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ABSTRACT

The vibrational behaviour of beams can be expressed by the propagating waves plus
the nearfield ones. The propagating waves carry energy along the beam. The flow of
this energy is called intensity. Usually nearfield (evanescent) waves don’t carry
energy.

In previous work, the amplitude of a positive-going propagating wave was estimated
in real time in order to minimise the vibration level of a beam using feedforward
active control.

In this project, both incident and reflected waves were estimated plus a positive-going
nearfield one in real time.

Hence, instantaneous values of the response, internal forces and the intensity in beams
can be estimated as function of time. The individual components of intensity, which
propagate in each direction, and the components due to shear and moment can also be
estimated.

The estimates are obtained by digitally filtering and combining the outputs of an array
of sensors. The appropriate FIR filters are designed in the frequency domain, the
approach being based on wave decomposition.

A number of experiments have been performed in order to investigate the behaviour

of flexural waves in a thin beam.
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NOTATION

The lower case variable represents a symbol (e.g.,p(f)) is used to represent a variable
in the time domain while in the upper case (e.g.,P(®)), represents the same variable in

the frequency domain.

A Cross sectional area.

at Positive — going propagating wave.

a;, Positive — going evanescent wave.

a” Negative — going propagating wave.

ay Negative — going evanescent wave.

b* Positive — going transmitting wave.

by Positive — going transmitting evanescent wave.
e Base of natural logarithm.

Young’s modulus.

f Frequency.

Sy Nyquist frequency.

£ Sampling frequency.

h Filter impulse response, FIR filter coefficient.
H Filter frequency response.

.

J-1.

I Second moment of area.

k Bending wavenumber.

E Translational stiffness.

L Length of beam.

m Bending moment.

n Time step.

n, Time delay.

n, Number of terms in FIR filter.
q Shear force.

r Reflection coefficient.
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Subscripts

Transmission coefficient.

Velocity.

Transverse displacement.
Longitudinal displacement.

Sensor output.

Spacing between two accelerometers.
Beam rotation.

Wavelength.

Density.

Positive — going propagating wave (frequency domain).

Negative — going propagating wave (frequency dormain).

Positive — going evanescent wave (frequency domain).
Negative — going evanescent wave (frequency domain).

Circular frequency.

d( ) dt

d( ) dx

Time step number.
Nyquist frequency.
Nearfield.

Sampling frequency.
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1. INTRODUCTION.

In this report, both incident and reflected waves were estimated plus a positive-
going nearfield one in real-time. In previous work, only positive propagating wave
was estimated in real-time and this was used as a cost function in a feedforward
adaptive control scheme [1,2,3].

These estimated waves were found by digitally filtering and combining the output of
an array of sensors. From these waves, instantaneous intensity can be estimated once
estimates from the instantaneous velocity, shear force, angular velocity, and bending
moment at a point have been made [4].

This method of estimating the wave amplitudes in real-time is very effective and the
main prerequisite is a successful estimation of the flexural wave number of the beam
structure. Thus it will be used in the designed wave filters as will be explained.

The new wave estimates will partly be used in further research concerns adaptive-
passive control of structure-borne vibration as a cost function.

The validity of theoretical modelling of the reflection and transmission of flexural
waves due to mass discontinuity [5] was investigated experimentally in the frequency
domain. This is presented here as a basic experimental work for a potential
application for real-time wave amplitude of more complicated discontinuity systems.
The report is presented in five main chapters; an introduction about flexural wave
motion in beam structures is introduced in Chapter 2. Reflection and transmission of
waves due to point discontinuities and boundary conditions are briefly introduced.
Chapter 3, “Wave Amplitude Filters,”” presents the major fundamentals in designing
the wave amplitude filters. Wave decomposition and reconstruction method is
introduced. The estimation of flexural waves in beam structures has been
implemented in both far- and nearfield.

Chapter 4, “Experimental Work,”” presents the experimental set-up followed in the
performed experiments. An explanation about the designed wave amplitude filters
using the Matlab facilities is also included.

Chapter 5, “Experimental Results,’”” presents a discussion about the experimental

results performed.



A comparison between the estimated wave amplitudes has been shown for both
discrete frequency and broadband excitation.

Moreover, the validity of theoretical modelling of transmission coefficient has been
investigated.

Lastly, the most important remarks obtained from the experimental work as well as

the future planed work were included in Chapter 6.



2. FLEXURAL WAVE MOTION IN BEAM
STRUCTURES.

This chapter introduce some back knowledge about flexural waves in Euler-
Bernoulli beams and the effect of point discontinuities and boundary conditions on
wave motion. The chapter is organised in three sections. The flexural wave motion in
beams was introduced in the first section.

The second section explains the energy flow in beams. Effect of discontinuities and
boundary conditions on the behaviour of flexural waves was briefly introduced in the

third section.

2.1 Flexural Waves in Thin Beams.

Vibrations propagate through structures as waves, where a mechanical wave may be
defined as “a phenomenon in which a physical quantity (e.g., energy or strain)
propagates in a supporting medium, without net transport of the medium.’’[6]

When mass and elasticity are distributed through a system, a description of its
configuration requires an infinite number of coordinates. Therefore beams have an
infinite number of degrees of freedom, which in turn means that it has an infinite
number of natural frequencies.

The vibrational behaviour of beams is of great interest to engineers, where it is found
that their lower natural frequencies often have values, which give rise to the
possibility of resonance occurring when machinery is running,

It is found that the flexural waves are the easiest to excite in beams structures,
however axial and torsional vibrational motions are also possible to exist.

This displacement occurred to a beam element due to flexural vibration consists of
four wave components as will be explained in this chapter.

2.1.1 Differential equation of motion.

Using the Bernoulli-Euler beam theory; namely that the beam is initially straight,
and that the depth of the beam is small compared with its radius of curvature at its
maximum displacement. In another way, plane sections remain plane and
perpendicular to the neural axis of bending [6,7,8].

The sign convention adopted is shown in Figure 2.1 together with the forces and

moments acting on an elemental length of the beam in its distorted form.



EI (Bending Stiffness) > x
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Shear force (Q)
p X
Figure 2.1. Beam in flexure; Positive sign convention
Applying Newton’s laws gives for motion in the y direction
00 *w
—=pA—-. 2.1
ax o &b
By summing moments of the elemental length 0x, it is found that
oM
Q=—— (2.2)
ox
using this value for Q in Equation (2.1) gives
*M 9w
+ pA =0. 2.3
ox’ p at? 25)

Bernoulli — Euler beam theory gives the following relationships between the applied

moment and the curvature.

o*w
M =FE]I —a-x—2 2.4)
and hence
3
Q=—FEI 887?, (2.5)

where the direction of the positive shear force and bending moment is shown in

Figure 2.2.



Figure 2.2. Definition of the positive shear force and bending moment

Therefore the equation of motion is

o* 9?
EI—é—g-l- pA—érTw-——O. (2.6)

it

For simple harmonic motion w(x,f)=W(x)e

d*w

4

- EI — pA&’W =0. (2.7)

The general solution to this equation is the sum of four harmonics as shown below
W(x) = Asinkx+ Bcos kx+ C sinh kx+ D cosh kx,
where W is the beam’s displacement. A, B, C and D are arbitrary constants and the

frequency dependent variable k is given below

_aPA
k=g Jo, (2.8)

which is the flexural wavenumber. This gives phase change per unit distance that
describes the spatial variations {9]. The constants p, A, E,and I represents the
beam’s density, cross sectional area, Young’s Modulus and the second moment of are
respectively. The variable @ represents the circular frequency. The relation between
the wavenumber k and wavelength A is given by

r=2 -2 2.9)
g A

where ¢, is the speed at which the disturbance propagate in a system and it is called

the phase velocity.

One of the unique characteristics of flexural waves is the dispersion propeity, where

the phase velocity ¢, increases without limit for increasing wavenumber k for

shorter wavelength A.



2.1.2 Bending waves in beams.
Suppose quantities vary time harmonically at a frequency @. Hence eq.(2.7)

becomes

d‘w

4

—k*W =0. (2.10)
dx

The general solution of Eq.(2.10) including the time dependence term ¢™is given by

oy o
wix, ) =a ™ 147" v qlee™ +aje™ e, (2.11)

i r - .. . .
where a'e”* and a e represent positive and negative going waves

respectively, while Ce™e™ and De™e" represent positive and negative decaying
evanescent waves respectively.

