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Abstract

The cochlea is the sensory organ of the auditory system, where acoustic signals are converted into
nerve impulses, before being conveyed to the brain. Thus, the cochlea achieves a signal processing
of the mechanical vibrations caused by the vibrations of the eardrum. Major properties of this
system are: a very sharp frequency resolution, the ability to provide energy in order to increase this
resolution, and non-linearities, apparently responsible for the local control of vibrations. Several
approaches exists for the modelling of these properties, the aim here is to start with a
straightforward model (linear, one dimension) and the fundamental physics of the cochlear system

in the frequency domain.

We first present the hypothesis and simplifications necessary to make the cochlear system
mathematically tractable, in order to implement a passive model and two active models, then further
study is made to evaluate the validity of these models. Many investigations exist for the modelling
of the active properties of the cochlea, but few of them are completed by a consistent investigation
of the cochlear stability. These models are generally made up of a bank of resonators. Considering
the active model proposed by Neely and Kim [3], the strategy has been to verify the stability of one
of these resonators has been verified when isolated. An approach is proposed here of assessing the
stability of the entire model, where interactions between these resonators is cons1dered through the

fluid coupling.

Resumé

La cochlée représente 1’organe sensoriel du systéme auditif, elle est le lieu de transduction du signal
acoustique en impulsions nerveuses, qui sont par la suite transmises au cerveau. La cochlée realise
donc un traitement du signal vibratoire généré par le tympan. Les propriétés les plus notables de ce
systéme mécanique sont: une discrimination fréquentielle trés fine, la capacité a fournir de
I’énergie afin d’améliorer encore cette résolution, et des phénomenes non-linéaires qui semble étre
responsables d’un contrdle local des vibrations. Plusieurs approches exisient pour modeliser ces
phénoménes, le but de cette étude est d’abord de réaliser un modele simple (linéaire, mono-
dimensionnel) capable de rendre compte de la physique de base du systéme cochléaire dans le

‘domaine fréquentiel.

Dans un premier temps, nous présentons les hypothéses et simplifications nécessaires pour rendre le
systéme cochléaire exploitable d’un point de vue mathématique, ceci afin de développer un modele
passif et deux modeles actifs, par la suite une étude plus approfondie est menée pour évaluer la
validité de ces modéles. Beaucoup de propositions existent pour modéliser les propriétés actives de
la cochlée, mais rares sont les tentatives pour évaluer la stabilité du systéme. Ces modeles sont
constitués d’une série de résonateurs, en considérant le modéle actif proposé par Neely et Kim [3],
la stratégie a été de vérifier la stabilité de 'un de ces résonateurs isolé, et ensuite de proposer une
approche pour évaluer la stabilité du systeme complet, pour lequel des interactions de couplages par

le fluide sont considérées.
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Introduction
The Institute of Sound and Vibration Research (ISVR)

The Institute of Sound and Vibration Research is part of the University of
Southampton (UK), it is made up with four main Research Groups. The Dynamics group is in
the broad field of vibrational dynamics, including automotive and railway noise and
vibration, rotor dynamics vibration of pipes, and smart structures. Particular focus is made on
new methods of numerical analysis and especially the “mid-frequency” range. Progress are
being made in Statistical Energy Analysis, force determination by inverse method and the
active control of structures. The work of Fluid Dynamics and Acoustics Group is focused on
aeroacoustics and hydroacoustics. We can mention that applications of techniques based on
the numerical solution of the linearised Euler equations are used for the complex flow
interactions problem, this group has a strong relationship with Rolls Royce. The Hearing and
Balance Centre and the Human Factors Research Unit are concerned by research on
audiology and by the development and evaluation of new hearing aid technologies, the
interaction between these devices and the process of spatial hearing is also being investigated.

This work has been achieved in the Signal Processing and Control Group (SPCG), in
fact this group has expanded to embrace topics in biomedical signal processing (voice
modelling, speech enhancement for hearing aids, image processing...). The more established
areas of active control of sound and vibration and underwater signal processing remain highly

productive themes of work for the SPCG.

Modelling wave propagation in the cochlea

The project is comprises several aims, at first we will present the main characteristics
of the cochlea (section A). Then we develop a simple passive, linear and one-dimensional
model, in order to understand the basic physics of the cochlear system, this part is completed
by two examples of locally active models, able to give the sharp tuning characteristics of the
cochlea (section B). Next (section C), we evaluate few numerical and physical characteristics
of the models: reciprocity, convergence, respect of the “long wave criterion”. Section D
dedicated to the build of a comprehensive model of the ear, completed by a study of the
reciprocity of the model created. And finally, Sections E and F deal with an attempt to assess
the stability of the locally active model; in a first part we try to evaluate the stability of one
component of the cochlea, and then we focus on the stability of the whole model.




A.Cochlear physiology and travelling waves

A.1. Introduction

The fundamental physics of wave propagation along the cochlea is reasonably well
understood. The distribution of cochlear fluids in the upper and lower channels of the
cochlea, together with the mechanical properties of the basilar membrane, give rise to a
dispersive wave, whose velocity falls as it moves along the cochlea. This passive wave
propagation is increased by an active cochlear amplification mechanism, involving the inner
and outer hair cells, which occurs at each position along the basilar membrane during
transduction. However, the active amplification process is considerably less well understood
than the passive wave propagation process.

In this section is presented an overview of the anatomy and physiology of cochlea,
based on biological surveys and observations. Also we briefly explain the generation of the
travelling waves, and the basics of the active process within the cochlea.

A.2. Physiology and anatomy of the auditory system

A.2.a. The principal structures of human ear

The ear divides into three main parts, the outer, middle and inner ears (Fig.1). The
outer ear is the section to the left of the eardrum in the figure. The main functions of the outer
ear are to provide maximal amplitude of the sound wave at the eardrum and to assist with
sound location,

The middle ear consists of three ossicles (bones), the malleus, the incus and the
stapes. The malleus connects to the eardrum and the stapes to the oval window on the
cochlea. The aim of the three bones is to provide a lever arrangement, optimizing energy
transfer from the outer ear, which is air filled, to the cochlea which is fluid filled; in a way,
middle ear achieve an impedance matching between those two organs.

The inner ear consists of two structires, embedded in the temporal bones, the cochlea
and the vestibular organs. The vestibular organ is involved in the sense of balance, it will not
be considered here. The cochlea is the sensory organ for the auditory system. It is a coiled
bony structure consisting, in humans, of just over two and a half turns. Its uncoiled length is

about 3.5 cm.

Figure 1:Principal structures of the human ear




A.2.b. Physiology and anatomy of the cochlea

The cochlea (Fig.2a and 2b) is divided in its length into three regions by a pair of
membranes (Fig.3). The central region, termed the scala media, is separated from the scala
tympani by the basilar membrane (BM) and from the scala vestibuli by Reissner’s membrane.
The scala media is filled with endolymph, whose mechanical properties are similar to water;
organ of Corti is enclosed in this scala media, and supported by the BM. The scala media
narrows toward the apical end of the cochlea. Scala vestibuli and scala tympani are filled
with perylymph, it differs from endolymph with its ionic composition; a small opening called
helicotrema connects those two scalae at the apical end of cochlea. Fig.3 is a cross section
through the cochlea showing the three scalae and these two membranes, along with the organ
of Corti, which contains the sensory hair cells and the tectorial membrane noticeably.
Moreover, the BM becomes broader, and mechanically more compliant from base to apex,
whereas the cross section of the scala media taper in the opposite direction to the BM,

becorming narrower from base to apex.
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Figure 2: (a and b) Two representations of straightened cochlea
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Figure 3:Transversal view of cochlea




Vibrations at the eardrum, generated by acoustic stimuli in the ear canal, are received
by the ossicular chain of the middle ear; these motions are then transmitted to the stapes
footplate, connected with the oval window, and finally the oval window transfers its motion
to the perilymph in scala vestibuli. This duct is on both sides separated from the rest by
membranes: the oval and round windows, the round window facing the air filled middle-ear

cavity.

Vibrations of the oval window generate a hydromechanical wave involving transverse
motion of the BM, which is a part of cochlear partition. The wave, known as the travelling
wave (see Fig.d), travels along the BM carrying energy from base to apex. This passive
travelling wave propagation involves transfer of mechanical energy between a spatially
distributed store of kinetic energy -cochlear fluids- and a spatially distributed store of
potential energy -the BM stiffness-. One major observation is that, for a pure tone stimulus,
the travelling wave amplitude response varies with position along the BM, peaking at 2 point
which is dependent on the stimulus frequency (characteristic point). The location of the peak
in the response gets closer to the base as the frequency increases; hence, to some extent, BM
can be seen as a Fourier analyser, which translates frequency into position. This phenomenon
is sometimes called spatial nonuniformity; it can be interpreted in terms of wave speed,
which varies with position along the cochlea. Moreover, cochlea is a dispersive field since the
wave speed also varies with frequency. As we shall see later, those two major facts are due to

mechanical properties of the BM.

Fluid motion

Motion of

Characteristic point
the stapes :

BM

Figure 4:Travelling waves on the basilar membrane

A.2.c Active mechanics within the cochlear system

Organ of Corti mechanics, micromechanics

Mechanics of the organ of Corti are also called micromechanics of the cochlea, that
refers to the movement and interaction of the structures attached to the basilar membrane.

The basilar membrane supports a rigid structure formed by the walls of the Corti
tunnel (Pillar cells) and the reticular lamina. The inner hair cells and the outer hair cells
(IHCs and OHCs) lie under the reticular lamina, the tectorial membrane is a gelatinous
structure above the reticular lamina, which is attached at its inner edge and runs along the
length of the cochlea. Tectorial membrane and reticular lamina are separated by a layer of
endolymph fluid. A bundle of hairs, from both IHCs and OHCs, called stereocilia projects
from the top of each hair cell towards the tectorial membrane. The tectorial membrane is




attached to the tallest stereocilia of the outer hair cells (as shown in Fig.5). Deiters’cells
provide visco-elastic coupling between the OHCs and the elastic basilar membrane.

