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Abstract

Wave methods are developed for the motion of a one-dimensional non-uniform structure
which has variable cross-sectional area, A, and the second moment of area, I, such that
A(x) e x* and I(x) e x***, where 4 is real and non-negative. In particular, a rectangular
structure with linearly tapered thickness and constant width satisfies the geometric
conditions. Axial and bending motions of the non-uniform structures are expressed exactly
in terms of waves and their asymptotic behaviour is studied. The reflection and
transmission matrices for various conditions are investigated and an application to wave
transmission through a connector with linearly tapered thickness is considered. The
advantages of this approach are that the response can be predicted in a straightforward
manner without approximation errors and with a low computational cost, irrespective of the

frequency.
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1. INTRODUCTION

Wave methods are suitable for the analysis of the dynamic behaviour of simple
structures since they do not require powerful computing resources. However, most real
structures are too complicated to apply the wave approach easily. One typical case may be a
structure which has non-uniform geometric shape or/and material properties. In this report,
wave methods are developed for axial and bending motions of a range of one-dimensional
non-uniform structures.

The oldest problem concerning a one-dimensional non-uniform structure is possibly the
one in which plane waves propagate in a horn. It is well known that the governing equation
can be solved easily for several specific types of horn, the so-called Salmon’s family, which
includes conical, exponential and catenoidal horns [1]. Nagarkar and Finch [2] studied a bell
and suggested that a sinusoidal homn can also be included in the family. As a more general
case, it was found that wave propagation in a horn with a polynomial variation in cross-
sectional area can be solved exactly in terms of Bessel functions [3].

The results obtained for the non-uniform horns can be generally applied to axial motion
of a bar and torsion of a rod since they all have same mathematical form of the governing
equation. Graff [4] indicated that the axial vibration of linear, conical, exponential, and
catenoidal rods can be investigated by using the results of the same horns. Kumar and Sujith
[5] derived the same solutions for the axial vibration of a rqd with polynomial and sinusoidal
area variation and used them to obtain natural frequencies for various boundary conditions.

For a class of non-uniform Bernoulli-Euler beams, their bending motion can be exactly
expressed in terms of known functions. Cranch and Adler [6] showed that the motion of a

non-uniform beam of density p, cross-sectional area A and the second moment of area /

where pA(x)e< x™ and EI{x)e< x" with m and n real and non-negative, can be solved in

m+8 . The first three

terms of Bessel functions if n=m+2, n=m+4, n=m+6 and n=

conditions include rectangular beams with linear, quadratic, and cubic thickness variation and

with the width varying to any power. The last condition includes a rectangular beam where
A(x)e x* and I(x)e x*. For this condition, the equation of motion can be transformed into
that of a uniform beam as shown by Abrate [7]. It was also found that the motion of beams

where pA(x)ec e®™ and El(x)eo< e™ with @ an arbitrary constant, can be expressed simply



in terms of exponential functions [6,8]. As a general case, the motion of a beam whose cross-
sectional area and second moment of area vary along the beam in a polynomial manner with
any two arbitrary powers of the longitudinal coordinates was described in terms of
generalized hypergeometric functions by Wang [9].

These analytical solutions have been used to obtain natural frequencies for beams with
various boundary conditions and intermediate constraints [10-15]. Banerjec et al. [16,17]
obtained static/dynamic stiffnesses for axial, torsional and flexural vibrations of non-uniform
beams where A(x)oc x* and I(x)ee x**? with 4 real and non-negative, by using the Bessel-
function solutions. Eisenberger [18] derived the static/dynamic stiffness matrices for any
polynomial variation of the properties along the beam as infinite power series.

In the case where an analytical solution is difficult to obtain, approximate methods can
be considered. A list of the work conducted in this area can be found in [15] and [19]. In
particular, the approximate methods might be useful to model the vibration of higher order
non-uniform structures such as Timoshenko beams. As well as the work described in [20],
Gopalakrishnan and Doyle [21] obtained axial and flexural dynamic stiffnesses of a higher
order non-uniform waveguide using the displacements of the uniform deep waveguide as Ritz
functions. |

Wave methods are based on propagation, reflection and transmission of waves along a
structure. Reference [22] contains a summary of previous work and some applications of the
wave methods. Mace [23] developed a matrix formulation including nearfield wave
components. Since wave methods do not lead to numerical difficulties due to ill-conditioning,
they are particularly suitable in the high frequency region.

In this report, wave methods are applied to the motion of a range of one-dimensional

non-uniform structures which have cross-sectional area and second moment of area such that
A(x)e< x* and I(x)e< x***, with u real and non-negative. There are several typical

structures that have one-dimensional motion in acoustic and vibration problems — for
example, a duct or muffler with effective cross-sectional dimension much less than a
wavelength, a bar undergoing axial vibration, a rod undergoing torsional vibration and a
beam undergoing bending motion. In this report, the work is mainly concerned with axial
motion in a bar and bending motion in a beam. The effects of shear deformation and rotary
inertia in a beam are not considered and damping is not included.

In section 2, axial motion of a non-uniform bar is. reviewed and it is shown that axial

motion in a non-uniform bar with a polynomial variation in cross-sectional area can be



expressed in terms of Bessel functions. The solution is formulated in terms of waves and
reflection, transmission and propagation matrices are defined for various conditions.

In section 3, the governing equation of bending motion of a non-uniform beam is

reviewed. It is shown that bending motion in a non-uniform beam with A(x)e< x* and

I{x) < x"** can be expressed in terms of Bessel functions. The solution is formulated in

terms of waves and reflection, transmission and propagation matrices are defined for various
conditions. Even though the work is similar to that concerning axial motion described in
section 2, care should be taken because nearfield waves exist in bending motion and bending
waves are dispersive.

In section 4, it was shown that the wave methods developed in sections 2 and 3 can be
usefully applied to problems concerning non-uniformity. As an example, transmission
through a non-uniform connector is considered. The wave methods can give exact results
without approximation errors and with low computational cost, irrespective of the frequency.

In section 5, the conclusions of this report are given.

Appendix A contains a brief review of the general wave approach to the motion of a
structural waveguide. Displacement and internal force matrices are introduced as suggested
by Harland et al. [24] and propagation matrices are defined. Also, reflection and transmission
matrices at boundaries and local discontinuities are defined in terms of the displacement and
internal force matrices.

In appendix B, the properties of Bessel functions are summarized. The governing
equations, the recurrence relations and asymptotic behaviour are reviewed.

In appendix C, two discrete wave models which are usually applied to a continuously
non-uniform waveguide are introduced and errors in the application are quantitively

investigated.



2. AXTAL WAVES IN A NON-UNIFORM BAR

2.1 Introduction

There are several cases where the governing equation for axial motion of a non-
uniform bar can be transformed to a differential equation with a known analytical solution.
Some of these were investigated in {25]. In this section, it is shown that axial motion of a
non-uniform bar with a polynomial variation in cross-sectional area can also be analysed
using wave methods.

In section 2.2, axial motion of a non-uniform bar is reviewed. It is shown that, if the
bar has a polynomial variation in cross-sectional area, the motion can be expressed as a linear
combination of Hankel functions of the first and second kind.

In section 2.3, the result of section 2.2 is reformulated in terms of waves. Propagation,
displacement and internal force matrices for the non-uniform bar with the polynomial
variation in cross-sectional area are derived and asymptotic behaviour of the matrices are
investigated.

In section 2.4, axial wave generation in the non-uniform bar by an external force is
investigated and, in section 2.5, reflection at an end of the non-uniform bar is investigated. It
is shown that the non-uniformity can be expressed in terms of dynamic stiffness.

In section 2.6, reflection and transmission matrices at a discontinuity are defined. In
particular, reflection and transmission at a junction between a uniform bar and a non-uniform
bar are investigated in detail.

The results are subsequently used in numerical examples in section 4.