Nearfield, or evanescent waves, are waves that decay exponentially with distance.
These are very localised and usually do not carry energy. The exponential decaying of

these waves is shown in Figure 2.2.

x x
> >

(a) Positive — going near field {b) Negative — going near field

Figure 2.3. Near field waves

Hereafter, the explicit time dependence e will be suppressed; hence the beam
displacement w given in Eq.(2.11) can be reduced to the one below in the frequency
domain

W(x,w) =0 ™ + @} ™ +D "™ + O " (2.12)
In the presence of damping, k has negative (usually small) imaginary part so that the
amplitude of the propagating wave component decays gradually in the direction of
propagation.
The wave amplitudes @, are thus referred to as displacement wave amplitude. The
subscript N refers to the evanescent waves. However, all response quantities

(velocity, acceleration, shear force, etc...) vary time harmonically under the passage

of a wave,



Thus, it is possible to define the amplitudes of the wave components in terms of the
amplitude of any such response quantity. For example, velocity waves, which have

amplitudes @, =i@®, , give the velocity of a beam under the passage of a wave while

acceleration waves have amplitudes ®, = —@’®, .

The superposition of these waves gives the velocity or acceleration of the wave-guide.

2.2Energy Flow in Beam Structures.

This section presents the encrgy flow in beams structures and intensity components
in terms of the flexural wave amplitudes.
2.2.1 Structural intensity in beams.

The flow of vibrational energy along the beam structure is called the structural

intensity and this is given in terms of beam deformation and internal forces by

2
i(x,t)=—qv—m9; vz%?-; 6= gxg;,

(2.13)

where v and © are the transverse and rotational velocities respectively.

The total intensity in the beam arises from three terms {4,10]. The two propagating
waves independently, where each wave has shear and moment contributions to the
total intensity, which are equal in magnitude and out of phase, so that their sum is
constant and independent of time. The nearfield interaction terms, however, give a
contribution, that depends on the relative phases of the wave components.

2.2,.2 Intensity components.

Measuring the internal forces in practice is very difficult. The beam response is
instead measured at a number of points and the internal forces are then inferred from
equations (2.4) and (2.5) as shown using the finite difference approach by Pavic [11].
The intensity can be estimated directly if the velocities and internal forces are known
[4,5]. The internal forces and the rotational velocity can be estimated by using a wave
decomposition approach.

One can find the structural intensity in the frequency domain by deriving the intensity

components as shown below



W [e™ e ] +'e”“ [ o
(ka)8f | e e ||@L, | |—e™ i ||y ]
MIER?| [-e™ e=][ ) | [-* o[,
Q/ER* | |~ie™ || 0Ly ] Lie™ e [|Oy]

Therefore, shear and moment contributions of the intensity can be deduced

respectively below in the time domain
4 (1)v(1)=-Re{Q(0)e™ }Re W (x)e™ ], (2.15)

and

—m(£)8(t)=~Re{M (0)e™ }Re{(W (x))' e"‘*’f}. (2.16)

Summing equations (2.15) and (2.16) will lead to the total intensity.

2.3Reflection and Transmission of Flexural Waves in Beams.
This section will present a brief introduction about the effect of discontinuities and
boundary conditions on the flexural waves along beam structures. The transmission of

the flexural waves can be suppressed if the point discontinuity is well designed.

Suppose a positive — going wave ®* is incident upon a support as shown in Figure
2.3. It gives rise to positive-going transmitted @ and negative-going reflected @~
waves

e _ 9

—_—=7;
& il

=t, (2.17)

where r and ¢ are the reflection and transmittion coefficients respectively.

\‘E‘: \*CDTJ' N

k, (Stiffness)

- |
D, L
Figure 2.4. Point supported beam.
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The displacements of the beam w_ and w, in the regions x<0 and x>0 are given
by:

W =0le™ +®) o™ + D "™ + D, "™, W, =Dfe™ +D) o™, (2.18)
The amount of transmitted wave depends on the characteristics of the point
discontinuity as shown by Hassan [10].
There are two conditions that can be satisfied at each end of the beam. The four most

commonly cases of boundary conditions are listed in Appendix A1.0.



3. WAVE AMPLITUDE FILTERS

This chapter presents the algorithm of the wave amplitude filters used in estimating
the flexural wave amplitudes. It is organised in five sections, where the first one
introduces the important fundamentals in designing the wave amplitude filters. A brief
discussion about the methods of designing the FIR filters and the factors controlling
their accuracy over the frequency range of interest is presented in second section. The
third section concerns with estimating the ideal frequency responses of the digital
filters. These were used to estimate the propagating wave amplitudes of the farfield
where the evanescent waves are insignificant and this will require designing four
digital filters. The ideal frequency responses used in estimating the nearfield wave
amplitudes (two propagating waves plus the positive decaying nearfield) are also

included.

3.1 Fundamentals in Designing Wave Amplitude Filters.

This section presents some basic knowledge about designing the wave amplitude
filters using the wave decomposition and reconstruction approach as explained by
Mace [4,12]. The filters are designed in the frequency domain and subsequently
implemented in the time domain by convolving the sensor outputs with the impulse
responses of various filters. A brief discussion about the ideal frequency responses
used in these filters is also included.

3.1.1 Wave decomposition in the frequency domain.

An array of three equally spaced sensors are mounted on a beam is shown in Figure
3.1. The output of the sensors are digitally filtered and combined to yield estimates of
the wave amplitudes at the centre of the array x=0. These filters are referred to as
wave filters or wave amplitude filters.

It is assumed that the negative going nearfield ®, is negligible, although its effects
are included I the simulations as described later. The displacement around the array
can be written as

W (x,0)= @™ + D™ + @™, (3.1
The subscript W, which referred to displacement wave amplitudes, is omitted for

simplicity.

10



Wave filter 2

(I);
Wave filter | >

+
(I)A

Wave filter 3

—> o7,
FIR Filters

Figure 3.1. Nearfield wave amplitudes. A is the accelerometer at position 7,
where #=1,2 and 3.

The vector of sensor outputs Y(w) is related to the wave amplitudes ®(w) by

W (-A, @)
Y(w) = W(O,w) s 3.1
W(A )
and hence
(D+
Y(0)=S(0)®(0); ©(0)={d }, (3.2)
@
where the sensor matrix
e.'kd e-ikd ekA
S(o)=| 1 1 1 . 3.3
~fkA kA e—lm
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The wave amplitudes are consequently given by
®(0)=G{(0)Y(»); G(0)=S"(w). (3.4)
Thus, the frequency response matrix G (co) can be found by inverting S (m) . This can

be easily calculated using software such as Matlab®©.

The determinant of § equals 4isinka (cosh ka—coska), and hence S is singular if
the separation A is half a wavelength (A/2).

The matrix G (®) provides wave amplitudes of the same response variable as the
sensor outputs, i.e. accelerations measurements would give acceleration wave
amplitudes as shown in Figure 3.1. Therefore —1/@’G, and 1/i®G would provide

estimates of displacement- and velocity-wave amplitudes respectively.
3.1.2 Wave reconstruction in the time domain.
The wave amplitude is given by the superposition of the related frequency

components. Where

b(t)=F {0 (w)}= [ ®(0)e"do (3.5)
where F' {.}is the inverse Fourier transform. Therefore the wave amplitudes in real-

time ¢ can be found below
o(1)=2()*y (). (3.6)

where * denotes the convolution and g(f) is a matrix of impulse responses, these are

the inverse Fourier transforms of the elements of G(@) . These will be explained later
on in the experimental work. Where the steps in implementing the wave filters are

thus to specify the details of the sensor array to determine the frequency response
matrix G (), and to design filters whose impulse response approximate g(r) to
acceptable accuracy. This will involve the implementation of Finite Impulse
Response (FIR) digital filters.

The required filters are typically non-causal, so that g(r)is non-zero for t<0. as a
result of estimating the wave amplitude at x=0 from sensor measurements tat

various locations. Also it takes some time for waves to propagate from one location to

another. Therefore exact estimation of the wave amplitudes requires knowledge of the

12



future output of the downstream sensor. These effects can be minimized by

incorporating small delay into the filtering process®.