1.Inner hair celis JHCs)
2.0uter hair cells (OHCs)

3 Corti funnel

4.Basilar membrane
5.Habenula perforata
6.Tectorial membrane
7.Deiters’ cells

8.Nuel spaces

9. Hensen cells

10.Intern spiral groove
11.Reticular lamina (rigid structure)
12.Pillar cells {rigid structure)

Figure 3:The organ of Corti

OHCs and IHCs added to tectorial membrane (Fig.5) have a key role in the
transduction process achieved by the BM. Both types of hair cell convert the displacement of
their stereocilia, caused by the relative motion of the reticular lamina and the tectorial
membrane, into transducer current that produces a modulation of the cells receptor potential,
this is generated by the modification of the rate of flow of ions from the surrounding
endolymph to the hair cells. It has been shown that THCs are the sensory cells of the cochlea |
given that their synapse is directly connected to the auditory nerve. OHCs are motile, and it is
commonly assumed that they can convert membrane potential into a force. The transduction
process from mechanical excitation to nerve impulses conveyed to the brain can be summed

up by the diagram of Fig.6:
input signal

TR
d

o CdE Cd
cochlear fluid

Signal processing BM impedance <4—
' tectorial membrane active feedback
outer hair cells
inner hair cells
auditory nerve

Figure 6: Block diagram of the transduction process within the inner ear

The motion of the cochlear fluid triggers a travelling wave, relative displacement
between the basilar membrane and the tectorial membrane provoke the OHCs contraction,
hair cells contraction distorts the organ of Corti, the cell length change forces the rigid arch
structure formed by the Pillar cells to pivot around the inner attachment of the basilar
membrane (Fig.7), so that the motion of the basilar membrane is modified, here emerges the




active mechanical feedback provided by the OHCs. This feedback control seems to guarantee
optimal functioning of the cochlear system; it provides both cochlear amplification and

saturation properties to the global system.

Reticular lamina

Pillar cells Contraction of OHCs

1

Inner - BM
attachment

Figure 7:Distortion of the Organ of Corti

Non-linearities
One of the major characteristics of the cochlear system is its non-linearity,

experiments on live cochlea have exhibited several non-linear phenomena, mainly due to the
OHCs. One of these phenomena is the saturation of the basilar membrane velocity at some
input levels. If we display the input-output diagram of the basilar membrane for a fixed
frequency (where the input is the pressure imposed at the entry of the ear canal, and the
output is the velocity of the basilar membrane) we obtain, basically, the diagram of Fig.8:

BM velocity

/ -~ Passive case (dead cochlea)

——  Active case {live cochlea}

) 00 > Stimulus amplitude
30 ¢dB SPL)
linear non-linear lincar

Figure 8:Compressive non-linearity in the basilar membrane response

The basilar membrane motion at low input levels (below 20 dB SPL) is lincar but
greatly enhanced, compared with the passive case. Between 30 and 90 dB SPL the response
saturates, a compressive non-linearity is produced, this phenomena is most often assumed to
be due to the active undamping actions provided by the OHCs, this non-linear mechanism is
likely to process a local control of vibrations. This action becomes negligible above 90 dB
SPL., where the response approaches the linear passive case. This compressive non-linearity
generate harmonic distortions, known as the acoustical distortion product. In this document
non-linear phenomena will not be considered, consequently we can say that our study is
limited to low and high level stimuli (below 30 dB SPL, and above 90 dB SPL). For more

justifications, see Nobili et al.[13].




B. Cochlear models

B.1. Basics of the cochlear models

B.1.a. Introduction

The principles explained above have been applied to the implementation of a model in
the frequency domain. First, we will present the framework taken for this initial work in
particular the hypothesis underlying the basic equations. Then the derivation of the travelling
wave equation will be detailed; it will be followed by a presentation of the results obtained
using the different models (passive and active). The first aim of this study is to implement a
simple passive model of the cochlea, in order to understand the basic phenomena of wave
propagation, this first model will be based on the approach developed by de Boer [1], and on

Kanis and de Boer [2].

The objective here is to implement a one-dimensional linear model able to capture the
main features of cochlear macromechanics in the frequency domain. The basics of the models
are mainly quoted from papers by Boer [1], Neely and Kim.[3] and Kanis and de Boer.[2].

B.1.b. Hypothesis for the build of the cochlear models

We have particularly followed the approach used in [1], in which the basics for a one-
dimensional, passive and linear model are presented. This work allowed the problem to be

made ‘mathematically tractable’, by proposing the following steps of simplification:

Cochlea is taken to be straight and with a constant cross-section, instead of coiled

and tapered structure.
The wavelength in the cochlea is assumed to be larger than the dimensions of the

cross-section (long-wave approximation).
Reissner’s membrane is ignored, thus the scala vestibuli and scala media are
treated as a single fluid channel, called here the upper channel. Scala tympani will

be called the lower channel.
- A section across the upper channel (perpendicular to the longitudinal axis) will be

considered as rectangular.

Lower channel is assumed to have the same cross section as the upper channel.
The BM, the tectorial membrane, the organ of Corti and associated cells are all
replaced by a single flexible membrane called the cochlear partition (CP).

The CP is assumed to be incompressible, it deflects but its volume keeps constant.
Consequently, the fluid velocities above and below the CP are equal at any

location.
The stapes footplate stands for the basal boundary of the upper channel, it is

perpendicular to the longitudinal axis.
Helicotrema is modelled as a gap in the CP at the apical end of cochlea, and stands

for a fluid connection between the two channels.

Cochlear fluids (which can be assimilated to water) are assumed incompressible
and inviscid (the viscosities and thermal conductivity are zero).

Consequently, the simplified structure of the cochlea will be modelled as follows, that
represents the starting point for the macromechanical models (Fi 2.9)
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Figure 9: Simplified structure of the cochlea

According to de Boer [1] and Viergever [9], points on the membrane at different
longitudinal positions are assumed to have no direct mechanical coupling; all coupling are
assumed to occur via the cochlear fluid; this implies that the mechanics of the membrane can
be described by a mechanical impedance. The simplest model of this impedance is of a mass-
spring damper system at each point along the membrane, with a distribution of those

parameters along the cochlea.

As an alternative to this passive long-wave model, we will also test two locally active

models proposed by Neely and Kim [3] and Kanis and de Boer.[2]. These models use exactly
the same macromechanical framework as the previous one, but introduces micromechanical
active elements within the cochlear partition impedance. The interest of these models is that
micromechanical effects are characterized as relationships between macromechanical

quantities.
B.1.c. The macromechanical variables

For a given sound stimulus, the solution of the macromechanical response is specified
in terms of the fluid pressure and the fluid velocity vector at all points and at all instants in
time. Once those fluid variables have been determined, the CP velocity and pressure are also
known, because the CP is in contact with the fluid. Variables here are specified with
reference to the three-dimensional coordinate system shown in Fig.9. In this model, we will
not consider lateral variations (along the y axis). At a given point in space and an instant in
time, velocity and pressure fields are denoted by:

The fluid pressure:ﬁ PAx. z, t) (Nm?)
The fluid x-velocity vector: ur(x, z, 1) ( ms?)
The fluid z-velocity vector: ve(x, z, 1) (. ms™)

The velocities at the fluid boundaries are denoted by:

The stapes (oval window) x-velocity: uy(z, t) (ms'l )
The round window x-velocity: Urw(2, 1) ( s )
The cochlear partition z-velocity: v(x, t) (ms™)



B.1.d. Symmetry relations in the upper and lower channels

As mentioned by several authors, it is more suitable to consider the semi-difference
pressure between upper and lower channel:

Py(x,2,0) = %[pf (x,2,0) = p; (x,=2,0)] O<z<H (B.1)

This definition is convenient because, only the semi-difference pressure plays a part
in travelling wave propagation (this is demonstrated in Lineton [4] ). Indeed, assuming
linearity, any arbitrary boundary conditions at the round window and stapes footplate can be
split into “push-push” case (application of identical forces to stapes and round window) and
“push-pull” case (application of equal and opposite forces to stapes and round window). The
“push-push” case activate fast waves (compression waves) to travel up the two cochlear
channels, and by symmetry there is no CP displacement and consequently no TW. The “push-
pull” case brings about a pressure difference in the two channels thereby generating TW
which propagates by CP deflection and also fast waves in the two channels. Given the
commonly assumed incompressibility of cochlear fluids, the fast waves can be ignored
entirely, thus, in the following parts the perilymph is pushed-pulled by the motion of the oval
window and the cochlear duct behaves like fluid column; the round window membrane is
moving in opposite direction related to the motion of the oval window membrane. Moreover,
in this “push-pull” case, the pressure and velocity at apical locations remain completely

unchanged until the arrival of the TW.

Consequently, in our model, velocity and pressure components exhibit the following
antisymmetry, ¢ stands for the time:

urw (_Z!I) = _u_;g (Z’ t)
iy (x,-2,0) = —up(x,2,1)

. (B.2)
v (x=7,) = v (X, 2,8)
pf (xs Z’t) = "Pf (x,—z,t)
According to this last relation we have:
Pa(x,2,0) = p;(X,2,1) (B.3)

B.2. The long-wave model and the 1-D equation

B.2.a. Introduction

Given the assumptions made in the previous section, we can now introduce the
equations governing travelling wave propagation. The semi-difference pressure in the
cochlear fluid can be now related to the motions of the stapes footplate, using the equations
of fluid mechanics and the impedance of the CP. Fluid viscosity is ignored, since the system
is damped via the resistive component of the CP impedance. Particles displacements and
velocities are considered very small compared to characteristic dimensions of the model and
wave speed respectively. As we already mentioned, the cochlear fluid is assumed inviscid




incompressible (p is constant). The following calculation is inspired by Lineton [4]. The
analysis yiclds partial differential equations for the fluid flow (pressure and velocity), in
which both the axial and transverse dimensions appear as independent variables. Using the
“long-wave approximation”, we can eliminate the transverse coordinate as an independent
variable. Thus, as we will see, the mechanics of the long wave model can be represented as a

simple one-dimensional wave equation.

B.2.b.Derivation of the long wave equation

As mentioned above, the fluid pressures in the two channels are antisymmetric, thus
the fluid pressure in the upper channel is equal to the semi-difference pressure pa.

First, cochlear fluid in the upper channel obeys the conservation of mass (div(V 4,,;) = 0):

du,; (x,2,1) N v, (x,2,7) -0, (B.4)
ox dz

and the equations of conservation of momentum in two directions:

dp, (%, 2,1) _ —p dut; (x,2,1) , (x direction) (B.5)
ox ot

M — _pm . (z direction) (B.6)
oz ot

We also have the boundary conditions at the stapes footplate and at the helicotrema, the
stapes x-velocity being assumed independent of z:

u, (0, Z,ty=u,(t),

e Lod=D, (Vzr) | B.7)

and the boundary conditions at the CP and ceiling of the upper channel:

v (x,0,8) =v(x,1),

u (x,H,1)=0. (Vx.1) ®8)

Then, in the long wave approximation, it is assumed that the z-velocity of the fluid
varies linearly across the cochlea: :

v (%,2,0) = (1—}3—)1;@, £). (B.9)

Using this equation does not violate the conservation of the z-momentum provided
‘that: v, (x, z,£) << u; (x,2,7) . This condition is satisfied as long as H is much smaller than the
wavelength of the travelling wave. Differentiating (B.9) with respect to z, and substituting
into (B.4), we obtain:

10



auf(x,z,t) _ v(x,1) (B.10)
ox H

The right-hand side of (B.10) is independent on z, so is the left side. Equation (B.10)
and assumption that stapes footplate velocity is independent of z allow us to say that u(x,z1)
is independent of z. Also, from (B.5), the pressure becomes independent of z. It follows that
both fluid pressure and x-velocity are uniform across the upper channel; consequently, the z

variable can be dropped from the equations.
Differentiating (B.10) with respect to ¢, and (B.5) with respect to x we can equal terms

to give:
2 a2
O pyet) 9w (0 __p vy (B.11)
ox? dxot H ot

Transforming (B.11) into the frequency domain gives (@ being the radian frequency)
and assuming a harmonic time dependence in e** for v:

azpd(x,a)) wp
Il o B\ShCA Bese il 12
W ] = v(x, @) (B.12)

Introduction of CP impedance
To introduce this impedance, we can use an electronic analogy, considering CP as a
passive receptor, which undergoes the current intensity v, and the tension -2pq.