2.2 Governing equation and its solution

The axial displacement u(x,t) for the free vibration of a bar at position x and time ¢

is governed by the differential equation

0 ou ou
—| EA—|= — 2.1
Bx[ ax] PASE -1

where FA is the axial stiffness per unit length and pA is the mass per unit length of the bar

with E being the modulus of elasticity, A the cross-sectional area and p the density. If the



material properties of the bar are constant but the cross-sectional area is variable, equation

(2.1) reduces to

1 ¢ du| y4 _ai
A(x) ax [A(x) 55] T Eof 2-2)

When the time dependence of the displacement u(x,#)is assumed to be of the form & but

suppressed here for clarity, equation (2.2) can be written as

2
jxi‘ +2 1023(3‘) W | k=0 2.3)
where @ is angular frequency and
2
k=, |22 2.4

is the axial wavenumber,

Consider a non-uniform bar as shown in Figure 1 where A(x) has a polynomial

variation with x such that

A(x) = 4, (1 +;x-T (2.5)

0

where x, is the distance from a fictitious vertex to the section, g is the flaring index which

is a real non-negative number, and A4, is the cross-sectional area at x=0. Since

d(logA):E 26
T z (2.6)

where ¢ = x+ x,, equation (2.3) simplifies to

du i du

—+o—+ k=0 2.7

ag " =0
Equation (2.7) is identical to equation (B1.12a) if
=1
=i, (2.8)
2
Accordingly, the displacement is given by

u(x)=(x+x, ) {CHP thx+kx,) + CH D (ke + k) } (2.9)



where C, and C, are arbitrary constants and H” are Hankel functions of the first and

second kinds, respectively. Also, the internal force P=—EA§E with compression being
X

defined as positive is given by

P(x)=EAk (x+x,)" {CHS,

v+l

(kyx + kyxo) + CHS, (Ryx+ kyxy) } (2.10)

Many different bar geometries exist which satisfy equation (2.5). One of these is a

rectangular bar which has constant width & but variable thickness % such that
b(x)=b,, h(x) =y (1+ax)’ (2.11a, b)
where b, #, and a are constants which satisfy A =5k, and x, _1 . A rectangular bar
o
which has width 5 and thickness & such that
£ Ll
b(x)=b, (1+ax)?, h(x) =hy (1+ax)2 (2.12a, b)

also satisfies equation (2.5).

i
A(x) = A, ( 1 +i]
Left-hand %o
Fictitious end .
vertex : 5 . nght-hand
eemmzzzzomeT T 5 " end
-t Xg :

Figure 1. Non-uniform bar with polynomial variation in cross-sectional area.

2.3 The wave description

Equations (2.9) and (2.10) can be described using the wave formulation which is
introduced in Appendix A.l. The displacement and internal force vectors at a section of the

bar can be written as



w={u}=V"a"+¥a (2.13)

f={Pl=0"a"+Da" (2.14)

where
a*={a'}, a={a} (2.15a,b)
¥ =[1], v =[1] (2.16a,b)

H® (& x.) _ HY (kx,)
O =| EA J, 1707 | D = Jo vl AP0 2.17a,b
[ A lHeSZ)(ktxo):l |:EA0 1 H‘El)(klxo) ( ab)
with
-1

£ 2.18
v 5 (2.18)

The propagation matrices are then given by

F+(x)=H X, )v HIEZ)(ka_}—klx{))J’ F‘(x):]:[ x, Jv Hﬁl)(k[x-:-k,xo)} (2.19a,b)

x+x H®(kx) X+X HY(k,x,)
(4] v 10 0 v 110

It should be noted that the propagation matrices are defined to be unit matrices at x=0 and
that the vectors and matrices in equations (2.13) to (2.19) are 1x1 vectors and matrices,
respectively.

When k;x, > 1, by using equation (B.57), the internal force matrices asymptote to

those of a uniform waveguide such that

Q" = [iEAK, ], O~ = [-iEAK, ] (2.20a,b)

Also, if the propagation length x is L, by using equation (B.56), the positive-going
propagation matrix from x=0 to x=L and the negative-going propagation matrix from

x=L to x=0 asymptote to

1 1

V+— Y+

F* = [on J z e‘”‘lL , F = (E—{Q.J ’ gik‘L (221a,b)
+ xo x()

Furthermore, they asymptote to those of a uniform waveguide when the non-uniformity of the

waveguide is very small, i.e., x, > L. Equation (2.21) implies that waves can propagate with

negligible reflection as in an exponential horn.



Specifically, for a non-uniform bar with cross-sectional area satisfying equation (2.5)

and gy =2,
@)
D* =[EAOI<, %@} =i+ |Eak (2.22)
Hyj, (kyx) kix,
1
240 )
F'(x)= al 2y ((f),x+ k%) S (2.23)
X+x, H (kx,) X+x,
. . . FA,
It can be seen that the internal force matrix has the additional term —2, compared to that of
X, a

0

the uniform bar.

2.4 Wave generation by local excitation

Consider a non-uniform bar with variable cross-sectional area satisfying equation (2.5).
If the left-hand end of the bar is excited by a harmonic force F,_e"* as shown in Figure 2,
then a positive-going wave will be generated by the force. Since equilibrium condition at the
end is given by

H? (kx)
PO=F_; w0y gt = F 2.24
0)=F, qul:Hﬁz)(kle) 1 (4 ext ( )

then amplitude vector of the wave induced by the external force, q°, is given by

. |H®(kx) F
q ;{ 1;2)( 1 0) ext } (225)
H,' 5 (kxy) EAK, :

Specifically, when g =0, q* is given by

. { H? (kx) F. }={ F, } (2.26)
Hi (%) EAK | [iEAGK,

which is identical to that of a uniform bar and, when # =2, q* is given by

. {H% (kxy) E }z 1 K [ Fo (2.27)
H i (x) EAGK, 1+ _1 iEAK, iEAk, + E4
ik,x, *o



In equation (2.27), it can be seen that the non-uniformity of the bar introduces the additional

dynamic stiffness term. This term makes the amplitude of the induced wave smaller than that

in a uniform bar and the phase lag behind the external force by (% - kl J
1%

Similarly, when the right-hand end of the non-uniform bar with u =2 is excited as

shown in Figure 3, ¢~ is given by

q = _,_L__ (2.28)

iEAK, —

Xy

Compared to equation (2.27), it can be seen that the sign of the additional dynamic stiffness

term has changed. This sign conversion can be understood by introdncing an additional mass

M, . defined by

e

M, = =i4g— (2.29)
X007 Xk

Then equation (2.28) is written as

] R (2.30)
iEAK, —M 0

Thus the non-uniform beam behaves like a uniform beam with an additional stiffness when
the right-hand end is excited while it behaves like a uniform beam with an additional mass
when the left-hand end is excited. Even though the negative sign of an additional stiffness is
not usual, the notation as in equation (2.28) will be kept for simplicity in this report.

Figure 5 shows wave generation in a non-uniform bar with geometry satisfying
equation (2.12) and g=2. It can be seen that, in the high frequency region, the amplitude
and the phase of the induced wave in the non-uniform bar asymptote to those in the uniform
bar. It can élso be seen that, when the excitation point changes from the left- to the right-hand

end, the amplitudes of the induced wave are the same but the phase changes symmetrically

about _z ]
2

When u=1, q° is given by

HP(kyx,) F
q ={ s “’} 231)
H7 (kxy) EAK,

+




which cannot be expressed in a simple form. Figure 6 shows wave generation in a non-

uniform bar with geometry satisfying equation (2.11) and 4 =1. Compared to Figure 3, it can
be seen that the trends are same but the effect of the non-uniformity is less than that in the
non-uniform bar with ¢ =2.

If a section of a non-uniform bar with variable cross-sectional area given by equation

(2.5) is excited by a harmonic force F,,e'” as shown in Figure 4, then positive- and negative-

going waves will be generated by the force. From continuity and equilibrium conditions,

¢ =q (2.32)
and
-1
¢ =P {Hﬁ{(k,xo)_Hﬁfl(k:xo)} (2.33)
EAk, Hf)(ero) Hsl)(klxﬂ)

Thus, when =2, q* and q" are given by

q+ = q# = —P‘ﬂ—_—- (2343, b)
12EAk,

which are identical to those of a uniform bar. It can be seen that there is no influence of the
non-uniformity. Figure 7 shows wave generation in a non-uniform bar with geometry

satisfying equation (2.12) and ¢ =2 and a non-uniform bar with geometry satisfying
equation (2.11) and u =1, respectively. It can be seen that the non-uniformity does not affect

the amplitude when £ =2 but it does when x =1. The phases of the induced waves in both

/2 .
cases are equal to —— and are independent of frequency.