3.2 Designing the FIR Filters.
All filtering is performed digitally, with the accelerations assumed to be sampled at

a sampling frequency f,, being first passed through anti — aliasing low-pass filters
with a cut-off frequency of somewhat less than the Nyquist frequency f, = f, /2.

The estimated wave amplitude at time step m is then
4= Z( 2, gpy,.-,m-p} (3.7)
=13\ p=0,7
where the length of the filters is P+1. The implemented filters are consequently
approximations to the ideals defined above. There are a number of ways of designing
FIR filters. The adopted approach is the one described by Mace [1].

The filters in G are time delayed by n, time step, which is equivalent to multiplying
G by exp(—ion,/ f,). Therefore the number of terms in the FIR filter n, can be
found below

n, = (2n, +1). (3.8)
The FIR filters are only accurate over a frequency range, which is limited by a

number of factors [1]:

1- The selected sampling frequency f, (Max. frequency of control being less

than the Nyquist frequency).
2- The sensor spacing A must be less than half the wavelength for a given
frequency range.
3- The lower frequency limits is imposed that the array should be free of the
influence of the near field of the control.
FIR filters are insensitive to frequencies below = f, /n,and above f (1-1/n,).

A weighed least-squares procedure is then used to fit the implemented frequency

response G to that of the appropriate element of G. This will minimize the sum over
A 2
frequency of [G(m)lG (m)—G(m)‘ ], where () is a chosen weight function.

The accuracy of the implemented filters depends on the number of terms and is

generally worst for low frequencies and for frequencies close to the Nyquist

13



frequency f,. these frequency ranges can be zero-weighted by in the least squares

estimation if required.
In practise, the anti-aliasing filters will remove the low and high frequency

components of the signals.

3.3 Real-Time Estimation of Flexural Waves.

This section presents the designed frequency responses of the wave filters. These
concern the estimation of flexural waves in the Farfield and Nearfield of a thin beam.
3.3.1 Farfield Estimation.

In the farfield, only propagating waves exist; hence an array of two accelerometers
can be used to estimate the wave amplitude in real-time, where the accelerometer
outputs are filtered using the digital FIR filters explained above.

Figure 3.2 shows a system comprising two accelerometers at distance A apart, which

is perhaps the most commeon system for estimating the structural intensity [4].

A2  Al2

X

|

Figure 3.2. Beam structure comprising two accelerometers in the farfield for estimating
wave amplitude and intensity at x=4/2

The two acceleration signals are digitally filtered in order to estimates the acceleration
wave amplitudes.

The frequency responses H,(@)and H,(@)of the ideal filters are given by Mace [4],

such that
@) = H (0 A(@) + A, (@)~ H (@) A (@) — A, (), (3.9)

D, = H{()(A (@) + A (@) + H, (@) A (@) - A (@), (3.10)

I ) PR (3.11)

: =4cos(kA/2)’ 2 =4sin(kA/2)’
where A and A,are the accelerometer outputs at point 1 and 2 respectively, as

shown in Figure 3.2.

14



The structural intensity can be estimated in real-time, by deducing the ideal frequency
responses of the internal forces (shear force, bending moment, velocity and angular
velocity). This can be written in wave components [1].
The displacement in the farfield of a beam can be written as

W=l ™ + D e™, (3.12)
The designed frequency responses of the intensity components are found below by
employing equations (2.4), (2,5), and (2,13). Acceleration wave amplitudes were used

for practical implementations as will be explained in the next chapter.

(1) Shear force (Q):

El
o* =I7-(<DA ~- D7), (3.13)

The ideal frequency response of shear force (HQ)is given by HQ = IEIR 1 o
(2) Bending moment (M ):

_EIk*

2

M* (@} + D7), (3.14)
The ideal frequency response of the bending moment (HM)is given by
HM = EIK" | &,
(3) Transverse velocity (v):
v =L (@ + D)), (3.15)
a

The ideal frequency response of the transverse velocity (HV)is given by HV =—i/ .

(4) Angular velocity (9):
6" =X oy + o)), (3.16)
w

Finally, the ideal frequency response of the angular velocity (HS) is given by k/ .

Matlab® can be used in designing the FIR filters, using the ideal frequency responses
found above. These estimated intensity components would lead to estimating the

structural intensity.

*The time delay will have profound consequences for applications such as
active control.
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3.3.2 Nearfield estimation.
Three signals are needed here, where a single evanescent wave exist (the negative-

decaying evanescent waves is assumed to be insignificant). Hence one more
accelerometer is required to estimate the positive-decaying nearfield (®,, ) [12].

Sensors spacing were updated, in order that, the spacing between the outer sensors
must be less than half the wavelength as will be explained in the next chapter.
The wave amplitudes can be found below by updating Eq.(3.4) to include the single

evanescent wave

(D+ Gll GIZ G13 Al
O L={G, G, Guliht (3.17)
(I)N G?H G32 G33 A3

where A, A ,and A, are the point accelerations measured from the sensor array

shown in Figure 3.1.
Similarly as the farfield case, the ideal frequency responses of the intensity

components are given below. These will be used in the FIR filters.

(1) Shear force (Q):

3
o4 =-1%]§—(i(1); — i — D), (3.18)

Two ideal frequency responses were implemented here due to the imaginary part (7).
(HQ1)is given by HQ1=iElK’ /@, and HQ2=—EIk* [ &’.
(2) Bending moment (M ):

_—EIt’

M = (-0; -0, + 0}), (3.19)

The ideal frequency response of the bending moment (HM1) is given by
HM1=-EIk* /o,

(3) Transverse velocity (v):

v =2 (@ + 0, + DY), (3.20)
w

The ideal frequency response of the transverse velocity (HV1) is given by

HVl1=—i/®
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(4) Angular velocity (9):
1A k + - | st
é :E(—‘I)AHDAM(DA,N), (3.2

Two ideal frequency responses were implemented. HS1=%/®, and HS2 =ik /.
These ideal frequency responses will be used in the appropriate FIR filters as will be

discussed in the next chapter.
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4- EXPERIMENTAL WORK.

This chapter presents the experimental work carried out on an Euler-Bernoulli beam
in three sections.

The flexural wavenumber (k) of the beam was estimated as a function of frequency.

This is described in the first section. The second section uses the wavenumber
estimated in section one in the designed FIR filters, in order to estimate the flexural
wave amplitude. This has been done for three distinct system configurations. A
schematic design of the various wave amplitude filters are also include in this section.
The third section includes a brief experimental work concerns the reflection and

transmission of flexural waves due to mass discontinuity.

4.1 Estimating the Flexural wavenumber (k).
The wavenumber (k) of the beam is function of its properties and the frequency

(/). as given in Eq.(2.8).
Three accelerometers and an FFT analyser (HP3566A) were used in measure the
acceleration at 3 positions on a thin beam over a frequency span of 0-1600Hz.

The spacing between sensors A =0.52m as shown in Figure 4.1.

A‘! Aﬁ! A3!
| 1 [

1
i |
P>
A A
Figure 4.1. The sensor arrangement used in estimating k.

P

The accelerations estimated at the three sensor positions shown in Figure I can be
written as function of the positive and negative propagating wave amplitudes [4]
assuming that no nearfields are present, and are given by

A] — ¢+eikA +¢)—e—r'kA

A=¢"+¢" : (4.1)

A3 — ¢+e—ik.‘3 + (b**eikA
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where ¢* and ¢~ represents the amplitudes of the positive and negative propagating

waves. By summing A and A,, then the following relation can be obtained.

A A
cos{kA)=0.5| L +—= | 4.2
(kA) (AfAJ (4.2)

Figure 4.2 shows the measured value of cos(kA) as function of frequency together
with the best fit, which was found to be so when P=0.8269. Therefore the estimated

wavenumber (k) as a function of frequency is

k=0.8269,/f (4.3)

CoSkA

1] 1 1 1 1
200 400 BOO =] 1000 1260 1400 1600
Frequency (Hz)

Figure 4.2. The measured value of cos(kA) and its best fit.
measured; best fit.