Figure 10: Electronic analogy

Following the right-hand side of Fig.10:
py(x—z,0)— pp(x. 2,0} =Z_ v(x,1). (B.13)

Consequently the impedance of this receptor is, in the frequency domain:

_2p
Z,,(x,m)=—"*% (B.14)
v

all those variables depending on x and .
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Combining (B.12) and (B.14) we obtain:

) :
0" p, (x,00)  2jwp p,(%,0) =0 (B.15)
axz HZ,_-p (xs (D)

Rearranging equation {B.15), we obtain the wave equation:

2
I LD | 2 oy () =0, (B.16)
ox*
with:
®
kpy (x,00) = ————— (B.17)
Cpy (X, )
where
joHZ  (x,0
o 2 ) = 220 B0 (B.18)
2p
Where kyw and crw are the wave number and the phase speed of the travelling wave
respectively.

Note that equation (B.16) can be considered as a 1-D Helmholtz equation, it differs from the
‘classic’ version, since it is distributed and dispersive with its wave number is dependent both

on x and .

B.2.c Boundary conditions .

In order to close the system, we have to define the boundary conditions:

At the base
if we apply the x-momentum equation at x=0, and assuming that the stapes footplate

velocity (u,, ) is known, we obtain:

0
M =~ j20pu,, , (B.19)
dx

The stapes footplate is then considered as a rigid boundary.

At the apex
A commonly used boundary condition at the helicotrema is:

p,(L)y=0. (B.20)

This is physically justified if we consider the helicotrema as a fluid connexion
between the two channels, consequently the semi-difference pressure is logically equal to
zero. Several authors propose another boundary condition taking into account the fluid
damping at the helicotrema. According to [4], the justification for equation (B.20) is
also that the model response is highly insensitive to this apical boundary condition, provided

12




the stimulus frequency is high enough to ensure that the characteristic place lies basal to the
helicotrema.

B.2.d Impedance of CP, the passive long wave model

The main differences between the various 1-D models of cochlea lie in the assumed
impedance of the cochlear partition Z,,. The formulation adopted here is taken from de Boer

[1] and Kanis and de Boer [2].
(N.B.:In those documents the value for H (height of the upper channel) is : 0.001 m)

The passive impedance is given as follows:

Z,(x) = jom(x)+r(x)+ s(x)/ jo. (B.21)

Tt is made up with a mass term (positive imaginary), a resistive term, (positive in the passive
model), and a stiffness component (negative imaginary). This formulation of impedance is

both dependent on @ and x.
If we continue to follow de Boer’s approach, we can adopt the following expressions

for impedance components:

= the stiffness component is assumed to decrease with increasing x as an exponential
function: s{x)=sg.e (o) (N.m'3). This assumption is based on experimental evidence.

» The mass component is assumed to be constant along the cochlea: my (k(g'.nfz'2 )

» The resistance is taken as an exponential function: ro e ™ (N.s.m™)

These distributions are illustrated in Fig.11

Thus, the impedance can be written as:

soe
Z. (x,@) = jom, +re =422 (B.22)
cp o 0 .
Jjw
where:
a=300 m’
mo = 0.5 kg.m™

so=1.0e10 kgm3s?

’s 2 .
Fo= Oyiiy. dn;Q‘ kg.m?.s?
0

where 8y is approximately equal to the reciprocal of the Q-factor of the resonance peak, here
8o is taken equal to 0.4.
- The characteristic frequency, given by the formula:

fc (x) =—1—. s (B.23)
2\ m,

The characteristic frequency of a given point is the frequency at which the velocity
amplitude response is a maximum for a given stimulus. This is linked to the characteristic
place, where for a given stimulus frequency, the characteristic frequency equals the stimulus
frequency. The de Boer model assumes a perfect exponential spatial variation of

characteristic frequency (see Fig.13):

13



_ L S0 o O
fc(x)-zﬂ. exp( 2) (B.24)

According to equation (B.23) and the value of the parameters, the lower frequency
limit of the model at the helicotrema (x=L) is 118 Hz, and so the model is not valid for

excitation frequencies below this.

x5 Stiffness < 10" Damping flass
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Figure 11: Variations of stiffness, damping and mass along CP (de Boer model)

Figure 12: Variations of real and imaginary part of Z,, along CP, at an excitation frequency of 1 kHz (de Boer
model)
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Figure 13:Variations of the characteristic frequency along the CP (de Boer model)

- The wave number of the travelling wave, given by the formula:

Fepyy (x,00) = (B.25)

and this is plotted in Fig.14 as a function of position along the cochlea for an excitation
frequency of 1 kHz

£33 {iim Ienilec} £549m
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Figure 14:Evolution of k,,, with x at 1 kHz (de Boer passive model)

- The wavelength of the travelling wave, given by the formula:

Ry (2, 0) = ——— (B.26)

ko (X, 0)

This result is useful because it enables us to locate the portions of cochlea where the long
wave approximations break down (i.e. when the criterion H /A, <<1 is not respected).

The phase speed of travelling wave (crw), is given by:
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Figure 15: Bvolution of the phase speed ¢, along the cochlea at an excitation frequency of 1 kHz (de Boer

mode})

These figures bring some comments:

1.

Resistance term is taken to be positive in this model and thus the BM is considered as
passive, it can only absorb energy. In active models, BM can be considered as an
energy source, resistance will then be negative over a certain domain of x.

This impedance model leads to a single frequency wave encountering three regions
along x axis, as shown in Fig.14:

a-Near the oval window stiffness dominates, for positions where O<x<0.02 at
an excitation frequency of 1 kHz; the impedance of the cochlear partition is mainly
stiffness-controlled, so that:

Z,(x,w)= Lx) O<x<0.02 (B.28)
jo
And hence, the wave equation (B.15), can be written:

9% p,(x,m) N 20°p
ox? H.s(x)

py(x,0)=0 (B.29)

So that the wave number is real and given by:

Ky (5 0) = @, |—2P (B.30)
H.s(x) |
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And the solution to the wave equation is a propagating wave, whose phase speed
decreases (Fig.15) as it moves along the cochlea, because of the variation of s(x) with

X.

b-Where Z,,(x) is nearly real (x=0.021 m at 1 kHz), we approach the
resonance point, CP velocity is there characterized by a peak and pressure begins
decaying. At this point, energy builds up and most of the power of the cochlear wave
is dissipated in the BM, which is here totally passive. Moreover the wavelength of the
travelling wave reaches its minimum value, in terms of module, thus it is the region
where the long-wave approximation is most likely to fail. The module of the phase
speed tends also to reach its minimum.

c-After the peak region (x>6.02 at 1 kHz), the wave is attenuated very
rapidly; the impedance of the CP is dominated by its mass component and thus no
longer acts as a potential energy store (mass-controlled region), so that:

Z,,(x,0) = jom(x) x>0.02 (B.31)

And hence, the wave equation is

0% p, (x,m) 2
ox? H.m(x)

p,(x,0)=0 (B.32)

80

oy (5, 00) = . |—2F (B.33)
H.m(x)

And the solution to the wave equation is an evanescent wave, decaying
exponentially. Note that the phase speed is also dominated by its imaginary
component.

. In this model, organ of Corti’s influence is neglected, it is assumed to follow the
motion  of BM. Thus, we use the macromechanical framework of cochlea.

B.2.e. Impedance of the CP, locally active linear long wave models

To some extent, passive models, like the one described above, can be satisfactory to

describe cochlear phenomena, as long as the experiments are carried out on dead cochleas.
However, such models are unable to provide results that stick to experimental results
obtained with live cochlea, for example they can not reproduce the sharpness of the BM
displacement near the peak region. The cochlear amplifier proposed by Neely and Kim [3] is
an attempt at simulating the high sensitivity and sharp tuning characteristic of the mammalian
cochlea. The active elements are postulated to be mechanical force generators that are
powered by electrochemical energy of the endolymph, controlled noticeably by the bending
of outer hair cells stereocilia. The interest of this model is that active elements are included
through the formulation of the impedance of the cochlear partition. The justifications for the
formulation of this impedance are detailed later (see section E) for more precisions, see [3] as
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well. Nevertheless, it is important to mention that the impedance proposed involves an active
gain parameter (y) that can be tuned (usually hetween 0 and 1) in order to see the influence of
the cochlear amplifier, the default value used in [3]isy=1.

This version for cochlear partition impedance is:

_vz)
ZCP = [EIZI +Z, M (B.34)
b (Z,+Z3) ] '

The model parameters values are fully detailed in section E where the stability of the
lumped component model is studied. Note that the parameters taken by Neely and Kim for
their model are those of the cat cochlea, nevertheless that does not affect physical comparison
with the passive model of de Boer (human parameters). Yet, we have to mention that the
length of the cochlea (L) is taken equal to 35 mm (human cochlea), even though Neely and
Kim take L=25 mm (cat cochlea). Given that we just want to illustrate the physical properties
of the cochlear mechanism, this modification is convenient to compare the several models,
furthermore it has no deep consequences on the numerical resuits.

Kanis and de Boer [2] propose another version of locally active linear impedance,
called cochlear amplifier Z,.