10



x:—-O

Figure 3. Non-uniform bar, right-hand side end of which is excited by local force.

feﬂeiwt
D
q < > q
\_\
—
x=0

Figure 4. Non-uniform bar, a section of which is excited by local force.
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Figure 5. Axial wave generation in a non-uniform bar with geometry satisfying equation

(2.12y and g =2: (A) the left- and (B) the right-hand end is excited; (a) ratio of the amplitude

of the induced wave to that in a uniform bar, (b) the phase of the induced wave;
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Figure 6. Axial wave generation in a non-uniform bar with geometry satisfying equation

(2.11)and u=1: (A) the left- and (B) the right-hand end is excited; (a) ratio of the amplitude

of the induced wave to that in a uniform bar, (b) the phase of the induced wave;
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Figure 7. Axial wave generation in a non-uniform bar, at a section of which is excited by a
force: the geometry of the bar satisfies (A) equation (2.12) and g =2 and (B) equation (2.11)
and # =1; (a) ratio of the amplitude of the induced wave to that in a uniform bar, (b) the

phase of the induced wave;
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2.5 Reflection at a boundary

The reflection matrix R at the right-hand end of a waveguide is generally given by
equation (A.20). If equations (A.20), (2.16) and (2.17) are combined, the reflection matrix R
at the right-hand end of a non-uniform bar with variable cross-sectional area satisfying

equation (2.5), as shown in Figure 8, is given by

_H o (kixo)

T
H®?(k,x,)
R=|— o £0 (2.35)
_Hv+t(k1xo)
T HO(kx,)

where the dimensionless dynamic stiffness K, = K, /EA, .

Specifically, when g =2 (v= %), R is given by

1+i(KT —%]
R-= %o (2.36)

i
0

It can be seen in equation (2.36) that the non-uniformity of the bar introduces additional

dynamic stiffness. It should be noted that the reflection matrix at the left-hand end of the bar
is given by equation (2.36) but with the sign of the additional stiffness term changed. When

x, =<, which means a uniform bar, equation (2.36) becomes identical to equation (2.31) in

[24]. When K, =0, which means a free boundary condition, the reflection matrix is given by

R, = | 1% (2.37)
1-ik,x,

When K, =, i.e., a clamped boundary condition, the reflection matrix is given by

R =-1 (2.38)

<

It can be seen that the non-uniformity of a bar with a clamped end has no effect on the
reflection matrix.

Figure 10 shows the phase of the reflection coefficient for a free boundary of a non-
uniform bar with geometry satisfying equation (2.11) and g =1. It can be seen that the phase
tends to zero in high frequency region. It can also be seen that the phase for the left-hand case

is the opposite of that for the right-hand case.
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Figure 8. Right-hand boundary of a non-uniform bar.
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Figure 9. Left-hand boundary of a non-uniform bar.

™

w2

iz

Phase

0 T 2n In ax
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2.6 Reflection and transmission at a discontinuity

The reflection matrix R and the transmission matrix T at a discontinuity in a
waveguide are generally given by equations (A.29) and (A.30), respectively. If equations
(A.29), (A.30), (2.16) and (2.17) are combined, R and T for the junction of two non-
uniform bars with variable cross-sectional areas satisfying equation (2.5), respectively, as

shown in Figure 11 are given by

Ao H (2)1(]‘71)‘70,17) H? (k,x,,)

Vit v+l

A, H 5,,2 : (kxop) H éf ’ (k%)

=— (2.39)
Ay H 5311 (kyxy ) _ H ;Ej)ﬂ (kixy,4)
AO,u H;E,,Z) (klxo,b) H::)(kzxo,u)
HO, k) HO )
HP(k x, HP(k x
- v, ( 1 0,u) Vy ( 1 0,.::) (240)

TTHD %) Ay, HOan,)
HP %) Aoy HD (ixoy)

where subscripts a and b are used to denote bars A and B, respectively.

When the cross-sectional areas of the two bars at the junction are equal, A, = A,,,

and the flaring indexes are givenby g =4, =2, R and T are given by

r=—% (2.41)
1-1K,
T (2.42)
1-iK, '
where
k=41 __1 (2.43)
2 k:xo,b ktxo.a

Equation (2.43) shows that the dynamic stiffness at the junction is equal to average of
individual dynamic stiffnesses of the two bars. Furthermore, if the two bars have geomeiries
satisfying equation (2.12), the dynamic stiffness can be expressed in terms of the difference
of the taper rates of the two bars such that

K, =~ %% (2.44)
2| T &
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When the left-hand bar is uniform, R and T are identical to equations (2.41) and (2.42) but,

here, the dimensionless dynamic stiffness K, due to the non-uniformity is given by

1

n —_
2k,x01 b

(2.45)

Also, when the right-hand bar is uniform, R and T are identical to equations (2.41) and

(2.42) but, here, the dimensionless dynamic stiffness K, due to non-uniformity is given by

1

_ 2.46
§ 2k, %, , (246)

Figure 12 shows three connection types between a uniform bar and a non-uniform

bar, the cross-sectional areas of which are equal at the connection, A, =4, It should be

noticed that the type-A and type-B connections are symmetric about x=0.

Figure 13 shows the power reflection and transmission coefficients for the junction
of rectangular uniform and non-uniform bars, in which the non-uniform bar has variable
cross-sectional area satisfying equation (2.12) when =2 and satisfying equation (2.11)
when =1, respectively. The connection can be any one of the three connection types
shown in Figure 12. From reciprocity, it can be noticed that the power reflection and
transmission coefficients of the type-A are identical to those of the type-B. It can also be
shown that the power reflection and transmission coefficients of the type-C are identical to
those of the other types.

Figure 14 shows the phases of the reflection and transmission coefficients of the
three connection types between a uniform bar and a non-uniform bar with cross-sectional

area satisfying equation (2.12) and g =2. It can be seen that the phases of the type-A and

type-B connections are the same as each other but those of the type-C are opposite. Figure 15
shows results when the non-uniform bar has cross-sectional area satisfying equation (2.11)
and ¢ =1. It can be seen that the trends are same as Figure 14 except that the phase of the
reflection coefficient of the type-A connection shown in Figure 15-(A.a) is slightly different

to that of the type-B shown in Figure 15-(B.a).
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Figure 11. Connection of two non-uniform bars with different geometry.

(Type-A) :_ ;""_': ------ » b
x=0
at---eee > .
(Type-B) JRESPI R > b
x=0
at e > .
(Type-C) A | T > b
x=0

Figure 12. Three connection types between a uniform bar and a non-uniform bar.
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2.7 Summary

In this section wave methods have been developed for axial motion of a non-uniform
bar with polynomial variation in cross-sectional area. Analytical expressions for the
displacement, internal force and propagation matrices for the non-uniform bar have been
derived. By using matrices, wave generation by an external force, reflection at a boundary
and reflection/transmission at a discontinuity have been investigated. The results can be used
to predict the responses of more complex, built-up structures as will be illﬁstrated in section
4,

Throughout the work, it was seen that the non-uniformity can be considered as
additional stiffness. For example, when an end of a non-uniform bar is excited by an external

force, non-uniformity of the bar makes the amplitude of the induced wave smaller than that in

. . T . . o
a uniform bar and the phase lag is not > The influence of the non-uniformity is greatest at

low frequencies and becomes smaller as frequency increases.

It should also be noticed that non-uniform bars are not symmetric. For example, when
an end of a non-uniform bar is excited by an external force, the phases of the induced waves
at the left- and right-hand end are different.

In section 2.6, reflection and transmission at a junction between a uniform bar and a
non-uniform bar with linearly variable thickness were investigated on the three connection
types in detail. It was shown that the phases of the reflection coefficients of the type-B and
type-C connections are opposite, which implies that there will be no change in the phase of a

wave undergoing the two reflections.
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3. BENDING WAVES IN A NON-UNIFORM BEAM

3.1 Introduction

In the previous section, wave methods were developed for axial motion of a non-
uniform bar. A similar approach is applied to bending motion of a non-uniform beam in this
section. However, care should be taken because nearfield waves exist in bending motion and
bending waves are dispersive.

It is shown that bending motion of a non-uniform FEuler-Bernoulli beam with
polynomial variations in cross-sectional area and the second moment of area such that
A(x) o< x* and I(x)e< x***, with u real and non-negative, can be analysed by the wave
method. In particular, this case includes a rectangular beam with ]inearly. variable thickness
and constant width.

In section 3.2, bending motion of a non-uniform beam is reviewed. It is shown that, if
the beam has polynomial variations in cross-sectional area and the second moment of area
such that A(x) e x* and I(x) e x***, the motion can be expressed as a linear combination of
Hankel functions and modified Bessel functions.

In section 3.3, the results of section 3.2 are reformulated in terms of waves.
Propagation, displacement and internal force matrices are derived for a non-uniform beam
and asymptotic behaviour of the matrices is investigated.

In section 3.4, bending wave generation in non-uniform beams by external forces and
moments is investigated and, in section 3.5, reflection at an end of the non-uniform beams is
investigated. | _

In section 3.6, reflection and transmission matrices at a discontinuity are defined. In
particular, reflection and transmission at a junction between a uniform beam and a non-
uniform beam are investigated in detail.

The results are subsequently used in the numerical examples in section 4.

