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Abstract

Tensegrity structures involve a continuous network of thin strings or cables
under tension that hold thin structural beams or rods in compression. The
tension guarantees the shape of the static structure. They were first
developed in the 1940’s and have mainly been used as artistic sculptures.
However, some applications now include large arenas and roof coverings,
and increasing interest is being shown for use in deployable configurations for
space structures.

Typically the global low frequency characteristics and vibration control are
amenable to analysis techniques such as the Finite Element method. The
study reported here investigates wave propagation phenomena at a junction
between the tension and compression members and demonstrates the wave
filtering properties of the junction, which are especially significant at the higher
frequencies. The junction examined consists of a semi-infinite string attached
to a semi-infinite Euler-Bernoulli beam that can support both flexural and
longitudinal wave motion. Wave propagation through the junction is
considered and theoretical expressions for the reflection and transmission
coefficients are derived.

It is shown that maximum power transmission occurs when the impedance
of the string is equal to one over the square root of two times the real part of
the impedance of the beam in flexure, i.e when the beam is attached in-line
with the string; above this frequency transmission is reduced. When
longitudinal motion is excited, i.e. the beam is at 90° to the string, maximum
transmission in the beam occurs when the string impedance and the in-plane
beam impedance are equal. Reduced transmission is as a result of

impedance mismatching.
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List of Symbols

Subscripts
b
C

f

Refers to the beam
Damping

Flexural wave

iv

Symbol Use Units
A Wave amplitude m

C Damping kgs™
E Young’s modulus N/m?
1 Second moment of area m*

K Stiffness kgs™
M Mass kg

o Shear force N

S Cross-sectional area m?

T Tension N

Z Impedance N/ ms™
¢ Phase velocity ms™
¥ Force N

7 Complex number notation

k Wavenumber m’

m Momeﬁt Nm
P Power Js'!

¢ Time $

u Displacement m

X Displacement m

y Displacement m

0 Non-dimensional frequency

£ Strain

e Angle degrees
Jo) Density kg/m®
(o Stress N/m?



g ox

~

Incident wave
Stiffness
Longitudinal wave
Mass

Reflected wave
Refers to the string
x-direction

Evanescent, propagating wave in beam



1. Introduction

Tensegrity is a portmanteau word from tension and integrity. A loose definition of a tensegrity
structure was given by Fuller [1], “a structural relationship in which the structural shape is
guaranteed by the interaction between a continuous network of members in tension and a set of
members in compression”. The type of tensegrity structure considered in this report is one that is
composed of a continuous network of tensioned strings that hold beams in compression and hence
in position, but the beams do not connect to each other. The purpose of this report is to examine the
wave filtering properties of a single junction between a string and a beam typically found in a

tensegrity structure.

Static properties of tensegrity structures have been investigated by several researchers. Examples
include, Motro [2], who described tensegrity structures and their main properties more precisely,
and Kanchanasaratool and Williamson {3] who used particle dynamics as a means of modelling
tensegrity orientation. However, previous work on the dynamic properties of tensegrity structures is
limited. One example of such work is by Kahla, Moussa and Pons [4] who explored the non-linear
dynamic analysis of tensegrity structures. Wave modelling through different element junctions in
non-tensegrity structures has been extensively researched. Mace [5] considers wave reflection and
transmission in beams with discontinuities, and Von Flotow [6] has examined disturbance
propagation in networks of various structural elements. Power flow in structures has also been

considered as a means of controlling structural vibration, [7-8].

A junction in a tensegrity structure consists of a minimum of three strings and a single beam. The
work reported here involves the analysis of the dynamic properties of a simplified junction,
consisting of a single string to a single beam, each of semi-infinite length. Dynamic analysis of
these members 1s based upon the work of Kinsler et al [9] and Mead [10]. The analysis of the
junction consists of initiating a transverse propagating wave in the string and obtaining the
transmission and reflection coefficients when the string and beam are joined in three configurations,

namely perpendicular, in-line and at an arbitrary angle.

Following this introduction, the point impedance of a semi-infinite string is derived and the
properties of a reflected wave when the string is incident upon a general impedance boundary.
Examples of a mass, stiffness and damping boundary are used and the amplitude and phase of the

reflected wave in each case are derived. In the subsequent section, the flexural point impedance of a



beam is derived and compared to that of the mass, stiffness and damping impedances. This leads to
the analysis of the reflected and transmitted waves in the string and beam when they are joined in-
line. Following this, the longitudinal point impedance of a beam is derived and compared to that of
the mass, stiffness and damping impedances. This leads to the analysis of the reflected and
transmitted waves when the string and beam are joined at right angles. The analysis of the string
and beam attached at an arbitrary angle is then conducted by imposing a sliding boundary condition
and combining the analysis for the two particular junctions. The final section is a conclusion to the

report.



2. A string connected to an arbitrary impedance

2.1 Introduction

Tensegrity structures involve a network of strings in tension that hold beams in compression. The
type of tensegrity model considered in this report does not allow the beams to interact, hence, it is
described as a continuous tension - discontinuous compression structure. The simplest tensegrity
structure has a junction that consists of three strings and a beam.

This section is concerned with a simplified junction between a semi-infinite string in-line with a
semi-infinite beam. A semi-infinite length is chosen to allow the waves at the junctions to be free
from reflected waves from another junction that would arise in a finite system, and hence the
junction properties can be considered in isolation.

The first section investigates wave propagation in the string, and determines the impedance of the
string and the effect of attaching a general impedance to the end of the string. In the next section,
the flexural impedance of the beam is derived together with expressions for relative transmitted and
reflected wave amplitudes when the string is attached to the beam in-line. To confirm the
expressions, the power that propagates through, and reflects from, the junction is considered in the

final section. A power balance check is then made.

2.2 The impedance of a string

A semi-infinite string, under a static tension force, T, is subject to a transverse harmonic force,

Fe’® with frequency o, at the end of the string, defined as x = @ as shown in Figure 1. This end is
assumed not to move in the x-direction but is free to move in the y-direction. Because of the force, a
wave, of amplitude A, propagates along the string away from the end. As the disturbance is at x =0
and the string 1s infinitely long to the left of that point, waves will only propagate to the left. Thus

the transverse motion of the string as a function of time, ¢, is given by

y(x 1) = Aed@r+ksT) 2.1

where the wavenumber, £, = L , and c; 1s the phase velocity, which is the speed of the

Cs

disturbance along the string, given by, = ,LS , where S is the cross sectional area of the
ses

string, p, is the density and the subscript “s” refers to the string. Hence p S, is the mass per unit

length of the string. The derivation of equation (2.1) is given in Appendix A.
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Equating the forces acting at x = Oresults in a relationship between the wave amplitude 4 and the
force F in the frequency domain, i.e. the amplitude of the applied force has to equal the resolved
component of the tension force. The end of the string is considered massless, therefore all the

components of force in the y-direction must vanish, i.e. force equilibrium applies to give

f =Tsinfd (2.2)
For small 0, sinf ~ tan®, where tan0 is %which can be substituted into equation (2.2) to give,
X
f=T (6_3}) (2.3)
ox x=0

Substituting for £ = F&/* and differentiating equation (2.1} with respect to x, and combining with
equation {2.3) gives:
Fe/® = jk TAe!” (2.4)

which can be re-arranged to give,

i (2.5)
kT
Hence, the lateral motion of the string is given by,
W)= -2 giotrkes) | "~ (2.6)

kT

5
Differentiating this expression with respect to time and evaluating at x =0 gives the transverse

velocity at this position. The amplitude of the velocity is
: ol
Y{0) = — 2.7
0) =7 @7)
The impedance is defined as the harmonic force f = Fé&™ divided by the resulting harmonic velocity

9(0) =Y (O)ej ! at the point where the force is acting and hence the point impedance for a semi-

infinite string is given by,

kT T
s* == [Tp, S, (2.8)

O

Zy=

Note that this is a real quantity and is independent of frequency.

2.3 Wave reflection on an arbitrary impedance boundary

The aim of this section is to derive a relationship between the reflected and incident wave
amplitudes when a transverse wave is incident upon an arbitrary impedance attached to the end of a

semi-infinite string. Figure 2 depicts this situation.