-------------------

The difference between the new estimated wavenumber (k) and the previous estimate

(the one used in the first report) is 4.4%. This new estimated wavenumber has been
used in updating the wave filters, which have been used in re-estimating the flexural

wave amplitudes in the next section.

19



4.2 Estimating the Flexural Wave Amplitudes.

This section describes the experimental work carried out in order to estimate the
flexural wave amplitudes. The wave amplitude filters are designed using the Matlab©
facility.

4.2.1 Experimental set-up and procedure.

The experimental set-up comprised a steel beam of dimensions 50.6X6.4Xx5630mm

suspended at four points along its length. Brief description of the equipment used in

the experiments is shown in Appendix A2.0.

The sampling rate (f,) implemented in the experiments was 1024Hz. FIR filters were
designed with zero weighting being applied apart from the frequency range from
0.1f, to 0.9f,, where f, is the Nyquist frequency (f, = f,/2).

Three system configurations shown in Figure 4.3 are designed for various aims. The

first system shown in Figure 4.3 (a) the 3 — sensor array is located in the farfield. It is
used to compare the propagating wave amplitudes estimated from both farfield and
nearfield approaches® in the farfield. Thus the single evanescent wave ¢, estimated
from the nearfield approach was insignificant.

The aim of the second configuration shown in Figure 4.3 (b) was to compare the
amplitudes of the propagating waves estimated from both approaches. The 3 —
accelerometer approach is located in the nearfield of the force while the 2 —

accelerometers approach is located in the farfield. In general, the negative propagating

waves ¢~ should be small compared to the positive ones ¢*.

* The sensor array of the farfield approach includes 2 accelerometers, while the one of the nearfield
approach includes 3 accelerometers. The latter approach is able to estimate a single evanescent wave
while the farfield approach ignores the evanescent wav
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Figure 4.3. Experimental configurations with locations of accelerometers and
shaker indicated (all dimensions in m).

The measured wavenumber of the beam was such that k=0.8269,/? . It is very

difficult to compare the wave amplitudes in the time domain, since no reference
measurements can be made. Furthermore, the two signals were contaminated by
errors introduced by the poor approximation of the filters at low and high frequencies.
Therefore, the power spectral density (PSD) was used in the comparison.

The equipment used in each configuration was the same in all cases except that one
more sensors were used in configuration b and ¢ in figure 4.3. Figure 4.4 illustrates

the general experimental set up.
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Figure 4.4. The general experimental set up used in the 2™ configuration.

4.2.2 Calculating the optimum spacing between sensors.
As explained in section (3.3}, the ideal frequency response in the farfield is
He—t
dcos(kAf2)

hence it is necessary that %< —75, Therefore A< %[1], otherwise H, will become

2
infinite.
The minimum wavelength A, for the maximum frequency employed (Nyquist

frequency fy)is A, =0.3358m.

22



Therefore the maximum allowed spacing between the sensors should not exceed
0.1679m . The implemented spacing was well below the limited as seen in Figure 4.3.
4.2.3 Designing the wave amplitude filters using Matlab facilities.

The disturbance and control signals were generated by Pentium Il 1 GHz PC
(incorporating 256 Mb of RAM), equipped with a National Instruments
PCI-MIO-16E-4, A-D/D-A board. All real-time processing was performed using
Matlab and Simulink software incorporating the Real-Time Workshop and the Real
Times Windows Target (RTWT). The Simulink block diagrams are described below,
where full models are given in Appendix A3.0 and the required Matlab M-Files are
given in Appendix A4.0

The main parameters used in the experimental measurements are listed in Table 4.1

Sample Rate 1024 Hz
Wave number / Frequency relation k =0.8269 \/}7
Frequency range 02f,—-0.8Ff,
Reconstruction filter, cut-off 350 Hz

Table 4.1 Parameters used in the experimental measurements.

Initial parameters were set or calculated using the M-Files wave.m and Near.m.
These initial parameters include the wave number and the frequency relationship of
the beam. The design of the band-pass filters ate also included.
The M-Files used to design these filters are coeff.m for the farfield filters and
NearCoeffs.m for the nearfield filters. All M-Files are located in Appendix D.
Two main roots were drawn in each Simulink model described in Appendix C. These
are explained below
1- Estimating the propagating wave amplitudes of the farfield array. Four filters
were used in order to estimate the positive and negative propagating wave
amplitudes from two measured accelerations as shown in Figure 4.5. The
blocks “Wave filter’ and “Wave filter 4’ were designed in this loop according

to Equation (3.9) and Equation (3.11).
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J -Wave

Wave difference filter

Wave sum filter
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Figure 4.5. Simulink blocks of the Farfield array

2- Estimating both propagating waves plus the positive decaying nearfield wave

amplitudes of the nearfield array. Nine filters were designed using Eq.(3.17),

in order to estimate the mentioned waves in the nearfield array. As shown in

Figure 4.6 and Figure 4.7.

Wave filter 2

Negative-going propagating
wave amplitude

Wave filter 1

Positive-going propagating
wave amplitude.

— Ai
—> 4 @

— A?

Ch5-A2

€h6-A3 " 4
n7-Al " 4, A

" 4

_—...’ A1
—¥ A, (I);,N

Wave filter 3

Positive-going evanescent
wave amplitude.

Figure 4.6. Simulink biocks of the Nearfield array
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Sensor 3 filter

?,} ?@ ?_ih
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Wave filter 2

Wave filter 1

?,} ?gm ?_tb

Sensor 1 filter

NearlCoeffs(z)

Sensor 2 filter

NearICoeffs(z)

Sensor 3 filter

Near!Coeffs(z)

Wave filter 3

Figure 4.7. Simulink blocks for the FIR Filters used to estimate the wave
amplitudes of the Nearfield array.

Matlab®© is a powerful tool for digital signal processing and has many built in

functions for designing digital filters. Three of these filter functions were used; these

are ellip, invfreqz and freqz.
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4.3 Reflection and Transmission Coefficients Due to Mass
Discontinuity.

Consider a steel beam lying in the x-axis with a mass discontinuity at x=0 (See
Figure 4.8). The beam is suspended at 4 points along its length. Both ends were
embedded in a sand box to reduce the reflection of waves. The beam was excited by a
Ling V201 shaker in the farfield of the mass discontinuity that comprises two blocks
of steel, each has the dimensions of 98.5x12.65x25.4mm and accelerations measured
using PCB type 352C22 accelerometers. Signals were generated and measurements
processed in the frequency domain using an FFT analyser. Other equipment included

a power amplifier and reconstruction filters.

+

Figure 4.8. Infinite beam with mass discontinuity.

This section is set out in two subsections. The first one includes the numerical wave
modelling of the reflection and transmission coefficients at a mass discontinuity
attached to a beam, while the second section presents the experimental results in the
frequency domain. Therefore, the validity of the theoretical derivations was

investigated.

4,3.1 Theoretical Wave Reflection and Transmission.
A positive — going wave a” is incident upon a mass discontinuity and gives rise to
transmitted 6" and reflected a” waves, where
b*=ta*, a =ra*, ay=rya’, by=tya’. 4.4)
¢t and r being the transmission and reflection coefficients, while the subscript N

refers to nearfield waves.
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The displacements of the beam w_ and w, are given in Eq.(2.18). Reflection and '

transmission coefficients can be found by considering the continuity and equilibrium

equations of the system. These are given by [5,13]

e —~i(,
4+o0(1+i)
4+o
t=— 4.5
4+o(l+i) *3)

Pm—— oy
"4ra(l+i) Y

The dimensionless factor o =2mm/pAA, relates the mass of the neutraliser m
compared to the mass in one flexural wavelength of the beam.

The reflection coefficient of the propagating wave is the same as the reflection (and

transmission) coefficient of the nearfield wave apart from a factor of —i times r,,

which is equivalent to 270° phase shift.
Figure 4.9 shows that the maximum reduction of an incident flexural wave using a

mass discontinuity is only 3 dB as explained by [14].

&

=

N
m

8

Reflection and Transmission Coefficients (dB)

2
N

Figure 4.9. Transmission and reflection coefficients of flexural waves on an
infinite Euler-Bernoulli beam with a mass discontinuity.
1t1; Irl;
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4.3.2 Estimating r and ¢ in the frequency domain.