3.2 Governing equation and its solution

The flexural displacement w(x,?) for the free vibration of an Euler-Bernoulli beam is

governed by the differential equation
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El— A =0 .
P [ o ]“’ P G-D

where EI is the bending stiffness or flexural rigidity and pA is the mass per unit length with
E being the modulus of elasticity, I the second moment of area, p the density and A the

cross-sectional area.

Consider a beam of which the material properties, p and E, are constant but the

geometric properties, A and [, are variable such that

A =4, {1 +iI
Xo
(3.2a,b)

+2
Ix)=1, (1+1I
Xa

where A, and I, are the cross-sectional area and the second moment of area at x=0,
respectively. In equations (3.2), it should be noticed that x, is the same constant for both
A(x) and I(x).

When the time dependence of the displacement w(x,?) is of the form ¢,
suppressed here for clarity, equation (3.1) for the beam can be expanded as

2 dw

4 7 +2(u+2)§ d§3 +(y+1)(;¢+2) kW =0 (3.3)
where & =x+x, and
a)z
ko =4 %—- (3.4)
0

is the wavenumber of bending waves at x=0.
Equation (3.3) is identical to equation (B.16) if #=v and k :kb‘o\[g . Accordingly,

the displacement of the beam can be written as

vf2
w(x) =(%] {CH? (9)+CK, (¢) +CH (9)+Cul, (9)} (3-5)

where ¢:2kbm/§x0 . The slope g—z:-, shear force Q and bending moment M , defined as

shown in Figure 16, are thus given by
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v+l

W GJ_ Fer? 9)-CK. (8) ~CHP @)+l (9)) 6.

X

d d*w
Q —E(EI(XJ J

dx2
vis (3.7a,b)
11412 1
_m, (EJ [GHD (0)-CoK, (9)+ CHE, (6)+ Col (9))
M =—Er(x)d2‘f
dx
(3.82, b)

_-m, [g]_ [GHE (9)a" +CoRon (94 CH, (9)+ Colons (9))

where C,, C,, C; and C, are arbitrary constants.

Many different beams exist whose geometries satisfy equation (3.2). One of these is

a rectangular beam which has thickness # and width b such that

h(x) = hy (1+ax), b(x)=by (1+ax)™ (3.9a,b)
. : byl 1
where by, i, and « are constants which satisfy A, =bh,, I, = T and x, =—.
o
ow
w T E™ M 0
—
» X
\

S—

Figure 16. Notation of positive slope, shear force and bending moment.

3.3 The wave description

Equations (3.5) to (3.8) can be described using the wave formulation which has been
introduced in appendix A.l. The displacement and internal force vectors at a section of the

beam can then be written as

w
_ —\Prat L Pan 3.10
w {aw/ax} a'+%a { )
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where

1 1
¥ = _ (k )H ol (2kb,0x0) ( ) K, (Zkb 0%o )
Y HP (2k,0%,) "k, (2k, %) |
- . . -
=) (k )H\gf)l (Zkb,uxo) ( ) 1, (2k oxo)
T HD (2K, %, ) 0T, (2K, 0%) |
( (k ) H»('-?-; (Zkb,oxo) _ﬂ( )3 Kv+1 (Zkb,oxo ) |
o — B HP (2K, 4x,) YK, (2K 0% )
0 " ) , H?, (2K, Oxo) ~(k )2 K., (2kb,0x0)
i - H, @ (Zkb oxo) b0 K, (2kb,0x_0) ]
( )'5 H]Ei)f (2kb Ox{)) ( )3 Iv+1 (2kb,0x0 )_
o — Bl P HD (2k,0%,) "7, (2, 0%, )
° ( )2 H ;E+)2 (2k oxo) ( )2 I (Zkb,oxo)
Y B (2, 0x,) P00, (2K, %) |

and the propagation matrices are defined by

X,

FJr(X):( 0
X+ X,

]%
J%

X,

F‘(x)=[ 2
X+ x,

—Hfz) (Zkb,m/xo(x+ xo))

H? (2k,0%,)

0

_H‘f” (Zkb,o,/xo(x-i—xo))

H (2K, 0%,)

0
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K, (2kb,0x0 )

0

1, (2K, /%, (x+ 3, )
1, (2k,,x,)

(3.11)

(3.12a,b)

(3.13a,b)

(3.14a,b)

(3.15a,b)



Using equations (B.57), (B.58), (B.62) and (B.65), the displacement and internal

force matrices asymptote to those of a uniform beam with the area A, and the second moment

of area I, when k, ,x, > 1. Also, the phase & of F| (element (1,1) of F*) asymptotes to

8 = —(2k, o[ (x+3%,) = 2K, 0%, ) (3.16)

when k, ,x, > 1. If a wave propagates over a length L then, since the wavenumber %, , at

x =1L is given by

k
k,, =22 (3.17)
' L
14+—
%o
the phase change is given by
g o<k, L (3.18)
where the wavenumber £, . is defined by
2k, k.
- — BO™B L (3.19)
kb,() + kb,L
In terms of the wavelength A, equation (3.19) can be expressed as
+
Ay = Aoty (3.20)

2

Thus the effective mean wavelength is the mean of the wavelengths at the ends of the

propagation length. In the same way, when &, ,x, > 1,

vl -
vl BRSE T2 A
4 b
Fr = %o ite 0
0L L+ : Ty L
) L0 e 3.21a,b
i - (3.21a,b)
o (Lex Pi[e™ 0
L—)O:I -k L
xo 0 e B

Thus wave propagation in a non-uniform beam can be simplified as shown by equation (3.21)

using the mean wavenumber k, . in the high frequency region. Furthermore, the propagation
matrices asymptote to those of the uniform waveguide with the wavenumber k,, when the

non-uniformity of the waveguide is very small, i.e.,x, > L.
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3.4 Wave generation by local excitation

Consider a non-uniform beam with geometry satisfying equation (3.2), an end of

which is excited by a harmonic force vector £,_e'” . When the left-hand end of the beam is

excited as shown in Figure 17, ¢ can be obtained by combining equations (3.13) and (3.14)
with equation (A.11) and, when the right-hand end of the beam is excited as shown in Figure
18, q~ can be obtained by combining equations (3.13) and (3.14) with equation (A.12). Since
the expressions are too complicated to show them explicitly, the results are shown
graphically.

When a section of the beam is excited as shown in Figure 19, q* and q~ can be
obtained by combining equations (3.13) and (3.14) with equation (A.135) and by combining
equations (3.13) and (3.14) with equation (A.16), respectively.

Figure 20 shows waves generated in a non-uniform beam with the geometry satisfying
equation (3.9) and ¢ =1, an end of which is excited by a local force. First of all, it can be
seen that the induced waves asymptote to that in a uniform beam at high frequencies.
However, unlike in the case of axial waves, the amplitudes of the induced waves at the left-
hand end are not identical to those at the right-hand end. Moreover, the amplitudes at the left-
hand end are greater than those at the right-hand end. Meanwhile, it should be noted that the
amplitude of the nearfield component at the right-hand end is quite high and tends to infinity

as k, o — 0. Figure 21 shows waves generated by a local moment. It can be seen that the

amplitudes at the right-hand end are greater than those at the left-hand end. It is due to the
fact that the bending stiffness of the left-hand side is less than that of the right-hand side.
Figure 22 shows waves generated in a non-uniform beam with geometry satisfying
equation (3.9) and =1, a section of which is excited by a local force as in Figure 19. In the
{igure, the phases of the nearfield components are equal to —7 . First of all, it can be seen that
the positive- and negative-going waves are identical. However, unlike the uniform beam
where energy is equally distributed in each component, the amplitude of the propagating
component is not same as that of the nearfield component. It can also be noted that the

amplitudes of the propagating components in both cases tend to infinity as k, , — 0. Figure

23 shows waves generated by a local moment. In the figure, the phase of the nearfield

component of the positive-going waves is equal to 7. It can be seen that the amplitudes of
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the propagating components are identical but the phases of the positive-going waves are 7

minus the phases of the negative-going waves.

x¥0

Figure 17. Non-uniform beam, left-hand end of which is excited by local forces.

\Lfmei”’

xu--0

Figure 18. Non-uniform beam, right-hand end of which is excited by local forces.

A f eia):

k! éext
-
-
q <> q"
___-_‘__'_'_'—-—-_
—N-—__‘_‘_'_—-—
x=0

Figure 19. Non-uniform beam, a section of which is excited by local forces.
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3.5 Reflection at a boundary

The reflection matrix R at an end of a waveguide is in general given by equation
{A.20). If equations (A.20), (3.13) and (3.14) are combined, the reflection matrix R at an end
of a non-uniform beam with geometry satisfying equation (3.2) as shown in Figure 24 can be
obtained. Since the expressions are too complicated to state them explicitly, here the results
are shown graphically.