The transverse motion of the string consists of two waves, the incident wave of amplitude, 4; and

A the reflected wave of amplitude 4, . It is described by the equation,
Y(x) = 475" 1+ 4,67 (2.9)

where harmonic excitation is assumed but the ¢/®’ time dependency is suppressed for stmplicity.
" Because the impedance is rigidly attached to the string, the following boundary condition applies,
Fi=-F, (2.10)
£y can be calculated using equation (2.3). Substituting the spatial derivative of equation (2.9)
evaluated at x = Ointo equation (2.3) results in,
Fy =—jk,T(4; - 4,) (2.11)
F3 is related to the attached impedance and its velocity, and is given by,
F, = ZY¥(0) (2.12)
Substituting for Y(0) derived from equation (2.9) evaluated at x = Ointo equation (2.12) gives,
Fy = joZ(4;, + 4,) (2.13)
Combining equations (2.11), (2.12) and (2.13) gives the relationship between the amplitude of the

reflected wave and that of the incident wave,

1= <

A Zs (2.14)
4 142
Zs

where Z; is the string impedance given by equation (2.8). To check the above expression three
tests can be performed. Letting the attached impedance become infinite should result in complete
reflection, i.e. the incident to reflected wave amplitude ratio should be unity. The second test
involves setting the attached impedance to match that of the string so that there will be no reflected
wave and hence the ratio of the amplitudes should be zero. The third test involves setting the
attached impedance to zero and again there should be a reflected wave amplitude ratio of unity

As E-—-)c:o
5

4y _l-w

P |

Ai _]+OO

The minus sign shows that the reflected wave has a phase difference of 180° . The magnitude of the

reflected wave is equal to that of the reflected wave.



If Z:ZsszCS

4 _1=1_,

4 1+l
No reflection occurs and so complete transmission takes place.

As £—>O

]

Note that again, the amplitude of the reflected wave equals that of the incident wave, but in this

case, there is no phase change at the boundary.

2.4 Simulations and examples

Assigning the properties of mass, stiffness and damping individually to the arbitrary impedance is
useful in that when a beam is attached (which is discussed later in this report); the results may be

compared to give physical insight into the dynamic behaviour of the connection.

2.4.1 Mass-like impedance _
Figure 3 shows a mass, M, attached to the semi-infinite string. F'| and F, are the internal forces
between the mass and string. 4; is incident upon the mass resulting in a reflected wave A,.
Now the impedance of mass is given by, [11]

Zy =joM (2.15)

Substituting this impedance for Z in equation (2.14) gives,

- JoM
Ar_ P55 2.16)
A1, JoM
ps cs SS
. . , . . D PsCs 8
This can be re-written in terms of non-dimensional frequency, Q,, = ——, where ©,, = Y,
O

which is the frequency at which the magnitude of the impedance of the mass is equal to the

impedance of the string, to give

Ar 1= 782

=7 2.17)
Af 1+_]QM



.4 .
Figure 4 shows the modulus and phase of the amplitude ratio j plotted against the non-
i

dimensional frequency Q,, .

. 4, . . .
It can be seen from Figure 4(a) that the modulus of —A—’ 1s constant with frequency, which means
i
that the magnitude of the reflected wave is equal to the magnitude of the incident wave for all
frequencies. This result occurs because a mass cannot dissipate energy and hence all of the incident
wave energy is reflected.

It can be seen from Figure 4(b) that the incident and reflected wave are in-phase when Q,, is zero.
This is because at low frequencies the mass does not constrain the displacements significantly and
the result is similar to a free end. When o is equal to ®,,, there is a phase difference of - 90° . This
is the point when the impedance of the string is equal to the magnitude of that of the mass. As Q,,
increases, the phase difference approaches -180°, which is consistent with the infinite impedance

boundary condition. In this limit, the mass has a very large impedance and constrains the

displacement to zero, resulting in a similar effect that arises from a string with a clamped end.

2.4.2 Stifiness-like impedance
Figure 5 shows a stiffness, K attached to the semi-infinite string. The internal forces F; and
F, exist between the string and the stiffness.

The impedance of a stiffness is given by, [11]

Zy=— (2.18)
J

Substituting this impedance for Z into equation (2.14) gives:

P S

Ar _ Jop, cgSs (2.19)
2/ T S
jmchSSs

. . : . . ©
This can also be re-written in terms of a non-dimensional frequency, Qg = —, where
Og

Og = , which is the frequency at which the magnitude of the impedance of the stiffhess is
Prcsas

equal to that of the string, to give



1+Q——

Ar_ Pk (2.20)
Ai ]
QK

Figure 6 shows the graphs of modulus and phase of ijf are plotted against Q.

1

The modulus of Ar is unity and thus independent of frequency. This is because stiffness cannot

i
dissipate any energy causing all the energy in the wave to be reflected. The phase difference is

180°, when Q is zero. When o is equal to o there is a 90° phase difference, which occurs when

the string’s impedance matches that of the magnitude of the stiffness impedance. As Q4
approaches infinity the phase approaches zero. This behaviour is in direct contrast to that of the
mass, i.e. a spring provides a pinned end at low frequencies, which becomes free as frequency

increases.

2.4.3 Damping-like impedance

A diagram of a viscous damper attached to the semi-infinite string is shown in Figure 7. The
internal forces /] and £, exist between the string and damper. _
The impedance of a damper 1s given by, [11]

Ze=C (2.21)
where C is the viscous damping coefficient.
It can be seen that the impedance is entirely real in contrast with the impedance of mass and
stiffness, which are imaginary.
Substituting this impedance for Z in equation (2.14) results in:

_A_L:l___zg (2.22)
4 I+Ze

— . . . . . - Z
where 7~ 1s the ratio of the impedance of a damper to that of the string, 1.e. Z~ = ?C .
R
Unlike the two previous resuits, this expression is independent of frequency. However, in this case

the modulus and phase can be plotted against the ratio of the impedances 7 -, as shown in Figure §,

which shows how Ar varies for different values of the attached impedance.
i

¥

The modulus of % is unity when 7~ is zero. As 7 ~increases to unity, the amplitude of the
i

reflected wave goes to zero. At this point, the impedance of the damper is equal to that of the string

8



and the damper dissipates all of the incident energy resulting in no reflected wave. This is consistent

with the result found earlier, that when the impedances match no reflection occurs. As Zc
increases above unity the modulus of the reflected wave amplitude increases. When 7~ is infinite

the modulus will be unity as the damper effectively pins the end of the string resulting in zero
displacement and no energy is dissipated.

* There is no phase difference between the reflected and incident wave when Z ¢ 1s equal to zero, i.e.
as if the end were free. When 7~ is equal to unity, there is a 180° phase change, and further

increases in 7~ do not alter the phase difference, which remains constant at 180°.

2.5 Conclusions

In this section, the impedance of a semi-infinite string has been derived and shown to be dependent
upon the tension force and the phase velocity and independent of frequency. When an impedance is
attached at one end of the string, causing reflected waves to be present in the string, the amplitude
of the reflected wave compared to that of the incident wave is a function of the ratio of the attached
impedance to that of the string impedance. Applying a mass-like impedance results in no energy
being dissipated, i.e. the amplitude of the reflected wave is always equal to the incident wave. The
phase angle between the waves varies with frequency. A stiffness-like impedance does not dissipate
energy and has a phase change that is dependent upon frequency. A damping-like impedance is
independent of frequency, and thus the impedance of the damper can match the string impedance
exactly at one particular frequency. Hence at this frequency all the energy in the incident wave is

dissipated by damper and there is no reflected wave in the string.

In this section, the attachment of an arbitrary impedance to the string has been explored. The next
section considers the case of a beam in flexure attached to the string and by direct comparison with
the mass, stiffness and damping impedances. The behaviour of the string and beam junction is

investigated.



3. A string connected in-line to a beam

3.1 Introduction

This section considers the case of a beam attached in-line with a string. A wave in the string is
incident upon the beam, exciting flexural waves in the beam, and a reflected wave in the string.
Firstly, the impedance of the beam is derived and used to obtain the reflection and transmission

coefficients, which give an indication of the wave filtering properties of the junction.