1+ /B (B.35)
5, + jIB(x,®) — 6/ Bx, m)]

®, = s and PB(x,w) -9 (B.36)
mO O‘)c
with:

ep: active OHC impedance parameter (kg.m'zs)
dp : active OHC impedance parameter (kg.s™h)

3., : Stereocilia damping :

o : OHC resonance shift ratio

an = eOdO(Dc (JC)

where:

The impedance of CP partition is then, if we call the passive impedance proposed by de Boer
(see (B.22)) Zpass

Z, =2~ Co *Z,, (B.37)

pass

Caf being the cochlear amplification factor (if C,, =0 we have a passive model)

This version of impedance is partly inspired by the one of Neely and Kim [3], adapted to
human cochlea. These active models can be characterized by the real parts of Z; along
cochlea; indeed, its sign enables to locate active portions of cochlea, owing to the fact that
cochlear amplification occurs when damping is negative. As shown by Fig.16, the locally
active models are characterized by an area on the cochlear partition where the real part
(damping) is negative, along this part the cochlear partition provides energy to the system.
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Figure 16: Real part of Zcp for the three different models, at 1000 Hz, y=1 and Caf=1

B.3. Implementation of the cochlear model using finite difference method

For the sake of the physical clarity, the basilar membrane is pictured as a bank of
spring mounted micro-pistons immersed in an inviscid fluid. In view of previous hypothesis,
it is possible to start the implementation of a simple passive and one-dimensional model.
BM’s length (L) is divided into N-I elements, length of which is A (A=I/N-1)), thus we use
N points to represent cochlea in x dimension, the first point stands for the oval window, the

. d? o
last point stands for the helicotrema. Replacing P by its finite difference approximation
2 ] ‘

(using a Taylor development), equation (B.16) can be written as, for i from 2 to N-1:

p,(i+)—2p, O+ p, (-1  2jwp p,()=0 (B.38)
A2 H*Z (i)

The boundary condition at the base (B.19) can be written using another finite
difference approximation: '

2@ gy, Base) (B.39)
A

At the apex, we apply the condition (B.20)
ps(N)=0 (Apex) (B.40)
The basal boundary condition makes appear the source term in the second member of

the equation.
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1
Then, we obtain the following system, taking — =Y,

Z,
[ (-A A 0 [ 20 (~2op,

1 =21 0 Y2 0 . 0

) e 2o . ) .

0 1 -21 0 Y (n—1) . .

| 0 A 0 1 p,(N) 0
This systern can written as:

CP,-MP, =8 (B.42)

Where C is the matrix due to fluid coupling, M is the diagonal mobility matrix, Py the
pressure array and S the source array.

Or, equivalently _
TP, =S (B.43)

T: tridiagonal matrix (N*N), (T=C-M)
Resolve:
P, =TS (B.44)

In this model, the inversion operation is achieved using MATLAB function inv( ).

B.4. Results of the cochlear models

B.4.a. Layout of the results

Semi difference pressure
Once obtained the pressure array, the diagram pressure vs position (along cochlear
partition) can be plotted, according to the formula:

PdB =10log,,| £+ (B.45)
pref
Where p,.r is the reference (pr=2¢-5 Pa)

CP velocity
According to equation (B.14), we can infer cochlear partition velocity (v) from the

pressure array.
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~2py(x,0) (B.46)

X, )=
= o)
WdB = 101og10(LJ (BAT)
vref

where v, the velocity reference (1 m.s’l).

Note that for each case, WdB and PdB, the references taken are independent of radian
frequency (®).

Fluid velocity

Moreover, the velocity of the fluid can be deducted from the pressure array, using the
conservation of the x-momentum (equation (B.5)), in our model, this can be written :

Pe@FD=p® o ggicN -1 (B.48)
japA

w0 =

and for i=1, according to(10)

u, () =u,(2)- A2

H

(B.49)

In the figures below (from Fig.17 to Fig.23), are presented few results for the three
different models. In each figure is presented the response of the model in terms of amplitude
of either pressure as defined in equation (B.45), or velocity of the cochlear partition v as
defined in equation (B.47); in each case the phase of the parameter is plotted. Each time, 6
curves are plotted, they correspond to the frequencies: 200, 2200, 4200, 6200, 8200 and
10200 Hz respectively from right to left. The velocity at the stapes is kept constant. 1024
points are used to represent the cochlear partition. These data are plotted versus the position
{x) ?long cochlear partition. In each case the amplitude of the stimulus u; is taken equal to 1
ms”.
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B.4.b. Kanis and de Boer passive long wave model
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Figure 17 (a and b):Pressure (amplitude and phase) for the passive long wave model of de Boer. (1,2, 3,4,5,6
correspond (o 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz respectively) ,
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Figure 18 (a and b):Velocity of cochlear partition (amplitude and phase) for the passive long wave model of de
Boer.(1, 2,3, 4, 5, 6 correspond to 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz respectively

B.4.c. Neely and Kim locally active model
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Figure 19 (a and b):Pressure (anﬁplitude and phase) for the locally active long wave model of Neely and Kim
(active gain y=1), (1, 2, 3, 4, 5, 6 correspond to 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz

respectively).
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Figure 20 (a and b):Velocity of the cochlear partition (amplitude and phase) for the locally active long wave
model of Neely and Kim (active gain y=1), (1, 2, 3, 4, 5, 6 correspond to 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz,
8200 Hz, 10200 Hz respectively)
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Figure 21:Velocity of the cochlear partition (amplitade and phase) for the locally active long wave model of
Neely and Kim, the effect of varying the cochlear amplifier gain y at 1000 Hz, (y=0; 1; 1.1 and 1.15), at this
frequency “instabilities” appear for y=1.15.



_B.4.d. Kanis and de Boer locally active model
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Figure 22 (a and b):Pressure {amplitude and phase) for the locally active long wave model of Kanis etal.
(cochlear amplification factor Caf=1), (1, 2, 3, 4, 5, 6 correspond to 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz, 8200

Hz, 10200 Hz respectively).

W re Ust

Xeoa)
Fig23.a

25



hase W (oyelas)

-3

L ' 1 PR L
L1 2.0G5 o0t G015 .02 o v 043 O 935
e}

Fig 23.b
Figure 23 (a and b):Velocity of the cochlear partition (amplitude. and phase} for the locally active long wave

model of Kanis et al. (cochlear amplification factor Caf=1), (1, 2, 3,4,5,6 correspond to 200 Hz, 2200 Hz,
4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz respectively).

B.5. Network model of the cochlea

Considering the equations leading the mechanics of the cochlea, one can formulate the
model as an electrical network, which is sometimes called the transmission line model. The
analogy between the cochlear model and an electrical network is as follows (Fig.24) :

Ps=P1 z; s || Zs prr || 2ot &,

Figure 24: Network model of the cochlea

This network can be used in two ways:

~ If we are to consider the velocity of the fluid and of the basilar membrane, quantities
of the network are as follows:

p; stands for the semi difference pressure pa(i)
uy stands for the velocity of the fluid u(i)
y; stands for the BM velocity v(i) multiplied by a constant such that:

v, = —%v(i) (B.50)
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Zp stands for the acoustic impedance of the fluid (constant in all the cross
sections) such that:

Zp = jawpA (B.51)
Z; stands for the cochlear partition impedance Z,(i) corrected by a constant:

H., .
Z, = 7,0 (B.52)

R}, stands for the fluid damping that can be considered at the helicotrema, in

our case Rp=0
ps and u; are the pressure and the velocity of the stapes footplate

Else, if we are to consider the volume velocity of the fluid, and the volume velocity
generated by the motion of the basilar membrane, quantities of the network are as follows:

p; stands for the semi difference pressure p.(i)

ug; stands for the volume velocity of the fluid u47)
y; stands for the volume velocity generated by the BM velocity v(Z) multiplied

by a constant such that: .
v, =—v({)*W=*A {B.53)

Zp stands for the acoustic impedance of the fluid (constant in all the cross
sections) such that:
JpA
=L 54
= H (B.54)
where W and H are respectively the width and the height of the upper channel.

Z; stands for the cochlear partition impedance Z(i} corrected by a constant:

Z,
Z, == 55
O2*WA _ (B:35)
R}, stands for the fluid damping that can be considered at the helicotrema, in

our case Rp=0
ps: and ug are the pressure and the volume velocity of the stapes footplate

This network model is useful to visualize the relationships between the several
quantities, and noticeably the relationship between the fluid velocity and the velocity of the
basilar membrane. Also, it would be easy to add damping parameter in the fluid impedance,
or sources at several points on the cochlea.
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C.Validity of the models

C.1. The ‘long wave model’ criterion

The long wave approximation becomes applicable when the wavelength is much
longer than the height of the channel (i.e. H [Apy <<1). In this case, the fluid y-momentum
equation may be ignored, as it has been done in this document in the derivation of the long
wave equation. This approximation fails as the wavelength of the travelling wave becomes
smaller than the height of the cochlear channel, which occurs in the region of the peak of the
travelling wave envelope. The following curves (Fig.25 to Fig.27) present the behaviour of

this criterion along the CP for the three models at the same frequencies as above.

long wane critesion, passive modat
v T T

Wb

] ] 1 1. 1
o 5005 8.0t .05 [10 1724 6.025 g 03

a035
pronaay)

Figure 25:Long wave criterion using de Boer passive model (1, 2,3,4,5,6 correspond to 200 Hz, 2200 Hz,

4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz respectively)
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Figure 26:Long wave criterion using Neely et al. locally active model (active gainy=1),(1,2,3,4,5,6
correspond to 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz respectively)
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Figure 27:Long wave criterion using Kanis et al. locally active model (cochlear amplification factor Caf=1), (1,
2,3, 4,5, 6 correspond to 200 Hz, 2200 Hz, 4200 Hz, 6200 Hz, 8200 Hz, 10200 Hz respectively).

Those results allow us to say that the long wave criterion is, on the whole, well
respected along cochlear partition. Problems occur, as expected, near the peak region in
particular for the two locally active models. To some extent, this does not seem to be a fatal
shortcoming, indeed this type of model are used for predicting several kind of oto-acoustic
emissions, and these are well predicted as long the longwave model qualitatively captures all
the features of the travelling wave that are essential for OAE generation, this according to [7].

C.2. Convergence of the model
C.2.a. Analytic evaluation
Models proposed below are described using a finite difference equation, thus we use a
one-dimensional mesh to describe the cochlea. Consequently, it is necessary to determine the
minimal number of points that are necessary to describe in the x-direction the cochlea so that

the response of the model is reliable. Usually the criterion adopted is to get least 6 points to
describe a wavelength of the signal treated:

A
A<= C.1
p (C.1)

where A is the discretization step in the x-direction, and 2 is the wavelength of the signal.

In the models presented in this document, the wavelength of the travelling wave (drw)

follows the relation:
HZ {(x,m
Ay (5,) =2:r1}—f€3—-—) €2)
~2jap

This expression being rather complicated, because of its dependence with x and @ and the
expressions of Z(x, @), it is rather difficult to determine analytically the expression of the
minimal value of Azw for each of these models, consequently this is determined numerically.
- The following table (Table 1) gives the minimal values of Azw (whatever are the position x
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and the radian frequency ). The third column gives the maximal value for A according to
the criterion (C.1); the fourth column gives the value of Ns (number of points to describe the
cochlea in the x-direction), corresponding to the formula

Ns=L41 (C.3)
A

where L is the length of the cochlea (35 mm), this fourth column gives the minimal values for
A that are “theoretically” required for the convergence of each corresponding model.