Figure 25 shows the phases of R, (the (1,1) element of R) at free, clamped and
simply supported ends of a non-uniform beam with geometry satisfying equation (3.9) and
£ =1.1It can be seen that the phases asymptote to those of the uniform beam while, unlike the
axial wave, symmetry between the left- and right-hand cases does not hold. Tt can also be
seen that the influence of the non-uniformity at the clamped end is smaller than those at other

boundaries.

£=0
a’ ----»
a «-——-
NI
!
0

Figure 24. Non-uniform beam with right-hand boundary supported by external dynamic

stiffnesses.
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equation (3.9) and i =1 at the (A) left- and (B) right-hand end: (a) free, (b) clamped and (c)

simply supported boundary condition;
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3.6 Reflection and transmission at a discontinuity

The reflection and the transmission matrices R and T at a discontinuity in a section
of a waveguide are given in the general case by equations (A.29) and (A.30), respectively. If
equations (A.29), (A.30), (3.13) and (3.14) are combined, R and T at a junction of two non-
uniform beams with geometry satisfying equation (3.2) as shown in Figure 26 can be
obtained. Since the expressions are too complicated to state explicitly, here the results are
shown graphically.

As shown in Figure 12, three connection types between a uniform beam and a non-
uniform beam can be considered when A,, = A, and I, , =1,,. Figures 27, 28 and 29 show
reflection and transmission coefficient for the three connections when the non-uniform beam
has geometry satisfying equation (3.9) and ¢ =1. It can be seen that the power coefficients of
the type-A and type-B junctions are identical and the phases of 7T}, are also identical. It
should be recalled that the type-A and type-B junctions are symmetric about x=0 .

Meanwhile, it should also be noted that the phase of R, of the type-B is the opposite of that

of the type-C.

Figure 26. Connection of two non-uniform beams with different geometry.
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3.7 Summary

In this section wave methods have been applied to bending motion of a non-uniform
Euler-Bernoulli beam with a polynomial variation in cross-sectional area and the second
moment of area such that A(x)e x* and I(x)e x**? . Analytical expressions for the
displacement, internal force and propagation matrices for a non-uniform beam were derived.
By using the matrices, wave generation by an external force, reflection at a boundary and
reflection/transmission at a discontinuity were investigated. The results can be used to predict
the responses of more complex, built-up structures as illustrated in section 4.

The results were much more complicated due to the existence of the nearfield waves.
However, the trend that the behaviour of the non-uniform beam asymptotes to that of the
uniform beam as frequency increases was observed in each case investigated. Care should
also be taken since bending waves are dispersive. For example, it was shown that phase

change in propagation path with length L asymptotes to k,,L in high frequency region
where k, , represents the effective wavenumber of the propagation path.

In section 3.6, the reflection and transmission at a junction between a uniform beam
and a non-uniform beam were investigated in detail. It was shown that the phases of R, of the

type-B and the type-C are opposite, which implies that there will be no change in the phase of

the propagating component when a wave undergoes the two reflections.
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4. APPLICATIONS

4.1 Introduction

The wave methods for a non-uniform waveguide, developed in sections 2 and 3, can be
usefully applied to many cases. One of the most important cases concerns transmission
through a connector which connects two uniform waveguides. In general, a connector might
be used to improve transmission efficiency by preventing rapid impedance change. In section
4.2, the reflection and transmission matrices of a connector are developed and the effect of
the connector on wave propagation is investigated.

In the second example, a comparison is made between an exact result using the
approach developed in this report and approximate results obtained by discrete wave models.
The discrete wave model is used to analyse motion of a continuous non-uniform waveguide
assuming that the non-uniform waveguide is composed of short, uniform sections. Since this
approach is not exact, errors due to discretization always exists even though the error can be
reduced by increasing the number of uniform sections. Moreover, increasing the number of
the uniform sections causes another difficulty in that more computational power and time are

required. These problems can be avoided by using the wave methods developed here.

4.2 Reflection and transmission through a connector

Consider a linearly tapered waveguide with length L which connects two different
semi-infinite uniform waveguides as shown in Figure 30. For simplicity, the waveguides and
connector are all assumed to have same material properties and a rectangular cross-section.
The connector is tapered only in its thickness and, thus, the cross-sectional area A and

second moment of area I of the connector are given by
A(x) = A, [1+%xJ

3
I(x)=10(1+%xj

where ¢ is the taper rate, Ais cross-sectional area and I, is the second moment of area at

(4.1a,b)

x =10. Equation (4.1) satisfies the conditions given by equations (2.5) and (3.2) if =1 and
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=L (4.2)
(24

Therefore transmission of axial and bending waves through the connector can be analysed by

the wave methods developed in sections 2 and 3.

Junction 2
Junction 1
% (
a_ T I — e g
a .-
x=0

Figure 30. A rectangular connector tapered in thickness.

When a wave vector a” is incident from the left-hand side of the junction 1, the
amplitudes of the reflected and transmitted waves, a” and d*, can be given in terms of the

reflection and transmission matrices, R, and T;, for the connector such that

a =Rya", d'=Ta" (4.3a, b)

R, and T, are given in terms of the reflection and transmission matrices at the two junctions
such that [24]
R, =R +TFRF[I-RFR,FT'T,

_ (4.4a,b)
T, =T,F[I-RFR,FT'T,

where the subscripts 1 and 2 refer to the junctions, respectively, and the superscript N refers
to the case where waves are incident from the right-hand side of the junction. If equation (4.4

) is combined with the reflection and transmission matrices developed in section 2.6 and 3.6,
R, and T, for the connector can be obtained.

Figure 31 shows the reflection and transmission coefficients for an axial wave
incident on the connector. It can be seen that, as the taper rate ¢ increases, the power

transmission coefficient decreases. However, when k,L>>0 , the power transmission

coefficient tends to 1 and phase of the transmission coefficient, 8,, asymptotes to —k,L .
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These results can be understood by considering two extreme cases. The first is the
case where there is no geometric variation among two uniform waveguides and the

connector. This is just a uniform case where 7=1 and 8, =k L. These phenomena can be
observed when & becomes small and &, L becomes large in Figure 31. The second is the case

where two uniform waveguides are connected without a connector. In this case, 7 is a

constant value determined by

T =(A.%j—.;jé—)~2— (45)

and 6, is zero. These phenomena can be observed when k,L — 0 in Figure 31.

Figure 32 shows the reflection and transmission coefficients for a bending wave
incident on the connector. Similar to the case of the axial wave, the asymptotic behaviour can

be explained by the two extreme cases. In the figure, it should be remembered that %, . is the

wavenumber of the connector determined by equation (3.19).

4.3 Comparison of exact solution with discrete models

The transmission through the connector obtained in section 3.2 is compared with
approximate results obtained by the discrete model A and model B described in Appendix C.
In these models the continuous non-uniform connector is modelled by discrete step-changes
in area. Since the discrete model A approximates the connector as one change in area, the
power transmission coefficient

7= ﬁ.ﬁé‘h‘ 4.6)
(A4 +4,)

is constant and the phase change in the model is only related to the length of the connector.
The discrete model-B will give better result compared to discrete model-A since it adds one
more uniform section.

Figures 33 and 34 show the exact transmission coefficient and the approximate
transmissions obtained by the discrete models. When k,L-> 0, it can be seen that the
approximate results asymptote to the exact. It can also be noticed that error in the case of the

bending wave is higher than that of axial wave. This is because the bending stiffness depends

on the third power of the thickness. Thus when reducing the error by increasing the number



of the uniform sections, more sections will generally be required for bending motion than that

for axial motion for a given accuracy.
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Figure 31. Reflection and transmission of an axial wave by the connector: (a) power
reflection coefficient, (b) power transmission coefficient, (c) phase of the reflection

coefficient, and (d) phase of the transmission coefficient multiplied by " ;
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Figure 33. Exact and approximate results for the transmission through the connector with
a =1: (A) axial wave and (B) bending wave; (a) power transmission coefficient and (b) the

weighted phase of the transmission coefficient (in the case of bending wave, phase of T;. |, );

, exact; ~—---- , discrete model A; ------- , discrete model B.

47



02f 1 02

kL k L

/4

wE

9‘.+|'.'!L {radian}
9'+k b.mL {radian)

-m8 I

T 2x 3r 4w

.