3.2 The flexural impedance of a beam

The ultimate aim of this section is to explore the case where the beam is joined in-line to a string
and the string excited harmonically. Obtaining the impedance of a beam in flexure and substituting
it for the general impedance used in equation (2.14) will give the reflection coefficient. The results
obtained in section 2.4 are used for comparison with the results for the beam, and hence the mass,
stiffness or damping -like qualities of the beam are determined.

Consider a semi-infinite beam subject to a harmonic, transverse force, at frequency o, at the left,
fixed end, defined as x =0, as shown in Figure 9. As a result two flexural waves are generated,
namely an exporientially decaying wave (evanescent wave), A,, and a propagating wave, 44, The

lateral motion of the beam is given by the following expression, (see Appendix B)

y(x,t)= (Aze_kf ¥+ dye M )ef‘”’ (3.1)
where % is the flexural wavenumber of the beam, given by
1/4
PsSh 1/2
k.= 3.2
! [Ebf b ] ? 2

where pj, is the density, .S, is the cross-sectional area, £y is the Young’s modulus of elasticity and /;

is the second moment of area of the beam. The subscript f denotes the flexural wavetype and the
subscript » denotes the beam.

To obtain expressions for 4; and 44, the boundary conditions are applied and the resulting equations
solved. The end of the beam is a free end, so there is no bending moment present, and the applied

force is set equal to the shear force.

Boundary condition 1:

10



2
mmE,,[,,@i’—gO_) =0 (3.3)

ox
Boundary Condition 2:
3
0
X

Taking the spatial derivative of equation (3.2) and substituting this into equations (3.3) and (3.4)

gives:

Eily (K2 4> - K2 45) =0,
which implies that 4, = A4 (3.5)
and Eyly(~k 43+ j iy As) = Fy (3.6)

Substituting equation (3.5) into equation (3.6) and rearranging gives an expression for the wave

amplitude in terms of the applied force:

Fll+J
Ay = A t; ) (3.7)
2E I k f
‘Combining equations (3.2), (3.5) and (3.7) gives the transverse displacement of the beam
F 1 f - ik i
y(x,1) = _M(e kpx +e J_kf }Jmt . (3.8)
2E, 1y iy

To find the impedance of the beam, its velocity at x = 0is required. Hence, equation (3.8) is

differentiated with respect to time and evalunated at x = Oso that the impedance Z ;= % , where

¥(0) is the velocity at x = 0, can be determined. This gives

EyI, k}

Z;= (1+) (3.9)

To compare this with the impedances of mass, stiffhess and damping given in Section 2, the real
and imaginary parts of the expression are examined. Equation (3.9) has a positive real part and a
positive imaginary part. The positive real part corresponds to that of equivalent damping and the

positive imaginary part corresponds to that of equivalent mass. Hence, the wave in the string is

Eply k5

incident upon the beam and experiences an equivalent damper , which is proportional

E, I, kY

2m?

which is proportional to w2,

tow"?, in parallel with an equivalent mass of

11



So far the impedances of a string and a beam have been derived, and the wave motion present in the
string when the string is attached to an arbitrary impedance has been described. Combining these
enables the reflected wave in the string to be determined when the wave in the string is incident
upon the beam. Comparison between this reflected wave and the waves that are reflected from
mass, stiffness and damping elements leads to an understanding of the dynamic characteristics of a

beam connected to a string.

3.3 A string connected to a heam

A semi-infinite string, as described in section 2.2, is joined to a semi-infinite beam, as described in
section 3.2, and this is shown in Figure 10. They join at x =0, and the string is excited
harmonically. It is assumed that no significant in-plane motion of the string and beam occurs. The
displacements of the string and beam at the join are Y, (0) and ¥, (0) respectively. 4; is the
amplitude of the wave in the string incident upon the junction and A4, is the reflected wave in the
string. An evanescent wave with amplitude A4, and propagating wave with amplitude 44 are excited
in the beam. The aim of this section is to derive the ratio of the transmitted wave, A4, in the beam to
the incident wave in the string and the ratio of the reflected wave, 4,, to the incident wave in the
string as they describe the wave filtering properties of the junction.
When the beam 1s attached to the string, the following boundary conditions apply: At x =0, there is
no net force and the displacements of the string and beam are equal, therefore:

Fy=-F, (3.10)
and Y, (0)=Y,(0) (3.11)
Both boundary conditions are used to derive the ratio of the transmitted wave amplitude to that of
the incident wave. The string displacement at x = Ois given by

Y. (0)=4,+ 4, (3.12)
and the displacement of the beam is given by

Y,(0)= 4, + A4, (3.13)
Combining equations (3.5), (3.11), (3.12) and (3.13) gives:

A +A. =4, +4, =24, (3.14)

Which can be written as

14 Ar_pAd (3.15)
Aj Aj

12



Substituting the expression for Ar given in equation (2.14) and setting Z =Z , and rearranging,
i

gives the ratio of the transmitted wave, A4 to the incident wave

4, 1

A. VA
P2l
7z

s

(3.16)

This expression can be further developed by substituting for Z; in (2.10) and Z;in (3.9) to give:

A4 _ ! : (3.17)
4 Eplyky 1+ /)
2k.T
Substituting for &, from equation (3.2) into equation (3.17) gives an expression in terms of a non-
dimensional frequency, €1, = 2. where bei/ 2= 5;{ i
Wp e (Epdy)” " (PpsSp)
44 ! (3.18)

A4 1+9,7%(1+ )
When o is equal to o the impedance of the string is equal to the real part of the flexural impedance

of the beam.

To obtain the amplitude of the reflected wave, the impedance of the beam and the impedance of the

string are substituted into equation (2.14) to give

. Eyly iy (1+j)

Ar _ 2k, T (3.19)
A Eyly k(14 )
1+
2k, T
which can also be written as
1/2 .
4 1-9,"20+)) (3.20)

4 1+9,7%(1+ )

Figure 11 shows the modulus and phase graphs of both f and 44

T i

plotted against Q. The moduli

of both the reflected and transmitted waves are equal to that of the incident wave when Q, is zero.

As the phase of the reflected wave is equal to that of the incident wave, it suggests that the end
behaves as if it were free. This is because the equivalent mass of the beam does not restrict the

displacements at low frequencies. The reflected wave amplitude is a minimum when Q, =1/2,

which means that at this frequency Z; = J2 Re(Z 1 ) This corresponds to a phase difference of 90°

between the incident and reflected wave in the string and is caused by the equivalent damping in the

13



beam. The fact that the reflected wave amplitude does not go to zero is due to the mismatch of

impedance between the string and beam, as the beam impedance has an imaginary part. At 0 = ®,,

the frequency at which the string impedance is equal to the real part of the beam impedance,

4y
A

4

A4
A

i3

“Il tends to unity, and the phase tends to180°, which

@ o e
. As — increases to infinity 4
Op

]

suggests that the mass of the beam is effectively clamping the end of the string.

3.4 Power flow through the junction

It is useful to consider the transmitted and reflected waves in terms of power flow through the
junction between a string and beam. Assuming that the junction between the string and beam is
conservative, the power balance 1s

power incident = power reflected +power transmitted.
The incident wave in the string contains the input power. When this is incident upon the junction
some of the power will reflect back along the string in the reflected wave and some will be
transmitted to the beam in the form of the flexural propagating wave in the beam. The evanescent
wave does not carry any energy away from the junction so long as it does not interact with any

other evanescent wave [12]. The input time-averaged power for any structure is given by, [11]
1 «
Power = —sze{F.V } (3.21)

where, F is the complex harmonic force applied to the structure and ¥ is the complex velocity of the
structure at the point where the force acts. Re{} denotes the real part of the expression and *

denotes the complex conjugate.