Formulation of the impedance minimum of Ayyw (mm) max1ma(i:;l)u e for A minimum for Ns
Kanis and de Boer passive model 1.97 0.38 107
Neely and Kim loc. active model* 0.5 0.083 422
Kanis and de Boer loc. active model** 0.58 0.097 361
*y=], **Caf=1 Table 1

C.2.b.Numerical evaluation

In order to be cautious, these results are checked numerically. The following figures
illustrate the evolution of the response in terms of pressure, for several stimulus frequencies;
for each of these frequencies, we calculate the evolution with Ns of the pressure response
where the travelling wave reaches its minimum in terms of wavelength Arw (near the peak
point of the response). The model is considered as convergent when PdB(Ns)=PdB(Nsw) +/-
1 dB; Nscw is here equal to 1200,
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Figure 28:Convergence of the Kanis and de Boer passive model at the peak point, at five frequencies (1, 2, 3, 4
and 5 corresponding respectively to 200 Hz, 5200 Hz, 10200 Hz, 15200 Hz and 20200 Hz), model converges

above 200 points.
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Figure 29:Convergence of the Neely and Kim loc.active model (y=1) at the peak point, at five frequencies (1, 2,
3, 4 and 5 corresponding respectively to 200 Hz, 5200 Hz, 10200 Hz , 15200 Hz and 20200 Hz). The model
converge above 450 points.
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Figure 30:Convergence of the Kanis and de Boer loc.active model {Caf=1) at the peak point, at five frequencies
(1, 2, 3, 4 and 5 corresponding respectively to 200 Hz, 5200 Hz, 10200 Hz , 15200 Hz and 20200 Hz). The
mode] converge above 400 points.

These several figures are given for only five frequencies, but they are fully
representative of the whole behaviour of the convergence of these models. Consequently, we
can estimate the minimal values of Ns for each model, considering a variation of +/- 1 dB as a
satisfactory criterion. The conclusion is: the value Ns=500 will be considered as a minimal
value for the computation of these models, below 500 points one can not expect reliable
results.

C.3. Check of the ‘reciprocity’ of the model
C.3.a.Principle

The purpose of this section is to examine the ‘reciprocity’ of the mechanical response
of the passive model, and of the locally active models. Namely, the principle of vibrational
reciprocity states that the response of a linear elastic system to a disturbance, which is applied
at some point by an external agent, is invariant with respect to exchange of the points of input
and observed response (Fahy[5]). In our model, reciprocity can be checked in two ways, first
it can be analytically assessed taking into consideration the semi-difference pressure p; and
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the volume velocity of the fluid associated with uy we call it “reciprocity within the fluid”, in
a second time, it will be evaluated considering p; and the volume velocity generated by the
motion of a component of the cochlear partition (velocity v), we call it “reciprocity within the

cochlear partition”.
C.3.b. Reciprocity within the fluid

The network model of the cochlea (Fig.24) allows to consider that the model is built
from a cascade of sections as in Fig.31

Pi-1 Pi % Pis1

Figure 31:Section of the network model of the cochlea

This can be formulated using the 2-port network analysis, giving the relationship between

(Pr1, upr) and (Pie1, Up)
piwl-l T, Tl2—| pi+l_l
‘ = (C.4)
upal] [Ty Tplj uz |

Z
=ZP+Z,- T, = p[z_,__i)
Yooz Z
where { : (C.5)
— Z
T21 _Z T22 =}.+E’i"

A way to check the reciprocity of a two port-network model is to proceed as follows. First,

we assume that ug=0, and we calculate the report p,,, /u fiet| =0 7 then we assume rg.1=0,

and we calculate piylu ﬁ’u 0 and then we compare both results, that amounts to compare
A7

the following quantities:

)

1/T,, (P;H/uﬁil‘ o) and Ty, —T, Ty, /Ty (P /u,

¥ =0

If the system is reciprocal, we have

P

o (C.6)

up=0 = P T glu, =0
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This boils down to show that
W, -T,1, =1 (C.7

Consequently, the 2-port network system is reciprocal if the determinant of the two-port
network matrix is equal to 1.

Equation (C.7) is checked by the components Tz, Ti2, Ta; and T,y as a result the section
presented in Fig.31 is reciprocal. In this case we have considered the velocity of the fluid ug
given that, in our model, the cross sectional area of the upper channel is taken constant, the
reciprocity is also checked considering not the velocity but the volume velocity of the fluid.
However, one should bear in mind that this reciprocal property is conditioned by the fact that
the dimensions of the upper channel (in terms of width W and height H) are taken constant in
our model.

The demonstration below can be extended to the N section of the cochlear network, that come
to multiply N 2-port network matrices as the one described below. Consequently this model is
reciprocal considering the quantities characterizing the fluid.

C.3.c. Reciprocity within the cochlear partition

The aim of this section is to exhibit that the system is also reciprocal when we consider
the semi-difference pressure and the volume velocity associated with the motion of a lumped
component of the model. This reciprocity is possibly equivalent to the previous one, but we
did not manage to show it analytically, thus we check it numerically. In our model of the
cochlea, we will check the reciprocity taking two points on the membrane A and B, located at
the index a and b respectively, applying successively a disturbance (res.S, and Sp) at this two
points. Then we will “measure” using our model the semi difference pressure in the upper
channel (pg) and the velocity of the displacement of cochlear partition (CP) at point A (res.
B), when the disturbance is imposed at B (res.A)(see Fig.32).

z, =P %aBase T Apex
|
Sa P,
Zab :P%b Base T ADeX
]
3
P, Sp

Figure 32:Reciprocity principle

Once we have the response of the model for the two configurations, we can compare the
reports Z and Z,.
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Eguations 3 _
Tn order to calculate those quantities, we have just modified the main equation of the

model, that leads to a modification of the source array in the matrix system, o that we obtain:

[ (-A A 0 V& XORWLL
121 0 Y0 0 .
S _ , .| 1o

é L —3‘-;1’ . i =8 (C.5)
... ) 0
0 1 -2 1 0 Yc'p(N—l) ) )
i 0 £ oz Lo

S; being S, and Sj, successively, with 1<i< N .

Nature of the disturbance
To be in conformity with the model, disturbances are time harmonic quantities.
If i =1, the disturbance is the motion (in x direction) of the stapes footplate, its

dimension is (kg.m’z.s'z). In that case:

S, ==2iapu,, (C.9)

u,, being the velocity of the stapes footplate in the x direction.
In terms of volume velocity, this disturbance S; can be written as

S, = —25@7% (C.10)

£i

where Oy is the volume velocity of the stapes, and A, the area of the stapes.
If i >1, in order to cautiously formulate this source, we go back to the wave equation

that govern the pressure field in the fluid at the position x, where the source S(x,w) acts

az , 2 .
pgg 2 Tz J?;pm) py(x, @)= S(x, @) (C.11)
o 2

Actually, the soufce term in the wave equation (C.11) can be written as follows

94(x, ) (C.12)

S(x, ) =—p o

where ¢ is a flow term which dimension is s

In this case, the flow term g is closely linked tov(x, @), the velocity of the basilar membrane
(m.s™). First we consider that the fluid motion involved by v(x, ) is equivalent to a volume
velocity injection in the upper channel. Given the dimensions of a lumped component W#A,
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where W and A are respectively the width and the length of the lumped component, we can
say that the volume velocity O(x, @) corresponding to this lumped component is:

O(x,w)y=v(x,@)*W *A (C.13)

Note that this motion acts a priori in the z-direction, nevertheless, given that motion of the
fluid in the z-direction is neglected, and that the fluid is incompressible, we consider that this
fluid motion is spontaneously transmitted in the x direction. Consequently the flow term
generated is equivalent to:

O(x, )

X,0) = ————— C.14
q%0) =7 A - (C
where W*I*4 stands for the elementary volume associated to the lumped component

(H being the height of the upper channel)
Consequently, fori >7

0,
S, =—im C.15
ZpWHA (C.15)

First analysis
In order to check the reciprocity within the cochlear partition, we proceed as follows:

» Point A is kept still, and point B goes all along the cochlear partition

» The level of the disturbance (S,) at point A is kept constant, its value is chosen by
user, at point B ¢, follows a random law of Matlab (this is in order to check that
reciprocity is independent of the level of Sp).

»  For each location of B, Z,; and Z;, and the ratio R=7,,/7, are caIculated

Results
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Figure 33:Reciprocity principle checked at 1 kIz, CP is described by 512 points, point A is at a=20, point
B goes all along the CP (1 < b < N), using de Boer long wave passive model

As we can see in Fig.33, reciprocity is checked for all positions of B, except for b=1."
This is due to the boundary conditions at the helicotrema. The same results are observed for
the two locally active models, taking the same conditions.
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Second analysis
For this second analysis, A and B are fixed, the frequency goes from 200 Hz to 20000

Hz, the levels ¢, and g, are constant with frequency.

Results
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Figure 34:Ratio R at several frequencies (amplitude and phase from 200 to 20000 Hz, with a step of 200 Hz),
CP is described by 512 points, point A ig at a=10, point B at b=340, ga (dB re =1, gb (dB re 1)= 5 . Using de
Boer passive long wave model.
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Figure 35:Ratio R at several frequencies (amplitude and phase from 200 to 20000 Hz, with a step of 200 Hz),
CP is described by 512 points, point A is at a=1, point B at b=340, qa (dBre D=1, gb (dB re 1)= 5 . Using de

Boer passive long wave model.

As we can see in Fig.34, reciprocity is observed at all frequencies using de Boer passive long
wave model. The same results are observed for the two locally active models, taking the same
conditions. Fig.35 shows that this is noticeably observed when A takes the basal position.
Consequently, the reciprocity of the model is observed between the stapes and every point

along the cochlea.
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D.Build of a comprehensive model of the ear

A model of the middle ear and of the ear canal are required to complete a full
mathematical model of the ear, and allow, in particular, OAE in the ear canal to be predicted.
The tiddle ear and ear canal can be represented by a two port network, so that:

|:pec—| f:Tecs:l} Tecmz -I|: Py _’
QecJ TecstZl Tecsr22J er
where p and Q are the acoustic pressure and the acoustic volume velocity respectively,

subscripts ec and st indicate location at the entrance to the ear canal and stapes footplate
respectively, the matrix clements Tecss define the transmission through the ear canal and

middle ear.