Figure 34. Exact and approximate results for the transmission through the connector with
a=5: (A) axial wave and (B) bending wave; (a) power transmission coefficient and (b) the

weighted phase of the transmission coefficient (in the case of bending wave, phase of 7., );
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44 Summary

In this section, it was shown that the wave method developed for the non-uniform
waveguide can be usefully applied to the problems related to non-uniformity. As an example,
the transmission through a non-uniform connector was investigated. The result is exact and,
thus, the work can be used to estimate errors occurring in using approximate methods. In
section 3.3, the approximate results obtained by the discrete models were compared with the
exact results obtained by this work. It was shown that as frequency increases, the error due to
the discretization increases. Even though the error can be reduced by increasing the number
of the uniform sections, it requires more computational power and time. These difficulties

can be avoided by using the wave methods developed here.
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5. CONCLUSIONS

Wave methods have been developed for the analysis of vibration of a one-dimensional

non-uniform structure which has variable cross-sectional area and the second moment of area
such that A(x)ee x* and I(x)e x***. The displacement, internal force and propagation

matrices for axial and bending motions of the non-uniform structure were formulated in terms
of waves. The reflection and transmission matrices for various conditions were also
investigated. The wave methods developed in the present work can be used to predict the
response of more complex, built-up structures at low computational cost.

In sections 2 and 3, axial and bending motions of a non-uniform structure were

reviewed, respectively. It was shown that the axial motion can be expressed in terms of

Bessel functions if the cross-sectional area of the structure varies as A(x) < x*. This is also

true of the bending motion if the geometric properties vary as A(x) e x* and I(x) e x***. In
particular, it should be noted that a rectangular structure with linearly tapered thickness and
constant width satisfies the conditions. The displacement, internal force and propagation
matrices at a cross section of the structure were derived by using the analytical solutions and
their asymptotic behaviours were investigated. The reflection, transmission and propagation
matrices for various conditions were also derived.

Throughout the work, it was shown that the non-uniformity can be considered as an
additional dynamic stiffness. For example, when an end of the non-uniform bar is excited by
a force, the non-uniformity of the bar makes the amplitude of the induced wave smaller than
that in a uniform bar. It was shown that the influence of the non-uniformity becomes smaller
as frequency increases. The effects were also seen to be different for excitation of the left-
and right-hand ends, i.e. if the section decreases or increases away from the end.

The results related to bending waves were much more complicated due to the existence
of the nearfield waves. Care should also be taken since bending waves are dispersive. For
example, it was shown that the phase change in propagation path of length L asymptotes to

2kb,Okz‘J.L

k, ,L, where k, , = represents the effective wavenumber of the propagation path,

kb,ﬂ + B.L

in the high frequency region.
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In section 4, it was shown that the wave method developed for the non-uniform
structure can be usefully applied to the problems involving non-uniformity. As an example,
the transmission through a non-uniform connector was investigated. It was shown that the
wave method can give exact results without approximation errors and at a low computational

cost.
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Appendix A. THE MOTION OF A STRUCTURAL WAVEGUIDE

In this appendix the wave approach to describing the motion of a structural waveguide
is briefly reviewed. The aim of this work is to provide a generalized formulation of the wave
approach for a waveguide where the motion can be expressed analytically. The work is
developed using a uniform waveguide as a basis and is extended to the motion of a range of

non-uniform waveguides.

A.1 The state of a section in terms of wave components

The amplitudes of the waves at a cross section x =0 of a waveguide can be grouped
into two vectors, a* and a”, in which the superscripts ‘+’ and ‘-’ denote the direction of
propagation of the waves. Propagation in both directions can be expressed by introducing

ropagation matrices F* such that the wave amplitudes in each direction become F*(x)a*
propag P

and F~(—x)a~ as shown in Figure A-1. The propagation matrices F* are the identity matrices

when x=0.
If generalized displacements at the section are grouped into a vector w and the
corresponding generalized internal forces at the section into a vector, f, the displacement and

internal force vectors can then be related to the wave amplitudes by
w=%"a"+¥ a (A.D
f=0'a"+®a” (A.2)
where ¥ and @ are the displacement and the internal force matrices, respectively. They
relate the contributions that waves make to the waveguide deformation and internal forces.

For example, the propagation, displacement and internal force matrices of axial

vibration of a uniform bar are given by

Fr(x)=[e™], F(x) =[] (A.3a,b)
v =[1], ¥ =[1] (A.4a,b)
O" =[iEAk, ], @ =[-iEAk] (A.5a,b)
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where k, is the longitudinal wavenumber, E the modulus of elasticity and A the cross-

sectional arca of the bar. It can be noticed that, for the case of axial vibration, the relevant
matrices and vectors are all composed of only a single element because only one wave
component propagates in each direction.

The propagation, displacement and internal force matrices for flexural vibration of a

uniform Euler-Bernoulli beam are given by

e—i!q,x 0 eik,,x 0
F*(x) = , F (x)= A.6ab
(x) { 0 e"k"le (x) [ 0 o ( )
w ! ! Wy Lol (A.7a,b)
= . - - a,
—ik, -k, ik, k,
ik -k —ik, &,
o' =EI " |, @ =EI ,j , (A.8a,b)
k* -k, kP ~k,

where %, is the flexural wavenumber and 7 the second moment of area of the beam.

The time-averaged power I at the section is given by

= —-;-Re{ia)wﬂf} (A.9)

where the superscript H denotes the Hermitian transpose.

F(—x)-a- =----a ' a" ----» F'(x)-a"

x=0

Figure A-1. Amplitudes and propagation of positive- and negative-going waves.

A.2 Wave generation by local excitation

Consider a waveguide, the left-hand end of which is excited by a local external
harmonic force vector £, ¢"*, as shown in Figure A-2. Since the equilibrium condition at the
end is given by

d*q" =1, (A.10)
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_the vector of the amplitudes of the induced waves, q", can be written in

q =(0*)'1, (A.11)

Similarly, if the right-hand end of a waveguide is excited by a local external harmonic force

it

vector f, e as shown in Figure A-3, the vector of the amplitudes of the induced waves, q~,
can be written in

q =—(®)'f, (A.12)

Consider an infinite waveguide, a cross section of which is excited by a local external
harmonic force vector f,_e'”, as shown in Figure A-4. Since continuity and equilibrium
conditions at the section are given by

Y'qt=¥q (A.13)

O'q" -0 q =1, (A.14)

where now q* are wave amplitudes at either side of the excited cross-section, the vectors *

and q~ are given by

q* = [cb* —o (w) v T £ (A.15)
a =[®“’ () ‘P‘—@D‘T o (A.16)
A feneiwt
e
_____ - q+
x=0

Figure A-2. A waveguide, the left-hand end of which is excited by local external forces.
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x=0

Figure A-4. A waveguide, a section of which is excited by local external forces.

A.3 Reflection at boundaries

If waves with amplitudes a* are incident upon the right-hand end of a waveguide as
shown in Figure A-5, the amplitudes of the reflected waves, a”, can be expressed such that

a =Ra" (A7)

where R, the reflection matrix of the boundary, is determined by the boundary conditions at

the end. If the boundary condition is expressed by a local dynamic stiffness matrix K such

that
f =Kw _ (A.18)

combining equation (A.18) with equations (A.1) and (A.2) gives
O'a*+®a =K(¥a +¥a) (A.19)
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Thus substituting equation (A.17) in equation (A.19) gives

R=—(K¥ -0 (K¥ -o*) (A.20)

It should be noticed that, if waves are incident upon the left-hand end of the waveguide, the
reflection matrix is the same as equation (A.20) but with the superscripts in equation (A.20)
reversed. Even though equation (A.20) is simple, it cannot be used in some situations where
K does not exist - for example, a simply supported end of a beam. The numerical difficulty
can be avoided by using an alternative form {24].

If translational and rotational dynamic stiffnesses K, and K, are attached at a end

of a uniform Euler-Bernoulli beam, the stiffness matrix is given by

K=[KT 0 } (A21)
0 K,

and the reflection matrix R at the end is found to be 23]

R=|:1—iKT i(l—KT):[ {HiKT i(1+KT)J (A22)

~1+iK, 1+K, | [1+iK, -1+K,

where dimensionless stiffnesses K, = K, / Elk, and K, =K ] Elk , have been introduced.

Z

Figure A-5. Wave reflection at an end with generalized dynamic stiffness.