3.4.1 Power in the string

Because the string is attached to the beam, the expressions for the force and velocity are taken from
Section 2.3. The equations for the force and velocity of the semi-infinite string with an arbitrary
impedance attached to the end, equation (2.11), and the time derivative of (2.9) are substituted into

equation (3.21) and rearranged to give the net power flow in the string,
1 2 2
po=pi-p, =2k T4 -14f") 322)

where p, is the total power in the string, p;is the power in the incident wave and p, is the power

in the reflected wave. The total power in the string is equal to the power that is transmitted to the

beam, as can be seen from the power balance, transmitted power = incident power- reflected power.
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3.4.2 Power in the beam

The relationship between the applied force and the resulting 4, propagating wave on a semi-

infinite beam can be determined from equation (3.7) to give

Fy =—Eply k5(1- )4 (3.23)
The relationship between the velocity at x =0 and the 4, propagating wave is given by

Y(0) = jw2 A4 (3.24)

Substituting equations (3.23) and (3.24) into equation (3.21) and rearranging gives the power that is

transmitted into the beam,
2 3
Py =14d Eplp k70 (3.25)
where p, is the power in the beam.

Hence, from (3.22) and (3.25) an expression for the power balance condition is obtained, where

power in = power reflected + power transmitted

ie. %kSTco| af’ = %kSTm[ A+ By kol adf (3.26)

Dividing through by %ks Tco[ Ai|2 gives,

2 3 2
2E Ik
P R R U (3.27)
Ai ksT Ai
This can be rewritten in terms of the non-dimensional frequency Q, = 2
©p
where ap? = ﬁf 7 to give
es(Eplp)" " (PpSh)
4P 2
lj +a(Q, )24 o (3.28)
i i

A
Using the expressions for /T" and % from equations (3.18) and (3.20) respectively, graphs of

[ !
power reflection and transmission coefficients are plotted against non-dimensional frequency, in

Figure 12. The minimum reflected power occurs when €, =1/2, and this corresponds to a

maximum power transmission in the beam. In the limits as Q,, tends to zero and infinity the

reflected power equals the incident power. At low and frequency limits, the transmitted power is

15



very small compared with the incident power. The reflected power equals the transmitted power

37

when Qb =4iT

3.5 Conclusions

In a tensegrity structure, junctions occur between strings and beams. In this section, the case where
a semi-infinite string is attached in-line to a semi-infinite beam has been examined. When the
transverse wave in the string is incident upon the beam, the beam is excited into flexure. The
impedance of the beam in flexure has been derived and shown to be inversely proportional to the
square root of frequency. The real and imaginary parts of the beam impedance were compared with
the results from the mass, stiffness and damping boundaries used in section 2 and it was shown that
a beam in flexure is equivalent to a mass and a damper in parallel. Two waves are produced in the
beam; an evanescent wave and a flexural propagating wave. Both the reflection and transmission
coefficients of the string-beam junction have been described in terms of the ratio of the flexural
beam impedance to the string impedance, which was expressed in terms of a non-dimensional
frequency. Graphs plotted of the transmission and reflection coefficients show that reflection
always occurs, as total impedance matching cannot take place due to the imaginary part of the beam
impedance. The reflected wave amplitude and power is a minimum when the impedance of the
string is equal to the square root of two times the real part of the beam impedance. The transmitted
and reflected waves have equal amplitude when the impedance of the string is equal to the real part
of the beam impedance. At low frequencies, the boundary acts as though it were free, at high
frequencies the boundary acts as though clamped. The power transmission coefficient has a
maximum at the frequency that corresponds to the impedance of the string being equal to the square

root of two times the real part of the beam impedance.
This section has considered one configuration of the string attached to the beam; that of the beam

and string in-line. The next section considers the string attached perpendicular to the beam and

hence longitudinal wave motion will be excited in the beam.
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4. A string connected perpendicular to a beam

| 4.1 Introduction

The aim of this section is to investigate the wave filtering properties of a junction consisting of a
string connected perpendicular to a beam. When a transverse wave in the string is incident upon the
beam, it will excite longitudinal wave motion in the beam. Firstly, the longitudinal wave
propagation along a semi-infinite beam is considered and the longitudinal impedance of the beam is
derived. The transmission and reflection coefficients of the joint are derived to give an indication of

its wave filtering properties.

4.2 The longitudinal impedance of a beam

A beam of semi-infinite length, as shown in Figure 13, is subject to an in-plane harmonic force, £,
acting at the left end, defined as x = 0, resulting in the generation of a longitudinal wave of
amplitude 4;. The in-plane displacement in the beam is denoted by u. As the wave is travelling to

the right the displacement of the beam is given by
u(x,t)= 450/ @0hx) (4.1)

Where £; is the longitudinal wave number, given by L , Where ¢; is the longitudinal wave speed in
4

the beam, given by ¢; = \/—E‘ and o is the frequency of the harmonic force. The equation of
P

longitudinal wave motion of a beam is given in Appendix C. The subscript “7” denotes longitudinal
wavetype.

The force at the point x = 01is equal to the stress in the direction of the force multiplied by the cross-
sectional area that the force is acting over, i.e.

S0, =—F, (4.2)
where o; is the stress in the x-direction and S}, is the cross-sectional area of the beam. The
convention that tension is denoted as a positive force azid compression as a negative force has been
adopted. The stress in the x-direction is given as

o, =FEpe, (4.3)
where Ej is the Young’s modulus of the beam and &, is the strain in the x-direction, which is given
by
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Ex
Combining equations (4.2), (4.3) and (4.4) results in the expression for the force actingat x =0
=-S5,y 2% (4.5)
x

Substituting the spatial derivative of equation (4.1), evaluated at x = 0, into equation (4.5) results
in,

£y = Fye™ = jly 4;SyEpe’™ (4.6)
As the impedance is given by Z; = Wi)) , dividing equation (4.6) by the time derivative of equation

(4.1) evaluated at x =0, results in the longitudinal impedance of the beam, i.e.,
_SpEp

Cl

Zi 4.7

where ¢; = [—b is the speed of wave propagation in the beam. Examining the real and imaginary
P

parts of the impedance enables comparison with the mass, stiffness and damping impedances as
discussed in section 2.2. As equation (4.7) is real and positive, the beam acts as though it were a

damper.

4.3 A string connected to a beam

The combination of the semi-infinite string and the semi-infinite beam is shown in Figure 14. The
point of intersection is at x =0, and the string and beam displacements are given by ¥(0) and U(0)
and forces are F;and Fj. A transverse wave of amplitude 4; in the string is incident upon the beam,
which results in a reflected wave with amplitude A, in the string, and a longitudinal wave with
amplitude 4; transmitted in the beam. The aim of this section is to derive the reflection and
transmission coefficients as they indicate the wave filtering properties of the junction.
At the boundary between the string and beam, the displacement of the string is equal to that of the
beam at x =0,

Y,(0)=0(0) 438)
and force equilibrium gives,

Fy=-Fp (4.9)
Substituting equations (3.6) for ¥; and (4.1) for U into equation (4.8), gives

A+ 4, =4 (4.10)
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Dividing equation (4.10) by 4; and combining equations (2.14), (4.7) and (4.10) results in the

transmission coefficient,

A__ 2 @.11)

Ai 1+£

5

/ 2
where Zr = So PoEp (4.12)
Z Sp T

The reflection coefficient is found by substituting Z;, from equation (4.7) for Z in equation (2.14)

to give,
_Z4
Ar o Zs (4.13)
A1y Z1
ZS
. . - . . Z Z; .
Figure 15 shows the reflection and transmission coefficients plotted against = When — is small
5 N

the modulus of Ar approaches unity and the reflected wave is in-phase with the incident wave in
i

the string, i.e. the string behaves as if it had a free end. Hence, at the junction when 21 tends to
&

zero the amplitude of the transmitted wave tends to twice that of the incident wave, due to the

,_4£

. . Z e
doubling effect of the reflected and incident wave in the string. As Z—I approaches infinity
by

i
approaches unity, however the reflected wave has a phase difference of 180°, i.e. the string behaves
as if it had a fixed end. Hence at x =0, there is a cancellation effect that causes the amplitude of

Al to approach zero. When the impedance of the beam matches that of the string, there is no
i

reflection and the modulus of the transmitted wave is equal to that of the incident wave. This is
because there is no impedance difference between the string and beam and so the wave is
transmitted as if the system were continuous. The phase of the reflected wave at this point changes
from being completely in-phase to being completely out of phase. The transmitted wave remains

constantly in-phase with the incident wave as the impedance ratio alters. The point at which

4

r

A

i

Aj

A;

Z
occurs when —L =3,
S

The characteristics of the reflected wave are identical to that when a damper was attached to the

string (see section 2.2), because of the damping-like properties of a beam with longitudinal motion.
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4.4 Power flow through a junction

The aim of this section is to describe the power flow through the junction between the string
connected perpendicularly to the beam. The motivation for this is two-fold: firstly to provide insight
into the power that is transmitted and reflected, and secondly as a means of validating the previous
results. Assuming that the junction between the string and beam is conservative, the power incident
upon the junction will be equal to the power leaving the junction. The expression for power

associated with the incident and reflected wave in the string is given in section 3.4.1.