(D.1)

D.1. Ear canal and middle ear representations
D.1.a.The ear canal model

The ear canal is modeled as a duct, its walls, with the exception of the eardrum, are
considered rigid, the viscous thermal damping within this duct is negligible. Sound waves
are considered plane, that means that this model will be relevant up to the cut-off frequency
of the duct (fc). This model gives us the relations between the quantities at the entrance to the
car canal, and close to the eardrum. The length of this duct is L., (2cm), and diameter is
constant (d). Mathematically it is modelled using a two port network representation. In our
model, the cut-off frequency of the ear canal is :

fe=c¢,12d (D.2)

where ¢ is the sound speed in the air (340 rns'l) and d the diameter of the ear canal. Given
that the cross sectional area of the ear canal (A..) is around 40 m’ (see [8)), d is nearly
equal to:7 mm, the cut off frequency of the model of the ear canal is roughly 24000 Hz, so
that the plane wave assumption can be considered as respected in the frequency range 20-

20000 Hz.
Consequently, the ear canal model is as follows:

Pec, d Ped s
Qec Qed
«

Lec
Figure 36:Model of the ear canal

The transfer matrix T, corresponding to this representations is such that:
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[T;ced]l I;cedlz

T;ced' 21 T'eced 22

{Pﬂ _ T[Peﬂ 3
0. Q.

where the components T4 are derived from the plane wave theory;

Tecedll = Teced22 = Cos(k‘Lec)
" _J.sin(k.L,.).ppCo (D.4)
eced12 — A
ec
r o dsin(eL,) e
eced 2] po <o

This representation is used by Egolf et al. in [9], with the exception that we adopt a constant
value cross-sectional area for the ear canal (4..).

D.1.b. The middle ear model

For the middle ear model, we use the network model for the human middle-ear
proposed by Kringlebotn (1988) [6]. This network model is derived to obtain a two port
network formulation of the middle ear, so that we obtain the following relations between the
pressure and the volume velocity at the eardrum (P.s and Q.4), and at the stapes respectively

(P and Q).

':Pm |-| _ I:Tedsm Y - ﬂ[ P, ﬂ D.5)
Q. |

Qed' Tea’sl 21 Tea’xr 22 J

where the values of 7.4 in the transfer matrix are strongly frequency dependent. This
model is as follows, values of the parameters are given in Table 2:

Zg Zs -
7t Zd Zr Zo
A A
P
ed . Zm Zi Zst

Figure 37:Network model for human middle ear
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: antrum and mastoid cells

Za = Ra+iwLa+IfiwCa) a
Zt = INiwCr) t: tympanic cavily

7Zd= iwld d: drum

Zs = Rs+iwLs+IAiwCs) s : suspension of the eardrum
Zr=Rr+iwLr+1/iwCr) ¥ ; rim of eardrum
Zm=Rm~+icoLm+1./iwCm) m : coupling between malleus and incus
Zo =Ro+iwLo+1./iwCo) o : ossicles (malleus and incus)

Zi= Ri+1./iwCi) i : coupling between incus and stapes

Zst st: input impedance of the cochlea

It can be more simply presented as a block diagram:

U i Ug U3

—— z —>— B >

Py z2 z4 Zst P, st

Figure 38:Block diagram for the middle ear

where U; and U; are Q.4 and Oy respectively.

Compared to the model proposed by Kringlebotn, a slight difference has been brought;
in our case the influence of the cochlea is fully taken into account through Zg, the input
impedance of the cochlea. A two port network model of the middle-ear can be inferred from
this network model, the formulation is as follows:

I, = [ (Zaz2) Z2Z374) Z2] 1 o[(Z1224212322.25 ) 108
2224 z4]  Tem 72 I 06
r _[(22423424)] s _(22+73) o
edst21 7974 J Tedsrzz - ”"22—

Note that in this formulation takes into account the overall middle ear static pressure
gain Gme (T in Kringlebotn paper), it is not included into the network picture above for
simplicity. This gain is due to the influence of the area of the eardrum, of the oval window
and the lever gain of the middle-ear (effective lever arm of the malleus divided by the lever
arm of the incus), this is fully detailed in Kringlebotn [8]. The effect of the transformer action
of the middle-ear is to improve the impedance between the source, as seen from the eardrum,
and the cochlear load, and thus to increase the sound transmission to the inner ear. Also Tpges2
and T,um; are multiplied by 10° in order to convert these component to ST unit (Kringlebotn
gives all the data in cgs units).
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Inertia (g.cmA) Coh:p]iance (cmd'.sz.g'l) Resistance (g.cm4.s_2)
La=1.10" Ca=3.9¥10"° Ra=60
| Ct=0.4%10°
Ld=7.5%10"
 Ls=66*10° | Cs=03%10° Rs=20
Ce=13%10° Re=120
Cm=0.38*10" Rm=120
Lo=22%10" Ro=20
Ci=0.56%10" Ri=6000

Table 2:Parameters of the middle ear model (cgs)

D.2. Check of the reciprocity of the ear canal and middle ear models

To prove the reciprocal properties of the ear canal and middle ear models, we proceed
as previously for the section of the cochlear network (see section C.3.c). For these models we

observe the following relations, for a fixed frequency:

D.7)

T et Lucears — Tocean1 Lovearz =1 fOT the ear canal

and

D.8)

Tt Loaern — Togsni Lotz = 1 for the middle ear model

note that the relation is observed for the middle ear model without considering the adjustment
for the conversion into SI units. Consequently, these two systems are reciprocal, furthermore,
considering the propertics of the determinant, we have for the outer ear model (ear canal +

middle-ear):

TecsrllTecst 2 TecerIITEcsrl’l. = 1 for the OUter car mOdel (D 9)
This is due to the fact that
Tecsr 11 Tecs! 12 Teced i1 Teced 12 Tedsrt 1 Tea’sr} 2
= J D.10)
Tecsr 21 Tec:r 22 Teced 21 Teced 22 Tea’sr 21 Teds‘: 22

D.3 Check of the reciprocity of the whole model (ear canal + middle ear + inner ear)

D.3.a. Principle

In order to test the reciprocity of the whole model (Fig.39), we proceed as follows:
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eardrum oval window

Probe Ear canal Middle ear Cochlea

{volume velocity source +
pressure sensor)

—0

Figure '39:Representation of the whole model

In this model, the relations between the data (Pec, Qec) at the entry of the ear canal and
the data (Pst, QOst) at the oval window (entry of the cochlea) are given by the two port

network equation:
[psf]z[ﬂl le:":pec:' (D.ll)
st TZ] T22 Qer:

The transfer matrix being the result of the multiplication of the transfer matrices representing
the ear canal and the middie ear.

To check the reciprocity of this model, we proceed in two steps:

1.First the probe imposes a volume velocity Oy (m°.s™") (with no acoustic load) at the
entry of the ear canal. The ear canal pressure and volume velocity are related to the properties

of the probe by:
Qec =0y — p..Y | (D.12)

where Yp is the probe acoustic admittance.
If we consider the probe as a perfect volume velocity source, its admittance ¥y can be

set to zero.

Qec =0, (D.13)
Furthermore, to check the reciprocity, the pressure p,. is set to zero. Then Py and Q are
obtained using equation (D.11).

P, =0 D.14)

Then the response of the cochlea is obtained using equation (B.41), the velocity of the

stapes footplate s, being determined by the formula: _
usr = st /Asr (DIS)

where Ay is the are of the stapes footplate. Hence we can obtain the velocity of the cochlear

partition and the semi difference pressure py at any point, at any frequency.
2.In a second step, we choose a specific point on the cochlea, referred by its index a,

where we impose a disturbance S, such as:
Sa=-jwpg, (kgm>s?) , (D.16)

where
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0, (x,w)
— a .17
e wemra )

where Q. is the volume velocity entailed by the motion of the basilar membrane at position x.
We modify the source array of so that we obtain exactly the same equation as (C.8).
Then is computed the response of the cochlea (pressure array), the velocity of the stapes
footplate (u) is obtained using the formula (B.4R), and the pressure p,; is taken equal to p(1).
In order to obtain P,.and Q.. we inverse the system (D.3).
Then we can compare the reports

zZ,= Pe. btained with the first step and £, = Pec obtained with the second step through

Q.. Q.
the third report R: R=Z,/Zsa.

D.3.b. Results
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Figure 40:Reciprocity for the passive model, the point of measurement on the cochlea is at x=0.1 mm (bold
line), x=12.4 mm (thin line) and x=26 mm (dotted line).
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Figure 41:Reciprocity for the locally active model of Neely and Kim the point of measurement on the cochlea is
at x=0.7 mm (bold line}), x=13.1 mm (thin line) and x=26.7 mm (dotted line), active gain y is set to 1.
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Fig.40 and Fig.41 show that the ratio R is nearly equal to 1 (+/- 0.002), consequently it seems
to be possible to consider the system as reciprocal with the conditions mentioned above.
However, strong oscillations occur above 800 Hz, the source of this oscillations is not

determined for the moment.

E. Stability of Neely and Kim locally active model
Note: Although it is not explicitly written, impedances Z1, 72, Z3 and Z4 are dependent on
both x and , the full expressions of these quantities are given in Table 3.

E.1. Introduction

In order to simulate the high sensitivity sharp tuning characteristic of the mammalian
cochlea, it is essential to include some active elements in the model. According to Neely and
Kim [3], active elements are intended to represent the motile action of outer hair cells, these
cells are postulated to be mechanical force generators powered by electrochemical energy of
the cochlear endolymph, this electromechanical energy is controlled by the contraction of the
outer hair cell stereocilia, this motion being controlled by basilar membrane motion. The
model of cochlear mechanics presented in [3] is based on physical principles, anatomical
characteristics and in-vivo response of the cochlea. In this model, the macromechanics of the
cochlea are (as already mentioned previously) exactly the same as in de Boer’s model, it
means that a long wave model is taken for the interaction of the cochlear partition and the
cochlear fluid, activity is introduced through the formulation of the cochlear partition
impedance Z,. Instead of a simple spring-mass-damp model with one degree of freedom, the
lumped component model of the cochlear partition is compound of two masses representing
the organ of Corti () and the tectorial membrane (mz), which displacement stand for the
two degrees of freedom. A major consequence of this model is that it introduces a secondary
resonance (which is tuned approximately one octave below the resonance frequency of the
basilar membrane). Here is introduced the domain of micromechanics since the model we are
about to describe contains structures in the organ of Corti that can move more or less
independently. However, it is specifically assumed that these structures do not directly
interact with the fluid. The presentation of this model is fully described in [3], it is replicated

here for clarity.
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Figure 42:Lumped component of the Neely and Kim model

E.2.Description of the micromechanics

Michromechanical system.proposed by Neely and Kim is reproduced on Fig.42. First,
it is assumed that the cochlear partition is always displaced in the same shape (bending
mode), which is independent of x. b is defined as the ratio of the average displacement across
the width of the cochlear partition &, to the maximum d:lsplacement over the width of the BM

&, then for any given position:
£,(x)=b&,(x) . E.1)

Consequently, by this definition the value of b is always less than one.