A.4 Reflection and transmission at a discontinuity

Consider waves with amplitudes a* incident upon a discontinuity at a section of a
waveguide. The discontinuity may be an external impedance-mismatching component
‘attached to the section of an infinite waveguide, or a junction between two semi-infinite

waveguides, or combination of both cases as shown in Figure A-6. Amplitudes of reflected

and transmitted waves, a~ and b”, can then be expressed as
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a” =Ra" (A.23)
b* =Ta" (A.24)

where R is the reflection matrix of the discontinuity and T is the transmission matrix. Since
the continuity and equilibrium conditions at the discontinuity are given by

W, =W, (A.25)
f —f, =Kw, (A.26)
combining equations (A.25) and (A.26) with equations (A.1) and (A.2) gives
¥at+W¥ a =¥, b" (A.27)
®'a"+®@ a -® b  =K¥,'b* (A.28)
Thus combining equations (A.27) and (A.28) with equations (A.23) and (A.24) gives

_ -1 7 -1
R:—[K‘{'a +@, (%) ¥, —CDa} [K‘I‘a++®b+(‘1’b+) \P;—cpa*} (A.29)

T= [K‘Pb" -0, (%) ¥+ cD;T [—qn; (2,7) w5+ cbj] (A.30)

Even though equations (A.29) and (A.30) are simple, they cannot be used in some situations
where K does not exist as discussed above - for example, a simply supported section of a
beam. The numerical difficulty can be avoided by using an alternative form [24].

If two uniform and semi-infinite beams are connected together, and there is no
external impedance attached to the junction, the reflection and transmission matrices are

given by [23]

Al A-HBA-7) —2(f* -Dy +ip-y)’

T:i[ 1+ p/a+p —(1"iﬁ)(1—7’)}
Al-(1+ipA-p) A+ B+

R :_2_[—2(52 Dy -if-py A+ A1—7) }

(A.31a,b)

where A=(1+8Y1+p) -1+ B1U-9)* , B=k,, [k, and y=(EIk>),[/(EIL}), . I
should be noted that the transmission and reflection matrices are independent of frequency in

this case.
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7

Figure A-6. Wave reflection and transmission at a discontinuity.
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Appendix B. BESSEL FUNCTIONS

In this appendix various properties of Bessel functions are summarized. They relate to
various forms of Bessel’s equation and their solutions, the recurrence relations of Bessel
functions, the properties of Bessel functions of half-integral order and asymptotic behaviour.

Tfurther details can be found in [3, 26, 27].

B.1 Bessel’s equation

A differential equation of the form

d* 1d v
dzgg+2d_§:+{l—?JW=o (B.1)

where v is a non-negative real number, is known as Bessel’s equation of order v. Its

solutions are denoted by J,(z), the Bessel function of the first kind of order v, and Y (z),

the Bessel function of the second kind of order v. The complete solution of Bessel’s equation

can be written as a linear combination of J (2) and ¥, (z).

The complete solution can also be written in the form

y=CH" (2)+C,H"(z) (B.2)

where C, and C, represent arbitrary constants, and H®(z) and H”(z) are Bessel functions
of the third kind of order v and are defined by
H(2)=J,(2)+i%,(2) (B.3)

HP(2)=J,(2)-iY,(2) (B.4)

H"?(z) are also named the Hankel functions of the first and second kinds and represent
waves travelling in the negative and positive z -directions, respectively.

A differential equation of the form

dw ldy v?
—d'z—z*']'zd—z—[l‘f‘? W:O (BS)
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is called the modified Bessel’s equation of order v. Its solutions, termed the modified Bessel

functions, are denoted by I,(z) and K (z) and the complete solution can be written in the
form

y=Cl,(2)+CK,(2) (B.6)

Figure B-1 shows J (z), Y (z), I,(z) and K (z) for several orders v. Bessel’s

equations (B.1) and (B.5) has a regular singular point at z =0 [28]. This singularity may

cause numerical difficulties in the evaluation of Bessel functions near z=0.

0.5 _
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B.2 Alternative forms of Bessel’s equation

Many differential equations are transformable into Bessel’s equation. One of the very

useful general forms is [29]

2
24V 120y Y (B 6y =0 B.7)
dz dz

the solution of which is given by
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gecfoms(2 ) o[22
4 4

y=-2t 2 (B.9)

where

Similarly, the general form of the differential equation for the modified Bessel functions is

de

+( BT+ =0 (B.10)

the solution of which is given by

w=z‘“{ql (ﬁz J+CK (ﬁzr]} (B.11)
¥ 7

Several alternative forms of Bessel’s equation and their solutions are

d*w La+2v) dy

7 - +ky =0, w=7"{CH(k)+C,HP (k2)} (B.12a, b)
Z Z Z

d*y dy . — m 2
e LKy =0, y=0 P {GH (ke )+ CGHP (2kVz)} (B.134,b)

and

2

*f+(1+v)%-z"i—k2w =0, y=7"" {Cllv (2kvz )+ C.K, (262 )} (B.14a, b)

If equations (B.13a) and (B.14a) are combined as

d? d ., d? d
—+({+v)—+k —+{1+v)—-k =0 B.15
|:z dz* ( )dz ][Z dz ( )dz v ¢ )
and expanded, the differential equation of 4™ order
24 d’y 21#
px — +2(2+V)z—=-+({1+Vv)(2+V) ~k'w=0 (B.16)
dz’ dz?

can be obtained. The general solution of equation (B.16) can be written as

w=7"" [ClHi” (2642 J+ CHD (202 )+ C 1, (k37 )+ C.K, (242 )} B.17)
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B.3 Recurrence relations

The Bessel function of the first kind, J (z), satisfies

dr v v
E[z J(@)]=27,@) (B.18)
and
L0, = 2T @ (B.19)
dz v v+l

When the derivatives appearing in equations (B.18) and (B.19) are expanded (where ()

denotes di) and the results are simplified, equations
Z

()] (2)=2],,(2) (B.20)

and

() —vI (2)=-2],,,(2) (B.21)

are obtained. Subtracting (B.21)} from (B.20) gives

g (2) =%Jv(z)—1v_l(z) (B.22)

and adding (B.20) to (B.21) gives
, 1
J.(2) =E{Jv_1(z)—JV+l(z)} (B.23)
Equations (B.18) to (B.23) are called the recurrence relations of Bessel functions and also

hold for the functions ¥,(z), H"(z) and H™®(z).

Similarly, the recurrence formulas of the modified Bessel functions are summarized

as
i[z"f (@) ]=2"1,(2) (B.24)
dZ v v—1 |
Ll 1@ =2, (B.25)
dZ v v+l
A (2)+vI, (D)=, (z) (B.26)

A (2)-vI(2)=2,,(2) B.27)
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Im(z):—%lv(z)+lv_l(z) (B.28)

I(z)= %{Iv_l(z) +1,.(2)} (B.29)
and
d v v
EZ"[Z K,(2)]|=—2K,,(2) (B.30)
d -y —_ Y
T TEK@]=-"Ku @ (B.31)
2K (2)+ VK, (2)=—2K,(2) (B.32)
ZK(2)—vK,(z) =—ZK,,,(2) (B.33)
2v
K, .(2) =~;Kv(z) +K,,(2) (B.34)
, 1
K(2)= —E{Kv_l(z)+ K. (2} (B.35)

B.4 Bessel functions of half-integral order

. . 1 . .
Bessel function of half-integral order n+§, where n is an integer, can be expressed

. , . . . 1
in closed form in terms of elementary functions. For instance, Bessel functions of order i—E

can be expressed as

2,
Jpp(2)= 7 Snz= Y (2) (B.36a, b)

and

2
Jop(@)= el i 12(2) (B.37a, b)

Now, from (B.22), it follows that
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1
Ty (2) = ;Jlﬁ (2)- I (2),

(B.38a, b)
2 (1.

=,]—| —sinz—cosz
nZ\ z

|
Yip(2)= EY]/Z (2) =Y, (2),

[2 (1 , J
=—,—| —cosz+sinz
mTzZ\ Z
’ 2 3 .
J(2)= ;{(.?—Ijsmz—%cosz} (B.40)

Y, (2)=~ i{(—:)32——1Jc:osz+§sinz} (B.41)

TZ (\ Z Z

(B.39a, b)

and so on.

By using equations (B.36) to (B.39), the Hankel functions can be written in the form

Hyy(2) = -i\/—%"eiz =-iH{),(2) (B.42a, b)
TZ
HP(2)= i,/ie'“ =iH%,(z) (B.43a, b)
Tz
1) 2 i iz
Hyy(2)= "\/—[H—)e (B.44)
Tz Z
Hip3(z) =~ "z—(l—i)e"“ (B.45)
Tz Z

Hy)(z) =—J% {%ﬂ(%—l}}eﬁ (B.46)
Hg)(2) = —~J% E ~i (;35— 1 )} e (B.47)

The modified Bessel functions of half-integral order n+% can also be written in the

form
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2 .
1,(2) =,[~—sinhz (B.48)

Tz
©l -2
Ky (2)= 22 - (D) (B.49)
I, (2)=, /ﬁ% [cosh z —%sinh z] (B.50)
T 1y _,
K,(2)= 2_z(1+;)e (B.51)

14,(2) =J%{[%+1]5inhz—%cosh z} (B.52)
3
Ky, (2) =, /57% [%474- 1 ]e'z (B.53)

and so on.