4.4.1 Power in the beam
Substituting the equations for the force and the resulting velocity at x = 0, equation (4.6) and the
time derivative of equation (4.1) respectively, into equation (3.21) gives the power in the beam

being carried by a longitudinal wave,
1 2
P = Emklstb|A1| (4.14)

where p, is the power in the longitudinal wave in the beam. Using the power balance equation;

power in = power reflected + power transmitted, and substituting equation (3.16) and (4.14) gives

1 2 1 2 1 2
EkSTw| Al = EkSTm| A7+ Ewk,SbEbl Al (4.15)
Dividing through by the incident wave amplitude and rearranging results in:
2 2
Al 2 Al (4.16)
Ai Z s Ai

_ . A . A . . .
By substituting the expressions for a-;i"— , equation (4.13) and j , equation (4.11) into equation

] i
(4.16), it enables the power cocfficients to be plotted against the impedance ratio. Figure 16 shows

. . . L . .
the reflected and transmitted powers coefficients plotied against Z—l When the impedance ratio is
5

unity, i.c. the longitudinal impedance of the beam matches the impedance of the string the reflected
power is zero and the transmitted power is equal to the incident power. At the low and high
frequency limits the reflected power approaches equality with the incident power and the

transmitted power approaches zero. The reflection and transmission power coefficients are equal at

Zi 34007,
Z

5
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4.5 Conclusions

The aim of this work is to investigate the wave filtering properties of a string and beam junction.
This section has been concerned with a particular configuration; that of the string attached
perpendicular to the beam. When the string is excited harmonically, a longitudinal wave is produced
in the beam, and hence the longitudinal beam impedance was derived. It was shown to be
independent of frequency and that 1t acts in the same way as a damper when connected to a string.
Reflection and transmission coefficients were obtained and shown to be dependent only on the
impedance ratio between the beam and the string, and hence independent of frequency. When the
beam impedance is much less than that of the string, the junction acts as a free end, and when it is
much greater than that of the string, the junction acts as a fixed end. A complete impedance match
between the string and beam is possible and when this occurs there is no reflected wave generated

in the string.

The next section considers the configuration of a beam joined to a string at an arbitrary angle, when

both flexural and longitudinal waves are produced in the beam.
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5. A string connected to a beam at an arbitrary angle

5.1 Introduction

In practice, the strings and beams in tensegrity structures are neither connected in-line nor at right
angles. Hence, in this section a semi-infinite beam joined at an arbitrary angle, 6, to a semi-infinite
string is considered. A propagating transverse wave of amplitude, 4;travels in the string and 1s
incident upon the beam generating both longitudinal, 4;, and flexural propagating waves, 44, and a
decaying wave, A, in the beam and a reflected wave, 4, in the string. The aim this section is to
describe each of these waves relative to the incident wave and so gain understanding of the
reflection and transmission properties of the junction. Following this introduction, the next section
derives the reflection and transmission coefficients using force equilibrium and displacement
continuity at the junction. In the subsequent section, the power flow through the junction is derived

to give an indication of the power carried in the transmitted and reflected waves.

5.2 String and beam joined at an arbitrary angle

Figure 17 shows a semi-infinite string attached to a semi-infinite beam at an angle of 6. A sliding
boundary condition is assumed, i.e. there is no horizontal displacement at the attachment point .The

displacement of the beam at x =0, in the direction of the force is #(0), where the force on the
beam is F}. This acts in the same direction as the force in the string, ;. The boundary conditions at
x = Qare equilibrium of forces and continuity of displacements, i.c.
Fy =—F; (5.1)
w(0}=7,(0) (52)
By resolving the displacement of the beam, W(O), and the force F), into components that are in-line

with and perpendicular to the axis of the beam, gives the following relationships

w(0)=7,(0) cosd +U(0)sing (5.3)
Fyc0s0 =7 1, (0) (5.4)
F,sin® = z,U(0) (5.5)

Substituting for ¥, (0) from equation (5.4) and U(0) from equation (5.5) into the time derivative of

equation (5.3) yields

2 2.2
O)zFbcos 9+Fbsm 0

w( Z, Z (5.6)
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Rearranging equation (5.60) gives

. Z,Z)
Fy =W(0 > > (5.7)
Zycos“O+Z,sin”0

The term inside the brackets is the equivalent impedance of the beam, Z, eg > when the beam is

attached to the string at an angle 0 as shown in Figure 18, i.e.
Z:Z

7 _Zlcosze+2fsin26

(5.8)

[

This impedance can be substituted for Z in equation (2.14) resulting in the reflection coefficient

- Zeg

A Zs (5.9)
Ai 1+ Zeq
Zs

Equation (5.9) can be expressed in non-dimensional form by noting that
Zeq - ZI / Zs
Z Z! / Zs
Q"1+ )

(5.10)
§ cos’0+sin? 6

V2 2T

o
where Q, = — where @y,
0y cs (Bl )4 (py S, )7

The transmission coefficients are obtained by combining equations (5.4) and (5.5) and by applying
the boundary condition given by equation (5.2).
Substituting for the flexural impedance of the beam, equation (3.9) and for the out of plane velocity,

obtained from equations (3.13) and (3.14), into equation (5.4) gives

Fycos8 = EyTyk (1 + /)4 (5.11)
Substituting for the longitudinal impedance of the beam, equation (4.7) and for the in-plane
velocity, obtained from equation (4.1), into equation (5.5) gives

Fysin® = jk, E S, 4, (5.12)
Combining equations (5.11) and (5.12) leads to a relationship between the flexural and longitudinal

waves in the beam

Ebfbkf3 (1 + _])A4 _ EbSbklAt
cosf sin®

(5.13)

Rearranging and simplifying equation (5.13) leads to the ratio of the longitudinal wave amplitude to
that of the flexural wave amplitude
VA
A tane L (5.14)
4 Z
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Substituting for W, equation (5.3), ¥,(0) from equation (2.9), Y} (0) obtained from equations (3.13)
and (3.36), and U(0) obtained from equation (4.1), into equation (5.2) gives

A+ A, =244 c0s0— 4 sin0 (5.15)
This expression can be arranged to give the flexural transmission coefficient and the longitudinal

transmission coefficient, 1.e.

Ay {1+ a)cosh (5.16)
- 2 . 2 '

A, 2cos“0—Psin- 6

A (1+a)sin® (5.17)
4 2

;  2C0s e—sin28
1-Z,. /Z
whereazﬂ—i:—fg-/—sand B=2—f.

In Figure 19 the reflection and transmission coefficients are plotted for various angles between the

string and beam. The graphs of modulus and phase are plotted against €2, for the angles

0 =30°,45°,90°, using as an example the case when the longitudinal impedance of the beam is ten
times greater than that of the string impedance. As @ increases, there are trends of behaviour in
both the modulus and phase plots. The minimum value of the modulus of the reﬂccéed wave shifts
to the left (decreases in frequency) with increasing © . The amplitude of the flexural wave increases
at low frequencies and the rate of roll-off increases with increasing 0 . The longitudinal wave
amplitude increases gradually with increasing 8. As 6 increases all the phase shifts occurring in all

wavetypes occurs at a lower frequency.

5.3 Power flow through the junction

The aim of this section is to examine how power flows through the junction between a semi-infinite
string and a semi-infinite beam joined at an arbitrary angle. In section 2.7.1 and section 2.7.2 the
power associated with the incident and reflected waves in the string and the power associated with
the flexural wave in the beam were derived. In section 3.4.1 the power associated with the
longitudinal wave in the beam was derived. As all wavetypes mentioned occur when the string is
joined to the beam at an arbitrary angle and assuming the junction is conservative, the power
balance equation is as follows

Power in = Power reflected + Power in transmitted flexural wave + Power in transmitted
longitudinal wave

Substituting from equations (3.22), (3.25) and (4.14) gives
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1
—;-kSTco[ 4’ = ~ksTol 4l + %mk!SbEb[ A" +oE Ik} 4’ (5.18)

Expressing equation (5.18) relative to the input power in a non-dimensional form gives

2 2 2

Ar

I

A4
Ai

Zzﬁ

+4(0, )2 !