The reflection and transmission coefficients were found by estimating the
propagating wave amplitudes in the frequency domain using an FFT analyser and four
PCB type 352C22 accelerometers. The beam is excited in the frequency range from 0
— 1600Hz.

This section describes the method used in estimating r and ?. Furthermore, a
comparison between the theoretical modelling and the experimental investigation is
presented.

From the basic knowledge of the wave decomposition approach (this is described in
chapter two) together with the signal outputs of the four accelerometers, the reflection
and transmission coefficients of the propagating waves* can be estimated.

Two sensor arrays were used, where each contain two accelerometers with a

separation of 2A as shown in Figure 4.10.

A‘ i AQ 1 I A3 r A4 ]
___________ o I T o B e
........... : : ' ' l e
A 2A

Figure 4.10. Beam structure comprising four accelerometers in
two arrays.

The amplitudes of the positive- and negative-going propagating waves can be found

from the first array. The accelerations A, and A, can be described as functions of a*

A e
{AQ} = L;fm e :Haw}‘ (4.6)

By solving the above equations for ¢* and a~, then the amplitude of the positive and

and a”.

negative propagating waves can be found below

at _ 1 e!kA _ e—!kA A1
{a’} " 2isin (2kA){_e-ka gk H AQ}- 4.7)

The same can be done for finding 4" and b~ in terms of A, and A,. Therefore, the

transmission and reflection coefficients can be found by taking the four propagating

waves into consideration.

* These were estimated in the farfield-Nearfield waves are insignificant and have been ignored.
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It is well known that

hence,

e P

where AD = (a+ )2 - (b‘ )2 is the determinant.

The experimental set-up is shown in Figure 4.11. The distances between

1~ the two accelerometers in each array,

(4.8)

4.9)

2- the source of disturbance and the centre line of the nearest sensor array, and

3- the mass discontinuity and the centre line of each array

were chosen carefully to minimise the effect of the nearfield waves at low

frequencies.
0.154 1.02 0.72 ! 0.72 1.02
Pt >t > >t >
! ! ' i ! !
e s N A A
............ ! L AE RS
S 4 5 :
i i
N
! Sand Box
Shaker Mass
Discontinuity
> !
Fuse PCB Signal conditioner
. -
P
»
—P
Power amplifier
TReco::lf]trl:iction Ch(1) Ch(2) Ch(3) Ch{4) Ch(5) Ch(6) HP Analyser

Qutput

Figure 4.11. The experimental set-up used for estimating the
propagating wave amplitudes. All dimensions in m
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In order to avoid nearfields at frequencies greater than 100Hz. The distance between

shaker/sand box/mass and the sensor arrays was greater than the minimum

wavelength A . =0.76m below which significant nearficlds exist.
Also the distance between the sensors (2A) was chosen carefully for signal

conditioning matter. Thus the ideal distance should not be more than 0.0672m (the

implemented 2A=0.04).

The mass ratio o between the attached mass and the mass of one wavelength of the

beam as a function of frequency was 0.1604\/7 .
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5. RESULTS AND DISCUSSION.

This chapter presents the results of the experiments described in the previous
chapter in two sections. A comparison between the measured wave amplitudes due to
discrete frequency excitation is discussed in the first section. The estimated wave
amplitudes due to broadband excitation are also compared in this section. The second
section investigates the validity of the theoretical modelling of the transmission

coefficient due to mass discontinuity.

5.1 Real-Time Comparison of the Estimated Wave Amplitudes.

The wave amplitudes are measured by digitally filtering and combining the outputs
of an array of accelerometers. The filters are designed in the frequency domain using
a wave decomposition approach, and implemented in the time domain as FIR filters.
This has been explained theoretically and experimentally in chapters three and four
respectively.

5.1.1 Discrete frequency excitation.

The effect of changing the time delay term (nd)* on estimating the wave

amplitudes 1s investigated in this section. Then a comparison between the
effectiveness of both approaches in estimating the wave amplitudes in the farfield is
considered.

The length of the filter was found to have an insignificant effect on estimating the

wave amplitudes as shown in Figure 5.1 for the first configuration (See Figure 4.3

(a)).

* There are a number of ways of designing FIR filters. The ‘time delay’ approach adopted here was
described in [1].
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Figure 5.1. The effect of changing n, on estimating the wave amplitudes of the

first configuration.
— 0, =5 ... e O, 1, =15;

Far- and nearfield approaches were found to estimate the same wave amplitudes in the
farfield of the first configuration, although the nearfield approach takes the evanescent

wave into account. Some results are shown in Figure 5.2.

L] 1 1 L

I 1 L 1 I
08 061 0.62 0.63 O.64 065 0.56 067 0.63 0.69 07

005} R
‘o 0l en //'D‘%/j'c&g, F N S /-\Mg-'\( }/’Z\_\(vﬁ\_}’\_— A

oost ' -

1 1 1 1 1 1 1 1 1
06 061 062 8.63 D.54 0.65 0.86 0.67 0,68 0.69 07
Time (s}

Figure 5.2. Comparison between the propagating waves estimated by both
approaches for the first configuration. rn, =35, f= 100Hz.

0", of farfield array; === w0, of nearfield array;
--------- ¢~, of farfield array;---------=-- ¢, of nearfield array.
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Very small amount of the incident propagating wave ¢” is reflected back from the

sandbox as explained previously for the first configuration (Figure 4.3 (a)). This is

illustrated in Figure 5.3.

0.t
0.08 - .
o061 4
004l A -
ooz

- D}\,f\ \,\ AN \,.,/' 1NN g /ALY Ny AN \
ol -
004 4
-0.06 -

-0.08 -

Ok n,:ss U,IT
Thne (s)

Figure 5.3. The propagating waves of the first configuration, n, =35, f= 100Hz.
9; ¢

The amplitudes estimated at the two different n, are very much the same. This has

been verified for both farfield (2 — sensor) and nearfield (3 — sensor) arrays.

For the second configuration (Figure 4.3 (b)), Figure 5.4 (a) shows that the amplitude
of the incident propagating waves estimated from both arrays nearly have the same
amplitudes as expected. Furthermore, the amplitudes of the reflected propagating
waves ¢~ are nearly 1/3 those of the incident waves as illustrated in Figure 5.4 (b).
The estimates from both arrays have very close wave amplitudes for the negative
propagating wave. It was found that the evanescent wave estimated from the nearfield
array located at the free end has an amplitude comparable to that of the positive —

going waves. This is shown in Figure 5.4 (¢).
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Figure 5.4. The flexural wave amplitudes estimated from both arrays of the second
configuration, n, =5, f= 100Hz.

{(a) Positive propagating waves:
(b) Negative propagating waves:

0", of farfield array;
¢, of farfield array;

0", of nearfield array;

o~ , of nearfield array.

(¢) Positive propagating and evanescent waves:

bns

0" of nearfield array.

Although the wave amplitudes were found to be the same, there is a distinct phase
different between the estimated waves from both approaches. Where various filters
have been used in estimating the different flexural waves.
5.1.2 Broadband excitation.

The spectral power density is used for the comparison between wave amplitudes in
the third configuration.
Broadband excitation in the 51-461Hz frequency band is supplied. The sensors were
mounted as shown in Figure 4.3 (c).
The 3 — sensor array is mounted in the nearfield at the end of the beam, while the 2 —
sensor array is once again in the farfield.
This arrangement enables the broadband performance to be assessed. In figure 5.5 (a),
the spectral densities of the estimated propagating wave amplitudes are compared.
The spectral densities of both positive and negative going propagating wave
amplitudes estimated using both near — and farfield arrays, are nearly equal, as one

would expect since there is little energy dissipation in this region of the beam.
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Figure 5.5. Spectral densities of the estimated wave amplitudes of the third configuration, n, =5:

(a) Positive propagating waves: 0", of farfield array;_____ ¢", of nearfield array;
_____________ ¢, of farfield array, _ _ _ _ ¢, of nearfield array.
(b) Positive propagating and evanescent waves: ¢~ of nearfield;_______. ¢y (experimentally);
............. 0}, (Theoretically).