B.5 Limiting behaviour for large argument

When |z! > 1,

o> [ and -% < phase(z) < —725 3]

HP(z)= iei(

Tz

LI 2 12 212 2 a2
Lt }{1_41/_ @ 1')(41/2 3)_“} (B.54)
11(i82) 21(i8z)

il Lo 2_12 212 2_ a2
Hﬁ”(z)a/ie( ") v ol G- Ddve-3) (B.55)
Tz 11(i82) 21(i8z)

If the terms higher than the first term in the series in equations (B.54) and (B.55) can be

neglected, the Hankel functions asymptote to

’ i *llr-l ’ -i —lfrwlﬂwr
H;E[)(Z) = _2_3[ 4 2"’7")’ Hiz)(z) =~ ......2..'_3 (Z 4 2 ) (B.Sﬁa, b)
Tz . Tz

H(2) _ . H: (2)

Thus it follows that

0 A ~i (B.57a,b)

and
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HO, (2) HS (2)
A ], S B.58a,
29 (2) e (8582,

When |z]> 1|z} |v" and 0< phase(z) <7 [3],

z 2 2 4 2 2
()=t {1_41} - @vi- )(41; —32)_“}
272 11(82) 21(82) 5.59)
+ei(v+%} e’ {1+4v2—12+(4v2—12)(4v2—32)+ } '
27z 1}(8z) 21(82)*
while, for —z < phase(z) <0,
z 2 2 2 2 2
L ()=t {1_(4;/ -1, @vi-1 )(41;%-3)_“_}
N27z 11(82) 21(8z) 5.60)
+e»i[v+—;}ﬂ e {1+(4v2—12)+(4v2—12)(4v2—32)+ } '
N 11(8z) 21(8z)*

If the real part of z is positive, the second series in equations (B.59) and (B.60) can be
neglected and 7, (z) asymptotes to

et

I(z)= (B.61)
N2z
Thus it follows that
I I
(@) ke, (B.62a, b)
I(z) 1,(2)
Finally, when |1, |z|> |V]2 and —7 < phase(z) < 7 [3],
2_q2 2 _q2 2_q2 :
K(2)= e+ 2D @ S D@V 23) (B.63)
2z 1(8z) 21(82)

If the terms higher than the first term in the series in equations (B.63) can be neglected,

K, (z) asymptotes to

K. (2) =, |2 (B.64)
2z
and it follows that
En@) Kuald) (B.653, b)
Kv (Z) ’ Kv (Z)
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Appendix C. NUMERICAL CONSIDERATIONS

In this appendix various numerical aspects of the wave approach are briefly reviewed.
They relate to the effect of discretization, accuracy etc. They are illustrated with regard to
wave transmission through the structure shown in Figure C-1.

Consider two semi-infinite cylindrical bars which are connected as shown in Figure
C-1. Here a*, a” and d” refer to amplitude vectors of incident, reflected and transmitted
waves, respectively. In this case, the connector between two bars has conical variation in

cross-sectional area such that
5 2
A=Aﬂ(1+a1-] (C.1)

For simplicity, the two bars and the connector are assumed to all have same material

properties.

2
8-> x :
AU A=4 (1 +or— ] > d

Figure C-1. Connector with conical area change.

C.1 Exact solution

As described in [25], d* can be expressed exactly in terms of a* such that

=l
2
dt = gkt {(1 +a) +4—;’5F{1 —i2k L—e " }} a* (C2)
!

If the exponential term in the bracket in equation (C.2) is expanded such that

(-i2k LY . (~i2k LY .

5 T (C.3)

e =112k L+
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then

— s —1
B 4 3
d* = | (140 +-“—{2 kLY —i= (kL +} at
_( ) 4k (kL) 5 L)
wr| oty ot .
=g " 1+a+-2— —~xk,L?+... a (Cda, b,c)
— 2 -1
A RS SN
|24, 3

where A, is cross-sectional area at x =L and it is noted that

A=A (+a) (C.5)

When kL <1, the terms from the second term in the bracket in equation (C.4c) can

be neglected, then

-1
d+ - e—ik:L (%%] a+ (C6)

The power transmission coefficient 7 in this case is given by [25]

2

T= A (C.7)
4, |a*
Thus combining equations (C.7) with (C.6) shows that 7 asymptotes to
A4 (C.8)

TG
(4+4,)

Equations (C.6) and (C.8) indicate that the existence of the connector can be neglected when
the frequency is very low and the connection length is very short.

When k,L>>1, the second terms in the bracket in equation (C.2) can be neglected,
then
d* ~e ™ (1+a) " a* (€C.9)

Thus combining equations (C.7) with (C.9) shows that
T=1 (C.10)

Equation (C.10) indicates that waves incident on the connector are transmitted without

reflection if the non-uniformity per unit length is small as discussed by Lighthill {30].
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C.2 Discrete models

When the connector is assumed to be composed of many small uniform sections, it is
possible to analyse motion of the connector with a discrete wave model as described in [25].
There are many possible different discrete models depending on how it is chosen to divide
the connector into small sections. Among the models, the two models shown in Figures C-2
and C-3, which seem to be used most intuitively, are discussed here. In the first, the
connector is simply considered as one area change. In the second, the connector is divided

into three sections in which the cross-sectional area of the middle section, A, is determined
by
4 =Lt A (C.11)

For the discrete model A, d' is given by

-1
d,’ =e [%%} at (C.12)

When equations (C.4c) and (C.12) are compared, it can be seen that the errors in d A+ depend
on the length of the non-uniformity through kL and the degree of non-uniformity through

o . It can be noted that, when k,L <1 and thus the terms higher than the second term in the
bracket in equation (C.4c), the erors in the phase of d,” are proportional to k,L while the

errors in the amplitude of d," are proportional to (le)z. Thus the power transmission

coefficient might be more accurately predicted than the response when kL < 1.

For the discrete model B,

. :e_ik,L[(AwA,,,)(Am+AL)+(Am—Ao)(AL—Ao)e_ik,L}“ e Cl3
44,4, 4404,

where subscripts A and B are used to denote the model A and the model B. If the exponential

term in the brackets in equation (C.13) is expanded, then,
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™~

dB+ = ewlk,

(At A4,)(A+4) (A= 4) (A4 - 4)

= kL

24,

—ik,L
=g

24,

A+A .

44,A,

44,4,

i

1

44,4,

(20+a’ )2

8(2+2a+a2)

It can be seen that, when kL« 1, d," asymptotes to d,*

: —
a -

-1
{l—ile+...}] a*

_A0+AL _lkL(An_Aﬂ)(AL_AO)_'_j[— a+

-1

a+

Figure C-2. Discrete model A.

a’ -y
Qi —

B b
M]t"‘[

E———

—

N
L

4

Figure C-3. Discrete model B.

(C.14a, b, ¢)

Figure C-4 shows transmissions through the connector obtained by the exact solution

and the two discrete models. It can be seen that, when k,L <1, the power transmission

coefficients of the three cases all tend to the value given by equation (C.8). Also, it can be
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seen that the exact power transmission coefficient tends to unity and the phase of the

transmission coefficient tends to zero when k,L>1.

C.3 Error estimation

Figure C-5 shows the errors in the transmission coefficients which occur when the

connector is modelled by the discrete models. In the figure, the error, &,, in the power

transmission coefficient and the error, &,, in phase of transmission coefficient are given by

(C.15)

& =10, ~6,| - (C.16)

where subscripts e and d denote the exact solution and discrete model, respectively.

In the figure, it can be seen that the higher & becomes, the greater the errors due to
. . . ; T
the discretization in both models. When =1, it can also be seen that, if k,LSE , the

percentage error in power transmission coefficient obtained by the discrete model A is

approximately less than 1% and the error in the phase is less than 0.05 (radian).
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Gg-hk'rl. (radian)

3

-m8

L - P
in 4n ] 3n 4an

2n 2
er Ich
Figure C-4. Transmission through a conical connector: (A) a=1and (B) a=5; (a) pdwer

transmission coefficient and (b) phase of transmission coefficient multiplied by %" ;

, discrete model A; ------- , discrete model B.
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Figure C-5. Errors in predicted transmission through a conical connector due to
discretization: (A) =1 and (B) a =5 (a) error in power transmission coefficient and (b)
error in phase of transmission coefficient;

...... , discrete model A; -------, discrete model B.
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