=1 (5.19)

VA

5

where Q, = > and /2 = 12?; 7
@ es(ByT,) 4 (04S)

i i 1

A4 A . . .
Substituting %”— , equation (5.9), :Ii , equation (5.16) and A—l , equation (5.17) into equation (5.19)
enables the power coefficients to be plotted against Q. Figure 20 shows graphs of the reflected

. L
and transmitted power coefficients for three angles, 30°, 45° and 60°, and setting 2L 210 asan
L)

example. As the angle between the string and beam increéses, the maximum power transmitted in
the flexural wave and the minimum power reflected occurs at a lower frequency and the magnitude
of the power decreases. The magnitude of power transmitted in the longitudinal wave increases with
angle and frequency. Hence, at high frequencies and large angle (still acute) of intersection between

the string and beam the flexural wave is less significant than the longitudinal wave in the beam.

5.4 Conclusions

In this section, a semi-infinite string attached at an arbitrary angle to a semi-infinite beam has been
examined. A transverse wave in the string incident upon the beam causes wave reflection and
transmission. By assuming only transverse waves are present in the string and flexural and
longitudinal wavetypes in the beam, the reflection and transmission coefficients for wave
amplitudes and power have been derived. The effect of varying the angle between the string and
beam was examined and it was found that as the angle increased, the frequency at which the
reflection coefficient is a minimum decreases and the phase changes occur at lower frequencies in
cach wavetype. The flexural transmission power coefficient is dominant over the reflection power
coefficient and the longitudinal transmission power coefficient for approximately one decade of
frequency. The frequency at which this occurs decreases, as angle increases. The longitudinal power
transmission coefficient is greater than the flexural power transmission coefficient at high

frequencies.
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6. Conclusions

6.1 Conclusions

In this report, a junction between a semi-infinite string and beam in three configurations has been
considered. A transverse propagating wave in the string is incident upon the beam and the
transmission and reflection coefficients and power transmission and reflection coefficients have
been derived for each configuration. For the case when the string is joined in-line with the beam, a
flexural propagating wave and a decaying wave are present in the beam. Maximum values of both
the transmission and power transmission coefficient occur when the impedance of the string is
equal to the square root of two times the real part of the flexural impedance of the beam. When the
beam and string are joined transversely, a longitudinal propagating wave is present in the beam.
Maximum transmission occurs when the impedance of the string equals that of the longitudinal
beam impedance. The final configuration considered was that of the string and beam joined at an
arbitrary angle. In this case, both flexural and longitudinal wavetypes are present in the beam.
Transmission and reflection coefficients are a function of the angle. At low frequencies and small
angle, flexural transmission is dominant, and at high frequencies and large angle, longitudinal

transmission is dominant.

The ultimate aim of the work is to develop an analytical model of the dynamic behaviour of a
tensegrity structure. The work completed so far has considered a single simplified junction between
a single tension and a compression member. A semi-infinite string was chosen to represent the
tension member and a semi-infinite beam to represent the compression member. Three junction-
types have been examined: the string and beam in-line, the string and beam joined at right angles
and finally the string and beam attached at an arbitrary angle. In each case, a transverse propagating
wave in the string was incident upon the beam and reflection and transmission occurs. Using the
boundary conditions, expressions for the transmitted and reflected waves have been derived in

terms of the incident wave amplitude and the impedances of the string and beam,
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Figure 1 Transverse wave of amplitude 4, generated by a harmonic force Fe/*, propagating along a

semi-infinite string under a static tension force, 7.
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Figure 2 A semi-infinite string under tension 7 with an arbitrary impedance Z attached
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Figure 3 A mass attached to a semi-infinite string at x = 0. 4; is incident upon the mass M causing

a reflected wave A,.
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Figure 4 Modulus and phase of the reflection coefficient when incident upon mass-like impedance

plotted against non-dimensional frequency, Q,,.
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Figure 5 A semi-infinite string is attached to stiffness at x = 0, resulting in a reflected wave 4,.
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Figure 6 Modulus and phase of the reflection coefficient when incident upon stiffness-like

impedance plotted against non-dimensional frequency, Q.
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Figure 7 A semi-infinite string is attached to a viscous damper at x = 0, resulting in a reflected

wave 4, .
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Figure 8 Modulus and phase of the reflection coefficient when incident upon a viscous damping

impedance plotted against the impedance ratio Z,..
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Figure 9 A semi-infinite beam with a transverse force, F, acting at x =0and 4, is evanescent wave

and A4 is a flexural propagating wave.
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Figure 10 A semi-infinite string connected in-line to a semi-infinite beam. The forces and

displacements of both the string and beam where they join are shown disjointed for clarity.
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Figure 11 Modulus and phase of the reflection and transmission coefficients when incident upon a

beam attached in-line plotted against non-dimensional frequency, Q. The solid line represents the

reflected wave and the dashed line represents the transmitted wave.
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Figure 12 Power coefficients of the reflected and transmitted waves when the string is attached in-
line with the beam. The solid line represents the reflected power coefficient and the dashed line

represents the transmitted power coefficient.
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Figure 13 An in-plane force, Fy,, produces a longitudinal wave, 4;, in the beam. The shaded area

represents the cross-sectional area of the beam.
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Figure 14 A semi-infinite string connected perpendicular to a semi-infinite beam, The forces and

displacements of both the string and beam where they join are shown disjointed for clarity.
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the string is attached perpendicular to the beam. Solid line denotes the reflected wave and the

dashed line denotes the transmitted wave.
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Figure 16 Power coefficients of the reflected and transmitted waves when the string is attached at

. £ s .
90 degrees to the beam plotted against -ZJ— The solid line represents the reflected power coefficient
5

and the dashed line represents the transmitted power coefficient.
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Figure 17 A semi-infinite string connected at an arbitrary angle 0 to a semi-infinite beam.
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Figure 18 A semi-infinite string is attached to an equivalent impedance at x = 0, resulting in a

reflected wave 4,.
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Figure 19 Modulus and phase of reflected and transmitted waves plotted against Q, for three

different angles between the string and beam; 30°, 45° and 60°. The arrows indicate increasing
angle, the solid line depicts the reflected wave, the dashed line represents the flexural transmitted

wave and the dotted line represents the longitudinal transmitted wave.
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Figure 20 Power reflection and transmission coefficients plotted against Q, for various angles. The

solid line represents the reflected wave, the dashed line represents the flexural transmitted wave and

the dotted line represents the longitudinal transmitted wave.
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Appendix A

The aim of this appendix is to derive the transverse wave motion of a semi-infinite string under

tension.

A.1 Equation of transverse motion for a string under tension
The transverse motion of a string under a tension force, T, is a function of the density, p_, and the
cross sectional area S, of the string. The subscript “s” refers to the string. In the model used to

describe the wave motion the following assumptions are made:
o The string has no bending stiffness
e The tension force is constant along the length of the string
¢ Transverse displacements () are small from the equilibrium position

e Out-of-plane motion is the only motion.

Figure Al Free body diagram of a string element of length dx under tension force, T.

Figure A1 shows the forces on a section of string of length dx. There is a net transverse force, dF,
which is the resultant of the two vertical forces, depicted by the vertical arrows in Figure Al. This
force is caused by the change in angle 8, and hence the change in the direction of the tension force.
1t 1s given by,

dF = Tsin6(x + dx)— T'sin 0(x) (A1)
where the first term is 7 sin 6 evaluated at x + dx and the second term is 7 sin O evaluated at x. Using

the Taylor’s series expansion on the first term and truncating the series gives

dF ={Tsin@(x)+a—(j‘}—i£?—@)dx+...}—Tsin6(x)=a—(§-s-i£l£@dx (A2)
ox Ox
Assuming that 8 is small, sin@ = (%] , and hence
dF =T -(?iy—dx (A3)
ax?
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%y
or?