Mechanical excitation imposed to the sensory hair cells (OHCs and IHCs}) is supposed
to be due to the relative shearing displacement between the tectorial membrane and the
reticular lamina. & is defined to be the difference between two radially oriented

displacements,
E(x) = g(x)&, ()£, (x) (E.2)

where g(x) is the lever gain between the organ of Corti displacement ¢, and the radial
displacement of the reticular lamina and & is the radial motion of the tectorial membrane. £
is used to describe the stereocilia bundle displacement of both inner and outer hair cells, at

the outer hair cells it is assumed that the mechanical force generator is internal to these
OHCs. At the inner hair cells it is assumed that neural rate threshold occurs at a constant peak

- displacement of £, .
The secondary resonator consists of the tectorial membrane and the stereocilia of the
outer hair cells which are partially imbedded in it. The mass originates from the tectorial




membrane and the stiffness from the stereocilia. When the basilar membrane moves, the
tectorial membrane slides in a radial direction along the top membrane of the organ of Corti
(reticular lamina). When the basilar moves upward, the tectorial automatically radially
outward. This connection also works backwards, consequently, everything can be referred to
the motion of the basilar partition.

In the model, the organ of Corti and the tectorial membrane are coupled and driven by
both fluid pressure (semi difference pressure py) and a pressure source due to mechanical
force generated by the OHC as illustrated in Fig.42. This micromechanical model has two
degrees of freedom at each position x along the cochlear partition, each degree of freedom
contributes a component to the radially oriented shearing displacement between the reticular
lamina and the tectorial membrane. In the frequency domain, the equation of motion for the

first degree of freedom (mass m;) is:
Py (0) = p, (%) = §Z,5,(0 + Z;¢, (1) (E.3)

where Z, =iwm, +c¢,+k /iw and  Z, =c; +k;/iew, which represent respectively the

mechanical impedance of the organ of Corti, and the coupling impedance between the organ
of Corti and the tectorial membrane, and p, is a pressure source located within the outer hair
cells, this force directly acts on the basilar membrane and is capable of providing acoustical

power.

The equation of motion of the second degree of freedom is: .
Z,£,(0-2,£.(x) =0 E4)

where Z, =iwm, +c, +k, /i represents the mechanical impedance of the tectorial

membrane.

The pressure p, is controlled by sensory hair cell displacement & in a manner
consistent with in vitro observations of hair cells. In vitro observation of OHCs motility
shows that the height of the OHCs decreases when the cell is depolarized, this shortening of
OHCs is interpreted to be the consequence of an internal pressure decrease within the OHCs.
In terms of the model this means that the pressure inside the OHC decreases when the
shearing displacement between the reticular lamina and the tectorial membrane ({.)
increases. The fluid surrounding the OHCs being assumed incompressible, internal pressure
changes are transmitted isometrically to the surrounding fluid. All those observations allow

Neely and Kim to define the pressure source p, by:
Pu () =—1Z,&, (x) E5)

where y is a gain factor on the active element and Z, =¢, +k, /i@ is included to provide a
frequency-dependent phase shift between p, and . It should be noticed that y can be

regarded as a feedback coefficient.
_Pa (x)

Consequently the impedance of the cochlear partition Z_, £ () can be expressed
: X
P

as:

45




—Z
7 =8|z 4z &)
"b Z,+Z; ]
m;=0.03 kg.m™
ma=0.005 kg.m“z
¢;=200+15000.¢ "7 kg m .5
c;=100.67% kg.m .5
c3=20.e70% kg.m™.s
c=10400.7% kgm .5
ki=1.1%10". 0T kg .5~
fy=7%10Y . e~ kg.m .5~
ky=10°. 70N kg.m -5
k=6.15%10°.e70%  kgm s

Z, =iom +c +k/iw

Z, =iom, +c, +k, /i@

Zy=cytk/iw

Zy=c,tk,/iw

Table 3: Values of the parameters of the Neely and Kim model

E.3. Build of the feedback loop system

(E.6)

The aim of this part is to build a feedback loop system using the equations proposed
by Neely and Kim, the feedback control term being the active pressure p,, the input term
being the fluid pressure py and the output term being the time derivative of the shearing
displacement ¢&. The following calculation shows how this model can be formulated as a

feedback control loop system.

First we have:

£ (x)=g(0&(x) =&, (%)

Then:

E.(x) = g(0&,(x) - & (x)

So
fb (x)=

Also from equation (E.4), we have:

£ =

g(x)

Z,(x).E. (%)
Z,(x)
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(E.8)

(E.9)

(E.10)



Then £ (x) = b () (1 + é]

A1
g(x) Z, (B0

This expression of fb (x) can be included into equation (E.3); so that we obtain:

Z .
py(x)—p, (x) =(ZI (1+Z—3]+ zZ, ch (x) (E.12)
2
Replacing p, by its expression in equation (E.5),
, Z, ) :
p, () —(—¥Z,E)=| Z, 1+Z— +Zy £ () (E.13)
2
This last equation can be written as follows
1 1 , .
pi(x)—(=¥Z,) L) =E6.(x) (E.14)
Z, —— z,
ZI[I~1-—J+Z3 H Zl[l+—~J+Z3
] Z, ] i Z, ]
G G
Then
Gp, (x)—~GHE, () = ¢, (%) (E.15)
Consequenﬂy:
; = 16
& (x) 1~ GH py(x) (E.16)

Thus we obtain the classical formulation for a feedback controlled system, which can
be represented by the following block diagram:

Pd ——-——i@————— G 5 <

Pa H

Figure 43:Block diagram of the lomped component

The stability of this system can be studied using the Nyquist criterion.
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E.4. The Nyquist criterion

In this section, the stability of the single-channel continuous time controller will be
discussed. The stability of a feedback system such as the on constructed above is established
in terms of the positions of the poles of the closed loop transfer function. The poles of the
transfer of this system is given by the roots of the characteristic equation:

1+ G(jw)H(jo) =0 (E.17)

In our case, although explicit expressions for G and H are available, it remains quite
tricky to extract an explicit pole/zero model of the plant G noticeably; this is mainly because
the order of the plant G is quite high (4™ order on the denominator after simplification of the
expression of G given above). Consequently, here we consider the Nyquist definition of
stability for a feedback system. The principle is to examine the polar plot of the open loop
frequency response G(jw)H{jw).

Provided that the plant G and the controller are themselves stable, the definition of stability
supplied by the Nyquist criterion is that the polar plot of the open loop frequency response
G(jew)H(jw) must not enclose the point (-1,0) as o varies from -co to -0, The locus of
G(jew)H(jow) for negative o is the mirror image of the locus for positive @ about the axis

since:
G(—jo)H(—jwy=G*(jo)H *(jau) (E.18)

where * denotes the complex conjugation. Consequently we will limit our study of the polar
plot to positive w.

E.5 Stability of the plant G and the controller H

The stability of G and H are necessary to apply the Nyquist criterion to the whole
system, to see if hidden instabilities could occur within the control loop. In our case G and H
are, when isolated, passive component, they are consequently considered are stable, whatever

the position x on the cochleais. -

E.6. Stability of the feedback loop system

Now that the stability of G and H is ensured, we can apply the Nyquist criterion to
GH, two parameters have two be considered: the influence of the position x, and the influence
of the active gain v, set by defaultat 1 in Neely and Kim paper [3].

Influence of the position
In this part, the active gain y is set to 1 and Fig.44 shows the Nyquist plots for the

system for x=1, 5, 10, 15 mm (left hand side) and 20, 25, 30, 35 mm (right hand side);
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Figure 44:Nyquist plots for a fixed gain y=1 at several positions along the cochlea from x=1 mm to x=35 mm

Fig.44 bring some comments, first it allows us to say that the lumped component of
the Neelly and Kim model is more stable as it moves further from the basal end, since the
Nyquist plot is further left from the point (-1,0) as the position x increases. For the figures
above, the active gain y is set to 1 and stability seems to be achieved even for the components
very close to the basal end, this will be checked further. Nevertheless, this stability does not
seem to be extremely “robust” given that the Nyquist passes very close to the “Nyquist” point
(-1,0) for the components close to the basal end, we have probably very weak gain and phase
margins for this system, little changes in the parameters could entail the instability of the
system. The proximity of the Nyquist plots to the (-1, 0) at some frequencies for small values
of x indicates that the close loop gain is high, and so the cochlea is particularly active at those

frequencies.

Influence of the gain y
In this part, the influence of the gain v is evaluated at several positions, four values for

the gain are taken y=0.1, y=0.5, y=1 and y=1.1.
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Figure 45 (a, b, c): Nyquist plots for 3 positions on the cochlea, with several gains (y=0.1, 0.5, 1, 1.1}

50




As illustrated by the Fig.45, the stability of the Neely and Kim component is all the most
robust as we go further from the basal end, furthermore the system is quickly unstable as the
gain is increased from 1 to 1.1, at the position x=0.0684 mm (Fig.45a), and at the position
x=10 mm (Fig.45b), but more stable if we go towards the apex (Fig.45¢).

In conclusion, we can say that the Neely and Kim lumped component is “just” stable, and that
a slight increase of the gain y from 1 can result in instabilities in the system. In fact, the
analytic Routh-Hurwitz criterion allows saying that all the lumped components along the
cochlea (and noticeably near the basal end) provided that the active gain y keeps below 1.044.

F.Stability of the multichannel system of the Neely and Kim locally active
model

F.1.Introduction

In this part is presented an attempt to study the stability of the model proposed by

Neely and Kim [3], in its multichannel version. We take into account several lumped

- component. Let’s remind that no structural coupling is considered between two successive

lumped components. The aim here is to create a block diagram for the study of the stability,

the input being the semi-difference pressure, the output being the displacement of the basilar

membrane, a feedback loop involving the active component will also be considered. Note that

the stability of the cochlear system has been investigated by Koshigoe and T ubis [10], using

the Hilbert transform, this method could be applied to a specific point of the cochlea; here we
try to examine the stability of the whole system.

fluid coupling
Upper channel

Stapes

Cochlear partition

Lumped component

Figure 46:System considered for the study of the multichannel stability
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Fig. 46 presents the system considered for the study of the stability, the cochlear
partition is made up with adjacent lumped components presented in the previous section; the
characteristics of the lumped component follow the relations proposed by Neely and Kim [3]
in terms of mass, stiffness and damping, which are functions of the position on the cochlear
partition. Given that each component is a feedback system, we can consider the system
presented as a multichannel feedback system. For the study of stability, as above, we choose
the Nyquist criterion applied to the eigenvalues of the system, as explained below.

F.2.Multichannel feedback control system

The aim of this part is to find a block diagram formulation adapted to the system
studied. In the Neely and Kim model, at a position x the active component (pressure p,) is

dependent on the time derivative of the relative displacement (fc) between the two masses

standing for the tectorial membrane and the organ of Corti (see section E), variations in this
relative displacement are entailed by variations of the fluid pressure (pa), the active pressure
Pais added to this fluid pressure and so on.