The disagreement at low and high frequencies arises from the different forms taken by
the nearfield and farfield filters and the weighting that has been applied to the
estimation of the filter coefficients.

The estimate of the nearfield wave amplitude is shown in Figure 5.5 (b). The positive
— going propagating wave should have the same magnitude as the negative — going

wave, since the magnitude of the reflection coefficient for a free end is 1. However,
the magnitude of the nearfield wave should be ~/2exp (-kA) times that of the

negative — going wave, where A =0.06m. This is because the reflection coefficient at

the free end is (1 —i ) and the nearfield attenuates over a distance of 0.066m from the

free end to the centre of the sensor array. This theoretical estimate is also shown in

Figure 5.5 (b) and agrees well with measured amplitude.
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5.2 Investigating the Validity of the Theoretical Modelling of the

Transmission Coefficient + Due to Mass Discontinuity.

A comparison between the theoretical and experimental estimation of the
transmission of the incident propagating waves due to mass discontinuity is discussed
in this section. Both the theoretical and experimental methods for estimating the
reflection and transmission of the flexural waves were explained in details in section
4.3.

Figure 5.6 shows that at high frequencies the theory becomes irrelevant to the
experimental results. However, the wavelength of the nearfield waves gets larger and
becomes more significant by increasing the excitation frequency.

A comparable match may exist between the theoretical and experimental estimation

of the transmission coefficient lt[ over a frequency range of 100 — 400 Hz.

25 T T T T T T T T T

25 By 1 ! L 1 1 1
’ 100 200 306 400 500 60D 700 800 800 1000

Frequency (Hz)

Figure 5.6. Comparison between the theoretical and experimental attenuation
occurred to the incident wave due to mass discontinuity.

|t| {(Theoretical); _________ |t] (Experimental).

The accuracy of the experimental result was verified. This is illustrated in Figure 5.7

below.
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Figure 5.7. Comparison between the theoretical and experimental attenuation occurred to the
incident wave. No mass is attached experimentally.

li! (Theoretical estimation-mass is attached);_________ || (Experimental estimation).

Figure 5.7 compares the experimental estimation for no mass attached with the
theoretical one, which is assumed to be a straight line (reflection is assumed to be
insignificant).

Conservation of energy has been satisfied in the experimental results, where it was

found that |r|2 -i—|t|2 =1. The existence of the attached mass has slightly affected the

energy verification as a result of incorporating more evanescent waves. This is shown

in Figure 5.8 below.

22 T T T T T T T

200 400 600 800 1000 120 1400 1600
Frequency (Hz)
Figure 5.8. Satisfying the conservation of energy [r|2 +|1t|2 =1.
(a) Experimentally: — no mass attached; ....cueinne mass is attached.

(b) Theoretically:  --=-=----
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6- CONCLUSSION AND DISCUSSION.

This chapter highlights some general remarks of the previous chapters and the

potential future work upon the results obtained from this memorandum.

6.1 General Concluding Remarks.

The amplitudes of the flexural waves were estimated in real-time including
nearfields. This will allow measurements to be taken close to the force, boundary, or
discontinuity from which the nearfield arises.

The ratio of both reflected and transmitted waves to the incident waves were
estimated in the frequency domain. Reasonable match obtained with the theoretical
meodelling over a certain frequency range.

Instantaneous values of intensity amplitude can be obtained easily as function of time.

6.2 Future Work.

The estimated wave amplitudes will be used as a cost function in a potential control
system for an adaptive - passive neutraliser.
The match between the theoretical and experimental reflection and fransmission

coefficients gives some confident in the numerical modelling for more complicated

discontinuities.
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APPENDICES

Al1.0 The boundary conditions of the four common cases of beam

ends.
End Status Diagram at x =0 First Condition | Second Condition
--- ’w ’w
Free End P =0 Py =0
o //’ ow 0
Clamped /4 w=0 D
End - 4
Simple . w=0 9’
Supported 7>— FYE =0
ow *w
Sliding Eialy =5 =0

Table A1.0
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A2.0 Experimental equipment.

Equipment

Specifications

Disturbance and control signal

generation

1GHz Intel Pentium III processor with 256k cash.

Data Acquisition Board

National Instruments PCI-MIO-16E-4
A-D: 16 single ended or 8 different inputs.
D-A: 2 Outputs.

Input ranges: 0-10V, +/-10V

Gains: Various.

Output ranges: 0-10V, +/-10V

Reconstruction filter: D-A

Type VBFS, 0.01Hz - 100kHz
Dual variable filter, s/n 56198

Disturbance Shaker Ling Dynamic Systems (LDS) — V201
SN/69439/5.
Amplifier Ariston, Ax-910 integrated Amplifier

/SN/735-Ax910-0700-0142

Sensors used

PCB (352C22) Types
- Al s/n 35914
- A2 s/n 35911
- A3 s/n 35909
- A4 s/n 35910
- AS s/n 36100

Signal conditioner

Two PSC Sensor Signal conditioners, Model/441A2,
GRP/64106/SN/748 and SN/749.
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A4.0 The Matlab M-files of the designed wave filters.

1- wave.m
%)********************************************************************************
% ((FARFIELD CASE))-((TWO SENSORES))

% wave.m initialises stuff for the Simulink model using acceleration inputs
% to estimate Acceleration wave amplitudes

Do

% Assumes 2 acceleration sensors, separation delta
% Frequencies at multiples of 1 Hz

O stk sk skesie ook sk ook s stk ok sotokakieatok sk sesieseolole ke e deskeofese st el s sbe stk ook st skslootesieke el sl ok ok okl solok kol ook ok

%Modified by HEK on 04-02-02

O, 3 s s s s ke ke e sheshe e e ke st e e e s s s s s e she e ke sfe e o stesfeste sk e e sk ok o sl sletok sk ko sk skl kool ol ol eokek ok kb otk s sk e e ok stk ol kol el ok ok

% Data

Oy stk skokobe o ok e b obe s s sfesfe sk ook o ok ok ke ok sk sk seofe st sesfe sk sk ke sk stk ofesfeofesfe ol sk she s e e sfe sk sk e st ol s o o o ok ke ok sk iR OR ROR ok sk ke sk ek sk ok ok ok skeokok
SampleFreq = input(’Enter Sample Frequency: °); % sampling frequency, power of 2

SineFreq = mput(’Enter the sine Frequency Required (Hz): ),

Alpha=0.8269; % constant relating k to sqrt(f)

LossFactor = input(Enter Loss Factor: ) % loss factor (imag proportion of wavenumber
O Fkk s sdesteseshe ko e sk sk sk e st o e stesfe ook sk obe sk ok skobe skeskesfeske sk e s sk s ke sfeoke sk sk sk sk stk el e ek s sk ok sk ok sk ok s st ok sk etk skok ok
%o Frequency and wavenumber vectors

Cpp e seskeokesde e s sk e e seoleie e sieode e e e e e sk sk e s sl s e e sl o s ke sl skesbeafe sk sk sl skole b sk she sk sk skesfe sk sk ko skt sfeske s ofe s sk o ok sk ok sk okok
freq=[0:SampleFreq-1]" % frequency, Hz
w=freq(1:SampleFreq/2)*2*pi/SampleFreq; % freq rad/sec: pi = Nyquist freq
k=Alpha*(1-i*LossFactor)*sqrt(freq(1:SampleFreq/2)); % wavenumber

O sk e destedfe e desfe e e sl o e sk e o ok o sk ek ok ok R R R R ok ok el ok ok R R ko sk ool oo totokskokokokokok bk kel e

% Design bandpass filter for disturbance

g FREEFREE kR kR R Rk kR ok ok R R ok e s e sk ek ok sk e ol sl o R Rk R R R B ROR

[Bandb,Banda]=ellip(5,0.5,50,[0.2 0.8]);

G, ARk ok ok R Rl s stttk ekl o sl e ol sesfsieofole ek ek s s ettt ek el ek ot e ok

% Wave amplitude filter stuff
%)*****************************************************************************
NDelay=5; % number of delay terms: filter length = 2¥NDelay + 1
Deita=0.1200; % sensor spacing (m)

coeff % find wave amplitude FIR filter coefficients

OF, st desiook ook kiR ok ok ok sk ok ol sl ool e sdestodloR ok ok ok ks e e etk ko stk ol ek sl sl st el e e ok sk ke ok s sk e e st sk skekeokole

T Control filter
G, etk s st ek e ol st ek g oot el e e Rt f ok s shoRle st R R S R o Ko R R K Rk R

ControlFIR={1];
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2- coeff.m

%)*****************************************************************************

Y ((FARFIELD CASE))-((TWO SENSORES))

% coeff.M finds FIR filters for ACCELERATION WAVE error sensors.
%

% Called from wave.m, in which the required data is defined.