This force causes the mass, p,Sdx to have an acceleration of By equating the two

expressions for the force, dF and dividing by dx, gives

2%y 8%y
——p,S—==0 (A4)
a2 o

which 1s the transverse wave equation of the string. It can be rewritten in terms of the phase velocity

e,

2 2
T
Wa i-——lmm——a ;j=0 ,where ¢, = |—— (AS)
ox Cs Ot p,S
To obtain an expression for y, harmonic solutions with frequency ® are sought of the form
y{x,0) = Y(x)e!™ (A6)

and substituted into the wave equation (AS5) to give

2
C;x—j + ksz Y =0, where k, = © s the wavenumber of the string. (A7)

Cs

The solution is a sum of two complex exponentials that can be written as

Y(x) = A" + ek (A8)
Substituting (A8) into (A6) gives the harmonic solution to the wave equation as a function of space
and time

Y(x,1) = 4O 4 g, 0/ @17h) (A9)
The first term represents a wave varying harmonically in space and time, propagating to the lefi, the

second term is a wave propagating to the right, and 4; and A4, are the respective wave amplitudes.

A.2 A semi-infinite string under tension.

A semi-infinite string has an end, and the string stretches to infinity from that end. This report
considers the case where the end is on the right, defined as x = 0, and the string extends to -co in the
x-direction. Hence, when an excitation source is positioned at x = Qonly waves propagating to the

left are present, therefore the motion of the string can be described as

y(x,t) = Ae/ ) (A10)
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Appendix B

The aim of this appendix is to derive the flexural wave motion of a semi-infinite beam. To
investigate the effects of a compression force acting on the beam and the effects shear deformation

and rotational inertia has on the motion of the beam.

B.1 Equation of flexural wave motion in an Euler-Bernoulli heam
A beam that undergoes flexural wave motion is described in terms of its cross-sectional area, Sk,
the density pj,, the Young’s modulus, E,, and the second moment of area, I, . The subscript “5”

refers to the beam.

In the analysis in this appendix the following assumptions are made:
e The beam is uniform and elastic
e Motion only exists in the out-of-plane direction

» Plane cross-sections remain plane and perpendicular to the longitudinal axis

Figure B1 Flexural wave motion in beam causing rotation and vertical displacement, [11].

In addition fo the vertical displacement of the beam and the rotation of the cross-section as shown in
Figure B1, there are two other terms that contribute to the wave motion, namely that of the bending

moments, M(x} and vertical shear forces, Q(x). By considering the effects of these on an element of

length dx, as shown in Figure B2, four equations describing the motion are obtained.
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Figure B2 Beam clement of length dx, with displacements, bending moments and shear forces

shown.

By simple geometry and for small angles 8

dy
-9 Bl
dx B
: 00 M ) . o .
From Euler-Bernoulli theory == 77 [11]. Taking the spatial derivative of equation B1 and
X Lpdy

I .
substituting for > gives,
24

o2 ¥y
M = Eb‘[b — = (BZ)
éx?
The net moment on the element has to equal zero so Qdx —dM = 0. Rearranging this and
combining with equation (B2) gives,

aM 8y
=——=F ], — B3
0 l bbax3 (B3)

The net force on the element is — d(Q, which results in the mass, Py Spdx having an acceleration of

2

a_zy . Hence
ot
@Q__ Ky & (B4)
dx Ppop o 2
Combining equations (B3) and (B4) gives the flexural wave equation of a beam.
o* y 9? y
Eply—=+ppS, —==0 (B5)
- ot TP or?

Assuming a harmonic solution of the form y(x,7) = Ye/® and substituting for y in equation (BS)

yields,
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4
ﬂ—kﬁ}f:(), (B6)
ot

1

-1

4 —

where k= (%’—?’—J ®2 is the flexural wavenumber and the phase velocity is given by
sib

1

I 3 .

cr = @ E"’ b co 2 where the subscript “f” denotes the wave type (flexural).
k, I pr b

The solution to equation (B6) is a sum of four exponentials that can be written as

Y0 t) = e 1 4y 4 a4y (B7)
Therefore the harmonic solution to the flexural wave equation of the beam varying in space and
time is

Pt = Ale( Jortksx) Aze( Jor—kpx) Aye Hortkpx) dye Hot=ksx) B8)
The first two terms are harmonic non-propagating waves or evanescent waves. They decay away
exponentially from discontinuities. The last two terms are waves varying harmonically in space and
time. The 4, and 45 waves exist in the negative x-direction and the A4 and 44 waves exist in the

positive x-direction.

B.2 Solution for a semi-infinite beam

A semi-infinite beam has an end, and the beam goes to infinity from that end. This report considers
the case where the end is at the left, defined as x = 0, and the string extends to « in the x-direction.
Hence, when an excitation source is positioned at x = Oonly waves propagating to the right are

present, therefore the motion of the string is given by

y(x,t) = Aze(jmt—kfx) + A4ej(mt—kfx) (Bg)

B.3 Equations of flexural wave motion in an Euler-Bernoulli beam under a static in-plane
tension force.

Consider a small element of the beam with length dx that is subject to a tensile force, 7, as shown in

Figure B3

(e+de)
Q +dQ

Figure B3 An clement, of length dx, of a beam in flexure and subject to a tensile force, T
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The net force on the element is given by
dF =Q—(Q+dQ)—-T0+T(0+dB)

which simplifies to

dF=(—a—Q—+T§?-]dx (B10)
ox ox
Substituting for 6 from equation (B1) and @ from equation (B3), gives
4 2
dF = - Ebfbf—f-ra—;i dx (B11)
Ox Ox
o? y
This force results in the mass p,S,dx having an acceleration of ;5— Using Newton’s second law
(4
and force equilibrium gives the equation of flexural wave motion in a beam under tension
4 2 2
Ebfba—j’—fa—§’+pbsba—§’=o (B12)
Ox Ox ot

Assuming a harmonic solution of the form
y(x,0)= Ye/®! (B13)
where ¥ = Anek"x and A, and %, are constants, and substituting for y into equationﬁ (B12) gives
EpLkt Tk —w?p,S, =0 (B14)
If the tension force, 7' is set to zero the result is the dispersion relation for an Euler-Bernoulli beam

as in equation (B9). If the flexural stiffness of the beam, i.e. the first term, is set to zero then the

dispersion relation for a string is obtained as in equation (A6).

Solving (B14) as a quadratic in term of k,f and introducing the non-dimensional wavenumber
lgn = k,r , where r is the radius of gyration, leads to

pr_ I Dt oSyt (B15)
tO2B0, \\ME,) Eply

(D2prbr4 2

By noting that IQ} = and setting o = , equation (B15) becomes,

Eyd, 2Ey 1y
ienzfai1/|a2+i€f4’ (B16)

Hence there are four wavenumbers, & 121 and * kAZ , where
; [ 2. 7 4
klz\/ow a”+ky ,and (B17)
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; 2 7 4

AN N Y B18)
;21 is real for all positive values of o and 2 + whereas kAZ is imaginary for all positive values of
o and & s Hence, !E, is the wavenumber for the decaying waves and 122 is the wavenumber for

the propagating waves. Figure B4 shows + f:l plotted against i  and Figure B5 shows + 132 plotted

against k ¢ for positive values of k rand o. Figure B4 shows that the near-field wavenumber in the
tension beam is greater than that for the Euler-Bernoulli beam. At low frequencies, (small values of

k 1) the effects of tension are the most significant. When k ;=0 the near-field wavenumber is
given by 121 =+/20. . As frequency increases, the effects of the tension are reduced. For small o the

tension effects are minimal for k r =3,

1 U I I T i i ] ¥ ] 1

Figure B4 Non-dimensional tensioned beam wavenumber compared to a non-dimensional Euler-

Bernoulli wavenumber for =0, 1, 2 and 5.
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Figure B5 shows that the propagating wavenumber for the tensioned beam is less than the Buler-

Bernoulli beam, which means that when under tension the wavelengths are longer, again this is only
significant at the lower frequencies. As & + tends to zero, 122 also tends to zero, and as frequency

increases the wavenumber tends to that of an Euler-Bernoulli beam.
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1
5
ky
Figure BS Non-dimensional tensioned beam wavenumber compared to a non-dimensional Euler-

Bernoulli wavenumber for o= 10, 1, 2 and 5. The dashed line represents a propagating wave.

