal damping.

Some points could be improved. For instance, it would be interesting to use a
reduced wave basis instead of using the whole set of eigenvectors and eigenvalues.
However, the correct way of doing this is still an open question. One could study in
more details the numerical instabilities found in section 4.2.3 when the size of the cell
becomes very small to try to extend the domain of validity of the present approach.
The use of the change of scale of the dynamic stiffness matrix presented in section
4.2 4 for a beam can also be extended to more general structures. Finally, we could try
to extend this one-dimensional approach of wave propagation in one direction to two
and three-dimensional propagations. This means that we could try to calculate the
plate example of section 4.3 using only one finite element instead of the 50, which
were used to model the strip. This last problem seems however more difficult than the
other points.

36



10.
11.
12.
13.
14.

15.

16.

17.
18.

19.

20.

References

. D. WaNG, C. ZHOU AND J. RONG, Free and forced vibration of repetitive

structures, International Journal of Solids and Structures 40 (2003) 5477-5494,
L. BRILLOUIN, Wave propagation in periodic structures. New York: Dover,
1953,

D, J. MEAD, Wave propagation in continuous periodic structures: research
contributions from Southampton, 1964-1995, Journal of Sound and Vibration
190 (1996) 495-524.

D. J. MEAD, A general theory of harmonic wave propagation in linear periodic
systems with multiple coupling, Journal of Sound and Vibration 27 (1973)
235-260.

D. J. MEAD, Wave propagation and natural modes in periodic systems: I
Mono-coupled systems, Journal of Sound and Vibration 40 (1975) 1-18.

D. J. MEAD, Wave propagation and natural modes in periodic systems: IL
Multi-coupled systems, with and without damping, Journal of Sound and
Vibration 40 (1975) 19-39.

D. J. MEAD and N. S, BARDELL, Free vibration of a thin cylindrical shell with
periodic circumferential stiffeners, Journal of Sound and Vibration 115 (1987)
499-520.

R. M. Orris and M. PETYT, A finite element study of harmonic wave
propagation in periodic structures, Journal of Sound and Vibration 33 (1974)
223-236.

A. Y. A. ABDEL-RAHMAN, Matrix analysis of wave propagation in periodic
systems, PhD thesis, University of Southampton, 1979.

D. J. THOMPSON, Wheel-rail noise generation, part ITI: Rail vibration, Journal
of Sound and Vibration 161 (1993) 421-446.

A. H. voN FLoTow, Disturbance propagation in structural networks, Journal
of Sound and Vibration 106 (1986) 433-450.

L. S. BEALE and M. L. Accorsl, Power flow in two- and three-dimensional
frame structures, Journal of Sound and Vibration 185 (1995) 685-702.

S. FINNVEDEN, Finite element techniques for the evaluation of energy flow
parameters, Proc. Novem, Lyon (keynote paper), 2000.

C. M. NILssON, Waveguide finite elements for thin-walled structures,
Licentiate thesis, KTH, Stockholm, 2002.

P. J. SHORTER, Wave propagation and damping in linear viscoelastic
laminates, Journal of the Acoustical Society of America. Submitted for
publication.

L. GrY, Dynamic modelling of railway track based on wave propagation,
Journal of Sound and Vibration 195 (1996) 477-505.

L. Gry and C. GONTIER, Dynamic modelling of railway track: a periodic
model on a generalized beam formulation, Journal of Sound and Vibration 199
(1997) 531-558.

W. X. ZHONG and F. W. WILLIAMS, On the direct solution of wave
propagation for repetitive structures, Journal of Sound and Vibration 181
(1995) 485-501.

M. PETYT, Introduction to finite element vibration analysis, Cambridge
University Press, New York, USA, 1990

F. FAHY, Sound and structural vibration, Academic Press, London, 1987.

37






	tm922cover.doc
	E COPYRIGHT NOTICE.doc
	Memo922.pdf