% Assumes 2 acceleration sensors; neglects damping, uses

% "time delay" method

%o Weights Jloose’ ends of frequency range to zero

%

%J*****************************************************************************

% Modifid by Hassan El-Khatib - 3th-02-02

nb=2*NDelay; % order of numerator (FIR/TIR): there are nb+1 coeffs
na=0; % order of denominator (IIR only): there are na+1 coeffs

% na = 0 gives FIR filter
BI=232.05; % Rigidity of the beam
%)*****************************************************************************
% Frequency weights: set weights at ends of frequency range to zero
%)*****************************************************************************
zeroproportion=0.1; % proportion of freq range to "cut-off" which is
zero weighted
nzeros=round(zeroproportion*length(w)); % number of points for zero weighting

wi=[zeros(1,nzeros),ones(1,max(size(w))-(2*nzeros)),zeros(1,nzeros)|’;
%)******************$**********************************************************

% Define ideal frequency responses
% s s o ok s ot o ol e sl ke e ook ok ok ok o o K sl Sk SR SR ORI R R R R R s R R b e ek R R kR R R Rk sk sk ok ok ok
kd2=k*Delta/2; % k * delta /2, neglecting damping

Hl=1./(4%cos(kd2)); % ideal frequency responses, modified from velocity to acceleration response
H2=i./(4%sin(kd2)); % ideal frequency responses, modified from velocity to acceleration response

H1{1)=H1(2); % eliminate ‘infinities’
H2(1)=H2(2);

) %)*****************************************************************************

% Modify ideal frequency responses with *handpass’ characteristic
%)*****************************************************************************

endshape=hanning(200, periodic’);
shape=[endshape(1:100),ones(1 ,max(size(w))-200),endshape(101:200)%

Continue coeff.m
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OF, # ARk deoR Rk R bk ok skok ekt R e etk R R R R R o o o e o stk ke skeskot o koo ok ek kR ok

% FIR implementation (time delay)

%}*****************************************************************************

[WaveSumCoeffs,a]=invireqz(H1.*exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed
% ndelay steps

[WaveDiffCoeffs,al=invireqz(H2. *exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed
% ndelay steps
[Hlimp,wimpl=freqz(WaveSumCoeffs,a,length(w)); % implemented freq response Htl

[H2imp,wimp]=freqz(WaveDiffCoeffs,a, length(w)); % implemented freq response Hi2

Hlimp=H1limp.*exp(i*w*NDelay}; % time delayed: phase removed (for comparison)
H2imp=H2imp.*exp(i*w*NDelay); % time delayed: phase removed (for comparison)
figure

semilogy(w,abs(H1),--",wimp,abs(H1imp))

figure

semilogy(w,abs(H2},wimp,abs(H2imp})

3 — Near.m

Oy e e e sl S e e o o ol oo ool ok oROR oK ok ko sk el ek el e kol e sleoke e ol i ok ok ok ok ol ke et el ot sk st ok ok ok Ok Sk kel R e sk e e e ek e e

% ((NEAR FIELD CASE))-((THREE SENSORES))

% Near.m initialises stuff for the experimental AVC model INCLUDING NEARFIELDS
%

% Assumes 3 Acceleration sensors, separation delta

% Currently written so that frequencies at multiples of 1 Hz

% Wave amplitude estimated at CENTRE of the 3-sensor array

%

% Allows you to specify WaveFilterType to change way of estimating wave amp

%

% HEK 11/01/02 - Modified in 04/02/02

Gy e skesiesie stk e sfesheohe oo sl sk sfe s sfe oo s ofestende eok s sl s sl ok ook i sk ot sk sk otk ke ok sk e ok sk sk R Sk sk ke ste okl sk ok sk ok sk skeosk ok

Oy ek sdor stk ok skt st el el deofe e et sk e sk sk sbeale sk e st sk stk sfeolesfesie stk ke st sesfe sk sl st sk ekl sk sk ok sk ok ok ok eokok

% Data

OFy ek st o e sheokesie st ke she st ke seafe e sk sfe s sk okeskesk s slesfe siesfeofe sk sk sfe stk b stk o ok ok ke sk sk ok ok ko ok e sk sl R ok ok sk sk sl ok el g

SampleFreq = input('Bnter Sample Frequency: 7); % sampling frequency, power of 2

SampleTime=1/SampleFreq; % sample time

Alpha=0.8269; % constant relating k to sqrt(f)

LossFactor = input{ Enter Loss Factor: 7; % loss factor (imag proportion of wavenumber)-
Jorepresent damping

O s sk ot ok ok R ok otk SRRk sk ok b kRl ol e ok ke sk ke ok ok ELE R sfe sfeske ofe s ok s e et sfeske sk sk ke e sk sResie sk ke e e e ok

% Frequency and wavenumber vectors

Ofy estesiestesieste e o o ok ke o ke o ok ol sl ske sk sbesdeode st ekl ko ek oo sk ok kel s ok sl sl st sk sl sl ok ke b sk e e et e sk e st st ol sl e e s e e e ke e ok e

freq=[0:SampleFreq-1]% % frequency, Hz

k=Alpha*(1-i*LossFactor)*sqrt{freq(1:SampleFreq/2)); % relationship between wavenumber and
% frequency
w=freq(1:SampleFreq/2)*2 *pi/SampleFreq; % freq rad/sec: pi = Nyquist freq

Continue Near.m
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%7*****************************************************************************

Yo Design bandpass filter for disturbance
%)*****************************************************************************
Banda=1, % set to one for no bandpassing of source

Bandb=1,;

[Bandb,Banda]=ellip(5,0.5,50,[0.2 0.8]); % prescribe limits if you want the disturbance band-limited

%,*****************************************************************************

% Wave amplitude filter stuff
%?*****************************************************************************
NDelay=5; % number of delay terms: filter length = 2*NDelay + 1
Delta=0.060, % sensor spacing (wavelengths at Nyquist frequency)
WaveFilterType=0; % type of wave filter:

% 0 G on its own

% 1 i*w*G

% 2 iI*w¥*G*Fsqrt(-i)
NearCoeffs % find wave amplitude FIR filter coefficients

%J*****************************************************************************

ControlFIR=[1];

4- NearCoeffs.m

%3************************************************$****************************

% ((NEAR FIELD CASE))-((THREE SENSORES))

Do NearCoeffs.m finds FIR filters for 3 ACCELERATION WAVE errors
% Sensors with a nearfield

% Called from Near.m, in which the required data is defined.

% Assumes 3 acceleration sensors; neglects damping, uses "time delay" method
% Weights loose’ ends of frequency range to zero

% Wave amplitude is estimated at sensor array centre

P

% WaveFilterType is set to determine actually what filter is implemented

%

%HEK 11/01/02, modified in 15/01/02

%]*****************************************************************************

nb=2*NDelay; % order of numerator (FIR/IIR): there are nb+1 coefls
na=(); % order of denominator (IIR only): there are na+1 coeffs

% na = 0 gives FIR filter
EI = 232.05; % Rigidity of the beam
%)****************************************$************************************
% Frequency weights: set weights at ends of frequency range to zero
%7*****************************************************************************
wi=1+w*0; % weights, all set =1
zeroproportion={.1; % proportion of freq range to "cut-off" which is zero weighted

nzeros=round(zeroproportion*length(w)); % number of points for zero weighting
wit=[zeros(1,nzeros),ones(1,max(size{w))-(2*nzeros)),zeros(1,nzeros}1’;

Continue NearCoeffs.m
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%7*****************************************************************************

% Define ideal frequency responses
%7*****************************************************************************
HQI=1.*EI*k.A3./(w.A2); % Ideal Frequency response of the shear force.Modified to acc
HQ2=-EF*k."3.(w."2); % Modified on the date above.