The extension from one to several components uses basically the same process as involved in
one isolated component, noticeably for what concerns the active process, which is, for a
component, not directly dependent on the behaviour of the others components in its

neighbourhood. The active component is dependent on fc (x), which is itself dependent on
the comportment of the neighbourhood through the fluid coupling. For one component at the
position x, we have:

P, (x,0) = ~VZ, (x,0)., (x,0) F.1)

In order to fit with our model for the study of the stability, we must exhibit the dependency of
£ (x,m) on &, (x,w)the displacement of the basilar membrane. The approach of Neely and

Kim allows us to write the following relationship between fc (x,@) and fb (x,@) (see section

E for details):

& (x,0) = g[ 2%, 0) Jfb(x, o F2)

Z,(x,0)+ Z;(x,0)

Consequently:

Ly (x,0).Z,(x,0) . _ .
PO = s Ty T e ) F3)

P =—yZ,.5s=-H.Ep for all the components (F.4)
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where P, is the array of the active component at each position p,{x;)
Zxyis the diagonal matrix of the impedance Zy(x;) where

Z,(x,0).2,(x;,w)
Z,(x,w)+Z,(x,,@)

ZH(L l) - g

=y, is the array where Zy, ()= fb (x;)
H= ‘yZH

The coupling effect is here integrated into the “passive” process, the strategy to find a
formulation for the passive process is to consider a totally passive system where the active
part of the impedance of the lumped component is cancelled (that boils down to set y=0), in
that case the impedance Zyq, of the lumped component at the position x is:

8 Z, :|
Z s =] 2+ Z,. ®.5)
g b[’ YZ,+75 |

Consequently, the coupling process is formulated through the matrix C (as in section B.3):

- A A
1 -2 1 0
1 (F.6)
C=x
0 1 -2 1
0 A’
The mobility matrix Mpags 18, in this passive case (as in section B.3)
0
Y, (2) 0
Mpass = 2jop . (E.7)
H
0 Y s (n-1)
0

where Ypae(i)=1/Zpass(i)
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so that we have the following passive system:

CP,~M,, P, =S (F.8)

where S is the source term of the system its dimension is [N*1].

In order to study the stability of the system, the source S of the system is not zero, and
the system is in a steady state. Actually, the source is given by the motion of the lumped
components, which are motion sources for the fluid of the upper channel. The motion

transmitted to the fluid is due to the motion of the basilar membrane &, (x) at the position x.

Tn order to carefully formulate this source, we go back to the wave equation followed by the
pressure in the fluid at the position x, which is equivalent to equation F.8:

9% p, (x,0) 2jwp
- ) = S(x, 9
e 1z, (ro) pa(x,m)=S(x,0) (F.9)

Actually, the source term can be formulated as follows

() =-pg—f (F.10)

where g is a flow term which dimension is sH

In our case, the flow term g is closely linked to fb (x) (m.s‘l). First we consider that the fluid
motion involved by fb (x) is equivalent to a volume velocity injection in the upper channel.

Given the dimensions of a lumped component W*A, where W is the width of the lumped
component, and of the cochlear partition, and A is the length of the lumped component along
x direction, we can say that the volume velocity Qu(x) corresponding to this hamped

component is:

0, (x,@) =&, (x,w)*W *A (F.11)

Note that this motion acts a priori in the z-direction, nevertheless, given that motion of the
fluid in the z-direction is neglected, and that the fluid is incompressible, we consider that this
fluid motion is spontaneously transmitted in the x direction. Consequently the flow term

generated is equivalent to:

Qb (x’ w) (F].Z)

) =
1O =y g A

- where W*H*A stands for the elementary volume associated to the lumped componenf
(H being the height of the upper channel)

Thus, the flow term g(x) can be written as

[ACL) | (F.13)

N X, ) =
2 q(x,m) 7
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Then, the source of the wave equation is:

S(x,w) = —Jﬁ—p £ (x,0) (F.14)

At this stage, a problem appear considering the boundary conditions, indeed, the formulation
of the source term Q(x, ) is valid as long as x is different from O (base) and x=L (apex). At

the stapes we have:

4
@O __ rpu, (F.15)
dx

where u, 18 the velocity of the stapes.
The problem is that there is no simple way to express u, as a function of £ (0,w),as a

result, for simplicity, we consider that there is no motion at the stapes, so that we impose a
rigid boundary condition at the base of the cochlea (4,=0), thus we can write:

S(0,0)=0 (F.16)

At the apex, the boundary condition is
p,(Ly=0 (F.17)

Consequently, we set, for conformity with the model :

S(L,w)=0 (F.18)

The consequence of these simplifications is that in this study of stability, we only
consider the motion provided by the basilar membrane itself, no external influence is
considered, that is why we can say that we are studying the “internal” stability of the cochlea.
A more comprehensive approach should be developed to take into account the motion of the

stapes.

To sum up, according to equation F.8 and to the boundary conditions the source array S can
be written as follows:

B(2) 0
(F.19)

7]
n
x

0 B(N ~1)
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B(i)=—1P (F.20)

where
H
and i is the index standing for the position of the component.
S=BE, _ (F.21)
Then equation (F.8) can be wriiten as
(C - Mpass Pd = BEb (Fzz)
then
g, =B (C-M,, P, (F.23)

Note that B is in theory not invertible, for the computation the zeros on the diagonal will be
set to 1.0%107%,

Equation (F.4) and (F.23) permit on representing the system as a multichannel feedback
system, with the following block diagram:

+
Pq ——»@——— G —» I
+
P, | ; H

Figure 47:Block diagram representation of the multichannel feedback control system

where G =B*(C-M,,,).

F.3.Method for the study of stability, generalization of the Nyquist criterion
The stability of a multichannel feedback control system can be determined from the
open-loop frequency response using a generalization of the Nyquist criterion as in Elliott
[11]. As previously for the single channel system, this can be applied provided that both the

plant (G) and the controller (H) are independently stable. The generalized Nyquist criterion
states that the closed-loop system is stable on condition that the locus of the function:

det[l + GH] (F.24)
does not enclose the origin as @ varies from -oo to +eo.

~ But given that,

detl+ GH]=[t+4 i+ A4, 1.11+4,] | (F.25)
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where A; are the eigenvalues of the matrix GH, the locus of (F.25) does not enclose the origin
provided that the locus none of the eigenvalues enclose (-1,0) as o varies from -c0 to +oo.

F.4, Results

The results of this investigation are studied in two ways, first we consider a basic
model, made up with few lumped components (7 components here), to check the stability of a
reduced model, then it is done for a larger model (512 components).
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Figure 48:Evolution of the seven eigenvalues

Fig.48 is not very explicit to evaluate the evolution of the eigenvalues with frequency, in fact
this figure permits to evaluate the progress of the cigenvalue associated with one of the
boundary conditions. Actually, the two boundary conditions offer eigenvalues that diverge
with frequency; those two eigenvalues will not be of interest further, given that they do not
enclose the Nyquist point (-1,0). However the eigenvalues not associated with the boundary
conditions are of much interest, given that they present the same kind of evolution as the
Nyquist plots for the single channel system (Fig. 49), Fig 49 corresponds to a zoom applied in

Fig.50 around (0,0).
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Figure 49: Evolution of the eigenvalues not associated with the boundary conditions
(7 components to describe the cochlea)

Artefacts in Fig.49 are due to the fact that it has not possible to find a method to track the
evolution of the eigenvalues using MATLAB, indeed EIG function makes an initial guess to
find eigenvalues, but there is no way to specify this initial guess. Specifying the initial guess
would not always guarantee convergence. This is one of the reasons that the EIG function
does not accept an initial guess as an input argument. Nevertheless, Fig.49 allows us to see
the global evolution of the eigenvalues, and to say that the locus of the 5 eigenvalues do not

enclose the Nyquist point.

At this stage, it is interesting to compare these evolutions with the Nyquist plots obtained
when the lumped components are considered individually.

IR(GH)

- 1] 1
2 15 A 0.5 0 05 1
Re{GH}

Figure 50:Evolution of the Nyquist plots when components are considered individually
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Comparison between Fig.49 and Fig.50 may allow us to say that coupling between the
lumped components seems to strengthen the stability of the whole model, given that the
Nyquist plots keeps further from the Nyquist point in Fig.49 than in Fig.50.

If we consider 512 points to describe the cochiea in x-direction, we have roughly the same
evolution as for seven points (not considering the boundary conditions once again), if we plot

just 15 of these eigenvalues, we obtain:

imag

raal

Figure 51:Nyquist plots of 15 eigenvalues from 512

Fig.51 shows that the behaviour of several cigenvalues quoted among the 512 eigenvalues is
approximately comparable to what we obtain with just 7 components. (we remind once again
that discrimination between these eigenvalues has not been possible using MATLAB).

To comment this brief study we can say that stability of the multichannel system seems to be
checked so far; however this model for the investigation of cochlear stability still has to be
improved, and most of ail the formulation of the boundary conditions, and the

implementation of an algorithm able to track efficiently the eigenvalues.

G.Conclusions and recommendations for future work

This work has relied on macromechnical models, the study has been conducted in the
frequency domain. Three long wave models (one passive, and two locally active) are now
available for further study. The validity of these models in terms of reciprocity, convergence
and long-wave criterion has been checked. Now, several modifications can be brought to
implement a more complete cochlear model: inhomogeneities can be introduced in the
impedance of the cochlear partition as in Lineton [4], a non-linear component can also be
introduced as in [2]. Even though are most often studied in the time domain, this type of

model allows to implement a non-linear process.

After the computation of the model we have proposed investigations to verify the
stability of the Neely and Kim locally active model, using the Nyquist plots. H we can
consider that the study of stability of the lumped component is satisfactory and consistent, the
study of the multichannel feedback system still needs improvements, noticeably concerning
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the boundary conditions and the track of the eigenvalues, section F is, to some extent, a
starting point for the study of cochlear stability in the frequency domain. Further interest on
the approach proposed by Koshigoe and Tubis [10] could be relevant, but as we have already
point out, this approach using the Hilbert transform can be applied only at a specific point on
the cochlea, it would be interesting to try to extend this method for the investigation of the
stability of the whole cochlear model. Obviously, other method for the study of the stability
are available, some of them entail a time domain model (as in Diependaal et al.[12]), with
most often a large computational burden.

A lot of description of the micromechanics have been proposed in the literature,
Neely and Kim model is one of them. Most of these models use the same macromechanical
framework as presented above, consequently the study we have done can stand for an
example of procedure for the study of these kind of approaches, in terms of reciprocity and
stability. Also, a comprehensive model of the ear has been developed, it can now be utilized
for further work about the otoacoustic emissions for example. Also, in a future work, it would
be interesting to evaluate the influence of the tapered shape of the cochlea, and why not, but
the influence of the helicity of the organ.
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