B.4 A beam subject to an in-line compression force
In a tensegrity structure, the strings that are under tension hold the beams in place and hence the

beams experience a compression force rather than tension. When a compression force is applied, i.e.

T <0 hence the second term in equation (B10) becomes negative, i.e

. dF =[—-‘3§—T@de (B19)

ox Oox
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This force causes the mass of the beam to accelerate, hence the force equilibrium equation becomes,

it 3, S, —= =0 (B20)
ax? b8 ot

64y

EbIb wen + T
ot

This can be solved by assuming a harmonic solution y(x,f) = Ye/®  where ¥ = Anek"x .
E Lkl 2 2 _
plpk, + Tk, —0°pyS, =0 (B21)
Solving equation (B21) as a quadratic in terms of kf and introducing the non-dimensional

wavenumber k, = k,r, where r is the radius of gyration, gives

2 2.4 2 4
ppo_ +\/[ his +®PbSer (B22)

2851y \\4(Eplp)®  Eple
. . . . . . ~4 (sz bS b?'4
Equation (B22) can be re-written in using the following observations, k; = 5. and
bib
Tr?
o= ,
2F, 1,

i’ ) +1€f“) (B23)

Hence there are four wavenumbers, + & and + &, , where

;E!=\/—a+ o’ +k*, and (B24)

ky :\/—aﬁ/a%éﬁ (B25)

As in the case of the compressive force, + k} is the wavenumber for the decaying wave and + 122 is

the wavenumber for the propagating wave. Figure B6 and B7 show + l:t] and + 122 plotted against
k rfor a=012and5, respectively.

Figure B6 shows that when the beam is under compression the near-field wavenumber is less than

the Euler-Bernoulli wavenumber. The greatest effect of the compression is seen at low frequencies.
As k ¢ tends to zero, 121 also tends to zero, and as frequency increases the wavenumber tends to that

of an Euler-Bernoulli beam.
Figure B7 shows that by compressing the beam the wavenumber of the propagating wave is

increasing compared to the Euler-Bernoulli wavenumber. The effects of compression are the most
significant at low frequencies. When & ¢ =0 the near-field wavenumber is given by fc‘z =+/-2a .
As frequency increases, the effects of the compression force are reduced. For small o the

compression effects are minimal for & r23.
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Figure B6é Non-dimensional compressed beam wavenumber compared to a non-dimensional Euler-

Bemoulli wavenumber for a.=0, 1, 2 and 5.
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Figure B7 Non-dimensional compressed beam wavenumber compared to a non-dimensional Euler-

Bernoulli wavenumber for «= 10, 1, 2 and 5. The dashed line represents a propagating wave.

B.5 Wave equation of an infinite Timoshenko beam

A Timoshenko beam includes the effects of shear deformation and rotational inertia that are

important at higher frequencies. The equation of motion is given by [11]

* 8* E,\ o* 27, 8*
Ebfb—i’+pbsb—-§’~pbfb(1+—bj e ) (B26)
ox ot Gx ) dx“ot Gk ot

E,

, where v is Poisson’s ratio. The Timoshenko shear
2(1+v)

The shear modulus, G is given by

coefficient, k, is a shape factor of the cross-section, which for a rectangular cross-section x is equal
to 5/6 and for a circular cross-section it is 9/10 [14].

For solutions of the form described by equation (B13), the equation of motion leads to the

dispersion relation

E 1
E Ikt + pbib(] +G—5K]k,§co2 —ppSy0* + pfé} Kb 0% =0 (B26)
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This can be defined in terms of a non-dimensional Euler-Bernoulli flexural wavenumber £ r and a

non-dimensional flexural rigidity §% = Mmz—- . Where r is the radius of gyration and [, = Sbrz.
KS[,GI’
R R 5? 2 - R4 l- %4 )=0 (B27)

This expression can be solved as a quadratic in terms of k,?

Iy _ff% (1+§2)¢\/E§~(§2-1)2+1 B29)

. n 12

AR N CTR 529)
»l 4 12

ky =k _—;c—fi(nﬁz)-\/k?f(s"z 1f 41 (B30)

. X /2 ,
ky =k Ji (l+§2)+\/%(§2—1)2+1 (B31)

Hence the wavenumbers of the beam are + kyand + j£, . The positive wavenumbers are plotted in

Figures B8 and B9 for various values of 5.
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Figure B8 Non-dimensional wavenumber /21 plotted against non-dimensional Euler-Bemoulli
wavenumber for §=0,1,2and 5. A solid line denotes an evanescent wave, and a dashed line

denotes a propagating wave.
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Figure B9 Non-dimensional wavenumber 122 plotted against non-dimensional Euler-Bernoulli

wavenumber for § =0,1,2and 5. A dashed line denotes a propagating wave.

Figure B8 shows that 121 is initially an evanescent wave and there is a frequency at which it turns

into a non-dispersive propagating wave with speed of the longitudinal wave, [13] except for the

case when § = 0. This cut-on frequency is given by Brennan [13], to be

mcutﬂon = GSbK (B32)
\ Pl

Figure B9 shows that 122 is a dispersive propagating wave at low frequencies and change into non-

dispersive propagating waves with speed similar to that of a shear wave.
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Appendix C

The aim of this appendix is to derive the longitudinal wave motion of a semi-infinite beam.

C.1 Equation of longitudinal wave motion in a beam
The in-plane motion of a beam is characterised by its cross-sectional area, Sj, the Young'’s
modulus, £, and the density pj. The subscript “b” refers to the beam. The following assumptions
are made in the derivation of the equation of motion:
e The beam is uniform and elastic
o Longitudinal displacement u(x) is uniform over the normal cross-section (i.e. plane cross-
sections remain plane and perpendicular to the longitudinal axis).

s The only motion is in the x-direction

—p» u

.S, €— L (o, +do,)S,

X—> -0 < » x—» +oo
dx

Figure C2 An element of beam, length dx with the forces and direction of motion shown

The net force on an element of length dx due to stress distribution as shown in Figure A2, is

dF =do .S, (C1)
2
This force causes the mass of the element, p,Ssdx, to have an acceleration of —Z—; Using Newton’s
T
second law and force equilibrium, and dividing by S,dx gives
do, 0%u
=p,— C2
o P (C2)

When the stresses in the other two co-ordinate directions (y and z) are equal to zero, Hooke’s Law
applies, to give,
o

x = Eb€x=

1
wheree, = —
ox
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Hence the stress-sirain relationship is given by

_g, 2 (€3)

Ey, Sl _p, =0, (C4)

To obtain an expression for #, harmonic solutions with frequency o are sought in the form of

u(x,1) = Ue/™ (C5)
Substituting this into the wave equation leads to the ordinary differential equation
2
d g]—k,zU:O, (C6)

where the wavenumber of the beam is k; = 2 and the phase velocity is¢; = bl
¢ Ps

The solution of equation (C6) is a sum of two complex exponentials that can be written as

U = A’ + 4,677 (C7)
Substituting (C7) into (C5) gives the harmonic solution to the wave equation as a function of space
and time

u(x,1) = 4ie? R 4 g el OR) (C8)
The first term represents a wave varying harmonically with space and time, propagating to the left

and the second term is a wave propagating to the right, where A, and A, are the wave amplitudes.

C.2 Solution for a semi-infinite beam
The beam described in this report is of semi-infinite length with the end at the left. Hence, when an
excitation source is positioned at x = Qonly waves propagating to the left are present. Therefore, the

motion of the string can be described as

u(x,t) = Aye/ k) (C9)

C.3 General Remarks

If the beam is subject to a constant in-plane compression or tension force, it does not contribute to

the longitudinal wave equation.

The wave motion described is that of quasi-longitudinal waves, as described by Cremer et al [11].
Pure longitudinal waves exist only in solids whose dimensions are all much greater than that of the

wavelength.
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The same principles apply to a longitudinal wave in a string, only the wavenumber and phase

velocity may differ due to the difference in material properties.
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