HM=EI*k.A2 /(w.A2); % Ideal Frequency response of bending moment.Modified to acc
HV =-i./w; % Ideal Frequency response of velocity. Modified to acc

HSI1 = k./fw; % Ideal Frequency response of angular velocity.Modified to acc
HS2 = i.*%k./w; % Modified on the date above.

HQI(1)=HQ1(2);
HQ2(1)=HQ2(2);
HV(1)=HV(2);
HM(1)=HM(2);
HS1(1)=HS1(2);
HS2(1)=HS2(2);

%J*********************************$*******************************************

% Modify ideal frequency responses with *bandpass’ characteristic
%J*****************************************************************************
endshape=hanning(200, periodic’;
shape=[endshape(1:100),ones(1,max(size(w)}-200),endshape(101:200)7;

ka=k*Delta; % k * spacing delta
Gl1=[ 1;G12=[ 1:G13=[ ];
G21=[ 1;G22=[ :G23=[ ];
G31=] 1;G32=[ :G33=[ ];

for jfreq=1:length(w),
s=[exp(i*ka(jfreq)) exp(-i*ka(jfreq)) exp{ka(jireq));
1L
exp(-i*ka{jfreq)) exp(i*ka(jfreq)) exp(-ka(jfreq))];
% sensor matrix at given frequency
invs=inv(s); % invert.........

G1i=[G11;invs(1,1)]; % .., and extract the propagating wave elements & near field in G

G12=[G12;invs(1,2)];
G13=[G13;invs(1,3)];
G21=[G21;invs(2,1)];
G22=[G22;invs(2,2)];
G23=[G23;invs(2,3)];
G31=[G31;invs(3,1)];
G32=[G32;invs(3,2)];
G33=[G33;invs(3,3)];

end

G11(1)=G11(2); % get rid of NaN’s
G12(1)=G12(2);
G13(1)=G13();
G21(1)=G21(2);
G22(1)=G22(2);
G23(1)=G23(2);
G31(1)=G31(2);
G32(1)=0G32(2);
G33(1)=C33(2);
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G, stk e e s e ke s sk e e o o o et s b b o ok oo ool sl st et e e o oo o o st i s s ok sk kol ke s sk sk s s ke s sk sk e e

% Find frequency responses for chosen filter type
%)*****************************************************************************
if WaveFilterType==0 % 0 G onits own

Gl11=Gl11;

G12=G12;

G13=Gi3;
elseif WaveFilterType== % 1 *w*G

Gll=i*w.*Gl1;
G12=i*w.*G12;
G13=i*w.*(G13;

elseif WaveFilterType==2 ¥ 2 Fw*G¥sqre(-1)
G11=i*w.*G1 1 *sqrt(-i);
G12=i*w.*GI2*¥sqrt(-i);
G13=i*w.*G13*sqrt(-i);

end

%}*****************************************************************************

% FIR implementation (time delay)
%)$$***************************************************************************

% The positive going wave filter design.
[SensoriCoeffs,al=invireqz(G1i!.*exp(-i*w*NDelay),w.nb,na,wt); % FIR filter, time delayed ndelay
% steps
[Sensor2Coeffs,al=invireqz(G12.*exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed ndelay
% steps
[Sensor3Coeffs,a]=invfreqz(G13.*exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed ndelay
% steps

% The negative going wave filter design. | | NearCocf

[Negl1Coeffs,al=invireqz(G2.*exp(-i*w*NDelay),w,nb,na,wt); % FIR ﬁggp,"ﬂﬂlﬁe cFeafay%cé ﬂ‘gélay
% steps

[Neg2Coeffs,al=invireqz(G22.*exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed ndelay
% steps

[Neg3Coeffs,a|=invireqz(G23.*exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed ndelay
% steps

% The near field wave filter design.
[Near1Coeffs,al=invfreqz(G3 . *exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed ndelay
% steps
[Near2Coeffs,a]=invireqz({G32. *exp(-i*w*NDelay),w,nh,na,wt); % FIR filter, time delayed ndelay
% steps _
[Near3Coeffs,a]=invireqz(G33.¥exp(-i*w*NDelay),w,nb,na,wt); % FIR filter, time delayed ndelay
% steps

[ShearCoeffs1,a]=invireqz(HQ1.*exp(-i*w*NDelay),w,nb,na, wt); %I FIR filter, time delayed ndelay
[ShearCoeffs2,al=invireqz(HQ2. *exp(-i*w*NDelay),w,nb,na, wt); Z;’:; Slit';algsﬁltcr, time delayed ndelay
[MomentCocffs,a]:invfreqz(HM.*exp(—i*w*NDeIay),w,nb,na,wt);?’j: Sl-"f(lifpisfilter, time delayed ndelay
[VelocityCoeffs,a]:invfreqz(HV.*exp(-i*w*NDelay),w,nb,na,wt);ZZ ngpsﬁlter, time delayed ndelay
[AngularCoeffs1,a]=invfreqz(HS1.*exp(-i*w*NDelay),w,nb,na,wt()%‘?itflgljft filter, time delayed ndelay
[AnguiarCocfst,a}=invfreqz(HS2.*exp(-i*w*NDelay),w,nb,na,wt):'y;:StF&I"E{Sﬁlter, time delayed ndelay
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% steps

[Gl1imp,wimpl=freqz(Sensor1Coeffs,a,length(w)); % implemented freq response G11
[G12imp,wimp]i=freqz(Sensor2Coeffs,a,length{w)}; % implemented freq response G12
[G13imp,wimpl=freqz(Sensor3Coefts,a,length(w)); % implemented freq response G13

[G2limp,wimp]=freqz(Negl Coeffs,a,length(w)); % implemented freq response G21
[G22imp, wimpl=freqz(Neg2Coeffs,a,length{w)); % implemented freq response (G22
[G23imp,wimpJ=freqz(Neg3Coeffs,a,length(w)); % implemented freq response G23

[G3limp,wimp]=freqz(NearlCoeffs,a,length(w}); % implemented freq response G31
[G32imp,wimp]=freqz(Near2Coefls,a length(w)); % implemented freq response G32
[G33imp,wimp]=fregz(Near3Coeffs,a,length(w}); % implemented freq response G33

[HQlimp,wimpl=freqz(ShearCoeffs1,alength(w)); % implemented freq response HtQ
[HQ2imp,wimp]=freqz(ShearCoeffs2,a length(w)); % implemented freq response HtQ
[HMimp,wimp]=freqz{MomentCoeffs,a,length(w)); % implemented freq response HtM
[HVimp,wimp]=freqz{VelocityCoeffs,a,length(w)); % implemented freq response HtV
[HSlimp,wimp]=freqz{AngularCoefis1.a,length{w)}; % implemented freq response HtS
[HS2imp,wimp|=freqz(AngularCoeffs2.a,length{w)); % implemented freq response HtS

G1limp=G1 limp, *exp(i*w*NDelay),
G 12imp=G12imp.*exp(i*w*NDelay),
G13imp=G13imp.*exp(i*w*NDelay);

G21limp=G2 | imp.*exp(i*w*NDelay);
G22imp=G22imp.*exp(i*w*NDelay);
G23imp=G23imp.*exp(i*w*NDelay);

G3limp=G3limp.*exp(i*w*NDelay);
G32imp=G32imp. *exp(i*w*NDelay);
G33imp=G33imp. *exp(i*w*NDelay);

HQlimp=HQlimp.*exp{(i*w*NDelay);
HQ2imp=HQ2imp.*exp(i*w*NDelay};
HMimp=HMimp. *exp(i*w*NDelay);
HVimp=HVimp.*exp(i*w¥*NDelay);
HSlimp=HSlimp.*exp(i*w*NDelay);
HS2imp=HS2imp.*exp(i*w*NDelay);

% time delayed: phase removed (for comparison}
% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)

% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)

% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)

% time delayed: phase ren@gﬁgﬁ&rﬁgﬁg@{éﬁgh

% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)
% time delayed: phase removed (for comparison)

% clear na nb wt zeroproportion nzeros a kd2

End of NearCoeffs.m
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